summaryrefslogtreecommitdiffstats
path: root/src/tpm2/crypto/openssl/CryptPrimeSieve.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 21:41:43 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 21:41:43 +0000
commit92cccad89d1c12b39165d5f0ed7ccd2d44965a1a (patch)
treef59a2764cd8c50959050a428bd8fc935138df750 /src/tpm2/crypto/openssl/CryptPrimeSieve.c
parentInitial commit. (diff)
downloadlibtpms-upstream.tar.xz
libtpms-upstream.zip
Adding upstream version 0.9.2.upstream/0.9.2upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/tpm2/crypto/openssl/CryptPrimeSieve.c')
-rw-r--r--src/tpm2/crypto/openssl/CryptPrimeSieve.c554
1 files changed, 554 insertions, 0 deletions
diff --git a/src/tpm2/crypto/openssl/CryptPrimeSieve.c b/src/tpm2/crypto/openssl/CryptPrimeSieve.c
new file mode 100644
index 0000000..8c4e52b
--- /dev/null
+++ b/src/tpm2/crypto/openssl/CryptPrimeSieve.c
@@ -0,0 +1,554 @@
+/********************************************************************************/
+/* */
+/* CryptPrimeSieve */
+/* Written by Ken Goldman */
+/* IBM Thomas J. Watson Research Center */
+/* $Id: CryptPrimeSieve.c 1519 2019-11-15 20:43:51Z kgoldman $ */
+/* */
+/* Licenses and Notices */
+/* */
+/* 1. Copyright Licenses: */
+/* */
+/* - Trusted Computing Group (TCG) grants to the user of the source code in */
+/* this specification (the "Source Code") a worldwide, irrevocable, */
+/* nonexclusive, royalty free, copyright license to reproduce, create */
+/* derivative works, distribute, display and perform the Source Code and */
+/* derivative works thereof, and to grant others the rights granted herein. */
+/* */
+/* - The TCG grants to the user of the other parts of the specification */
+/* (other than the Source Code) the rights to reproduce, distribute, */
+/* display, and perform the specification solely for the purpose of */
+/* developing products based on such documents. */
+/* */
+/* 2. Source Code Distribution Conditions: */
+/* */
+/* - Redistributions of Source Code must retain the above copyright licenses, */
+/* this list of conditions and the following disclaimers. */
+/* */
+/* - Redistributions in binary form must reproduce the above copyright */
+/* licenses, this list of conditions and the following disclaimers in the */
+/* documentation and/or other materials provided with the distribution. */
+/* */
+/* 3. Disclaimers: */
+/* */
+/* - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF */
+/* LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH */
+/* RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) */
+/* THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. */
+/* Contact TCG Administration (admin@trustedcomputinggroup.org) for */
+/* information on specification licensing rights available through TCG */
+/* membership agreements. */
+/* */
+/* - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED */
+/* WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR */
+/* FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR */
+/* NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY */
+/* OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. */
+/* */
+/* - Without limitation, TCG and its members and licensors disclaim all */
+/* liability, including liability for infringement of any proprietary */
+/* rights, relating to use of information in this specification and to the */
+/* implementation of this specification, and TCG disclaims all liability for */
+/* cost of procurement of substitute goods or services, lost profits, loss */
+/* of use, loss of data or any incidental, consequential, direct, indirect, */
+/* or special damages, whether under contract, tort, warranty or otherwise, */
+/* arising in any way out of use or reliance upon this specification or any */
+/* information herein. */
+/* */
+/* (c) Copyright IBM Corp. and others, 2016 - 2019 */
+/* */
+/********************************************************************************/
+
+/* 10.2.17 CryptPrimeSieve.c */
+/* 10.2.17.1 Includes and defines */
+#include "Tpm.h"
+#if RSA_KEY_SIEVE
+#include "CryptPrimeSieve_fp.h"
+/* This determines the number of bits in the largest sieve field. */
+#define MAX_FIELD_SIZE 2048
+extern const uint32_t s_LastPrimeInTable;
+extern const uint32_t s_PrimeTableSize;
+extern const uint32_t s_PrimesInTable;
+extern const unsigned char s_PrimeTable[];
+/* This table is set of prime markers. Each entry is the prime value for the ((n + 1) * 1024)
+ prime. That is, the entry in s_PrimeMarkers[1] is the value for the 2,048th prime. This is used
+ in the PrimeSieve() to adjust the limit for the prime search. When processing smaller prime
+ candidates, fewer primes are checked directly before going to Miller-Rabin. As the prime grows,
+ it is worth spending more time eliminating primes as, a) the density is lower, and b) the cost of
+ Miller-Rabin is higher. */
+const uint32_t s_PrimeMarkersCount = 6;
+const uint32_t s_PrimeMarkers[] = {
+ 8167, 17881, 28183, 38891, 49871, 60961 };
+uint32_t primeLimit;
+
+/* 10.2.17.1.1 RsaAdjustPrimeLimit() */
+/* This used during the sieve process. The iterator for getting the next prime (RsaNextPrime()) will
+ return primes until it hits the limit (primeLimit) set up by this function. This causes the sieve
+ process to stop when an appropriate number of primes have been sieved. */
+
+void
+RsaAdjustPrimeLimit(
+ uint32_t requestedPrimes
+ )
+{
+ if(requestedPrimes == 0 || requestedPrimes > s_PrimesInTable)
+ requestedPrimes = s_PrimesInTable;
+ requestedPrimes = (requestedPrimes - 1) / 1024;
+ if(requestedPrimes < s_PrimeMarkersCount)
+ primeLimit = s_PrimeMarkers[requestedPrimes];
+ else
+ primeLimit = s_LastPrimeInTable - 2; // libtpms: Fix for 3072 bit keys to avoid mark=5
+ primeLimit >>= 1;
+}
+
+/* 10.2.17.1.2 RsaNextPrime() */
+/* This the iterator used during the sieve process. The input is the last prime returned (or any
+ starting point) and the output is the next higher prime. The function returns 0 when the
+ primeLimit is reached. */
+uint32_t
+RsaNextPrime(
+ uint32_t lastPrime
+ )
+{
+ if(lastPrime == 0)
+ return 0;
+ lastPrime >>= 1;
+ for(lastPrime += 1; lastPrime <= primeLimit; lastPrime++)
+ {
+ if(((s_PrimeTable[lastPrime >> 3] >> (lastPrime & 0x7)) & 1) == 1)
+ return ((lastPrime << 1) + 1);
+ }
+ return 0;
+}
+/* This table contains a previously sieved table. It has the bits for 3, 5, and 7 removed. Because
+ of the factors, it needs to be aligned to 105 and has a repeat of 105. */
+const BYTE seedValues[] = {
+ 0x16, 0x29, 0xcb, 0xa4, 0x65, 0xda, 0x30, 0x6c,
+ 0x99, 0x96, 0x4c, 0x53, 0xa2, 0x2d, 0x52, 0x96,
+ 0x49, 0xcb, 0xb4, 0x61, 0xd8, 0x32, 0x2d, 0x99,
+ 0xa6, 0x44, 0x5b, 0xa4, 0x2c, 0x93, 0x96, 0x69,
+ 0xc3, 0xb0, 0x65, 0x5a, 0x32, 0x4d, 0x89, 0xb6,
+ 0x48, 0x59, 0x26, 0x2d, 0xd3, 0x86, 0x61, 0xcb,
+ 0xb4, 0x64, 0x9a, 0x12, 0x6d, 0x91, 0xb2, 0x4c,
+ 0x5a, 0xa6, 0x0d, 0xc3, 0x96, 0x69, 0xc9, 0x34,
+ 0x25, 0xda, 0x22, 0x65, 0x99, 0xb4, 0x4c, 0x1b,
+ 0x86, 0x2d, 0xd3, 0x92, 0x69, 0x4a, 0xb4, 0x45,
+ 0xca, 0x32, 0x69, 0x99, 0x36, 0x0c, 0x5b, 0xa6,
+ 0x25, 0xd3, 0x94, 0x68, 0x8b, 0x94, 0x65, 0xd2,
+ 0x32, 0x6d, 0x18, 0xb6, 0x4c, 0x4b, 0xa6, 0x29,
+ 0xd1};
+#define USE_NIBBLE
+#ifndef USE_NIBBLE
+static const BYTE bitsInByte[256] = {
+ 0x00, 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03,
+ 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,
+ 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,
+ 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
+ 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,
+ 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
+ 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
+ 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
+ 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,
+ 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
+ 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
+ 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
+ 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
+ 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
+ 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
+ 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,
+ 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04,
+ 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
+ 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
+ 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
+ 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
+ 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
+ 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
+ 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,
+ 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05,
+ 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
+ 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
+ 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,
+ 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06,
+ 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,
+ 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07,
+ 0x05, 0x06, 0x06, 0x07, 0x06, 0x07, 0x07, 0x08
+};
+#define BitsInByte(x) bitsInByte[(unsigned char)x]
+#else
+const BYTE bitsInNibble[16] = {
+ 0x00, 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03,
+ 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04};
+#define BitsInByte(x) \
+ (bitsInNibble[(unsigned char)(x) & 0xf] \
+ + bitsInNibble[((unsigned char)(x) >> 4) & 0xf])
+#endif
+
+/* 10.2.17.1.3 BitsInArry() */
+/* This function counts the number of bits set in an array of bytes. */
+static int
+BitsInArray(
+ const unsigned char *a, // IN: A pointer to an array of bytes
+ unsigned int aSize // IN: the number of bytes to sum
+ )
+{
+ int j = 0;
+ for(; aSize; a++, aSize--)
+ j += BitsInByte(*a);
+ return j;
+}
+
+/* 10.2.17.1.4 FindNthSetBit() */
+/* This function finds the nth SET bit in a bit array. The n parameter is between 1 and the number
+ of bits in the array (always a multiple of 8). If called when the array does not have n bits set,
+ it will return -1 */
+/* Return Values Meaning */
+/* <0 no bit is set or no bit with the requested number is set */
+/* >=0 the number of the bit in the array that is the nth set */
+int
+FindNthSetBit(
+ const UINT16 aSize, // IN: the size of the array to check
+ const BYTE *a, // IN: the array to check
+ const UINT32 n // IN, the number of the SET bit
+ )
+{
+ UINT16 i;
+ int retValue;
+ UINT32 sum = 0;
+ BYTE sel;
+ //find the bit
+ for(i = 0; (i < (int)aSize) && (sum < n); i++)
+ sum += BitsInByte(a[i]);
+ i--;
+ // The chosen bit is in the byte that was just accessed
+ // Compute the offset to the start of that byte
+ retValue = i * 8 - 1;
+ sel = a[i];
+ // Subtract the bits in the last byte added.
+ sum -= BitsInByte(sel);
+ // Now process the byte, one bit at a time.
+ for(; (sel != 0) && (sum != n); retValue++, sel = sel >> 1)
+ sum += (sel & 1) != 0;
+ return (sum == n) ? retValue : -1;
+}
+typedef struct
+{
+ UINT16 prime;
+ UINT16 count;
+} SIEVE_MARKS;
+const SIEVE_MARKS sieveMarks[5] = {
+ {31, 7}, {73, 5}, {241, 4}, {1621, 3}, {UINT16_MAX, 2}};
+
+/* 10.2.17.1.5 PrimeSieve() */
+/* This function does a prime sieve over the input field which has as its starting address the value
+ in bnN. Since this initializes the Sieve using a precomputed field with the bits associated with
+ 3, 5 and 7 already turned off, the value of pnN may need to be adjusted by a few counts to allow
+ the precomputed field to be used without modification. */
+/* To get better performance, one could address the issue of developing the composite numbers. When
+ the size of the prime gets large, the time for doing the divisions goes up, noticeably. It could
+ be better to develop larger composite numbers even if they need to be bigNum's themselves. The
+ object would be to reduce the number of times that the large prime is divided into a few large
+ divides and then use smaller divides to get to the final 16 bit (or smaller) remainders. */
+UINT32
+PrimeSieve(
+ bigNum bnN, // IN/OUT: number to sieve
+ UINT32 fieldSize, // IN: size of the field area in bytes
+ BYTE *field // IN: field
+ )
+{
+ UINT32 i;
+ UINT32 j;
+ UINT32 fieldBits = fieldSize * 8;
+ UINT32 r;
+ BYTE *pField;
+ INT32 iter;
+ UINT32 adjust;
+ UINT32 mark = 0;
+ UINT32 count = sieveMarks[0].count;
+ UINT32 stop = sieveMarks[0].prime;
+ UINT32 composite;
+ UINT32 pList[8];
+ UINT32 next;
+ pAssert(field != NULL && bnN != NULL);
+ // If the remainder is odd, then subtracting the value will give an even number,
+ // but we want an odd number, so subtract the 105+rem. Otherwise, just subtract
+ // the even remainder.
+ adjust = (UINT32)BnModWord(bnN, 105);
+ if(adjust & 1)
+ adjust += 105;
+ // Adjust the input number so that it points to the first number in a
+ // aligned field.
+ BnSubWord(bnN, bnN, adjust);
+ // pAssert(BnModWord(bnN, 105) == 0);
+ pField = field;
+ for(i = fieldSize; i >= sizeof(seedValues);
+ pField += sizeof(seedValues), i -= sizeof(seedValues))
+ {
+ memcpy(pField, seedValues, sizeof(seedValues));
+ }
+ if(i != 0)
+ memcpy(pField, seedValues, i);
+ // Cycle through the primes, clearing bits
+ // Have already done 3, 5, and 7
+ iter = 7;
+#define NEXT_PRIME(iter) (iter = RsaNextPrime(iter))
+ // Get the next N primes where N is determined by the mark in the sieveMarks
+ while((composite = NEXT_PRIME(iter)) != 0)
+ {
+ next = 0;
+ i = count;
+ pList[i--] = composite;
+ for(; i > 0; i--)
+ {
+ next = NEXT_PRIME(iter);
+ pList[i] = next;
+ if(next != 0)
+ composite *= next;
+ }
+ // Get the remainder when dividing the base field address
+ // by the composite
+ composite = (UINT32)BnModWord(bnN, composite);
+ // 'composite' is divisible by the composite components. for each of the
+ // composite components, divide 'composite'. That remainder (r) is used to
+ // pick a starting point for clearing the array. The stride is equal to the
+ // composite component. Note, the field only contains odd numbers. If the
+ // field were expanded to contain all numbers, then half of the bits would
+ // have already been cleared. We can save the trouble of clearing them a
+ // second time by having a stride of 2*next. Or we can take all of the even
+ // numbers out of the field and use a stride of 'next'
+ for(i = count; i > 0; i--)
+ {
+ next = pList[i];
+ if(next == 0)
+ goto done;
+ r = composite % next;
+ // these computations deal with the fact that we have picked a field-sized
+ // range that is aligned to a 105 count boundary. The problem is, this field
+ // only contains odd numbers. If we take our prime guess and walk through all
+ // the numbers using that prime as the 'stride', then every other 'stride' is
+ // going to be an even number. So, we are actually counting by 2 * the stride
+ // We want the count to start on an odd number at the start of our field. That
+ // is, we want to assume that we have counted up to the edge of the field by
+ // the 'stride' and now we are going to start flipping bits in the field as we
+ // continue to count up by 'stride'. If we take the base of our field and
+ // divide by the stride, we find out how much we find out how short the last
+ // count was from reaching the edge of the bit field. Say we get a quotient of
+ // 3 and remainder of 1. This means that after 3 strides, we are 1 short of
+ // the start of the field and the next stride will either land within the
+ // field or step completely over it. The confounding factor is that our field
+ // only contains odd numbers and our stride is actually 2 * stride. If the
+ // quoitent is even, then that means that when we add 2 * stride, we are going
+ // to hit another even number. So, we have to know if we need to back off
+ // by 1 stride before we start counting by 2 * stride.
+ // We can tell from the remainder whether we are on an even or odd
+ // stride when we hit the beginning of the table. If we are on an odd stride
+ // (r & 1), we would start half a stride in (next - r)/2. If we are on an
+ // even stride, we need 0.5 strides (next - r/2) because the table only has
+ // odd numbers. If the remainder happens to be zero, then the start of the
+ // table is on stride so no adjustment is necessary.
+
+ if(r & 1) j = (next - r) / 2;
+ else if(r == 0) j = 0;
+ else j = next - (r / 2);
+ for(; j < fieldBits; j += next)
+ ClearBit(j, field, fieldSize);
+ }
+ if(next >= stop)
+ {
+ mark++;
+ count = sieveMarks[mark].count;
+ stop = sieveMarks[mark].prime;
+ }
+ }
+ done:
+ INSTRUMENT_INC(totalFieldsSieved[PrimeIndex]);
+ i = BitsInArray(field, fieldSize);
+ INSTRUMENT_ADD(bitsInFieldAfterSieve[PrimeIndex], i);
+ INSTRUMENT_ADD(emptyFieldsSieved[PrimeIndex], (i == 0));
+ return i;
+}
+#ifdef SIEVE_DEBUG
+static uint32_t fieldSize = 210;
+
+/* 10.2.17.1.6 SetFieldSize() */
+/* Function to set the field size used for prime generation. Used for tuning. */
+uint32_t
+SetFieldSize(
+ uint32_t newFieldSize
+ )
+{
+ if(newFieldSize == 0 || newFieldSize > MAX_FIELD_SIZE)
+ fieldSize = MAX_FIELD_SIZE;
+ else
+ fieldSize = newFieldSize;
+ return fieldSize;
+}
+#endif // SIEVE_DEBUG
+
+/* 10.2.17.1.7 PrimeSelectWithSieve() */
+/* This function will sieve the field around the input prime candidate. If the sieve field is not
+ empty, one of the one bits in the field is chosen for testing with Miller-Rabin. If the value is
+ prime, pnP is updated with this value and the function returns success. If this value is not
+ prime, another pseudo-random candidate is chosen and tested. This process repeats until all
+ values in the field have been checked. If all bits in the field have been checked and none is
+ prime, the function returns FALSE and a new random value needs to be chosen. */
+/* Error Returns Meaning */
+/* TPM_RC_FAILURE TPM in failure mode, probably due to entropy source */
+/* TPM_RC_SUCCESS candidate is probably prime */
+/* TPM_RC_NO_RESULT candidate is not prime and couldn't find and alternative in the field */
+LIB_EXPORT TPM_RC
+PrimeSelectWithSieve(
+ bigNum candidate, // IN/OUT: The candidate to filter
+ UINT32 e, // IN: the exponent
+ RAND_STATE *rand // IN: the random number generator state
+ )
+{
+ BYTE field[MAX_FIELD_SIZE];
+ UINT32 first;
+ UINT32 ones;
+ INT32 chosen;
+ BN_PRIME(test);
+ UINT32 modE;
+#ifndef SIEVE_DEBUG
+ UINT32 fieldSize = MAX_FIELD_SIZE;
+#endif
+ UINT32 primeSize;
+ //
+ // Adjust the field size and prime table list to fit the size of the prime
+ // being tested. This is done to try to optimize the trade-off between the
+ // dividing done for sieving and the time for Miller-Rabin. When the size
+ // of the prime is large, the cost of Miller-Rabin is fairly high, as is the
+ // cost of the sieving. However, the time for Miller-Rabin goes up considerably
+ // faster than the cost of dividing by a number of primes.
+ primeSize = BnSizeInBits(candidate);
+
+ if(primeSize <= 512)
+ {
+ RsaAdjustPrimeLimit(1024); // Use just the first 1024 primes
+ }
+ else if(primeSize <= 1024)
+ {
+ RsaAdjustPrimeLimit(4096); // Use just the first 4K primes
+ }
+ else
+ {
+ RsaAdjustPrimeLimit(0); // Use all available
+ }
+
+ // Save the low-order word to use as a search generator and make sure that
+ // it has some interesting range to it
+ first = (UINT32)(candidate->d[0] | 0x80000000);
+
+ // Sieve the field
+ ones = PrimeSieve(candidate, fieldSize, field);
+ pAssert(ones > 0 && ones < (fieldSize * 8));
+ for(; ones > 0; ones--)
+ {
+ // Decide which bit to look at and find its offset
+ chosen = FindNthSetBit((UINT16)fieldSize, field, ((first % ones) + 1));
+
+ if((chosen < 0) || (chosen >= (INT32)(fieldSize * 8)))
+ FAIL(FATAL_ERROR_INTERNAL);
+
+ // Set this as the trial prime
+ BnAddWord(test, candidate, (crypt_uword_t)(chosen * 2));
+
+ // The exponent might not have been one of the tested primes so
+ // make sure that it isn't divisible and make sure that 0 != (p-1) mod e
+ // Note: This is the same as 1 != p mod e
+ modE = (UINT32)BnModWord(test, e);
+ if((modE != 0) && (modE != 1) && MillerRabin(test, rand))
+ {
+ BnCopy(candidate, test);
+ return TPM_RC_SUCCESS;
+ }
+ // Clear the bit just tested
+ ClearBit(chosen, field, fieldSize);
+ }
+ // Ran out of bits and couldn't find a prime in this field
+ INSTRUMENT_INC(noPrimeFields[PrimeIndex]);
+ return (g_inFailureMode ? TPM_RC_FAILURE : TPM_RC_NO_RESULT);
+}
+
+#if RSA_INSTRUMENT
+static char a[256];
+char *
+PrintTuple(
+ UINT32 *i
+ )
+{
+ sprintf(a, "{%d, %d, %d}", i[0], i[1], i[2]);
+ return a;
+}
+#define CLEAR_VALUE(x) memset(x, 0, sizeof(x))
+
+void
+RsaSimulationEnd(
+ void
+ )
+{
+ int i;
+ UINT32 averages[3];
+ UINT32 nonFirst = 0;
+ if((PrimeCounts[0] + PrimeCounts[1] + PrimeCounts[2]) != 0)
+ {
+ printf("Primes generated = %s\n", PrintTuple(PrimeCounts));
+ printf("Fields sieved = %s\n", PrintTuple(totalFieldsSieved));
+ printf("Fields with no primes = %s\n", PrintTuple(noPrimeFields));
+ printf("Primes checked with Miller-Rabin = %s\n",
+ PrintTuple(MillerRabinTrials));
+ for(i = 0; i < 3; i++)
+ averages[i] = (totalFieldsSieved[i]
+ != 0 ? bitsInFieldAfterSieve[i] / totalFieldsSieved[i]
+ : 0);
+ printf("Average candidates in field %s\n", PrintTuple(averages));
+ for(i = 1; i < (sizeof(failedAtIteration) / sizeof(failedAtIteration[0]));
+ i++)
+ nonFirst += failedAtIteration[i];
+ printf("Miller-Rabin failures not in first round = %d\n", nonFirst);
+ }
+ CLEAR_VALUE(PrimeCounts);
+ CLEAR_VALUE(totalFieldsSieved);
+ CLEAR_VALUE(noPrimeFields);
+ CLEAR_VALUE(MillerRabinTrials);
+ CLEAR_VALUE(bitsInFieldAfterSieve);
+}
+void
+GetSieveStats(
+ uint32_t *trials,
+ uint32_t *emptyFields,
+ uint32_t *averageBits
+ )
+{
+ uint32_t totalBits;
+ uint32_t fields;
+ *trials = MillerRabinTrials[0] + MillerRabinTrials[1] + MillerRabinTrials[2];
+ *emptyFields = noPrimeFields[0] + noPrimeFields[1] + noPrimeFields[2];
+ fields = totalFieldsSieved[0] + totalFieldsSieved[1]
+ + totalFieldsSieved[2];
+ totalBits = bitsInFieldAfterSieve[0] + bitsInFieldAfterSieve[1]
+ + bitsInFieldAfterSieve[2];
+ if(fields != 0)
+ *averageBits = totalBits / fields;
+ else
+ *averageBits = 0;
+ CLEAR_VALUE(PrimeCounts);
+ CLEAR_VALUE(totalFieldsSieved);
+ CLEAR_VALUE(noPrimeFields);
+ CLEAR_VALUE(MillerRabinTrials);
+ CLEAR_VALUE(bitsInFieldAfterSieve);
+}
+#endif
+#endif // RSA_KEY_SIEVE
+#if !RSA_INSTRUMENT
+//*** RsaSimulationEnd()
+// Stub for call when not doing instrumentation.
+#if 0 // libtpms added
+void
+RsaSimulationEnd(
+ void
+ )
+{
+ return;
+}
+#endif // libtpms added
+#endif