summaryrefslogtreecommitdiffstats
path: root/third-party/tommyds/tommytrie.h
diff options
context:
space:
mode:
Diffstat (limited to 'third-party/tommyds/tommytrie.h')
-rw-r--r--third-party/tommyds/tommytrie.h260
1 files changed, 260 insertions, 0 deletions
diff --git a/third-party/tommyds/tommytrie.h b/third-party/tommyds/tommytrie.h
new file mode 100644
index 0000000..d82a5f2
--- /dev/null
+++ b/third-party/tommyds/tommytrie.h
@@ -0,0 +1,260 @@
+/*
+ * Copyright (c) 2010, Andrea Mazzoleni. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/** \file
+ * Trie optimized for cache utilization.
+ *
+ * This trie is a standard implementation that stores elements in the order defined
+ * by the key.
+ *
+ * It needs an external allocator for the inner nodes in the trie.
+ *
+ * You can control the number of branches of each node using the ::TOMMY_TRIE_TREE_MAX
+ * define. More branches imply more speed, but a bigger memory occupation.
+ *
+ * Compared to ::tommy_trie_inplace you have to provide a ::tommy_allocator allocator.
+ * Note that the C malloc() is too slow to futfill this role.
+ *
+ * To initialize the trie you have to call tommy_allocator_init() to initialize
+ * the allocator, and tommy_trie_init() for the trie.
+ *
+ * \code
+ * tommy_allocator alloc;
+ * tommy_trie trie;
+ *
+ * tommy_allocator_init(&alloc, TOMMY_TRIE_BLOCK_SIZE, TOMMY_TRIE_BLOCK_SIZE);
+ *
+ * tommy_trie_init(&trie, &alloc);
+ * \endcode
+ *
+ * To insert elements in the trie you have to call tommy_trie_insert() for
+ * each element.
+ * In the insertion call you have to specify the address of the node, the
+ * address of the object, and the key value to use.
+ * The address of the object is used to initialize the tommy_node::data field
+ * of the node, and the key to initialize the tommy_node::key field.
+ *
+ * \code
+ * struct object {
+ * int value;
+ * // other fields
+ * tommy_node node;
+ * };
+ *
+ * struct object* obj = malloc(sizeof(struct object)); // creates the object
+ *
+ * obj->value = ...; // initializes the object
+ *
+ * tommy_trie_insert(&trie, &obj->node, obj, obj->value); // inserts the object
+ * \endcode
+ *
+ * To find and element in the trie you have to call tommy_trie_search() providing
+ * the key to search.
+ *
+ * \code
+ * int value_to_find = 1;
+ * struct object* obj = tommy_trie_search(&trie, value_to_find);
+ * if (!obj) {
+ * // not found
+ * } else {
+ * // found
+ * }
+ * \endcode
+ *
+ * To iterate over all the elements in the trie with the same key, you have to
+ * use tommy_trie_bucket() and follow the tommy_node::next pointer until NULL.
+ *
+ * \code
+ * int value_to_find = 1;
+ * tommy_node* i = tommy_trie_bucket(&trie, value_to_find);
+ * while (i) {
+ * struct object* obj = i->data; // gets the object pointer
+ *
+ * printf("%d\n", obj->value); // process the object
+ *
+ * i = i->next; // goes to the next element
+ * }
+ * \endcode
+ *
+ * To remove an element from the trie you have to call tommy_trie_remove()
+ * providing the key to search and remove.
+ *
+ * \code
+ * struct object* obj = tommy_trie_remove(&trie, value_to_remove);
+ * if (obj) {
+ * free(obj); // frees the object allocated memory
+ * }
+ * \endcode
+ *
+ * To destroy the trie you have to remove all the elements, and deinitialize
+ * the allocator using tommy_allocator_done().
+ *
+ * \code
+ * tommy_allocator_done(&alloc);
+ * \endcode
+ *
+ * Note that you cannot iterate over all the elements in the trie using the
+ * trie itself. You have to insert all the elements also in a ::tommy_list,
+ * and use the list to iterate. See the \ref multiindex example for more detail.
+ */
+
+#ifndef __TOMMYTRIE_H
+#define __TOMMYTRIE_H
+
+#include "tommytypes.h"
+#include "tommyalloc.h"
+
+/******************************************************************************/
+/* trie */
+
+/**
+ * Number of branches on each inner node. It must be a power of 2.
+ * Suggested values are 8, 16 and 32.
+ * Any inner node, excluding leafs, contains a pointer to each branch.
+ *
+ * The default size is choosen to exactly fit a typical cache line of 64 bytes.
+ */
+#define TOMMY_TRIE_TREE_MAX (64 / sizeof(void*))
+
+/**
+ * Trie block size.
+ * You must use this value to initialize the allocator.
+ */
+#define TOMMY_TRIE_BLOCK_SIZE (TOMMY_TRIE_TREE_MAX * sizeof(void*))
+
+/** \internal
+ * Number of bits for each branch.
+ */
+#define TOMMY_TRIE_TREE_BIT TOMMY_ILOG2(TOMMY_TRIE_TREE_MAX)
+
+/** \internal
+ * Number of bits of the first level.
+ */
+#define TOMMY_TRIE_BUCKET_BIT ((TOMMY_KEY_BIT % TOMMY_TRIE_TREE_BIT) + TOMMY_TRIE_TREE_BIT)
+
+/** \internal
+ * Number of branches of the first level.
+ * It's like a inner branch, but bigger to get any remainder bits.
+ */
+#define TOMMY_TRIE_BUCKET_MAX (1 << TOMMY_TRIE_BUCKET_BIT)
+
+/**
+ * Trie node.
+ * This is the node that you have to include inside your objects.
+ */
+typedef tommy_node tommy_trie_node;
+
+/**
+ * Trie container type.
+ * \note Don't use internal fields directly, but access the container only using functions.
+ */
+typedef struct tommy_trie_struct {
+ tommy_trie_node* bucket[TOMMY_TRIE_BUCKET_MAX]; /**< First tree level. */
+ tommy_count_t count; /**< Number of elements. */
+ tommy_count_t node_count; /**< Number of nodes. */
+ tommy_allocator* alloc; /**< Allocator for internal nodes. */
+} tommy_trie;
+
+/**
+ * Initializes the trie.
+ * You have to provide an allocator initialized with *both* the size and align with TOMMY_TRIE_BLOCK_SIZE.
+ * You can share this allocator with other tries.
+ *
+ * The tries is completely allocated through the allocator, and it doesn't need to be deinitialized.
+ * \param alloc Allocator initialized with *both* the size and align with TOMMY_TRIE_BLOCK_SIZE.
+ */
+void tommy_trie_init(tommy_trie* trie, tommy_allocator* alloc);
+
+/**
+ * Inserts an element in the trie.
+ * You have to provide the pointer of the node embedded into the object,
+ * the pointer to the object and the key to use.
+ * \param node Pointer to the node embedded into the object to insert.
+ * \param data Pointer to the object to insert.
+ * \param key Key to use to insert the object.
+ */
+void tommy_trie_insert(tommy_trie* trie, tommy_trie_node* node, void* data, tommy_key_t key);
+
+/**
+ * Searches and removes the first element with the specified key.
+ * If the element is not found, 0 is returned.
+ * If more equal elements are present, the first one is removed.
+ * This operation is faster than calling tommy_trie_bucket() and tommy_trie_remove_existing() separately.
+ * \param key Key of the element to find and remove.
+ * \return The removed element, or 0 if not found.
+ */
+void* tommy_trie_remove(tommy_trie* trie, tommy_key_t key);
+
+/**
+ * Gets the bucket of the specified key.
+ * The bucket is guaranteed to contain ALL and ONLY the elements with the specified key.
+ * You can access elements in the bucket following the ::next pointer until 0.
+ * \param key Key of the element to find.
+ * \return The head of the bucket, or 0 if empty.
+ */
+tommy_trie_node* tommy_trie_bucket(tommy_trie* trie, tommy_key_t key);
+
+/**
+ * Searches an element in the trie.
+ * You have to provide the key of the element you want to find.
+ * If more elements with the same key are present, the first one is returned.
+ * \param key Key of the element to find.
+ * \return The first element found, or 0 if none.
+ */
+tommy_inline void* tommy_trie_search(tommy_trie* trie, tommy_key_t key)
+{
+ tommy_trie_node* i = tommy_trie_bucket(trie, key);
+
+ if (!i)
+ return 0;
+
+ return i->data;
+}
+
+/**
+ * Removes an element from the trie.
+ * You must already have the address of the element to remove.
+ * \return The tommy_node::data field of the node removed.
+ */
+void* tommy_trie_remove_existing(tommy_trie* trie, tommy_trie_node* node);
+
+/**
+ * Gets the number of elements.
+ */
+tommy_inline tommy_count_t tommy_trie_count(tommy_trie* trie)
+{
+ return trie->count;
+}
+
+/**
+ * Gets the size of allocated memory.
+ * It includes the size of the ::tommy_trie_node of the stored elements.
+ */
+tommy_size_t tommy_trie_memory_usage(tommy_trie* trie);
+
+#endif
+