summaryrefslogtreecommitdiffstats
path: root/arch/mips/math-emu/dp_maddf.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /arch/mips/math-emu/dp_maddf.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/mips/math-emu/dp_maddf.c')
-rw-r--r--arch/mips/math-emu/dp_maddf.c358
1 files changed, 358 insertions, 0 deletions
diff --git a/arch/mips/math-emu/dp_maddf.c b/arch/mips/math-emu/dp_maddf.c
new file mode 100644
index 000000000..931e66f68
--- /dev/null
+++ b/arch/mips/math-emu/dp_maddf.c
@@ -0,0 +1,358 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * IEEE754 floating point arithmetic
+ * double precision: MADDF.f (Fused Multiply Add)
+ * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
+ *
+ * MIPS floating point support
+ * Copyright (C) 2015 Imagination Technologies, Ltd.
+ * Author: Markos Chandras <markos.chandras@imgtec.com>
+ */
+
+#include "ieee754dp.h"
+
+
+/* 128 bits shift right logical with rounding. */
+static void srl128(u64 *hptr, u64 *lptr, int count)
+{
+ u64 low;
+
+ if (count >= 128) {
+ *lptr = *hptr != 0 || *lptr != 0;
+ *hptr = 0;
+ } else if (count >= 64) {
+ if (count == 64) {
+ *lptr = *hptr | (*lptr != 0);
+ } else {
+ low = *lptr;
+ *lptr = *hptr >> (count - 64);
+ *lptr |= (*hptr << (128 - count)) != 0 || low != 0;
+ }
+ *hptr = 0;
+ } else {
+ low = *lptr;
+ *lptr = low >> count | *hptr << (64 - count);
+ *lptr |= (low << (64 - count)) != 0;
+ *hptr = *hptr >> count;
+ }
+}
+
+static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x,
+ union ieee754dp y, enum maddf_flags flags)
+{
+ int re;
+ int rs;
+ unsigned int lxm;
+ unsigned int hxm;
+ unsigned int lym;
+ unsigned int hym;
+ u64 lrm;
+ u64 hrm;
+ u64 lzm;
+ u64 hzm;
+ u64 t;
+ u64 at;
+ int s;
+
+ COMPXDP;
+ COMPYDP;
+ COMPZDP;
+
+ EXPLODEXDP;
+ EXPLODEYDP;
+ EXPLODEZDP;
+
+ FLUSHXDP;
+ FLUSHYDP;
+ FLUSHZDP;
+
+ ieee754_clearcx();
+
+ rs = xs ^ ys;
+ if (flags & MADDF_NEGATE_PRODUCT)
+ rs ^= 1;
+ if (flags & MADDF_NEGATE_ADDITION)
+ zs ^= 1;
+
+ /*
+ * Handle the cases when at least one of x, y or z is a NaN.
+ * Order of precedence is sNaN, qNaN and z, x, y.
+ */
+ if (zc == IEEE754_CLASS_SNAN)
+ return ieee754dp_nanxcpt(z);
+ if (xc == IEEE754_CLASS_SNAN)
+ return ieee754dp_nanxcpt(x);
+ if (yc == IEEE754_CLASS_SNAN)
+ return ieee754dp_nanxcpt(y);
+ if (zc == IEEE754_CLASS_QNAN)
+ return z;
+ if (xc == IEEE754_CLASS_QNAN)
+ return x;
+ if (yc == IEEE754_CLASS_QNAN)
+ return y;
+
+ if (zc == IEEE754_CLASS_DNORM)
+ DPDNORMZ;
+ /* ZERO z cases are handled separately below */
+
+ switch (CLPAIR(xc, yc)) {
+
+ /*
+ * Infinity handling
+ */
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
+ ieee754_setcx(IEEE754_INVALID_OPERATION);
+ return ieee754dp_indef();
+
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
+ if ((zc == IEEE754_CLASS_INF) && (zs != rs)) {
+ /*
+ * Cases of addition of infinities with opposite signs
+ * or subtraction of infinities with same signs.
+ */
+ ieee754_setcx(IEEE754_INVALID_OPERATION);
+ return ieee754dp_indef();
+ }
+ /*
+ * z is here either not an infinity, or an infinity having the
+ * same sign as product (x*y). The result must be an infinity,
+ * and its sign is determined only by the sign of product (x*y).
+ */
+ return ieee754dp_inf(rs);
+
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
+ if (zc == IEEE754_CLASS_INF)
+ return ieee754dp_inf(zs);
+ if (zc == IEEE754_CLASS_ZERO) {
+ /* Handle cases +0 + (-0) and similar ones. */
+ if (zs == rs)
+ /*
+ * Cases of addition of zeros of equal signs
+ * or subtraction of zeroes of opposite signs.
+ * The sign of the resulting zero is in any
+ * such case determined only by the sign of z.
+ */
+ return z;
+
+ return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
+ }
+ /* x*y is here 0, and z is not 0, so just return z */
+ return z;
+
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
+ DPDNORMX;
+ fallthrough;
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
+ if (zc == IEEE754_CLASS_INF)
+ return ieee754dp_inf(zs);
+ DPDNORMY;
+ break;
+
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
+ if (zc == IEEE754_CLASS_INF)
+ return ieee754dp_inf(zs);
+ DPDNORMX;
+ break;
+
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
+ if (zc == IEEE754_CLASS_INF)
+ return ieee754dp_inf(zs);
+ /* continue to real computations */
+ }
+
+ /* Finally get to do some computation */
+
+ /*
+ * Do the multiplication bit first
+ *
+ * rm = xm * ym, re = xe + ye basically
+ *
+ * At this point xm and ym should have been normalized.
+ */
+ assert(xm & DP_HIDDEN_BIT);
+ assert(ym & DP_HIDDEN_BIT);
+
+ re = xe + ye;
+
+ /* shunt to top of word */
+ xm <<= 64 - (DP_FBITS + 1);
+ ym <<= 64 - (DP_FBITS + 1);
+
+ /*
+ * Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm.
+ */
+
+ lxm = xm;
+ hxm = xm >> 32;
+ lym = ym;
+ hym = ym >> 32;
+
+ lrm = DPXMULT(lxm, lym);
+ hrm = DPXMULT(hxm, hym);
+
+ t = DPXMULT(lxm, hym);
+
+ at = lrm + (t << 32);
+ hrm += at < lrm;
+ lrm = at;
+
+ hrm = hrm + (t >> 32);
+
+ t = DPXMULT(hxm, lym);
+
+ at = lrm + (t << 32);
+ hrm += at < lrm;
+ lrm = at;
+
+ hrm = hrm + (t >> 32);
+
+ /* Put explicit bit at bit 126 if necessary */
+ if ((int64_t)hrm < 0) {
+ lrm = (hrm << 63) | (lrm >> 1);
+ hrm = hrm >> 1;
+ re++;
+ }
+
+ assert(hrm & (1 << 62));
+
+ if (zc == IEEE754_CLASS_ZERO) {
+ /*
+ * Move explicit bit from bit 126 to bit 55 since the
+ * ieee754dp_format code expects the mantissa to be
+ * 56 bits wide (53 + 3 rounding bits).
+ */
+ srl128(&hrm, &lrm, (126 - 55));
+ return ieee754dp_format(rs, re, lrm);
+ }
+
+ /* Move explicit bit from bit 52 to bit 126 */
+ lzm = 0;
+ hzm = zm << 10;
+ assert(hzm & (1 << 62));
+
+ /* Make the exponents the same */
+ if (ze > re) {
+ /*
+ * Have to shift y fraction right to align.
+ */
+ s = ze - re;
+ srl128(&hrm, &lrm, s);
+ re += s;
+ } else if (re > ze) {
+ /*
+ * Have to shift x fraction right to align.
+ */
+ s = re - ze;
+ srl128(&hzm, &lzm, s);
+ ze += s;
+ }
+ assert(ze == re);
+ assert(ze <= DP_EMAX);
+
+ /* Do the addition */
+ if (zs == rs) {
+ /*
+ * Generate 128 bit result by adding two 127 bit numbers
+ * leaving result in hzm:lzm, zs and ze.
+ */
+ hzm = hzm + hrm + (lzm > (lzm + lrm));
+ lzm = lzm + lrm;
+ if ((int64_t)hzm < 0) { /* carry out */
+ srl128(&hzm, &lzm, 1);
+ ze++;
+ }
+ } else {
+ if (hzm > hrm || (hzm == hrm && lzm >= lrm)) {
+ hzm = hzm - hrm - (lzm < lrm);
+ lzm = lzm - lrm;
+ } else {
+ hzm = hrm - hzm - (lrm < lzm);
+ lzm = lrm - lzm;
+ zs = rs;
+ }
+ if (lzm == 0 && hzm == 0)
+ return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
+
+ /*
+ * Put explicit bit at bit 126 if necessary.
+ */
+ if (hzm == 0) {
+ /* left shift by 63 or 64 bits */
+ if ((int64_t)lzm < 0) {
+ /* MSB of lzm is the explicit bit */
+ hzm = lzm >> 1;
+ lzm = lzm << 63;
+ ze -= 63;
+ } else {
+ hzm = lzm;
+ lzm = 0;
+ ze -= 64;
+ }
+ }
+
+ t = 0;
+ while ((hzm >> (62 - t)) == 0)
+ t++;
+
+ assert(t <= 62);
+ if (t) {
+ hzm = hzm << t | lzm >> (64 - t);
+ lzm = lzm << t;
+ ze -= t;
+ }
+ }
+
+ /*
+ * Move explicit bit from bit 126 to bit 55 since the
+ * ieee754dp_format code expects the mantissa to be
+ * 56 bits wide (53 + 3 rounding bits).
+ */
+ srl128(&hzm, &lzm, (126 - 55));
+
+ return ieee754dp_format(zs, ze, lzm);
+}
+
+union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
+ union ieee754dp y)
+{
+ return _dp_maddf(z, x, y, 0);
+}
+
+union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x,
+ union ieee754dp y)
+{
+ return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
+}
+
+union ieee754dp ieee754dp_madd(union ieee754dp z, union ieee754dp x,
+ union ieee754dp y)
+{
+ return _dp_maddf(z, x, y, 0);
+}
+
+union ieee754dp ieee754dp_msub(union ieee754dp z, union ieee754dp x,
+ union ieee754dp y)
+{
+ return _dp_maddf(z, x, y, MADDF_NEGATE_ADDITION);
+}
+
+union ieee754dp ieee754dp_nmadd(union ieee754dp z, union ieee754dp x,
+ union ieee754dp y)
+{
+ return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION);
+}
+
+union ieee754dp ieee754dp_nmsub(union ieee754dp z, union ieee754dp x,
+ union ieee754dp y)
+{
+ return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
+}