summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/intel/ice/ice_ptp.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/net/ethernet/intel/ice/ice_ptp.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ethernet/intel/ice/ice_ptp.c')
-rw-r--r--drivers/net/ethernet/intel/ice/ice_ptp.c2734
1 files changed, 2734 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/ice/ice_ptp.c b/drivers/net/ethernet/intel/ice/ice_ptp.c
new file mode 100644
index 000000000..46b0063a5
--- /dev/null
+++ b/drivers/net/ethernet/intel/ice/ice_ptp.c
@@ -0,0 +1,2734 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright (C) 2021, Intel Corporation. */
+
+#include "ice.h"
+#include "ice_lib.h"
+#include "ice_trace.h"
+
+#define E810_OUT_PROP_DELAY_NS 1
+
+#define UNKNOWN_INCVAL_E822 0x100000000ULL
+
+static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
+ /* name idx func chan */
+ { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } },
+ { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } },
+ { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
+ { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } },
+ { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
+};
+
+/**
+ * ice_get_sma_config_e810t
+ * @hw: pointer to the hw struct
+ * @ptp_pins: pointer to the ptp_pin_desc struture
+ *
+ * Read the configuration of the SMA control logic and put it into the
+ * ptp_pin_desc structure
+ */
+static int
+ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
+{
+ u8 data, i;
+ int status;
+
+ /* Read initial pin state */
+ status = ice_read_sma_ctrl_e810t(hw, &data);
+ if (status)
+ return status;
+
+ /* initialize with defaults */
+ for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
+ snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
+ "%s", ice_pin_desc_e810t[i].name);
+ ptp_pins[i].index = ice_pin_desc_e810t[i].index;
+ ptp_pins[i].func = ice_pin_desc_e810t[i].func;
+ ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
+ }
+
+ /* Parse SMA1/UFL1 */
+ switch (data & ICE_SMA1_MASK_E810T) {
+ case ICE_SMA1_MASK_E810T:
+ default:
+ ptp_pins[SMA1].func = PTP_PF_NONE;
+ ptp_pins[UFL1].func = PTP_PF_NONE;
+ break;
+ case ICE_SMA1_DIR_EN_E810T:
+ ptp_pins[SMA1].func = PTP_PF_PEROUT;
+ ptp_pins[UFL1].func = PTP_PF_NONE;
+ break;
+ case ICE_SMA1_TX_EN_E810T:
+ ptp_pins[SMA1].func = PTP_PF_EXTTS;
+ ptp_pins[UFL1].func = PTP_PF_NONE;
+ break;
+ case 0:
+ ptp_pins[SMA1].func = PTP_PF_EXTTS;
+ ptp_pins[UFL1].func = PTP_PF_PEROUT;
+ break;
+ }
+
+ /* Parse SMA2/UFL2 */
+ switch (data & ICE_SMA2_MASK_E810T) {
+ case ICE_SMA2_MASK_E810T:
+ default:
+ ptp_pins[SMA2].func = PTP_PF_NONE;
+ ptp_pins[UFL2].func = PTP_PF_NONE;
+ break;
+ case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
+ ptp_pins[SMA2].func = PTP_PF_EXTTS;
+ ptp_pins[UFL2].func = PTP_PF_NONE;
+ break;
+ case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
+ ptp_pins[SMA2].func = PTP_PF_PEROUT;
+ ptp_pins[UFL2].func = PTP_PF_NONE;
+ break;
+ case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
+ ptp_pins[SMA2].func = PTP_PF_NONE;
+ ptp_pins[UFL2].func = PTP_PF_EXTTS;
+ break;
+ case ICE_SMA2_DIR_EN_E810T:
+ ptp_pins[SMA2].func = PTP_PF_PEROUT;
+ ptp_pins[UFL2].func = PTP_PF_EXTTS;
+ break;
+ }
+
+ return 0;
+}
+
+/**
+ * ice_ptp_set_sma_config_e810t
+ * @hw: pointer to the hw struct
+ * @ptp_pins: pointer to the ptp_pin_desc struture
+ *
+ * Set the configuration of the SMA control logic based on the configuration in
+ * num_pins parameter
+ */
+static int
+ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
+ const struct ptp_pin_desc *ptp_pins)
+{
+ int status;
+ u8 data;
+
+ /* SMA1 and UFL1 cannot be set to TX at the same time */
+ if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
+ ptp_pins[UFL1].func == PTP_PF_PEROUT)
+ return -EINVAL;
+
+ /* SMA2 and UFL2 cannot be set to RX at the same time */
+ if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
+ ptp_pins[UFL2].func == PTP_PF_EXTTS)
+ return -EINVAL;
+
+ /* Read initial pin state value */
+ status = ice_read_sma_ctrl_e810t(hw, &data);
+ if (status)
+ return status;
+
+ /* Set the right sate based on the desired configuration */
+ data &= ~ICE_SMA1_MASK_E810T;
+ if (ptp_pins[SMA1].func == PTP_PF_NONE &&
+ ptp_pins[UFL1].func == PTP_PF_NONE) {
+ dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
+ data |= ICE_SMA1_MASK_E810T;
+ } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
+ ptp_pins[UFL1].func == PTP_PF_NONE) {
+ dev_info(ice_hw_to_dev(hw), "SMA1 RX");
+ data |= ICE_SMA1_TX_EN_E810T;
+ } else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
+ ptp_pins[UFL1].func == PTP_PF_PEROUT) {
+ /* U.FL 1 TX will always enable SMA 1 RX */
+ dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
+ } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
+ ptp_pins[UFL1].func == PTP_PF_PEROUT) {
+ dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
+ } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
+ ptp_pins[UFL1].func == PTP_PF_NONE) {
+ dev_info(ice_hw_to_dev(hw), "SMA1 TX");
+ data |= ICE_SMA1_DIR_EN_E810T;
+ }
+
+ data &= ~ICE_SMA2_MASK_E810T;
+ if (ptp_pins[SMA2].func == PTP_PF_NONE &&
+ ptp_pins[UFL2].func == PTP_PF_NONE) {
+ dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
+ data |= ICE_SMA2_MASK_E810T;
+ } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
+ ptp_pins[UFL2].func == PTP_PF_NONE) {
+ dev_info(ice_hw_to_dev(hw), "SMA2 RX");
+ data |= (ICE_SMA2_TX_EN_E810T |
+ ICE_SMA2_UFL2_RX_DIS_E810T);
+ } else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
+ ptp_pins[UFL2].func == PTP_PF_EXTTS) {
+ dev_info(ice_hw_to_dev(hw), "UFL2 RX");
+ data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
+ } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
+ ptp_pins[UFL2].func == PTP_PF_NONE) {
+ dev_info(ice_hw_to_dev(hw), "SMA2 TX");
+ data |= (ICE_SMA2_DIR_EN_E810T |
+ ICE_SMA2_UFL2_RX_DIS_E810T);
+ } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
+ ptp_pins[UFL2].func == PTP_PF_EXTTS) {
+ dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
+ data |= ICE_SMA2_DIR_EN_E810T;
+ }
+
+ return ice_write_sma_ctrl_e810t(hw, data);
+}
+
+/**
+ * ice_ptp_set_sma_e810t
+ * @info: the driver's PTP info structure
+ * @pin: pin index in kernel structure
+ * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
+ *
+ * Set the configuration of a single SMA pin
+ */
+static int
+ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
+ enum ptp_pin_function func)
+{
+ struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
+ struct ice_pf *pf = ptp_info_to_pf(info);
+ struct ice_hw *hw = &pf->hw;
+ int err;
+
+ if (pin < SMA1 || func > PTP_PF_PEROUT)
+ return -EOPNOTSUPP;
+
+ err = ice_get_sma_config_e810t(hw, ptp_pins);
+ if (err)
+ return err;
+
+ /* Disable the same function on the other pin sharing the channel */
+ if (pin == SMA1 && ptp_pins[UFL1].func == func)
+ ptp_pins[UFL1].func = PTP_PF_NONE;
+ if (pin == UFL1 && ptp_pins[SMA1].func == func)
+ ptp_pins[SMA1].func = PTP_PF_NONE;
+
+ if (pin == SMA2 && ptp_pins[UFL2].func == func)
+ ptp_pins[UFL2].func = PTP_PF_NONE;
+ if (pin == UFL2 && ptp_pins[SMA2].func == func)
+ ptp_pins[SMA2].func = PTP_PF_NONE;
+
+ /* Set up new pin function in the temp table */
+ ptp_pins[pin].func = func;
+
+ return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
+}
+
+/**
+ * ice_verify_pin_e810t
+ * @info: the driver's PTP info structure
+ * @pin: Pin index
+ * @func: Assigned function
+ * @chan: Assigned channel
+ *
+ * Verify if pin supports requested pin function. If the Check pins consistency.
+ * Reconfigure the SMA logic attached to the given pin to enable its
+ * desired functionality
+ */
+static int
+ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
+ enum ptp_pin_function func, unsigned int chan)
+{
+ /* Don't allow channel reassignment */
+ if (chan != ice_pin_desc_e810t[pin].chan)
+ return -EOPNOTSUPP;
+
+ /* Check if functions are properly assigned */
+ switch (func) {
+ case PTP_PF_NONE:
+ break;
+ case PTP_PF_EXTTS:
+ if (pin == UFL1)
+ return -EOPNOTSUPP;
+ break;
+ case PTP_PF_PEROUT:
+ if (pin == UFL2 || pin == GNSS)
+ return -EOPNOTSUPP;
+ break;
+ case PTP_PF_PHYSYNC:
+ return -EOPNOTSUPP;
+ }
+
+ return ice_ptp_set_sma_e810t(info, pin, func);
+}
+
+/**
+ * ice_set_tx_tstamp - Enable or disable Tx timestamping
+ * @pf: The PF pointer to search in
+ * @on: bool value for whether timestamps are enabled or disabled
+ */
+static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
+{
+ struct ice_vsi *vsi;
+ u32 val;
+ u16 i;
+
+ vsi = ice_get_main_vsi(pf);
+ if (!vsi)
+ return;
+
+ /* Set the timestamp enable flag for all the Tx rings */
+ ice_for_each_txq(vsi, i) {
+ if (!vsi->tx_rings[i])
+ continue;
+ vsi->tx_rings[i]->ptp_tx = on;
+ }
+
+ /* Configure the Tx timestamp interrupt */
+ val = rd32(&pf->hw, PFINT_OICR_ENA);
+ if (on)
+ val |= PFINT_OICR_TSYN_TX_M;
+ else
+ val &= ~PFINT_OICR_TSYN_TX_M;
+ wr32(&pf->hw, PFINT_OICR_ENA, val);
+
+ pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
+}
+
+/**
+ * ice_set_rx_tstamp - Enable or disable Rx timestamping
+ * @pf: The PF pointer to search in
+ * @on: bool value for whether timestamps are enabled or disabled
+ */
+static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
+{
+ struct ice_vsi *vsi;
+ u16 i;
+
+ vsi = ice_get_main_vsi(pf);
+ if (!vsi)
+ return;
+
+ /* Set the timestamp flag for all the Rx rings */
+ ice_for_each_rxq(vsi, i) {
+ if (!vsi->rx_rings[i])
+ continue;
+ vsi->rx_rings[i]->ptp_rx = on;
+ }
+
+ pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
+ HWTSTAMP_FILTER_NONE;
+}
+
+/**
+ * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
+ * @pf: Board private structure
+ * @ena: bool value to enable or disable time stamp
+ *
+ * This function will configure timestamping during PTP initialization
+ * and deinitialization
+ */
+void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
+{
+ ice_set_tx_tstamp(pf, ena);
+ ice_set_rx_tstamp(pf, ena);
+}
+
+/**
+ * ice_get_ptp_clock_index - Get the PTP clock index
+ * @pf: the PF pointer
+ *
+ * Determine the clock index of the PTP clock associated with this device. If
+ * this is the PF controlling the clock, just use the local access to the
+ * clock device pointer.
+ *
+ * Otherwise, read from the driver shared parameters to determine the clock
+ * index value.
+ *
+ * Returns: the index of the PTP clock associated with this device, or -1 if
+ * there is no associated clock.
+ */
+int ice_get_ptp_clock_index(struct ice_pf *pf)
+{
+ struct device *dev = ice_pf_to_dev(pf);
+ enum ice_aqc_driver_params param_idx;
+ struct ice_hw *hw = &pf->hw;
+ u8 tmr_idx;
+ u32 value;
+ int err;
+
+ /* Use the ptp_clock structure if we're the main PF */
+ if (pf->ptp.clock)
+ return ptp_clock_index(pf->ptp.clock);
+
+ tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
+ if (!tmr_idx)
+ param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
+ else
+ param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
+
+ err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
+ if (err) {
+ dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
+ err, ice_aq_str(hw->adminq.sq_last_status));
+ return -1;
+ }
+
+ /* The PTP clock index is an integer, and will be between 0 and
+ * INT_MAX. The highest bit of the driver shared parameter is used to
+ * indicate whether or not the currently stored clock index is valid.
+ */
+ if (!(value & PTP_SHARED_CLK_IDX_VALID))
+ return -1;
+
+ return value & ~PTP_SHARED_CLK_IDX_VALID;
+}
+
+/**
+ * ice_set_ptp_clock_index - Set the PTP clock index
+ * @pf: the PF pointer
+ *
+ * Set the PTP clock index for this device into the shared driver parameters,
+ * so that other PFs associated with this device can read it.
+ *
+ * If the PF is unable to store the clock index, it will log an error, but
+ * will continue operating PTP.
+ */
+static void ice_set_ptp_clock_index(struct ice_pf *pf)
+{
+ struct device *dev = ice_pf_to_dev(pf);
+ enum ice_aqc_driver_params param_idx;
+ struct ice_hw *hw = &pf->hw;
+ u8 tmr_idx;
+ u32 value;
+ int err;
+
+ if (!pf->ptp.clock)
+ return;
+
+ tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
+ if (!tmr_idx)
+ param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
+ else
+ param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
+
+ value = (u32)ptp_clock_index(pf->ptp.clock);
+ if (value > INT_MAX) {
+ dev_err(dev, "PTP Clock index is too large to store\n");
+ return;
+ }
+ value |= PTP_SHARED_CLK_IDX_VALID;
+
+ err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
+ if (err) {
+ dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
+ err, ice_aq_str(hw->adminq.sq_last_status));
+ }
+}
+
+/**
+ * ice_clear_ptp_clock_index - Clear the PTP clock index
+ * @pf: the PF pointer
+ *
+ * Clear the PTP clock index for this device. Must be called when
+ * unregistering the PTP clock, in order to ensure other PFs stop reporting
+ * a clock object that no longer exists.
+ */
+static void ice_clear_ptp_clock_index(struct ice_pf *pf)
+{
+ struct device *dev = ice_pf_to_dev(pf);
+ enum ice_aqc_driver_params param_idx;
+ struct ice_hw *hw = &pf->hw;
+ u8 tmr_idx;
+ int err;
+
+ /* Do not clear the index if we don't own the timer */
+ if (!hw->func_caps.ts_func_info.src_tmr_owned)
+ return;
+
+ tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
+ if (!tmr_idx)
+ param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
+ else
+ param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
+
+ err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
+ if (err) {
+ dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
+ err, ice_aq_str(hw->adminq.sq_last_status));
+ }
+}
+
+/**
+ * ice_ptp_read_src_clk_reg - Read the source clock register
+ * @pf: Board private structure
+ * @sts: Optional parameter for holding a pair of system timestamps from
+ * the system clock. Will be ignored if NULL is given.
+ */
+static u64
+ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
+{
+ struct ice_hw *hw = &pf->hw;
+ u32 hi, lo, lo2;
+ u8 tmr_idx;
+
+ tmr_idx = ice_get_ptp_src_clock_index(hw);
+ /* Read the system timestamp pre PHC read */
+ ptp_read_system_prets(sts);
+
+ lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
+
+ /* Read the system timestamp post PHC read */
+ ptp_read_system_postts(sts);
+
+ hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
+ lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
+
+ if (lo2 < lo) {
+ /* if TIME_L rolled over read TIME_L again and update
+ * system timestamps
+ */
+ ptp_read_system_prets(sts);
+ lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
+ ptp_read_system_postts(sts);
+ hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
+ }
+
+ return ((u64)hi << 32) | lo;
+}
+
+/**
+ * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
+ * @cached_phc_time: recently cached copy of PHC time
+ * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
+ *
+ * Hardware captures timestamps which contain only 32 bits of nominal
+ * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
+ * Note that the captured timestamp values may be 40 bits, but the lower
+ * 8 bits are sub-nanoseconds and generally discarded.
+ *
+ * Extend the 32bit nanosecond timestamp using the following algorithm and
+ * assumptions:
+ *
+ * 1) have a recently cached copy of the PHC time
+ * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
+ * seconds) before or after the PHC time was captured.
+ * 3) calculate the delta between the cached time and the timestamp
+ * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
+ * captured after the PHC time. In this case, the full timestamp is just
+ * the cached PHC time plus the delta.
+ * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
+ * timestamp was captured *before* the PHC time, i.e. because the PHC
+ * cache was updated after the timestamp was captured by hardware. In this
+ * case, the full timestamp is the cached time minus the inverse delta.
+ *
+ * This algorithm works even if the PHC time was updated after a Tx timestamp
+ * was requested, but before the Tx timestamp event was reported from
+ * hardware.
+ *
+ * This calculation primarily relies on keeping the cached PHC time up to
+ * date. If the timestamp was captured more than 2^31 nanoseconds after the
+ * PHC time, it is possible that the lower 32bits of PHC time have
+ * overflowed more than once, and we might generate an incorrect timestamp.
+ *
+ * This is prevented by (a) periodically updating the cached PHC time once
+ * a second, and (b) discarding any Tx timestamp packet if it has waited for
+ * a timestamp for more than one second.
+ */
+static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
+{
+ u32 delta, phc_time_lo;
+ u64 ns;
+
+ /* Extract the lower 32 bits of the PHC time */
+ phc_time_lo = (u32)cached_phc_time;
+
+ /* Calculate the delta between the lower 32bits of the cached PHC
+ * time and the in_tstamp value
+ */
+ delta = (in_tstamp - phc_time_lo);
+
+ /* Do not assume that the in_tstamp is always more recent than the
+ * cached PHC time. If the delta is large, it indicates that the
+ * in_tstamp was taken in the past, and should be converted
+ * forward.
+ */
+ if (delta > (U32_MAX / 2)) {
+ /* reverse the delta calculation here */
+ delta = (phc_time_lo - in_tstamp);
+ ns = cached_phc_time - delta;
+ } else {
+ ns = cached_phc_time + delta;
+ }
+
+ return ns;
+}
+
+/**
+ * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
+ * @pf: Board private structure
+ * @in_tstamp: Ingress/egress 40b timestamp value
+ *
+ * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
+ * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
+ *
+ * *--------------------------------------------------------------*
+ * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
+ * *--------------------------------------------------------------*
+ *
+ * The low bit is an indicator of whether the timestamp is valid. The next
+ * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
+ * and the remaining 32 bits are the lower 32 bits of the PHC timer.
+ *
+ * It is assumed that the caller verifies the timestamp is valid prior to
+ * calling this function.
+ *
+ * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
+ * time stored in the device private PTP structure as the basis for timestamp
+ * extension.
+ *
+ * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
+ * algorithm.
+ */
+static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
+{
+ const u64 mask = GENMASK_ULL(31, 0);
+ unsigned long discard_time;
+
+ /* Discard the hardware timestamp if the cached PHC time is too old */
+ discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
+ if (time_is_before_jiffies(discard_time)) {
+ pf->ptp.tx_hwtstamp_discarded++;
+ return 0;
+ }
+
+ return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
+ (in_tstamp >> 8) & mask);
+}
+
+/**
+ * ice_ptp_tx_tstamp - Process Tx timestamps for a port
+ * @tx: the PTP Tx timestamp tracker
+ *
+ * Process timestamps captured by the PHY associated with this port. To do
+ * this, loop over each index with a waiting skb.
+ *
+ * If a given index has a valid timestamp, perform the following steps:
+ *
+ * 1) copy the timestamp out of the PHY register
+ * 4) clear the timestamp valid bit in the PHY register
+ * 5) unlock the index by clearing the associated in_use bit.
+ * 2) extend the 40b timestamp value to get a 64bit timestamp
+ * 3) send that timestamp to the stack
+ *
+ * Returns true if all timestamps were handled, and false if any slots remain
+ * without a timestamp.
+ *
+ * After looping, if we still have waiting SKBs, return false. This may cause
+ * us effectively poll even when not strictly necessary. We do this because
+ * it's possible a new timestamp was requested around the same time as the
+ * interrupt. In some cases hardware might not interrupt us again when the
+ * timestamp is captured.
+ *
+ * Note that we only take the tracking lock when clearing the bit and when
+ * checking if we need to re-queue this task. The only place where bits can be
+ * set is the hard xmit routine where an SKB has a request flag set. The only
+ * places where we clear bits are this work function, or the periodic cleanup
+ * thread. If the cleanup thread clears a bit we're processing we catch it
+ * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
+ * starts a new timestamp, we might not begin processing it right away but we
+ * will notice it at the end when we re-queue the task. If a Tx thread starts
+ * a new timestamp just after this function exits without re-queuing,
+ * the interrupt when the timestamp finishes should trigger. Avoiding holding
+ * the lock for the entire function is important in order to ensure that Tx
+ * threads do not get blocked while waiting for the lock.
+ */
+static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
+{
+ struct ice_ptp_port *ptp_port;
+ bool more_timestamps;
+ struct ice_pf *pf;
+ u8 idx;
+
+ if (!tx->init)
+ return true;
+
+ ptp_port = container_of(tx, struct ice_ptp_port, tx);
+ pf = ptp_port_to_pf(ptp_port);
+
+ for_each_set_bit(idx, tx->in_use, tx->len) {
+ struct skb_shared_hwtstamps shhwtstamps = {};
+ u8 phy_idx = idx + tx->quad_offset;
+ u64 raw_tstamp, tstamp;
+ struct sk_buff *skb;
+ int err;
+
+ ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
+
+ err = ice_read_phy_tstamp(&pf->hw, tx->quad, phy_idx,
+ &raw_tstamp);
+ if (err)
+ continue;
+
+ ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
+
+ /* Check if the timestamp is invalid or stale */
+ if (!(raw_tstamp & ICE_PTP_TS_VALID) ||
+ raw_tstamp == tx->tstamps[idx].cached_tstamp)
+ continue;
+
+ /* The timestamp is valid, so we'll go ahead and clear this
+ * index and then send the timestamp up to the stack.
+ */
+ spin_lock(&tx->lock);
+ tx->tstamps[idx].cached_tstamp = raw_tstamp;
+ clear_bit(idx, tx->in_use);
+ skb = tx->tstamps[idx].skb;
+ tx->tstamps[idx].skb = NULL;
+ spin_unlock(&tx->lock);
+
+ /* it's (unlikely but) possible we raced with the cleanup
+ * thread for discarding old timestamp requests.
+ */
+ if (!skb)
+ continue;
+
+ /* Extend the timestamp using cached PHC time */
+ tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
+ if (tstamp) {
+ shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
+ ice_trace(tx_tstamp_complete, skb, idx);
+ }
+
+ skb_tstamp_tx(skb, &shhwtstamps);
+ dev_kfree_skb_any(skb);
+ }
+
+ /* Check if we still have work to do. If so, re-queue this task to
+ * poll for remaining timestamps.
+ */
+ spin_lock(&tx->lock);
+ more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
+ spin_unlock(&tx->lock);
+
+ return !more_timestamps;
+}
+
+/**
+ * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
+ * @tx: Tx tracking structure to initialize
+ *
+ * Assumes that the length has already been initialized. Do not call directly,
+ * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
+ */
+static int
+ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
+{
+ tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
+ if (!tx->tstamps)
+ return -ENOMEM;
+
+ tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
+ if (!tx->in_use) {
+ kfree(tx->tstamps);
+ tx->tstamps = NULL;
+ return -ENOMEM;
+ }
+
+ spin_lock_init(&tx->lock);
+
+ tx->init = 1;
+
+ return 0;
+}
+
+/**
+ * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
+ * @pf: Board private structure
+ * @tx: the tracker to flush
+ */
+static void
+ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
+{
+ u8 idx;
+
+ for (idx = 0; idx < tx->len; idx++) {
+ u8 phy_idx = idx + tx->quad_offset;
+
+ spin_lock(&tx->lock);
+ if (tx->tstamps[idx].skb) {
+ dev_kfree_skb_any(tx->tstamps[idx].skb);
+ tx->tstamps[idx].skb = NULL;
+ pf->ptp.tx_hwtstamp_flushed++;
+ }
+ clear_bit(idx, tx->in_use);
+ spin_unlock(&tx->lock);
+
+ /* Clear any potential residual timestamp in the PHY block */
+ if (!pf->hw.reset_ongoing)
+ ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
+ }
+}
+
+/**
+ * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
+ * @pf: Board private structure
+ * @tx: Tx tracking structure to release
+ *
+ * Free memory associated with the Tx timestamp tracker.
+ */
+static void
+ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
+{
+ tx->init = 0;
+
+ /* wait for potentially outstanding interrupt to complete */
+ synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
+
+ ice_ptp_flush_tx_tracker(pf, tx);
+
+ kfree(tx->tstamps);
+ tx->tstamps = NULL;
+
+ bitmap_free(tx->in_use);
+ tx->in_use = NULL;
+
+ tx->len = 0;
+}
+
+/**
+ * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
+ * @pf: Board private structure
+ * @tx: the Tx tracking structure to initialize
+ * @port: the port this structure tracks
+ *
+ * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
+ * the timestamp block is shared for all ports in the same quad. To avoid
+ * ports using the same timestamp index, logically break the block of
+ * registers into chunks based on the port number.
+ */
+static int
+ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
+{
+ tx->quad = port / ICE_PORTS_PER_QUAD;
+ tx->quad_offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT;
+ tx->len = INDEX_PER_PORT;
+
+ return ice_ptp_alloc_tx_tracker(tx);
+}
+
+/**
+ * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
+ * @pf: Board private structure
+ * @tx: the Tx tracking structure to initialize
+ *
+ * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
+ * port has its own block of timestamps, independent of the other ports.
+ */
+static int
+ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
+{
+ tx->quad = pf->hw.port_info->lport;
+ tx->quad_offset = 0;
+ tx->len = INDEX_PER_QUAD;
+
+ return ice_ptp_alloc_tx_tracker(tx);
+}
+
+/**
+ * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
+ * @pf: pointer to the PF struct
+ * @tx: PTP Tx tracker to clean up
+ *
+ * Loop through the Tx timestamp requests and see if any of them have been
+ * waiting for a long time. Discard any SKBs that have been waiting for more
+ * than 2 seconds. This is long enough to be reasonably sure that the
+ * timestamp will never be captured. This might happen if the packet gets
+ * discarded before it reaches the PHY timestamping block.
+ */
+static void ice_ptp_tx_tstamp_cleanup(struct ice_pf *pf, struct ice_ptp_tx *tx)
+{
+ struct ice_hw *hw = &pf->hw;
+ u8 idx;
+
+ if (!tx->init)
+ return;
+
+ for_each_set_bit(idx, tx->in_use, tx->len) {
+ struct sk_buff *skb;
+ u64 raw_tstamp;
+
+ /* Check if this SKB has been waiting for too long */
+ if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
+ continue;
+
+ /* Read tstamp to be able to use this register again */
+ ice_read_phy_tstamp(hw, tx->quad, idx + tx->quad_offset,
+ &raw_tstamp);
+
+ spin_lock(&tx->lock);
+ skb = tx->tstamps[idx].skb;
+ tx->tstamps[idx].skb = NULL;
+ clear_bit(idx, tx->in_use);
+ spin_unlock(&tx->lock);
+
+ /* Count the number of Tx timestamps which have timed out */
+ pf->ptp.tx_hwtstamp_timeouts++;
+
+ /* Free the SKB after we've cleared the bit */
+ dev_kfree_skb_any(skb);
+ }
+}
+
+/**
+ * ice_ptp_update_cached_phctime - Update the cached PHC time values
+ * @pf: Board specific private structure
+ *
+ * This function updates the system time values which are cached in the PF
+ * structure and the Rx rings.
+ *
+ * This function must be called periodically to ensure that the cached value
+ * is never more than 2 seconds old.
+ *
+ * Note that the cached copy in the PF PTP structure is always updated, even
+ * if we can't update the copy in the Rx rings.
+ *
+ * Return:
+ * * 0 - OK, successfully updated
+ * * -EAGAIN - PF was busy, need to reschedule the update
+ */
+static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
+{
+ struct device *dev = ice_pf_to_dev(pf);
+ unsigned long update_before;
+ u64 systime;
+ int i;
+
+ update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
+ if (pf->ptp.cached_phc_time &&
+ time_is_before_jiffies(update_before)) {
+ unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
+
+ dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
+ jiffies_to_msecs(time_taken));
+ pf->ptp.late_cached_phc_updates++;
+ }
+
+ /* Read the current PHC time */
+ systime = ice_ptp_read_src_clk_reg(pf, NULL);
+
+ /* Update the cached PHC time stored in the PF structure */
+ WRITE_ONCE(pf->ptp.cached_phc_time, systime);
+ WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
+
+ if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
+ return -EAGAIN;
+
+ ice_for_each_vsi(pf, i) {
+ struct ice_vsi *vsi = pf->vsi[i];
+ int j;
+
+ if (!vsi)
+ continue;
+
+ if (vsi->type != ICE_VSI_PF)
+ continue;
+
+ ice_for_each_rxq(vsi, j) {
+ if (!vsi->rx_rings[j])
+ continue;
+ WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
+ }
+ }
+ clear_bit(ICE_CFG_BUSY, pf->state);
+
+ return 0;
+}
+
+/**
+ * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
+ * @pf: Board specific private structure
+ *
+ * This function must be called when the cached PHC time is no longer valid,
+ * such as after a time adjustment. It discards any outstanding Tx timestamps,
+ * and updates the cached PHC time for both the PF and Rx rings. If updating
+ * the PHC time cannot be done immediately, a warning message is logged and
+ * the work item is scheduled.
+ *
+ * These steps are required in order to ensure that we do not accidentally
+ * report a timestamp extended by the wrong PHC cached copy. Note that we
+ * do not directly update the cached timestamp here because it is possible
+ * this might produce an error when ICE_CFG_BUSY is set. If this occurred, we
+ * would have to try again. During that time window, timestamps might be
+ * requested and returned with an invalid extension. Thus, on failure to
+ * immediately update the cached PHC time we would need to zero the value
+ * anyways. For this reason, we just zero the value immediately and queue the
+ * update work item.
+ */
+static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
+{
+ struct device *dev = ice_pf_to_dev(pf);
+ int err;
+
+ /* Update the cached PHC time immediately if possible, otherwise
+ * schedule the work item to execute soon.
+ */
+ err = ice_ptp_update_cached_phctime(pf);
+ if (err) {
+ /* If another thread is updating the Rx rings, we won't
+ * properly reset them here. This could lead to reporting of
+ * invalid timestamps, but there isn't much we can do.
+ */
+ dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
+ __func__);
+
+ /* Queue the work item to update the Rx rings when possible */
+ kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
+ msecs_to_jiffies(10));
+ }
+
+ /* Flush any outstanding Tx timestamps */
+ ice_ptp_flush_tx_tracker(pf, &pf->ptp.port.tx);
+}
+
+/**
+ * ice_ptp_read_time - Read the time from the device
+ * @pf: Board private structure
+ * @ts: timespec structure to hold the current time value
+ * @sts: Optional parameter for holding a pair of system timestamps from
+ * the system clock. Will be ignored if NULL is given.
+ *
+ * This function reads the source clock registers and stores them in a timespec.
+ * However, since the registers are 64 bits of nanoseconds, we must convert the
+ * result to a timespec before we can return.
+ */
+static void
+ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
+ struct ptp_system_timestamp *sts)
+{
+ u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
+
+ *ts = ns_to_timespec64(time_ns);
+}
+
+/**
+ * ice_ptp_write_init - Set PHC time to provided value
+ * @pf: Board private structure
+ * @ts: timespec structure that holds the new time value
+ *
+ * Set the PHC time to the specified time provided in the timespec.
+ */
+static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
+{
+ u64 ns = timespec64_to_ns(ts);
+ struct ice_hw *hw = &pf->hw;
+
+ return ice_ptp_init_time(hw, ns);
+}
+
+/**
+ * ice_ptp_write_adj - Adjust PHC clock time atomically
+ * @pf: Board private structure
+ * @adj: Adjustment in nanoseconds
+ *
+ * Perform an atomic adjustment of the PHC time by the specified number of
+ * nanoseconds.
+ */
+static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
+{
+ struct ice_hw *hw = &pf->hw;
+
+ return ice_ptp_adj_clock(hw, adj);
+}
+
+/**
+ * ice_base_incval - Get base timer increment value
+ * @pf: Board private structure
+ *
+ * Look up the base timer increment value for this device. The base increment
+ * value is used to define the nominal clock tick rate. This increment value
+ * is programmed during device initialization. It is also used as the basis
+ * for calculating adjustments using scaled_ppm.
+ */
+static u64 ice_base_incval(struct ice_pf *pf)
+{
+ struct ice_hw *hw = &pf->hw;
+ u64 incval;
+
+ if (ice_is_e810(hw))
+ incval = ICE_PTP_NOMINAL_INCVAL_E810;
+ else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
+ incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
+ else
+ incval = UNKNOWN_INCVAL_E822;
+
+ dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
+ incval);
+
+ return incval;
+}
+
+/**
+ * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad
+ * @pf: The PF private data structure
+ * @quad: The quad (0-4)
+ */
+static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad)
+{
+ struct ice_hw *hw = &pf->hw;
+
+ ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
+ ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
+}
+
+/**
+ * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
+ * @port: PTP port for which Tx FIFO is checked
+ */
+static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
+{
+ int quad = port->port_num / ICE_PORTS_PER_QUAD;
+ int offs = port->port_num % ICE_PORTS_PER_QUAD;
+ struct ice_pf *pf;
+ struct ice_hw *hw;
+ u32 val, phy_sts;
+ int err;
+
+ pf = ptp_port_to_pf(port);
+ hw = &pf->hw;
+
+ if (port->tx_fifo_busy_cnt == FIFO_OK)
+ return 0;
+
+ /* need to read FIFO state */
+ if (offs == 0 || offs == 1)
+ err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
+ &val);
+ else
+ err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
+ &val);
+
+ if (err) {
+ dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
+ port->port_num, err);
+ return err;
+ }
+
+ if (offs & 0x1)
+ phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
+ else
+ phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
+
+ if (phy_sts & FIFO_EMPTY) {
+ port->tx_fifo_busy_cnt = FIFO_OK;
+ return 0;
+ }
+
+ port->tx_fifo_busy_cnt++;
+
+ dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
+ port->tx_fifo_busy_cnt, port->port_num);
+
+ if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
+ dev_dbg(ice_pf_to_dev(pf),
+ "Port %d Tx FIFO still not empty; resetting quad %d\n",
+ port->port_num, quad);
+ ice_ptp_reset_ts_memory_quad(pf, quad);
+ port->tx_fifo_busy_cnt = FIFO_OK;
+ return 0;
+ }
+
+ return -EAGAIN;
+}
+
+/**
+ * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid
+ * @port: the PTP port to check
+ *
+ * Checks whether the Tx offset for the PHY associated with this port is
+ * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
+ * not.
+ */
+static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port)
+{
+ struct ice_pf *pf = ptp_port_to_pf(port);
+ struct device *dev = ice_pf_to_dev(pf);
+ struct ice_hw *hw = &pf->hw;
+ u32 val;
+ int err;
+
+ err = ice_ptp_check_tx_fifo(port);
+ if (err)
+ return err;
+
+ err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS,
+ &val);
+ if (err) {
+ dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n",
+ port->port_num, err);
+ return -EAGAIN;
+ }
+
+ if (!(val & P_REG_TX_OV_STATUS_OV_M))
+ return -EAGAIN;
+
+ return 0;
+}
+
+/**
+ * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid
+ * @port: the PTP port to check
+ *
+ * Checks whether the Rx offset for the PHY associated with this port is
+ * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
+ * not.
+ */
+static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port)
+{
+ struct ice_pf *pf = ptp_port_to_pf(port);
+ struct device *dev = ice_pf_to_dev(pf);
+ struct ice_hw *hw = &pf->hw;
+ int err;
+ u32 val;
+
+ err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS,
+ &val);
+ if (err) {
+ dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n",
+ port->port_num, err);
+ return err;
+ }
+
+ if (!(val & P_REG_RX_OV_STATUS_OV_M))
+ return -EAGAIN;
+
+ return 0;
+}
+
+/**
+ * ice_ptp_check_offset_valid - Check port offset valid bit
+ * @port: Port for which offset valid bit is checked
+ *
+ * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the
+ * offset is not ready.
+ */
+static int ice_ptp_check_offset_valid(struct ice_ptp_port *port)
+{
+ int tx_err, rx_err;
+
+ /* always check both Tx and Rx offset validity */
+ tx_err = ice_ptp_check_tx_offset_valid(port);
+ rx_err = ice_ptp_check_rx_offset_valid(port);
+
+ if (tx_err || rx_err)
+ return -EAGAIN;
+
+ return 0;
+}
+
+/**
+ * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets
+ * @work: Pointer to the kthread_work structure for this task
+ *
+ * Check whether both the Tx and Rx offsets are valid for enabling the vernier
+ * calibration.
+ *
+ * Once we have valid offsets from hardware, update the total Tx and Rx
+ * offsets, and exit bypass mode. This enables more precise timestamps using
+ * the extra data measured during the vernier calibration process.
+ */
+static void ice_ptp_wait_for_offset_valid(struct kthread_work *work)
+{
+ struct ice_ptp_port *port;
+ int err;
+ struct device *dev;
+ struct ice_pf *pf;
+ struct ice_hw *hw;
+
+ port = container_of(work, struct ice_ptp_port, ov_work.work);
+ pf = ptp_port_to_pf(port);
+ hw = &pf->hw;
+ dev = ice_pf_to_dev(pf);
+
+ if (ice_is_reset_in_progress(pf->state))
+ return;
+
+ if (ice_ptp_check_offset_valid(port)) {
+ /* Offsets not ready yet, try again later */
+ kthread_queue_delayed_work(pf->ptp.kworker,
+ &port->ov_work,
+ msecs_to_jiffies(100));
+ return;
+ }
+
+ /* Offsets are valid, so it is safe to exit bypass mode */
+ err = ice_phy_exit_bypass_e822(hw, port->port_num);
+ if (err) {
+ dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n",
+ port->port_num, err);
+ return;
+ }
+}
+
+/**
+ * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
+ * @ptp_port: PTP port to stop
+ */
+static int
+ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
+{
+ struct ice_pf *pf = ptp_port_to_pf(ptp_port);
+ u8 port = ptp_port->port_num;
+ struct ice_hw *hw = &pf->hw;
+ int err;
+
+ if (ice_is_e810(hw))
+ return 0;
+
+ mutex_lock(&ptp_port->ps_lock);
+
+ kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
+
+ err = ice_stop_phy_timer_e822(hw, port, true);
+ if (err)
+ dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
+ port, err);
+
+ mutex_unlock(&ptp_port->ps_lock);
+
+ return err;
+}
+
+/**
+ * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
+ * @ptp_port: PTP port for which the PHY start is set
+ *
+ * Start the PHY timestamping block, and initiate Vernier timestamping
+ * calibration. If timestamping cannot be calibrated (such as if link is down)
+ * then disable the timestamping block instead.
+ */
+static int
+ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
+{
+ struct ice_pf *pf = ptp_port_to_pf(ptp_port);
+ u8 port = ptp_port->port_num;
+ struct ice_hw *hw = &pf->hw;
+ int err;
+
+ if (ice_is_e810(hw))
+ return 0;
+
+ if (!ptp_port->link_up)
+ return ice_ptp_port_phy_stop(ptp_port);
+
+ mutex_lock(&ptp_port->ps_lock);
+
+ kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
+
+ /* temporarily disable Tx timestamps while calibrating PHY offset */
+ ptp_port->tx.calibrating = true;
+ ptp_port->tx_fifo_busy_cnt = 0;
+
+ /* Start the PHY timer in bypass mode */
+ err = ice_start_phy_timer_e822(hw, port, true);
+ if (err)
+ goto out_unlock;
+
+ /* Enable Tx timestamps right away */
+ ptp_port->tx.calibrating = false;
+
+ kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
+
+out_unlock:
+ if (err)
+ dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
+ port, err);
+
+ mutex_unlock(&ptp_port->ps_lock);
+
+ return err;
+}
+
+/**
+ * ice_ptp_link_change - Set or clear port registers for timestamping
+ * @pf: Board private structure
+ * @port: Port for which the PHY start is set
+ * @linkup: Link is up or down
+ */
+int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
+{
+ struct ice_ptp_port *ptp_port;
+
+ if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
+ return 0;
+
+ if (port >= ICE_NUM_EXTERNAL_PORTS)
+ return -EINVAL;
+
+ ptp_port = &pf->ptp.port;
+ if (ptp_port->port_num != port)
+ return -EINVAL;
+
+ /* Update cached link err for this port immediately */
+ ptp_port->link_up = linkup;
+
+ if (!test_bit(ICE_FLAG_PTP, pf->flags))
+ /* PTP is not setup */
+ return -EAGAIN;
+
+ return ice_ptp_port_phy_restart(ptp_port);
+}
+
+/**
+ * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads
+ * @pf: The PF private data structure
+ */
+static void ice_ptp_reset_ts_memory(struct ice_pf *pf)
+{
+ int quad;
+
+ quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD;
+ ice_ptp_reset_ts_memory_quad(pf, quad);
+}
+
+/**
+ * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
+ * @pf: PF private structure
+ * @ena: bool value to enable or disable interrupt
+ * @threshold: Minimum number of packets at which intr is triggered
+ *
+ * Utility function to enable or disable Tx timestamp interrupt and threshold
+ */
+static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
+{
+ struct ice_hw *hw = &pf->hw;
+ int err = 0;
+ int quad;
+ u32 val;
+
+ ice_ptp_reset_ts_memory(pf);
+
+ for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
+ err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
+ &val);
+ if (err)
+ break;
+
+ if (ena) {
+ val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
+ val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
+ val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
+ Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
+ } else {
+ val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
+ }
+
+ err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
+ val);
+ if (err)
+ break;
+ }
+
+ if (err)
+ dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
+ err);
+ return err;
+}
+
+/**
+ * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
+ * @pf: Board private structure
+ */
+static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
+{
+ ice_ptp_port_phy_restart(&pf->ptp.port);
+}
+
+/**
+ * ice_ptp_adjfine - Adjust clock increment rate
+ * @info: the driver's PTP info structure
+ * @scaled_ppm: Parts per million with 16-bit fractional field
+ *
+ * Adjust the frequency of the clock by the indicated scaled ppm from the
+ * base frequency.
+ */
+static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
+{
+ struct ice_pf *pf = ptp_info_to_pf(info);
+ struct ice_hw *hw = &pf->hw;
+ u64 incval, diff;
+ int neg_adj = 0;
+ int err;
+
+ incval = ice_base_incval(pf);
+
+ if (scaled_ppm < 0) {
+ neg_adj = 1;
+ scaled_ppm = -scaled_ppm;
+ }
+
+ diff = mul_u64_u64_div_u64(incval, (u64)scaled_ppm,
+ 1000000ULL << 16);
+ if (neg_adj)
+ incval -= diff;
+ else
+ incval += diff;
+
+ err = ice_ptp_write_incval_locked(hw, incval);
+ if (err) {
+ dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
+ err);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/**
+ * ice_ptp_extts_event - Process PTP external clock event
+ * @pf: Board private structure
+ */
+void ice_ptp_extts_event(struct ice_pf *pf)
+{
+ struct ptp_clock_event event;
+ struct ice_hw *hw = &pf->hw;
+ u8 chan, tmr_idx;
+ u32 hi, lo;
+
+ tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
+ /* Event time is captured by one of the two matched registers
+ * GLTSYN_EVNT_L: 32 LSB of sampled time event
+ * GLTSYN_EVNT_H: 32 MSB of sampled time event
+ * Event is defined in GLTSYN_EVNT_0 register
+ */
+ for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
+ /* Check if channel is enabled */
+ if (pf->ptp.ext_ts_irq & (1 << chan)) {
+ lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
+ hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
+ event.timestamp = (((u64)hi) << 32) | lo;
+ event.type = PTP_CLOCK_EXTTS;
+ event.index = chan;
+
+ /* Fire event */
+ ptp_clock_event(pf->ptp.clock, &event);
+ pf->ptp.ext_ts_irq &= ~(1 << chan);
+ }
+ }
+}
+
+/**
+ * ice_ptp_cfg_extts - Configure EXTTS pin and channel
+ * @pf: Board private structure
+ * @ena: true to enable; false to disable
+ * @chan: GPIO channel (0-3)
+ * @gpio_pin: GPIO pin
+ * @extts_flags: request flags from the ptp_extts_request.flags
+ */
+static int
+ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
+ unsigned int extts_flags)
+{
+ u32 func, aux_reg, gpio_reg, irq_reg;
+ struct ice_hw *hw = &pf->hw;
+ u8 tmr_idx;
+
+ if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
+ return -EINVAL;
+
+ tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
+
+ irq_reg = rd32(hw, PFINT_OICR_ENA);
+
+ if (ena) {
+ /* Enable the interrupt */
+ irq_reg |= PFINT_OICR_TSYN_EVNT_M;
+ aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
+
+#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0)
+#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1)
+
+ /* set event level to requested edge */
+ if (extts_flags & PTP_FALLING_EDGE)
+ aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
+ if (extts_flags & PTP_RISING_EDGE)
+ aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
+
+ /* Write GPIO CTL reg.
+ * 0x1 is input sampled by EVENT register(channel)
+ * + num_in_channels * tmr_idx
+ */
+ func = 1 + chan + (tmr_idx * 3);
+ gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
+ GLGEN_GPIO_CTL_PIN_FUNC_M);
+ pf->ptp.ext_ts_chan |= (1 << chan);
+ } else {
+ /* clear the values we set to reset defaults */
+ aux_reg = 0;
+ gpio_reg = 0;
+ pf->ptp.ext_ts_chan &= ~(1 << chan);
+ if (!pf->ptp.ext_ts_chan)
+ irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
+ }
+
+ wr32(hw, PFINT_OICR_ENA, irq_reg);
+ wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
+ wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
+
+ return 0;
+}
+
+/**
+ * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
+ * @pf: Board private structure
+ * @chan: GPIO channel (0-3)
+ * @config: desired periodic clk configuration. NULL will disable channel
+ * @store: If set to true the values will be stored
+ *
+ * Configure the internal clock generator modules to generate the clock wave of
+ * specified period.
+ */
+static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
+ struct ice_perout_channel *config, bool store)
+{
+ u64 current_time, period, start_time, phase;
+ struct ice_hw *hw = &pf->hw;
+ u32 func, val, gpio_pin;
+ u8 tmr_idx;
+
+ tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
+
+ /* 0. Reset mode & out_en in AUX_OUT */
+ wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
+
+ /* If we're disabling the output, clear out CLKO and TGT and keep
+ * output level low
+ */
+ if (!config || !config->ena) {
+ wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
+ wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
+ wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
+
+ val = GLGEN_GPIO_CTL_PIN_DIR_M;
+ gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
+ wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
+
+ /* Store the value if requested */
+ if (store)
+ memset(&pf->ptp.perout_channels[chan], 0,
+ sizeof(struct ice_perout_channel));
+
+ return 0;
+ }
+ period = config->period;
+ start_time = config->start_time;
+ div64_u64_rem(start_time, period, &phase);
+ gpio_pin = config->gpio_pin;
+
+ /* 1. Write clkout with half of required period value */
+ if (period & 0x1) {
+ dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
+ goto err;
+ }
+
+ period >>= 1;
+
+ /* For proper operation, the GLTSYN_CLKO must be larger than clock tick
+ */
+#define MIN_PULSE 3
+ if (period <= MIN_PULSE || period > U32_MAX) {
+ dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
+ MIN_PULSE * 2);
+ goto err;
+ }
+
+ wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
+
+ /* Allow time for programming before start_time is hit */
+ current_time = ice_ptp_read_src_clk_reg(pf, NULL);
+
+ /* if start time is in the past start the timer at the nearest second
+ * maintaining phase
+ */
+ if (start_time < current_time)
+ start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
+ NSEC_PER_SEC) * NSEC_PER_SEC + phase;
+
+ if (ice_is_e810(hw))
+ start_time -= E810_OUT_PROP_DELAY_NS;
+ else
+ start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
+
+ /* 2. Write TARGET time */
+ wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
+ wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
+
+ /* 3. Write AUX_OUT register */
+ val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
+ wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
+
+ /* 4. write GPIO CTL reg */
+ func = 8 + chan + (tmr_idx * 4);
+ val = GLGEN_GPIO_CTL_PIN_DIR_M |
+ ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
+ wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
+
+ /* Store the value if requested */
+ if (store) {
+ memcpy(&pf->ptp.perout_channels[chan], config,
+ sizeof(struct ice_perout_channel));
+ pf->ptp.perout_channels[chan].start_time = phase;
+ }
+
+ return 0;
+err:
+ dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
+ return -EFAULT;
+}
+
+/**
+ * ice_ptp_disable_all_clkout - Disable all currently configured outputs
+ * @pf: pointer to the PF structure
+ *
+ * Disable all currently configured clock outputs. This is necessary before
+ * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
+ * re-enable the clocks again.
+ */
+static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
+{
+ uint i;
+
+ for (i = 0; i < pf->ptp.info.n_per_out; i++)
+ if (pf->ptp.perout_channels[i].ena)
+ ice_ptp_cfg_clkout(pf, i, NULL, false);
+}
+
+/**
+ * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
+ * @pf: pointer to the PF structure
+ *
+ * Enable all currently configured clock outputs. Use this after
+ * ice_ptp_disable_all_clkout to reconfigure the output signals according to
+ * their configuration.
+ */
+static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
+{
+ uint i;
+
+ for (i = 0; i < pf->ptp.info.n_per_out; i++)
+ if (pf->ptp.perout_channels[i].ena)
+ ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
+ false);
+}
+
+/**
+ * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
+ * @info: the driver's PTP info structure
+ * @rq: The requested feature to change
+ * @on: Enable/disable flag
+ */
+static int
+ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
+ struct ptp_clock_request *rq, int on)
+{
+ struct ice_pf *pf = ptp_info_to_pf(info);
+ struct ice_perout_channel clk_cfg = {0};
+ bool sma_pres = false;
+ unsigned int chan;
+ u32 gpio_pin;
+ int err;
+
+ if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
+ sma_pres = true;
+
+ switch (rq->type) {
+ case PTP_CLK_REQ_PEROUT:
+ chan = rq->perout.index;
+ if (sma_pres) {
+ if (chan == ice_pin_desc_e810t[SMA1].chan)
+ clk_cfg.gpio_pin = GPIO_20;
+ else if (chan == ice_pin_desc_e810t[SMA2].chan)
+ clk_cfg.gpio_pin = GPIO_22;
+ else
+ return -1;
+ } else if (ice_is_e810t(&pf->hw)) {
+ if (chan == 0)
+ clk_cfg.gpio_pin = GPIO_20;
+ else
+ clk_cfg.gpio_pin = GPIO_22;
+ } else if (chan == PPS_CLK_GEN_CHAN) {
+ clk_cfg.gpio_pin = PPS_PIN_INDEX;
+ } else {
+ clk_cfg.gpio_pin = chan;
+ }
+
+ clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
+ rq->perout.period.nsec);
+ clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
+ rq->perout.start.nsec);
+ clk_cfg.ena = !!on;
+
+ err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
+ break;
+ case PTP_CLK_REQ_EXTTS:
+ chan = rq->extts.index;
+ if (sma_pres) {
+ if (chan < ice_pin_desc_e810t[SMA2].chan)
+ gpio_pin = GPIO_21;
+ else
+ gpio_pin = GPIO_23;
+ } else if (ice_is_e810t(&pf->hw)) {
+ if (chan == 0)
+ gpio_pin = GPIO_21;
+ else
+ gpio_pin = GPIO_23;
+ } else {
+ gpio_pin = chan;
+ }
+
+ err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
+ rq->extts.flags);
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
+
+ return err;
+}
+
+/**
+ * ice_ptp_gettimex64 - Get the time of the clock
+ * @info: the driver's PTP info structure
+ * @ts: timespec64 structure to hold the current time value
+ * @sts: Optional parameter for holding a pair of system timestamps from
+ * the system clock. Will be ignored if NULL is given.
+ *
+ * Read the device clock and return the correct value on ns, after converting it
+ * into a timespec struct.
+ */
+static int
+ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
+ struct ptp_system_timestamp *sts)
+{
+ struct ice_pf *pf = ptp_info_to_pf(info);
+ struct ice_hw *hw = &pf->hw;
+
+ if (!ice_ptp_lock(hw)) {
+ dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
+ return -EBUSY;
+ }
+
+ ice_ptp_read_time(pf, ts, sts);
+ ice_ptp_unlock(hw);
+
+ return 0;
+}
+
+/**
+ * ice_ptp_settime64 - Set the time of the clock
+ * @info: the driver's PTP info structure
+ * @ts: timespec64 structure that holds the new time value
+ *
+ * Set the device clock to the user input value. The conversion from timespec
+ * to ns happens in the write function.
+ */
+static int
+ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
+{
+ struct ice_pf *pf = ptp_info_to_pf(info);
+ struct timespec64 ts64 = *ts;
+ struct ice_hw *hw = &pf->hw;
+ int err;
+
+ /* For Vernier mode, we need to recalibrate after new settime
+ * Start with disabling timestamp block
+ */
+ if (pf->ptp.port.link_up)
+ ice_ptp_port_phy_stop(&pf->ptp.port);
+
+ if (!ice_ptp_lock(hw)) {
+ err = -EBUSY;
+ goto exit;
+ }
+
+ /* Disable periodic outputs */
+ ice_ptp_disable_all_clkout(pf);
+
+ err = ice_ptp_write_init(pf, &ts64);
+ ice_ptp_unlock(hw);
+
+ if (!err)
+ ice_ptp_reset_cached_phctime(pf);
+
+ /* Reenable periodic outputs */
+ ice_ptp_enable_all_clkout(pf);
+
+ /* Recalibrate and re-enable timestamp block */
+ if (pf->ptp.port.link_up)
+ ice_ptp_port_phy_restart(&pf->ptp.port);
+exit:
+ if (err) {
+ dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
+ return err;
+ }
+
+ return 0;
+}
+
+/**
+ * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
+ * @info: the driver's PTP info structure
+ * @delta: Offset in nanoseconds to adjust the time by
+ */
+static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
+{
+ struct timespec64 now, then;
+ int ret;
+
+ then = ns_to_timespec64(delta);
+ ret = ice_ptp_gettimex64(info, &now, NULL);
+ if (ret)
+ return ret;
+ now = timespec64_add(now, then);
+
+ return ice_ptp_settime64(info, (const struct timespec64 *)&now);
+}
+
+/**
+ * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
+ * @info: the driver's PTP info structure
+ * @delta: Offset in nanoseconds to adjust the time by
+ */
+static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
+{
+ struct ice_pf *pf = ptp_info_to_pf(info);
+ struct ice_hw *hw = &pf->hw;
+ struct device *dev;
+ int err;
+
+ dev = ice_pf_to_dev(pf);
+
+ /* Hardware only supports atomic adjustments using signed 32-bit
+ * integers. For any adjustment outside this range, perform
+ * a non-atomic get->adjust->set flow.
+ */
+ if (delta > S32_MAX || delta < S32_MIN) {
+ dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
+ return ice_ptp_adjtime_nonatomic(info, delta);
+ }
+
+ if (!ice_ptp_lock(hw)) {
+ dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
+ return -EBUSY;
+ }
+
+ /* Disable periodic outputs */
+ ice_ptp_disable_all_clkout(pf);
+
+ err = ice_ptp_write_adj(pf, delta);
+
+ /* Reenable periodic outputs */
+ ice_ptp_enable_all_clkout(pf);
+
+ ice_ptp_unlock(hw);
+
+ if (err) {
+ dev_err(dev, "PTP failed to adjust time, err %d\n", err);
+ return err;
+ }
+
+ ice_ptp_reset_cached_phctime(pf);
+
+ return 0;
+}
+
+#ifdef CONFIG_ICE_HWTS
+/**
+ * ice_ptp_get_syncdevicetime - Get the cross time stamp info
+ * @device: Current device time
+ * @system: System counter value read synchronously with device time
+ * @ctx: Context provided by timekeeping code
+ *
+ * Read device and system (ART) clock simultaneously and return the corrected
+ * clock values in ns.
+ */
+static int
+ice_ptp_get_syncdevicetime(ktime_t *device,
+ struct system_counterval_t *system,
+ void *ctx)
+{
+ struct ice_pf *pf = (struct ice_pf *)ctx;
+ struct ice_hw *hw = &pf->hw;
+ u32 hh_lock, hh_art_ctl;
+ int i;
+
+ /* Get the HW lock */
+ hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
+ if (hh_lock & PFHH_SEM_BUSY_M) {
+ dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
+ return -EFAULT;
+ }
+
+ /* Start the ART and device clock sync sequence */
+ hh_art_ctl = rd32(hw, GLHH_ART_CTL);
+ hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
+ wr32(hw, GLHH_ART_CTL, hh_art_ctl);
+
+#define MAX_HH_LOCK_TRIES 100
+
+ for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
+ /* Wait for sync to complete */
+ hh_art_ctl = rd32(hw, GLHH_ART_CTL);
+ if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
+ udelay(1);
+ continue;
+ } else {
+ u32 hh_ts_lo, hh_ts_hi, tmr_idx;
+ u64 hh_ts;
+
+ tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
+ /* Read ART time */
+ hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
+ hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
+ hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
+ *system = convert_art_ns_to_tsc(hh_ts);
+ /* Read Device source clock time */
+ hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
+ hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
+ hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
+ *device = ns_to_ktime(hh_ts);
+ break;
+ }
+ }
+ /* Release HW lock */
+ hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
+ hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
+ wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
+
+ if (i == MAX_HH_LOCK_TRIES)
+ return -ETIMEDOUT;
+
+ return 0;
+}
+
+/**
+ * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
+ * @info: the driver's PTP info structure
+ * @cts: The memory to fill the cross timestamp info
+ *
+ * Capture a cross timestamp between the ART and the device PTP hardware
+ * clock. Fill the cross timestamp information and report it back to the
+ * caller.
+ *
+ * This is only valid for E822 devices which have support for generating the
+ * cross timestamp via PCIe PTM.
+ *
+ * In order to correctly correlate the ART timestamp back to the TSC time, the
+ * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
+ */
+static int
+ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
+ struct system_device_crosststamp *cts)
+{
+ struct ice_pf *pf = ptp_info_to_pf(info);
+
+ return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
+ pf, NULL, cts);
+}
+#endif /* CONFIG_ICE_HWTS */
+
+/**
+ * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
+ * @pf: Board private structure
+ * @ifr: ioctl data
+ *
+ * Copy the timestamping config to user buffer
+ */
+int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
+{
+ struct hwtstamp_config *config;
+
+ if (!test_bit(ICE_FLAG_PTP, pf->flags))
+ return -EIO;
+
+ config = &pf->ptp.tstamp_config;
+
+ return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
+ -EFAULT : 0;
+}
+
+/**
+ * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
+ * @pf: Board private structure
+ * @config: hwtstamp settings requested or saved
+ */
+static int
+ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
+{
+ switch (config->tx_type) {
+ case HWTSTAMP_TX_OFF:
+ ice_set_tx_tstamp(pf, false);
+ break;
+ case HWTSTAMP_TX_ON:
+ ice_set_tx_tstamp(pf, true);
+ break;
+ default:
+ return -ERANGE;
+ }
+
+ switch (config->rx_filter) {
+ case HWTSTAMP_FILTER_NONE:
+ ice_set_rx_tstamp(pf, false);
+ break;
+ case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
+ case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
+ case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
+ case HWTSTAMP_FILTER_PTP_V2_EVENT:
+ case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
+ case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
+ case HWTSTAMP_FILTER_PTP_V2_SYNC:
+ case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
+ case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
+ case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
+ case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
+ case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
+ case HWTSTAMP_FILTER_NTP_ALL:
+ case HWTSTAMP_FILTER_ALL:
+ ice_set_rx_tstamp(pf, true);
+ break;
+ default:
+ return -ERANGE;
+ }
+
+ return 0;
+}
+
+/**
+ * ice_ptp_set_ts_config - ioctl interface to control the timestamping
+ * @pf: Board private structure
+ * @ifr: ioctl data
+ *
+ * Get the user config and store it
+ */
+int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
+{
+ struct hwtstamp_config config;
+ int err;
+
+ if (!test_bit(ICE_FLAG_PTP, pf->flags))
+ return -EAGAIN;
+
+ if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
+ return -EFAULT;
+
+ err = ice_ptp_set_timestamp_mode(pf, &config);
+ if (err)
+ return err;
+
+ /* Return the actual configuration set */
+ config = pf->ptp.tstamp_config;
+
+ return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
+ -EFAULT : 0;
+}
+
+/**
+ * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
+ * @rx_ring: Ring to get the VSI info
+ * @rx_desc: Receive descriptor
+ * @skb: Particular skb to send timestamp with
+ *
+ * The driver receives a notification in the receive descriptor with timestamp.
+ * The timestamp is in ns, so we must convert the result first.
+ */
+void
+ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
+ union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
+{
+ struct skb_shared_hwtstamps *hwtstamps;
+ u64 ts_ns, cached_time;
+ u32 ts_high;
+
+ if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
+ return;
+
+ cached_time = READ_ONCE(rx_ring->cached_phctime);
+
+ /* Do not report a timestamp if we don't have a cached PHC time */
+ if (!cached_time)
+ return;
+
+ /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
+ * PHC value, rather than accessing the PF. This also allows us to
+ * simply pass the upper 32bits of nanoseconds directly. Calling
+ * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
+ * bits itself.
+ */
+ ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
+ ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
+
+ hwtstamps = skb_hwtstamps(skb);
+ memset(hwtstamps, 0, sizeof(*hwtstamps));
+ hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
+}
+
+/**
+ * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
+ * @pf: pointer to the PF structure
+ * @info: PTP clock info structure
+ *
+ * Disable the OS access to the SMA pins. Called to clear out the OS
+ * indications of pin support when we fail to setup the E810-T SMA control
+ * register.
+ */
+static void
+ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
+{
+ struct device *dev = ice_pf_to_dev(pf);
+
+ dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
+
+ info->enable = NULL;
+ info->verify = NULL;
+ info->n_pins = 0;
+ info->n_ext_ts = 0;
+ info->n_per_out = 0;
+}
+
+/**
+ * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
+ * @pf: pointer to the PF structure
+ * @info: PTP clock info structure
+ *
+ * Finish setting up the SMA pins by allocating pin_config, and setting it up
+ * according to the current status of the SMA. On failure, disable all of the
+ * extended SMA pin support.
+ */
+static void
+ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
+{
+ struct device *dev = ice_pf_to_dev(pf);
+ int err;
+
+ /* Allocate memory for kernel pins interface */
+ info->pin_config = devm_kcalloc(dev, info->n_pins,
+ sizeof(*info->pin_config), GFP_KERNEL);
+ if (!info->pin_config) {
+ ice_ptp_disable_sma_pins_e810t(pf, info);
+ return;
+ }
+
+ /* Read current SMA status */
+ err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
+ if (err)
+ ice_ptp_disable_sma_pins_e810t(pf, info);
+}
+
+/**
+ * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
+ * @pf: pointer to the PF instance
+ * @info: PTP clock capabilities
+ */
+static void
+ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
+{
+ info->n_per_out = N_PER_OUT_E810;
+
+ if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS))
+ info->n_ext_ts = N_EXT_TS_E810;
+
+ if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
+ info->n_ext_ts = N_EXT_TS_E810;
+ info->n_pins = NUM_PTP_PINS_E810T;
+ info->verify = ice_verify_pin_e810t;
+
+ /* Complete setup of the SMA pins */
+ ice_ptp_setup_sma_pins_e810t(pf, info);
+ }
+}
+
+/**
+ * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
+ * @pf: Board private structure
+ * @info: PTP info to fill
+ *
+ * Assign functions to the PTP capabiltiies structure for E822 devices.
+ * Functions which operate across all device families should be set directly
+ * in ice_ptp_set_caps. Only add functions here which are distinct for E822
+ * devices.
+ */
+static void
+ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
+{
+#ifdef CONFIG_ICE_HWTS
+ if (boot_cpu_has(X86_FEATURE_ART) &&
+ boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
+ info->getcrosststamp = ice_ptp_getcrosststamp_e822;
+#endif /* CONFIG_ICE_HWTS */
+}
+
+/**
+ * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
+ * @pf: Board private structure
+ * @info: PTP info to fill
+ *
+ * Assign functions to the PTP capabiltiies structure for E810 devices.
+ * Functions which operate across all device families should be set directly
+ * in ice_ptp_set_caps. Only add functions here which are distinct for e810
+ * devices.
+ */
+static void
+ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
+{
+ info->enable = ice_ptp_gpio_enable_e810;
+ ice_ptp_setup_pins_e810(pf, info);
+}
+
+/**
+ * ice_ptp_set_caps - Set PTP capabilities
+ * @pf: Board private structure
+ */
+static void ice_ptp_set_caps(struct ice_pf *pf)
+{
+ struct ptp_clock_info *info = &pf->ptp.info;
+ struct device *dev = ice_pf_to_dev(pf);
+
+ snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
+ dev_driver_string(dev), dev_name(dev));
+ info->owner = THIS_MODULE;
+ info->max_adj = 100000000;
+ info->adjtime = ice_ptp_adjtime;
+ info->adjfine = ice_ptp_adjfine;
+ info->gettimex64 = ice_ptp_gettimex64;
+ info->settime64 = ice_ptp_settime64;
+
+ if (ice_is_e810(&pf->hw))
+ ice_ptp_set_funcs_e810(pf, info);
+ else
+ ice_ptp_set_funcs_e822(pf, info);
+}
+
+/**
+ * ice_ptp_create_clock - Create PTP clock device for userspace
+ * @pf: Board private structure
+ *
+ * This function creates a new PTP clock device. It only creates one if we
+ * don't already have one. Will return error if it can't create one, but success
+ * if we already have a device. Should be used by ice_ptp_init to create clock
+ * initially, and prevent global resets from creating new clock devices.
+ */
+static long ice_ptp_create_clock(struct ice_pf *pf)
+{
+ struct ptp_clock_info *info;
+ struct ptp_clock *clock;
+ struct device *dev;
+
+ /* No need to create a clock device if we already have one */
+ if (pf->ptp.clock)
+ return 0;
+
+ ice_ptp_set_caps(pf);
+
+ info = &pf->ptp.info;
+ dev = ice_pf_to_dev(pf);
+
+ /* Attempt to register the clock before enabling the hardware. */
+ clock = ptp_clock_register(info, dev);
+ if (IS_ERR(clock))
+ return PTR_ERR(clock);
+
+ pf->ptp.clock = clock;
+
+ return 0;
+}
+
+/**
+ * ice_ptp_request_ts - Request an available Tx timestamp index
+ * @tx: the PTP Tx timestamp tracker to request from
+ * @skb: the SKB to associate with this timestamp request
+ */
+s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
+{
+ u8 idx;
+
+ /* Check if this tracker is initialized */
+ if (!tx->init || tx->calibrating)
+ return -1;
+
+ spin_lock(&tx->lock);
+ /* Find and set the first available index */
+ idx = find_first_zero_bit(tx->in_use, tx->len);
+ if (idx < tx->len) {
+ /* We got a valid index that no other thread could have set. Store
+ * a reference to the skb and the start time to allow discarding old
+ * requests.
+ */
+ set_bit(idx, tx->in_use);
+ tx->tstamps[idx].start = jiffies;
+ tx->tstamps[idx].skb = skb_get(skb);
+ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
+ ice_trace(tx_tstamp_request, skb, idx);
+ }
+
+ spin_unlock(&tx->lock);
+
+ /* return the appropriate PHY timestamp register index, -1 if no
+ * indexes were available.
+ */
+ if (idx >= tx->len)
+ return -1;
+ else
+ return idx + tx->quad_offset;
+}
+
+/**
+ * ice_ptp_process_ts - Process the PTP Tx timestamps
+ * @pf: Board private structure
+ *
+ * Returns true if timestamps are processed.
+ */
+bool ice_ptp_process_ts(struct ice_pf *pf)
+{
+ return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
+}
+
+static void ice_ptp_periodic_work(struct kthread_work *work)
+{
+ struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
+ struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
+ int err;
+
+ if (!test_bit(ICE_FLAG_PTP, pf->flags))
+ return;
+
+ err = ice_ptp_update_cached_phctime(pf);
+
+ ice_ptp_tx_tstamp_cleanup(pf, &pf->ptp.port.tx);
+
+ /* Run twice a second or reschedule if phc update failed */
+ kthread_queue_delayed_work(ptp->kworker, &ptp->work,
+ msecs_to_jiffies(err ? 10 : 500));
+}
+
+/**
+ * ice_ptp_reset - Initialize PTP hardware clock support after reset
+ * @pf: Board private structure
+ */
+void ice_ptp_reset(struct ice_pf *pf)
+{
+ struct ice_ptp *ptp = &pf->ptp;
+ struct ice_hw *hw = &pf->hw;
+ struct timespec64 ts;
+ int err, itr = 1;
+ u64 time_diff;
+
+ if (test_bit(ICE_PFR_REQ, pf->state))
+ goto pfr;
+
+ if (!hw->func_caps.ts_func_info.src_tmr_owned)
+ goto reset_ts;
+
+ err = ice_ptp_init_phc(hw);
+ if (err)
+ goto err;
+
+ /* Acquire the global hardware lock */
+ if (!ice_ptp_lock(hw)) {
+ err = -EBUSY;
+ goto err;
+ }
+
+ /* Write the increment time value to PHY and LAN */
+ err = ice_ptp_write_incval(hw, ice_base_incval(pf));
+ if (err) {
+ ice_ptp_unlock(hw);
+ goto err;
+ }
+
+ /* Write the initial Time value to PHY and LAN using the cached PHC
+ * time before the reset and time difference between stopping and
+ * starting the clock.
+ */
+ if (ptp->cached_phc_time) {
+ time_diff = ktime_get_real_ns() - ptp->reset_time;
+ ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
+ } else {
+ ts = ktime_to_timespec64(ktime_get_real());
+ }
+ err = ice_ptp_write_init(pf, &ts);
+ if (err) {
+ ice_ptp_unlock(hw);
+ goto err;
+ }
+
+ /* Release the global hardware lock */
+ ice_ptp_unlock(hw);
+
+ if (!ice_is_e810(hw)) {
+ /* Enable quad interrupts */
+ err = ice_ptp_tx_ena_intr(pf, true, itr);
+ if (err)
+ goto err;
+ }
+
+reset_ts:
+ /* Restart the PHY timestamping block */
+ ice_ptp_reset_phy_timestamping(pf);
+
+pfr:
+ /* Init Tx structures */
+ if (ice_is_e810(&pf->hw)) {
+ err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
+ } else {
+ kthread_init_delayed_work(&ptp->port.ov_work,
+ ice_ptp_wait_for_offset_valid);
+ err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
+ ptp->port.port_num);
+ }
+ if (err)
+ goto err;
+
+ set_bit(ICE_FLAG_PTP, pf->flags);
+
+ /* Start periodic work going */
+ kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
+
+ dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
+ return;
+
+err:
+ dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
+}
+
+/**
+ * ice_ptp_prepare_for_reset - Prepare PTP for reset
+ * @pf: Board private structure
+ */
+void ice_ptp_prepare_for_reset(struct ice_pf *pf)
+{
+ struct ice_ptp *ptp = &pf->ptp;
+ u8 src_tmr;
+
+ clear_bit(ICE_FLAG_PTP, pf->flags);
+
+ /* Disable timestamping for both Tx and Rx */
+ ice_ptp_cfg_timestamp(pf, false);
+
+ kthread_cancel_delayed_work_sync(&ptp->work);
+
+ if (test_bit(ICE_PFR_REQ, pf->state))
+ return;
+
+ ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
+
+ /* Disable periodic outputs */
+ ice_ptp_disable_all_clkout(pf);
+
+ src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
+
+ /* Disable source clock */
+ wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
+
+ /* Acquire PHC and system timer to restore after reset */
+ ptp->reset_time = ktime_get_real_ns();
+}
+
+/**
+ * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
+ * @pf: Board private structure
+ *
+ * Setup and initialize a PTP clock device that represents the device hardware
+ * clock. Save the clock index for other functions connected to the same
+ * hardware resource.
+ */
+static int ice_ptp_init_owner(struct ice_pf *pf)
+{
+ struct ice_hw *hw = &pf->hw;
+ struct timespec64 ts;
+ int err, itr = 1;
+
+ err = ice_ptp_init_phc(hw);
+ if (err) {
+ dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
+ err);
+ return err;
+ }
+
+ /* Acquire the global hardware lock */
+ if (!ice_ptp_lock(hw)) {
+ err = -EBUSY;
+ goto err_exit;
+ }
+
+ /* Write the increment time value to PHY and LAN */
+ err = ice_ptp_write_incval(hw, ice_base_incval(pf));
+ if (err) {
+ ice_ptp_unlock(hw);
+ goto err_exit;
+ }
+
+ ts = ktime_to_timespec64(ktime_get_real());
+ /* Write the initial Time value to PHY and LAN */
+ err = ice_ptp_write_init(pf, &ts);
+ if (err) {
+ ice_ptp_unlock(hw);
+ goto err_exit;
+ }
+
+ /* Release the global hardware lock */
+ ice_ptp_unlock(hw);
+
+ if (!ice_is_e810(hw)) {
+ /* Enable quad interrupts */
+ err = ice_ptp_tx_ena_intr(pf, true, itr);
+ if (err)
+ goto err_exit;
+ }
+
+ /* Ensure we have a clock device */
+ err = ice_ptp_create_clock(pf);
+ if (err)
+ goto err_clk;
+
+ /* Store the PTP clock index for other PFs */
+ ice_set_ptp_clock_index(pf);
+
+ return 0;
+
+err_clk:
+ pf->ptp.clock = NULL;
+err_exit:
+ return err;
+}
+
+/**
+ * ice_ptp_init_work - Initialize PTP work threads
+ * @pf: Board private structure
+ * @ptp: PF PTP structure
+ */
+static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
+{
+ struct kthread_worker *kworker;
+
+ /* Initialize work functions */
+ kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
+
+ /* Allocate a kworker for handling work required for the ports
+ * connected to the PTP hardware clock.
+ */
+ kworker = kthread_create_worker(0, "ice-ptp-%s",
+ dev_name(ice_pf_to_dev(pf)));
+ if (IS_ERR(kworker))
+ return PTR_ERR(kworker);
+
+ ptp->kworker = kworker;
+
+ /* Start periodic work going */
+ kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
+
+ return 0;
+}
+
+/**
+ * ice_ptp_init_port - Initialize PTP port structure
+ * @pf: Board private structure
+ * @ptp_port: PTP port structure
+ */
+static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
+{
+ mutex_init(&ptp_port->ps_lock);
+
+ if (ice_is_e810(&pf->hw))
+ return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
+
+ kthread_init_delayed_work(&ptp_port->ov_work,
+ ice_ptp_wait_for_offset_valid);
+ return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
+}
+
+/**
+ * ice_ptp_init - Initialize PTP hardware clock support
+ * @pf: Board private structure
+ *
+ * Set up the device for interacting with the PTP hardware clock for all
+ * functions, both the function that owns the clock hardware, and the
+ * functions connected to the clock hardware.
+ *
+ * The clock owner will allocate and register a ptp_clock with the
+ * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
+ * items used for asynchronous work such as Tx timestamps and periodic work.
+ */
+void ice_ptp_init(struct ice_pf *pf)
+{
+ struct ice_ptp *ptp = &pf->ptp;
+ struct ice_hw *hw = &pf->hw;
+ int err;
+
+ /* If this function owns the clock hardware, it must allocate and
+ * configure the PTP clock device to represent it.
+ */
+ if (hw->func_caps.ts_func_info.src_tmr_owned) {
+ err = ice_ptp_init_owner(pf);
+ if (err)
+ goto err;
+ }
+
+ ptp->port.port_num = hw->pf_id;
+ err = ice_ptp_init_port(pf, &ptp->port);
+ if (err)
+ goto err;
+
+ /* Start the PHY timestamping block */
+ ice_ptp_reset_phy_timestamping(pf);
+
+ set_bit(ICE_FLAG_PTP, pf->flags);
+ err = ice_ptp_init_work(pf, ptp);
+ if (err)
+ goto err;
+
+ dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
+ return;
+
+err:
+ /* If we registered a PTP clock, release it */
+ if (pf->ptp.clock) {
+ ptp_clock_unregister(ptp->clock);
+ pf->ptp.clock = NULL;
+ }
+ clear_bit(ICE_FLAG_PTP, pf->flags);
+ dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
+}
+
+/**
+ * ice_ptp_release - Disable the driver/HW support and unregister the clock
+ * @pf: Board private structure
+ *
+ * This function handles the cleanup work required from the initialization by
+ * clearing out the important information and unregistering the clock
+ */
+void ice_ptp_release(struct ice_pf *pf)
+{
+ if (!test_bit(ICE_FLAG_PTP, pf->flags))
+ return;
+
+ /* Disable timestamping for both Tx and Rx */
+ ice_ptp_cfg_timestamp(pf, false);
+
+ ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
+
+ clear_bit(ICE_FLAG_PTP, pf->flags);
+
+ kthread_cancel_delayed_work_sync(&pf->ptp.work);
+
+ ice_ptp_port_phy_stop(&pf->ptp.port);
+ mutex_destroy(&pf->ptp.port.ps_lock);
+ if (pf->ptp.kworker) {
+ kthread_destroy_worker(pf->ptp.kworker);
+ pf->ptp.kworker = NULL;
+ }
+
+ if (!pf->ptp.clock)
+ return;
+
+ /* Disable periodic outputs */
+ ice_ptp_disable_all_clkout(pf);
+
+ ice_clear_ptp_clock_index(pf);
+ ptp_clock_unregister(pf->ptp.clock);
+ pf->ptp.clock = NULL;
+
+ dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
+}