1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
// Copyright (C) 2010-2015 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <config.h>
#include <gtest/gtest.h>
#include <util/buffer.h>
#include <dns/messagerenderer.h>
#include <dns/rrttl.h>
#include <dns/tests/unittest_util.h>
#include <util/unittests/wiredata.h>
#include <boost/scoped_ptr.hpp>
using namespace std;
using namespace isc;
using namespace isc::dns;
using namespace isc::util;
using boost::scoped_ptr;
using isc::util::unittests::matchWireData;
namespace {
class RRTTLTest : public ::testing::Test {
protected:
RRTTLTest() : obuffer(0) {}
OutputBuffer obuffer;
MessageRenderer renderer;
static RRTTL rrttlFactoryFromWire(const char* datafile);
static const RRTTL ttl_0, ttl_1h, ttl_1d, ttl_32bit, ttl_max;
static const RRTTL ttl_small, ttl_large;
static const uint8_t wiredata[20];
};
const RRTTL RRTTLTest::ttl_0(0);
const RRTTL RRTTLTest::ttl_1h(3600);
const RRTTL RRTTLTest::ttl_1d(86400);
const RRTTL RRTTLTest::ttl_32bit(0x12345678);
const RRTTL RRTTLTest::ttl_max(0xffffffff);
const RRTTL RRTTLTest::ttl_small(1);
const RRTTL RRTTLTest::ttl_large(0x80000001);
// This is wire-format data for the above sample RRTTLs rendered in the
// appearing order.
const uint8_t RRTTLTest::wiredata[20] = { 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x0e, 0x10,
0x00, 0x01, 0x51, 0x80,
0x12, 0x34, 0x56, 0x78,
0xff, 0xff, 0xff, 0xff };
RRTTL
RRTTLTest::rrttlFactoryFromWire(const char* datafile) {
std::vector<unsigned char> data;
UnitTestUtil::readWireData(datafile, data);
InputBuffer buffer(&data[0], data.size());
return (RRTTL(buffer));
}
TEST_F(RRTTLTest, getValue) {
EXPECT_EQ(0, ttl_0.getValue());
EXPECT_EQ(3600, ttl_1h.getValue());
EXPECT_EQ(86400, ttl_1d.getValue());
EXPECT_EQ(0x12345678, ttl_32bit.getValue());
EXPECT_EQ(0xffffffff, ttl_max.getValue());
}
TEST_F(RRTTLTest, copyConstruct) {
const RRTTL ttl1(3600);
const RRTTL ttl2(ttl1);
EXPECT_EQ(ttl1.getValue(), ttl2.getValue());
}
TEST_F(RRTTLTest, fromText) {
// Border cases
EXPECT_EQ(0, RRTTL("0").getValue());
EXPECT_EQ(4294967295U, RRTTL("4294967295").getValue());
// Invalid cases
EXPECT_THROW(RRTTL("0xdeadbeef"), InvalidRRTTL); // must be decimal
EXPECT_THROW(RRTTL("-1"), InvalidRRTTL); // must be positive
EXPECT_THROW(RRTTL("1.1"), InvalidRRTTL); // must be integer
EXPECT_THROW(RRTTL("4294967296"), InvalidRRTTL); // must be 32-bit
}
TEST_F(RRTTLTest, createFromText) {
// It returns an actual RRTTL iff the given text is recognized as a
// valid RR TTL.
scoped_ptr<RRTTL> good_ttl(RRTTL::createFromText("3600"));
EXPECT_TRUE(good_ttl);
EXPECT_EQ(RRTTL(3600), *good_ttl);
scoped_ptr<RRTTL> bad_ttl(RRTTL::createFromText("bad"));
EXPECT_FALSE(bad_ttl);
}
void
checkUnit(unsigned multiply, char suffix) {
SCOPED_TRACE(string("Unit check with suffix ") + suffix);
const uint32_t value = 10 * multiply;
const string num = "10";
// Check both lower and upper version of the suffix
EXPECT_EQ(value,
RRTTL(num + static_cast<char>(tolower(suffix))).getValue());
EXPECT_EQ(value,
RRTTL(num + static_cast<char>(toupper(suffix))).getValue());
}
// Check parsing the unit form (1D, etc)
TEST_F(RRTTLTest, fromTextUnit) {
// Check each of the units separately
checkUnit(1, 'S');
checkUnit(60, 'M');
checkUnit(60 * 60, 'H');
checkUnit(24 * 60 * 60, 'D');
checkUnit(7 * 24 * 60 * 60, 'W');
// Some border cases (with units)
EXPECT_EQ(4294967295U, RRTTL("4294967295S").getValue());
EXPECT_EQ(0, RRTTL("0W0D0H0M0S").getValue());
EXPECT_EQ(4294967295U, RRTTL("1193046H1695S").getValue());
// Leading zeroes are accepted
EXPECT_EQ(4294967295U, RRTTL("0000000000000004294967295S").getValue());
// Now some compound ones. We allow any order (it would be much work to
// check the order anyway).
EXPECT_EQ(60 * 60 + 3, RRTTL("1H3S").getValue());
// Awkward, but allowed case - the same unit used twice.
EXPECT_EQ(20 * 3600, RRTTL("12H8H").getValue());
// Negative number in part of the expression, but the total is positive.
// Rejected.
EXPECT_THROW(RRTTL("-1S1H"), InvalidRRTTL);
// Some things out of range in the ttl, but it wraps to number in range
// in int64_t. Should still not get fooled and reject it.
// First part out of range
EXPECT_THROW(RRTTL("9223372036854775807S9223372036854775807S2S"),
InvalidRRTTL);
// Second part out of range, but it immediately wraps (2S+2^64-2S)
EXPECT_THROW(RRTTL("2S18446744073709551614S"), InvalidRRTTL);
// The whole thing wraps right away (2^64S)
EXPECT_THROW(RRTTL("18446744073709551616S"), InvalidRRTTL);
// Second part out of range, and will become negative with the unit,
EXPECT_THROW(RRTTL("256S307445734561825856M"), InvalidRRTTL);
// Missing before unit.
EXPECT_THROW(RRTTL("W5H"), InvalidRRTTL);
EXPECT_THROW(RRTTL("5hW"), InvalidRRTTL);
// Empty string is not allowed
EXPECT_THROW(RRTTL(""), InvalidRRTTL);
// Missing the last unit is not allowed
EXPECT_THROW(RRTTL("3D5"), InvalidRRTTL);
// There are some wrong units
EXPECT_THROW(RRTTL("13X"), InvalidRRTTL);
EXPECT_THROW(RRTTL("3D5F"), InvalidRRTTL);
}
TEST_F(RRTTLTest, fromWire) {
EXPECT_EQ(0x12345678,
rrttlFactoryFromWire("rrcode32_fromWire1").getValue());
EXPECT_THROW(rrttlFactoryFromWire("rrcode32_fromWire2"),
IncompleteRRTTL);
}
TEST_F(RRTTLTest, toText) {
EXPECT_EQ("0", ttl_0.toText());
EXPECT_EQ("3600", ttl_1h.toText());
EXPECT_EQ("86400", ttl_1d.toText());
EXPECT_EQ("305419896", ttl_32bit.toText());
EXPECT_EQ("4294967295", ttl_max.toText());
}
TEST_F(RRTTLTest, toWireBuffer) {
ttl_0.toWire(obuffer);
ttl_1h.toWire(obuffer);
ttl_1d.toWire(obuffer);
ttl_32bit.toWire(obuffer);
ttl_max.toWire(obuffer);
matchWireData(wiredata, sizeof(wiredata),
obuffer.getData(), obuffer.getLength());
}
TEST_F(RRTTLTest, toWireRenderer) {
ttl_0.toWire(renderer);
ttl_1h.toWire(renderer);
ttl_1d.toWire(renderer);
ttl_32bit.toWire(renderer);
ttl_max.toWire(renderer);
matchWireData(wiredata, sizeof(wiredata),
renderer.getData(), renderer.getLength());
}
TEST_F(RRTTLTest, equal) {
EXPECT_TRUE(RRTTL("3600") == ttl_1h);
EXPECT_TRUE(RRTTL("86400").equals(ttl_1d));
EXPECT_TRUE(ttl_1d != ttl_1h);
EXPECT_TRUE(ttl_1d.nequals(ttl_max));
}
//
// The following set of tests confirm the result of <=, <, >=, >
// The test logic is simple, and all tests are just straightforward variations
// of the first one.
//
TEST_F(RRTTLTest, leq) {
// small <= large is true
EXPECT_TRUE(ttl_small.leq(ttl_large));
EXPECT_TRUE(ttl_small <= ttl_large);
// small <= small is true
EXPECT_TRUE(ttl_small.leq(ttl_small));
EXPECT_LE(ttl_small, ttl_small);
// large <= small is false
EXPECT_FALSE(ttl_large.leq(ttl_small));
EXPECT_FALSE(ttl_large <= ttl_small);
}
TEST_F(RRTTLTest, geq) {
EXPECT_TRUE(ttl_large.geq(ttl_small));
EXPECT_TRUE(ttl_large >= ttl_small);
EXPECT_TRUE(ttl_large.geq(ttl_large));
EXPECT_GE(ttl_large, ttl_large);
EXPECT_FALSE(ttl_small.geq(ttl_large));
EXPECT_FALSE(ttl_small >= ttl_large);
}
TEST_F(RRTTLTest, lthan) {
EXPECT_TRUE(ttl_small.lthan(ttl_large));
EXPECT_TRUE(ttl_small < ttl_large);
EXPECT_FALSE(ttl_small.lthan(ttl_small));
// cppcheck-suppress duplicateExpression
EXPECT_FALSE(ttl_small < ttl_small);
EXPECT_FALSE(ttl_large.lthan(ttl_small));
EXPECT_FALSE(ttl_large < ttl_small);
}
TEST_F(RRTTLTest, gthan) {
EXPECT_TRUE(ttl_large.gthan(ttl_small));
EXPECT_TRUE(ttl_large > ttl_small);
EXPECT_FALSE(ttl_large.gthan(ttl_large));
// cppcheck-suppress duplicateExpression
EXPECT_FALSE(ttl_large > ttl_large);
EXPECT_FALSE(ttl_small.gthan(ttl_large));
EXPECT_FALSE(ttl_small > ttl_large);
}
TEST_F(RRTTLTest, maxTTL) {
EXPECT_EQ((1u << 31) - 1, RRTTL::MAX_TTL().getValue());
}
// test operator<<. We simply confirm it appends the result of toText().
TEST_F(RRTTLTest, LeftShiftOperator) {
ostringstream oss;
oss << ttl_1h;
EXPECT_EQ(ttl_1h.toText(), oss.str());
}
}
|