diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /fs/reiserfs/objectid.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/reiserfs/objectid.c')
-rw-r--r-- | fs/reiserfs/objectid.c | 216 |
1 files changed, 216 insertions, 0 deletions
diff --git a/fs/reiserfs/objectid.c b/fs/reiserfs/objectid.c new file mode 100644 index 000000000..34baf5c0f --- /dev/null +++ b/fs/reiserfs/objectid.c @@ -0,0 +1,216 @@ +/* + * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README + */ + +#include <linux/string.h> +#include <linux/time.h> +#include <linux/uuid.h> +#include "reiserfs.h" + +/* find where objectid map starts */ +#define objectid_map(s,rs) (old_format_only (s) ? \ + (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\ + (__le32 *)((rs) + 1)) + +#ifdef CONFIG_REISERFS_CHECK + +static void check_objectid_map(struct super_block *s, __le32 * map) +{ + if (le32_to_cpu(map[0]) != 1) + reiserfs_panic(s, "vs-15010", "map corrupted: %lx", + (long unsigned int)le32_to_cpu(map[0])); + + /* FIXME: add something else here */ +} + +#else +static void check_objectid_map(struct super_block *s, __le32 * map) +{; +} +#endif + +/* + * When we allocate objectids we allocate the first unused objectid. + * Each sequence of objectids in use (the odd sequences) is followed + * by a sequence of objectids not in use (the even sequences). We + * only need to record the last objectid in each of these sequences + * (both the odd and even sequences) in order to fully define the + * boundaries of the sequences. A consequence of allocating the first + * objectid not in use is that under most conditions this scheme is + * extremely compact. The exception is immediately after a sequence + * of operations which deletes a large number of objects of + * non-sequential objectids, and even then it will become compact + * again as soon as more objects are created. Note that many + * interesting optimizations of layout could result from complicating + * objectid assignment, but we have deferred making them for now. + */ + +/* get unique object identifier */ +__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th) +{ + struct super_block *s = th->t_super; + struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s); + __le32 *map = objectid_map(s, rs); + __u32 unused_objectid; + + BUG_ON(!th->t_trans_id); + + check_objectid_map(s, map); + + reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1); + /* comment needed -Hans */ + unused_objectid = le32_to_cpu(map[1]); + if (unused_objectid == U32_MAX) { + reiserfs_warning(s, "reiserfs-15100", "no more object ids"); + reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)); + return 0; + } + + /* + * This incrementation allocates the first unused objectid. That + * is to say, the first entry on the objectid map is the first + * unused objectid, and by incrementing it we use it. See below + * where we check to see if we eliminated a sequence of unused + * objectids.... + */ + map[1] = cpu_to_le32(unused_objectid + 1); + + /* + * Now we check to see if we eliminated the last remaining member of + * the first even sequence (and can eliminate the sequence by + * eliminating its last objectid from oids), and can collapse the + * first two odd sequences into one sequence. If so, then the net + * result is to eliminate a pair of objectids from oids. We do this + * by shifting the entire map to the left. + */ + if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) { + memmove(map + 1, map + 3, + (sb_oid_cursize(rs) - 3) * sizeof(__u32)); + set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2); + } + + journal_mark_dirty(th, SB_BUFFER_WITH_SB(s)); + return unused_objectid; +} + +/* makes object identifier unused */ +void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, + __u32 objectid_to_release) +{ + struct super_block *s = th->t_super; + struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s); + __le32 *map = objectid_map(s, rs); + int i = 0; + + BUG_ON(!th->t_trans_id); + /*return; */ + check_objectid_map(s, map); + + reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1); + journal_mark_dirty(th, SB_BUFFER_WITH_SB(s)); + + /* + * start at the beginning of the objectid map (i = 0) and go to + * the end of it (i = disk_sb->s_oid_cursize). Linear search is + * what we use, though it is possible that binary search would be + * more efficient after performing lots of deletions (which is + * when oids is large.) We only check even i's. + */ + while (i < sb_oid_cursize(rs)) { + if (objectid_to_release == le32_to_cpu(map[i])) { + /* This incrementation unallocates the objectid. */ + le32_add_cpu(&map[i], 1); + + /* + * Did we unallocate the last member of an + * odd sequence, and can shrink oids? + */ + if (map[i] == map[i + 1]) { + /* shrink objectid map */ + memmove(map + i, map + i + 2, + (sb_oid_cursize(rs) - i - + 2) * sizeof(__u32)); + set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2); + + RFALSE(sb_oid_cursize(rs) < 2 || + sb_oid_cursize(rs) > sb_oid_maxsize(rs), + "vs-15005: objectid map corrupted cur_size == %d (max == %d)", + sb_oid_cursize(rs), sb_oid_maxsize(rs)); + } + return; + } + + if (objectid_to_release > le32_to_cpu(map[i]) && + objectid_to_release < le32_to_cpu(map[i + 1])) { + /* size of objectid map is not changed */ + if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) { + le32_add_cpu(&map[i + 1], -1); + return; + } + + /* + * JDM comparing two little-endian values for + * equality -- safe + */ + /* + * objectid map must be expanded, but + * there is no space + */ + if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) { + PROC_INFO_INC(s, leaked_oid); + return; + } + + /* expand the objectid map */ + memmove(map + i + 3, map + i + 1, + (sb_oid_cursize(rs) - i - 1) * sizeof(__u32)); + map[i + 1] = cpu_to_le32(objectid_to_release); + map[i + 2] = cpu_to_le32(objectid_to_release + 1); + set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2); + return; + } + i += 2; + } + + reiserfs_error(s, "vs-15011", "tried to free free object id (%lu)", + (long unsigned)objectid_to_release); +} + +int reiserfs_convert_objectid_map_v1(struct super_block *s) +{ + struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s); + int cur_size = sb_oid_cursize(disk_sb); + int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2; + int old_max = sb_oid_maxsize(disk_sb); + struct reiserfs_super_block_v1 *disk_sb_v1; + __le32 *objectid_map; + int i; + + disk_sb_v1 = + (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data); + objectid_map = (__le32 *) (disk_sb_v1 + 1); + + if (cur_size > new_size) { + /* + * mark everyone used that was listed as free at + * the end of the objectid map + */ + objectid_map[new_size - 1] = objectid_map[cur_size - 1]; + set_sb_oid_cursize(disk_sb, new_size); + } + /* move the smaller objectid map past the end of the new super */ + for (i = new_size - 1; i >= 0; i--) { + objectid_map[i + (old_max - new_size)] = objectid_map[i]; + } + + /* set the max size so we don't overflow later */ + set_sb_oid_maxsize(disk_sb, new_size); + + /* Zero out label and generate random UUID */ + memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label)); + generate_random_uuid(disk_sb->s_uuid); + + /* finally, zero out the unused chunk of the new super */ + memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)); + return 0; +} |