summaryrefslogtreecommitdiffstats
path: root/Documentation/networking/device_drivers/ethernet/marvell
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/networking/device_drivers/ethernet/marvell
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/networking/device_drivers/ethernet/marvell')
-rw-r--r--Documentation/networking/device_drivers/ethernet/marvell/octeon_ep.rst35
-rw-r--r--Documentation/networking/device_drivers/ethernet/marvell/octeontx2.rst289
2 files changed, 324 insertions, 0 deletions
diff --git a/Documentation/networking/device_drivers/ethernet/marvell/octeon_ep.rst b/Documentation/networking/device_drivers/ethernet/marvell/octeon_ep.rst
new file mode 100644
index 000000000..bc562c490
--- /dev/null
+++ b/Documentation/networking/device_drivers/ethernet/marvell/octeon_ep.rst
@@ -0,0 +1,35 @@
+.. SPDX-License-Identifier: GPL-2.0+
+
+====================================================================
+Linux kernel networking driver for Marvell's Octeon PCI Endpoint NIC
+====================================================================
+
+Network driver for Marvell's Octeon PCI EndPoint NIC.
+Copyright (c) 2020 Marvell International Ltd.
+
+Contents
+========
+
+- `Overview`_
+- `Supported Devices`_
+- `Interface Control`_
+
+Overview
+========
+This driver implements networking functionality of Marvell's Octeon PCI
+EndPoint NIC.
+
+Supported Devices
+=================
+Currently, this driver support following devices:
+ * Network controller: Cavium, Inc. Device b200
+
+Interface Control
+=================
+Network Interface control like changing mtu, link speed, link down/up are
+done by writing command to mailbox command queue, a mailbox interface
+implemented through a reserved region in BAR4.
+This driver writes the commands into the mailbox and the firmware on the
+Octeon device processes them. The firmware also sends unsolicited notifications
+to driver for events suchs as link change, through notification queue
+implemented as part of mailbox interface.
diff --git a/Documentation/networking/device_drivers/ethernet/marvell/octeontx2.rst b/Documentation/networking/device_drivers/ethernet/marvell/octeontx2.rst
new file mode 100644
index 000000000..dd5cd6946
--- /dev/null
+++ b/Documentation/networking/device_drivers/ethernet/marvell/octeontx2.rst
@@ -0,0 +1,289 @@
+.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+
+====================================
+Marvell OcteonTx2 RVU Kernel Drivers
+====================================
+
+Copyright (c) 2020 Marvell International Ltd.
+
+Contents
+========
+
+- `Overview`_
+- `Drivers`_
+- `Basic packet flow`_
+- `Devlink health reporters`_
+
+Overview
+========
+
+Resource virtualization unit (RVU) on Marvell's OcteonTX2 SOC maps HW
+resources from the network, crypto and other functional blocks into
+PCI-compatible physical and virtual functions. Each functional block
+again has multiple local functions (LFs) for provisioning to PCI devices.
+RVU supports multiple PCIe SRIOV physical functions (PFs) and virtual
+functions (VFs). PF0 is called the administrative / admin function (AF)
+and has privileges to provision RVU functional block's LFs to each of the
+PF/VF.
+
+RVU managed networking functional blocks
+ - Network pool or buffer allocator (NPA)
+ - Network interface controller (NIX)
+ - Network parser CAM (NPC)
+ - Schedule/Synchronize/Order unit (SSO)
+ - Loopback interface (LBK)
+
+RVU managed non-networking functional blocks
+ - Crypto accelerator (CPT)
+ - Scheduled timers unit (TIM)
+ - Schedule/Synchronize/Order unit (SSO)
+ Used for both networking and non networking usecases
+
+Resource provisioning examples
+ - A PF/VF with NIX-LF & NPA-LF resources works as a pure network device
+ - A PF/VF with CPT-LF resource works as a pure crypto offload device.
+
+RVU functional blocks are highly configurable as per software requirements.
+
+Firmware setups following stuff before kernel boots
+ - Enables required number of RVU PFs based on number of physical links.
+ - Number of VFs per PF are either static or configurable at compile time.
+ Based on config, firmware assigns VFs to each of the PFs.
+ - Also assigns MSIX vectors to each of PF and VFs.
+ - These are not changed after kernel boot.
+
+Drivers
+=======
+
+Linux kernel will have multiple drivers registering to different PF and VFs
+of RVU. Wrt networking there will be 3 flavours of drivers.
+
+Admin Function driver
+---------------------
+
+As mentioned above RVU PF0 is called the admin function (AF), this driver
+supports resource provisioning and configuration of functional blocks.
+Doesn't handle any I/O. It sets up few basic stuff but most of the
+funcionality is achieved via configuration requests from PFs and VFs.
+
+PF/VFs communicates with AF via a shared memory region (mailbox). Upon
+receiving requests AF does resource provisioning and other HW configuration.
+AF is always attached to host kernel, but PFs and their VFs may be used by host
+kernel itself, or attached to VMs or to userspace applications like
+DPDK etc. So AF has to handle provisioning/configuration requests sent
+by any device from any domain.
+
+AF driver also interacts with underlying firmware to
+ - Manage physical ethernet links ie CGX LMACs.
+ - Retrieve information like speed, duplex, autoneg etc
+ - Retrieve PHY EEPROM and stats.
+ - Configure FEC, PAM modes
+ - etc
+
+From pure networking side AF driver supports following functionality.
+ - Map a physical link to a RVU PF to which a netdev is registered.
+ - Attach NIX and NPA block LFs to RVU PF/VF which provide buffer pools, RQs, SQs
+ for regular networking functionality.
+ - Flow control (pause frames) enable/disable/config.
+ - HW PTP timestamping related config.
+ - NPC parser profile config, basically how to parse pkt and what info to extract.
+ - NPC extract profile config, what to extract from the pkt to match data in MCAM entries.
+ - Manage NPC MCAM entries, upon request can frame and install requested packet forwarding rules.
+ - Defines receive side scaling (RSS) algorithms.
+ - Defines segmentation offload algorithms (eg TSO)
+ - VLAN stripping, capture and insertion config.
+ - SSO and TIM blocks config which provide packet scheduling support.
+ - Debugfs support, to check current resource provising, current status of
+ NPA pools, NIX RQ, SQ and CQs, various stats etc which helps in debugging issues.
+ - And many more.
+
+Physical Function driver
+------------------------
+
+This RVU PF handles IO, is mapped to a physical ethernet link and this
+driver registers a netdev. This supports SR-IOV. As said above this driver
+communicates with AF with a mailbox. To retrieve information from physical
+links this driver talks to AF and AF gets that info from firmware and responds
+back ie cannot talk to firmware directly.
+
+Supports ethtool for configuring links, RSS, queue count, queue size,
+flow control, ntuple filters, dump PHY EEPROM, config FEC etc.
+
+Virtual Function driver
+-----------------------
+
+There are two types VFs, VFs that share the physical link with their parent
+SR-IOV PF and the VFs which work in pairs using internal HW loopback channels (LBK).
+
+Type1:
+ - These VFs and their parent PF share a physical link and used for outside communication.
+ - VFs cannot communicate with AF directly, they send mbox message to PF and PF
+ forwards that to AF. AF after processing, responds back to PF and PF forwards
+ the reply to VF.
+ - From functionality point of view there is no difference between PF and VF as same type
+ HW resources are attached to both. But user would be able to configure few stuff only
+ from PF as PF is treated as owner/admin of the link.
+
+Type2:
+ - RVU PF0 ie admin function creates these VFs and maps them to loopback block's channels.
+ - A set of two VFs (VF0 & VF1, VF2 & VF3 .. so on) works as a pair ie pkts sent out of
+ VF0 will be received by VF1 and viceversa.
+ - These VFs can be used by applications or virtual machines to communicate between them
+ without sending traffic outside. There is no switch present in HW, hence the support
+ for loopback VFs.
+ - These communicate directly with AF (PF0) via mbox.
+
+Except for the IO channels or links used for packet reception and transmission there is
+no other difference between these VF types. AF driver takes care of IO channel mapping,
+hence same VF driver works for both types of devices.
+
+Basic packet flow
+=================
+
+Ingress
+-------
+
+1. CGX LMAC receives packet.
+2. Forwards the packet to the NIX block.
+3. Then submitted to NPC block for parsing and then MCAM lookup to get the destination RVU device.
+4. NIX LF attached to the destination RVU device allocates a buffer from RQ mapped buffer pool of NPA block LF.
+5. RQ may be selected by RSS or by configuring MCAM rule with a RQ number.
+6. Packet is DMA'ed and driver is notified.
+
+Egress
+------
+
+1. Driver prepares a send descriptor and submits to SQ for transmission.
+2. The SQ is already configured (by AF) to transmit on a specific link/channel.
+3. The SQ descriptor ring is maintained in buffers allocated from SQ mapped pool of NPA block LF.
+4. NIX block transmits the pkt on the designated channel.
+5. NPC MCAM entries can be installed to divert pkt onto a different channel.
+
+Devlink health reporters
+========================
+
+NPA Reporters
+-------------
+The NPA reporters are responsible for reporting and recovering the following group of errors:
+
+1. GENERAL events
+
+ - Error due to operation of unmapped PF.
+ - Error due to disabled alloc/free for other HW blocks (NIX, SSO, TIM, DPI and AURA).
+
+2. ERROR events
+
+ - Fault due to NPA_AQ_INST_S read or NPA_AQ_RES_S write.
+ - AQ Doorbell Error.
+
+3. RAS events
+
+ - RAS Error Reporting for NPA_AQ_INST_S/NPA_AQ_RES_S.
+
+4. RVU events
+
+ - Error due to unmapped slot.
+
+Sample Output::
+
+ ~# devlink health
+ pci/0002:01:00.0:
+ reporter hw_npa_intr
+ state healthy error 2872 recover 2872 last_dump_date 2020-12-10 last_dump_time 09:39:09 grace_period 0 auto_recover true auto_dump true
+ reporter hw_npa_gen
+ state healthy error 2872 recover 2872 last_dump_date 2020-12-11 last_dump_time 04:43:04 grace_period 0 auto_recover true auto_dump true
+ reporter hw_npa_err
+ state healthy error 2871 recover 2871 last_dump_date 2020-12-10 last_dump_time 09:39:17 grace_period 0 auto_recover true auto_dump true
+ reporter hw_npa_ras
+ state healthy error 0 recover 0 last_dump_date 2020-12-10 last_dump_time 09:32:40 grace_period 0 auto_recover true auto_dump true
+
+Each reporter dumps the
+
+ - Error Type
+ - Error Register value
+ - Reason in words
+
+For example::
+
+ ~# devlink health dump show pci/0002:01:00.0 reporter hw_npa_gen
+ NPA_AF_GENERAL:
+ NPA General Interrupt Reg : 1
+ NIX0: free disabled RX
+ ~# devlink health dump show pci/0002:01:00.0 reporter hw_npa_intr
+ NPA_AF_RVU:
+ NPA RVU Interrupt Reg : 1
+ Unmap Slot Error
+ ~# devlink health dump show pci/0002:01:00.0 reporter hw_npa_err
+ NPA_AF_ERR:
+ NPA Error Interrupt Reg : 4096
+ AQ Doorbell Error
+
+
+NIX Reporters
+-------------
+The NIX reporters are responsible for reporting and recovering the following group of errors:
+
+1. GENERAL events
+
+ - Receive mirror/multicast packet drop due to insufficient buffer.
+ - SMQ Flush operation.
+
+2. ERROR events
+
+ - Memory Fault due to WQE read/write from multicast/mirror buffer.
+ - Receive multicast/mirror replication list error.
+ - Receive packet on an unmapped PF.
+ - Fault due to NIX_AQ_INST_S read or NIX_AQ_RES_S write.
+ - AQ Doorbell Error.
+
+3. RAS events
+
+ - RAS Error Reporting for NIX Receive Multicast/Mirror Entry Structure.
+ - RAS Error Reporting for WQE/Packet Data read from Multicast/Mirror Buffer..
+ - RAS Error Reporting for NIX_AQ_INST_S/NIX_AQ_RES_S.
+
+4. RVU events
+
+ - Error due to unmapped slot.
+
+Sample Output::
+
+ ~# ./devlink health
+ pci/0002:01:00.0:
+ reporter hw_npa_intr
+ state healthy error 0 recover 0 grace_period 0 auto_recover true auto_dump true
+ reporter hw_npa_gen
+ state healthy error 0 recover 0 grace_period 0 auto_recover true auto_dump true
+ reporter hw_npa_err
+ state healthy error 0 recover 0 grace_period 0 auto_recover true auto_dump true
+ reporter hw_npa_ras
+ state healthy error 0 recover 0 grace_period 0 auto_recover true auto_dump true
+ reporter hw_nix_intr
+ state healthy error 1121 recover 1121 last_dump_date 2021-01-19 last_dump_time 05:42:26 grace_period 0 auto_recover true auto_dump true
+ reporter hw_nix_gen
+ state healthy error 949 recover 949 last_dump_date 2021-01-19 last_dump_time 05:42:43 grace_period 0 auto_recover true auto_dump true
+ reporter hw_nix_err
+ state healthy error 1147 recover 1147 last_dump_date 2021-01-19 last_dump_time 05:42:59 grace_period 0 auto_recover true auto_dump true
+ reporter hw_nix_ras
+ state healthy error 409 recover 409 last_dump_date 2021-01-19 last_dump_time 05:43:16 grace_period 0 auto_recover true auto_dump true
+
+Each reporter dumps the
+
+ - Error Type
+ - Error Register value
+ - Reason in words
+
+For example::
+
+ ~# devlink health dump show pci/0002:01:00.0 reporter hw_nix_intr
+ NIX_AF_RVU:
+ NIX RVU Interrupt Reg : 1
+ Unmap Slot Error
+ ~# devlink health dump show pci/0002:01:00.0 reporter hw_nix_gen
+ NIX_AF_GENERAL:
+ NIX General Interrupt Reg : 1
+ Rx multicast pkt drop
+ ~# devlink health dump show pci/0002:01:00.0 reporter hw_nix_err
+ NIX_AF_ERR:
+ NIX Error Interrupt Reg : 64
+ Rx on unmapped PF_FUNC