summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_file.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /fs/xfs/xfs_file.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/xfs/xfs_file.c')
-rw-r--r--fs/xfs/xfs_file.c1468
1 files changed, 1468 insertions, 0 deletions
diff --git a/fs/xfs/xfs_file.c b/fs/xfs/xfs_file.c
new file mode 100644
index 000000000..e462d39c8
--- /dev/null
+++ b/fs/xfs/xfs_file.c
@@ -0,0 +1,1468 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_mount.h"
+#include "xfs_inode.h"
+#include "xfs_trans.h"
+#include "xfs_inode_item.h"
+#include "xfs_bmap.h"
+#include "xfs_bmap_util.h"
+#include "xfs_dir2.h"
+#include "xfs_dir2_priv.h"
+#include "xfs_ioctl.h"
+#include "xfs_trace.h"
+#include "xfs_log.h"
+#include "xfs_icache.h"
+#include "xfs_pnfs.h"
+#include "xfs_iomap.h"
+#include "xfs_reflink.h"
+
+#include <linux/dax.h>
+#include <linux/falloc.h>
+#include <linux/backing-dev.h>
+#include <linux/mman.h>
+#include <linux/fadvise.h>
+#include <linux/mount.h>
+
+static const struct vm_operations_struct xfs_file_vm_ops;
+
+/*
+ * Decide if the given file range is aligned to the size of the fundamental
+ * allocation unit for the file.
+ */
+static bool
+xfs_is_falloc_aligned(
+ struct xfs_inode *ip,
+ loff_t pos,
+ long long int len)
+{
+ struct xfs_mount *mp = ip->i_mount;
+ uint64_t mask;
+
+ if (XFS_IS_REALTIME_INODE(ip)) {
+ if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
+ u64 rextbytes;
+ u32 mod;
+
+ rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
+ div_u64_rem(pos, rextbytes, &mod);
+ if (mod)
+ return false;
+ div_u64_rem(len, rextbytes, &mod);
+ return mod == 0;
+ }
+ mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
+ } else {
+ mask = mp->m_sb.sb_blocksize - 1;
+ }
+
+ return !((pos | len) & mask);
+}
+
+/*
+ * Fsync operations on directories are much simpler than on regular files,
+ * as there is no file data to flush, and thus also no need for explicit
+ * cache flush operations, and there are no non-transaction metadata updates
+ * on directories either.
+ */
+STATIC int
+xfs_dir_fsync(
+ struct file *file,
+ loff_t start,
+ loff_t end,
+ int datasync)
+{
+ struct xfs_inode *ip = XFS_I(file->f_mapping->host);
+
+ trace_xfs_dir_fsync(ip);
+ return xfs_log_force_inode(ip);
+}
+
+static xfs_csn_t
+xfs_fsync_seq(
+ struct xfs_inode *ip,
+ bool datasync)
+{
+ if (!xfs_ipincount(ip))
+ return 0;
+ if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
+ return 0;
+ return ip->i_itemp->ili_commit_seq;
+}
+
+/*
+ * All metadata updates are logged, which means that we just have to flush the
+ * log up to the latest LSN that touched the inode.
+ *
+ * If we have concurrent fsync/fdatasync() calls, we need them to all block on
+ * the log force before we clear the ili_fsync_fields field. This ensures that
+ * we don't get a racing sync operation that does not wait for the metadata to
+ * hit the journal before returning. If we race with clearing ili_fsync_fields,
+ * then all that will happen is the log force will do nothing as the lsn will
+ * already be on disk. We can't race with setting ili_fsync_fields because that
+ * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
+ * shared until after the ili_fsync_fields is cleared.
+ */
+static int
+xfs_fsync_flush_log(
+ struct xfs_inode *ip,
+ bool datasync,
+ int *log_flushed)
+{
+ int error = 0;
+ xfs_csn_t seq;
+
+ xfs_ilock(ip, XFS_ILOCK_SHARED);
+ seq = xfs_fsync_seq(ip, datasync);
+ if (seq) {
+ error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
+ log_flushed);
+
+ spin_lock(&ip->i_itemp->ili_lock);
+ ip->i_itemp->ili_fsync_fields = 0;
+ spin_unlock(&ip->i_itemp->ili_lock);
+ }
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
+ return error;
+}
+
+STATIC int
+xfs_file_fsync(
+ struct file *file,
+ loff_t start,
+ loff_t end,
+ int datasync)
+{
+ struct xfs_inode *ip = XFS_I(file->f_mapping->host);
+ struct xfs_mount *mp = ip->i_mount;
+ int error, err2;
+ int log_flushed = 0;
+
+ trace_xfs_file_fsync(ip);
+
+ error = file_write_and_wait_range(file, start, end);
+ if (error)
+ return error;
+
+ if (xfs_is_shutdown(mp))
+ return -EIO;
+
+ xfs_iflags_clear(ip, XFS_ITRUNCATED);
+
+ /*
+ * If we have an RT and/or log subvolume we need to make sure to flush
+ * the write cache the device used for file data first. This is to
+ * ensure newly written file data make it to disk before logging the new
+ * inode size in case of an extending write.
+ */
+ if (XFS_IS_REALTIME_INODE(ip))
+ error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
+ else if (mp->m_logdev_targp != mp->m_ddev_targp)
+ error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
+
+ /*
+ * Any inode that has dirty modifications in the log is pinned. The
+ * racy check here for a pinned inode will not catch modifications
+ * that happen concurrently to the fsync call, but fsync semantics
+ * only require to sync previously completed I/O.
+ */
+ if (xfs_ipincount(ip)) {
+ err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
+ if (err2 && !error)
+ error = err2;
+ }
+
+ /*
+ * If we only have a single device, and the log force about was
+ * a no-op we might have to flush the data device cache here.
+ * This can only happen for fdatasync/O_DSYNC if we were overwriting
+ * an already allocated file and thus do not have any metadata to
+ * commit.
+ */
+ if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
+ mp->m_logdev_targp == mp->m_ddev_targp) {
+ err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
+ if (err2 && !error)
+ error = err2;
+ }
+
+ return error;
+}
+
+static int
+xfs_ilock_iocb(
+ struct kiocb *iocb,
+ unsigned int lock_mode)
+{
+ struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
+
+ if (iocb->ki_flags & IOCB_NOWAIT) {
+ if (!xfs_ilock_nowait(ip, lock_mode))
+ return -EAGAIN;
+ } else {
+ xfs_ilock(ip, lock_mode);
+ }
+
+ return 0;
+}
+
+STATIC ssize_t
+xfs_file_dio_read(
+ struct kiocb *iocb,
+ struct iov_iter *to)
+{
+ struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
+ ssize_t ret;
+
+ trace_xfs_file_direct_read(iocb, to);
+
+ if (!iov_iter_count(to))
+ return 0; /* skip atime */
+
+ file_accessed(iocb->ki_filp);
+
+ ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
+ if (ret)
+ return ret;
+ ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
+ xfs_iunlock(ip, XFS_IOLOCK_SHARED);
+
+ return ret;
+}
+
+static noinline ssize_t
+xfs_file_dax_read(
+ struct kiocb *iocb,
+ struct iov_iter *to)
+{
+ struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
+ ssize_t ret = 0;
+
+ trace_xfs_file_dax_read(iocb, to);
+
+ if (!iov_iter_count(to))
+ return 0; /* skip atime */
+
+ ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
+ if (ret)
+ return ret;
+ ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
+ xfs_iunlock(ip, XFS_IOLOCK_SHARED);
+
+ file_accessed(iocb->ki_filp);
+ return ret;
+}
+
+STATIC ssize_t
+xfs_file_buffered_read(
+ struct kiocb *iocb,
+ struct iov_iter *to)
+{
+ struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
+ ssize_t ret;
+
+ trace_xfs_file_buffered_read(iocb, to);
+
+ ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
+ if (ret)
+ return ret;
+ ret = generic_file_read_iter(iocb, to);
+ xfs_iunlock(ip, XFS_IOLOCK_SHARED);
+
+ return ret;
+}
+
+STATIC ssize_t
+xfs_file_read_iter(
+ struct kiocb *iocb,
+ struct iov_iter *to)
+{
+ struct inode *inode = file_inode(iocb->ki_filp);
+ struct xfs_mount *mp = XFS_I(inode)->i_mount;
+ ssize_t ret = 0;
+
+ XFS_STATS_INC(mp, xs_read_calls);
+
+ if (xfs_is_shutdown(mp))
+ return -EIO;
+
+ if (IS_DAX(inode))
+ ret = xfs_file_dax_read(iocb, to);
+ else if (iocb->ki_flags & IOCB_DIRECT)
+ ret = xfs_file_dio_read(iocb, to);
+ else
+ ret = xfs_file_buffered_read(iocb, to);
+
+ if (ret > 0)
+ XFS_STATS_ADD(mp, xs_read_bytes, ret);
+ return ret;
+}
+
+/*
+ * Common pre-write limit and setup checks.
+ *
+ * Called with the iolocked held either shared and exclusive according to
+ * @iolock, and returns with it held. Might upgrade the iolock to exclusive
+ * if called for a direct write beyond i_size.
+ */
+STATIC ssize_t
+xfs_file_write_checks(
+ struct kiocb *iocb,
+ struct iov_iter *from,
+ unsigned int *iolock)
+{
+ struct file *file = iocb->ki_filp;
+ struct inode *inode = file->f_mapping->host;
+ struct xfs_inode *ip = XFS_I(inode);
+ ssize_t error = 0;
+ size_t count = iov_iter_count(from);
+ bool drained_dio = false;
+ loff_t isize;
+
+restart:
+ error = generic_write_checks(iocb, from);
+ if (error <= 0)
+ return error;
+
+ if (iocb->ki_flags & IOCB_NOWAIT) {
+ error = break_layout(inode, false);
+ if (error == -EWOULDBLOCK)
+ error = -EAGAIN;
+ } else {
+ error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
+ }
+
+ if (error)
+ return error;
+
+ /*
+ * For changing security info in file_remove_privs() we need i_rwsem
+ * exclusively.
+ */
+ if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
+ xfs_iunlock(ip, *iolock);
+ *iolock = XFS_IOLOCK_EXCL;
+ error = xfs_ilock_iocb(iocb, *iolock);
+ if (error) {
+ *iolock = 0;
+ return error;
+ }
+ goto restart;
+ }
+
+ /*
+ * If the offset is beyond the size of the file, we need to zero any
+ * blocks that fall between the existing EOF and the start of this
+ * write. If zeroing is needed and we are currently holding the iolock
+ * shared, we need to update it to exclusive which implies having to
+ * redo all checks before.
+ *
+ * We need to serialise against EOF updates that occur in IO completions
+ * here. We want to make sure that nobody is changing the size while we
+ * do this check until we have placed an IO barrier (i.e. hold the
+ * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
+ * spinlock effectively forms a memory barrier once we have the
+ * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
+ * hence be able to correctly determine if we need to run zeroing.
+ *
+ * We can do an unlocked check here safely as IO completion can only
+ * extend EOF. Truncate is locked out at this point, so the EOF can
+ * not move backwards, only forwards. Hence we only need to take the
+ * slow path and spin locks when we are at or beyond the current EOF.
+ */
+ if (iocb->ki_pos <= i_size_read(inode))
+ goto out;
+
+ spin_lock(&ip->i_flags_lock);
+ isize = i_size_read(inode);
+ if (iocb->ki_pos > isize) {
+ spin_unlock(&ip->i_flags_lock);
+
+ if (iocb->ki_flags & IOCB_NOWAIT)
+ return -EAGAIN;
+
+ if (!drained_dio) {
+ if (*iolock == XFS_IOLOCK_SHARED) {
+ xfs_iunlock(ip, *iolock);
+ *iolock = XFS_IOLOCK_EXCL;
+ xfs_ilock(ip, *iolock);
+ iov_iter_reexpand(from, count);
+ }
+ /*
+ * We now have an IO submission barrier in place, but
+ * AIO can do EOF updates during IO completion and hence
+ * we now need to wait for all of them to drain. Non-AIO
+ * DIO will have drained before we are given the
+ * XFS_IOLOCK_EXCL, and so for most cases this wait is a
+ * no-op.
+ */
+ inode_dio_wait(inode);
+ drained_dio = true;
+ goto restart;
+ }
+
+ trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
+ error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
+ if (error)
+ return error;
+ } else
+ spin_unlock(&ip->i_flags_lock);
+
+out:
+ return kiocb_modified(iocb);
+}
+
+static int
+xfs_dio_write_end_io(
+ struct kiocb *iocb,
+ ssize_t size,
+ int error,
+ unsigned flags)
+{
+ struct inode *inode = file_inode(iocb->ki_filp);
+ struct xfs_inode *ip = XFS_I(inode);
+ loff_t offset = iocb->ki_pos;
+ unsigned int nofs_flag;
+
+ trace_xfs_end_io_direct_write(ip, offset, size);
+
+ if (xfs_is_shutdown(ip->i_mount))
+ return -EIO;
+
+ if (error)
+ return error;
+ if (!size)
+ return 0;
+
+ /*
+ * Capture amount written on completion as we can't reliably account
+ * for it on submission.
+ */
+ XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
+
+ /*
+ * We can allocate memory here while doing writeback on behalf of
+ * memory reclaim. To avoid memory allocation deadlocks set the
+ * task-wide nofs context for the following operations.
+ */
+ nofs_flag = memalloc_nofs_save();
+
+ if (flags & IOMAP_DIO_COW) {
+ error = xfs_reflink_end_cow(ip, offset, size);
+ if (error)
+ goto out;
+ }
+
+ /*
+ * Unwritten conversion updates the in-core isize after extent
+ * conversion but before updating the on-disk size. Updating isize any
+ * earlier allows a racing dio read to find unwritten extents before
+ * they are converted.
+ */
+ if (flags & IOMAP_DIO_UNWRITTEN) {
+ error = xfs_iomap_write_unwritten(ip, offset, size, true);
+ goto out;
+ }
+
+ /*
+ * We need to update the in-core inode size here so that we don't end up
+ * with the on-disk inode size being outside the in-core inode size. We
+ * have no other method of updating EOF for AIO, so always do it here
+ * if necessary.
+ *
+ * We need to lock the test/set EOF update as we can be racing with
+ * other IO completions here to update the EOF. Failing to serialise
+ * here can result in EOF moving backwards and Bad Things Happen when
+ * that occurs.
+ *
+ * As IO completion only ever extends EOF, we can do an unlocked check
+ * here to avoid taking the spinlock. If we land within the current EOF,
+ * then we do not need to do an extending update at all, and we don't
+ * need to take the lock to check this. If we race with an update moving
+ * EOF, then we'll either still be beyond EOF and need to take the lock,
+ * or we'll be within EOF and we don't need to take it at all.
+ */
+ if (offset + size <= i_size_read(inode))
+ goto out;
+
+ spin_lock(&ip->i_flags_lock);
+ if (offset + size > i_size_read(inode)) {
+ i_size_write(inode, offset + size);
+ spin_unlock(&ip->i_flags_lock);
+ error = xfs_setfilesize(ip, offset, size);
+ } else {
+ spin_unlock(&ip->i_flags_lock);
+ }
+
+out:
+ memalloc_nofs_restore(nofs_flag);
+ return error;
+}
+
+static const struct iomap_dio_ops xfs_dio_write_ops = {
+ .end_io = xfs_dio_write_end_io,
+};
+
+/*
+ * Handle block aligned direct I/O writes
+ */
+static noinline ssize_t
+xfs_file_dio_write_aligned(
+ struct xfs_inode *ip,
+ struct kiocb *iocb,
+ struct iov_iter *from)
+{
+ unsigned int iolock = XFS_IOLOCK_SHARED;
+ ssize_t ret;
+
+ ret = xfs_ilock_iocb(iocb, iolock);
+ if (ret)
+ return ret;
+ ret = xfs_file_write_checks(iocb, from, &iolock);
+ if (ret)
+ goto out_unlock;
+
+ /*
+ * We don't need to hold the IOLOCK exclusively across the IO, so demote
+ * the iolock back to shared if we had to take the exclusive lock in
+ * xfs_file_write_checks() for other reasons.
+ */
+ if (iolock == XFS_IOLOCK_EXCL) {
+ xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
+ iolock = XFS_IOLOCK_SHARED;
+ }
+ trace_xfs_file_direct_write(iocb, from);
+ ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
+ &xfs_dio_write_ops, 0, NULL, 0);
+out_unlock:
+ if (iolock)
+ xfs_iunlock(ip, iolock);
+ return ret;
+}
+
+/*
+ * Handle block unaligned direct I/O writes
+ *
+ * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
+ * them to be done in parallel with reads and other direct I/O writes. However,
+ * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
+ * to do sub-block zeroing and that requires serialisation against other direct
+ * I/O to the same block. In this case we need to serialise the submission of
+ * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
+ * In the case where sub-block zeroing is not required, we can do concurrent
+ * sub-block dios to the same block successfully.
+ *
+ * Optimistically submit the I/O using the shared lock first, but use the
+ * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
+ * if block allocation or partial block zeroing would be required. In that case
+ * we try again with the exclusive lock.
+ */
+static noinline ssize_t
+xfs_file_dio_write_unaligned(
+ struct xfs_inode *ip,
+ struct kiocb *iocb,
+ struct iov_iter *from)
+{
+ size_t isize = i_size_read(VFS_I(ip));
+ size_t count = iov_iter_count(from);
+ unsigned int iolock = XFS_IOLOCK_SHARED;
+ unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
+ ssize_t ret;
+
+ /*
+ * Extending writes need exclusivity because of the sub-block zeroing
+ * that the DIO code always does for partial tail blocks beyond EOF, so
+ * don't even bother trying the fast path in this case.
+ */
+ if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
+ if (iocb->ki_flags & IOCB_NOWAIT)
+ return -EAGAIN;
+retry_exclusive:
+ iolock = XFS_IOLOCK_EXCL;
+ flags = IOMAP_DIO_FORCE_WAIT;
+ }
+
+ ret = xfs_ilock_iocb(iocb, iolock);
+ if (ret)
+ return ret;
+
+ /*
+ * We can't properly handle unaligned direct I/O to reflink files yet,
+ * as we can't unshare a partial block.
+ */
+ if (xfs_is_cow_inode(ip)) {
+ trace_xfs_reflink_bounce_dio_write(iocb, from);
+ ret = -ENOTBLK;
+ goto out_unlock;
+ }
+
+ ret = xfs_file_write_checks(iocb, from, &iolock);
+ if (ret)
+ goto out_unlock;
+
+ /*
+ * If we are doing exclusive unaligned I/O, this must be the only I/O
+ * in-flight. Otherwise we risk data corruption due to unwritten extent
+ * conversions from the AIO end_io handler. Wait for all other I/O to
+ * drain first.
+ */
+ if (flags & IOMAP_DIO_FORCE_WAIT)
+ inode_dio_wait(VFS_I(ip));
+
+ trace_xfs_file_direct_write(iocb, from);
+ ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
+ &xfs_dio_write_ops, flags, NULL, 0);
+
+ /*
+ * Retry unaligned I/O with exclusive blocking semantics if the DIO
+ * layer rejected it for mapping or locking reasons. If we are doing
+ * nonblocking user I/O, propagate the error.
+ */
+ if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
+ ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
+ xfs_iunlock(ip, iolock);
+ goto retry_exclusive;
+ }
+
+out_unlock:
+ if (iolock)
+ xfs_iunlock(ip, iolock);
+ return ret;
+}
+
+static ssize_t
+xfs_file_dio_write(
+ struct kiocb *iocb,
+ struct iov_iter *from)
+{
+ struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
+ struct xfs_buftarg *target = xfs_inode_buftarg(ip);
+ size_t count = iov_iter_count(from);
+
+ /* direct I/O must be aligned to device logical sector size */
+ if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
+ return -EINVAL;
+ if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
+ return xfs_file_dio_write_unaligned(ip, iocb, from);
+ return xfs_file_dio_write_aligned(ip, iocb, from);
+}
+
+static noinline ssize_t
+xfs_file_dax_write(
+ struct kiocb *iocb,
+ struct iov_iter *from)
+{
+ struct inode *inode = iocb->ki_filp->f_mapping->host;
+ struct xfs_inode *ip = XFS_I(inode);
+ unsigned int iolock = XFS_IOLOCK_EXCL;
+ ssize_t ret, error = 0;
+ loff_t pos;
+
+ ret = xfs_ilock_iocb(iocb, iolock);
+ if (ret)
+ return ret;
+ ret = xfs_file_write_checks(iocb, from, &iolock);
+ if (ret)
+ goto out;
+
+ pos = iocb->ki_pos;
+
+ trace_xfs_file_dax_write(iocb, from);
+ ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
+ if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
+ i_size_write(inode, iocb->ki_pos);
+ error = xfs_setfilesize(ip, pos, ret);
+ }
+out:
+ if (iolock)
+ xfs_iunlock(ip, iolock);
+ if (error)
+ return error;
+
+ if (ret > 0) {
+ XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
+
+ /* Handle various SYNC-type writes */
+ ret = generic_write_sync(iocb, ret);
+ }
+ return ret;
+}
+
+STATIC ssize_t
+xfs_file_buffered_write(
+ struct kiocb *iocb,
+ struct iov_iter *from)
+{
+ struct inode *inode = iocb->ki_filp->f_mapping->host;
+ struct xfs_inode *ip = XFS_I(inode);
+ ssize_t ret;
+ bool cleared_space = false;
+ unsigned int iolock;
+
+write_retry:
+ iolock = XFS_IOLOCK_EXCL;
+ ret = xfs_ilock_iocb(iocb, iolock);
+ if (ret)
+ return ret;
+
+ ret = xfs_file_write_checks(iocb, from, &iolock);
+ if (ret)
+ goto out;
+
+ /* We can write back this queue in page reclaim */
+ current->backing_dev_info = inode_to_bdi(inode);
+
+ trace_xfs_file_buffered_write(iocb, from);
+ ret = iomap_file_buffered_write(iocb, from,
+ &xfs_buffered_write_iomap_ops);
+ if (likely(ret >= 0))
+ iocb->ki_pos += ret;
+
+ /*
+ * If we hit a space limit, try to free up some lingering preallocated
+ * space before returning an error. In the case of ENOSPC, first try to
+ * write back all dirty inodes to free up some of the excess reserved
+ * metadata space. This reduces the chances that the eofblocks scan
+ * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
+ * also behaves as a filter to prevent too many eofblocks scans from
+ * running at the same time. Use a synchronous scan to increase the
+ * effectiveness of the scan.
+ */
+ if (ret == -EDQUOT && !cleared_space) {
+ xfs_iunlock(ip, iolock);
+ xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
+ cleared_space = true;
+ goto write_retry;
+ } else if (ret == -ENOSPC && !cleared_space) {
+ struct xfs_icwalk icw = {0};
+
+ cleared_space = true;
+ xfs_flush_inodes(ip->i_mount);
+
+ xfs_iunlock(ip, iolock);
+ icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
+ xfs_blockgc_free_space(ip->i_mount, &icw);
+ goto write_retry;
+ }
+
+ current->backing_dev_info = NULL;
+out:
+ if (iolock)
+ xfs_iunlock(ip, iolock);
+
+ if (ret > 0) {
+ XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
+ /* Handle various SYNC-type writes */
+ ret = generic_write_sync(iocb, ret);
+ }
+ return ret;
+}
+
+STATIC ssize_t
+xfs_file_write_iter(
+ struct kiocb *iocb,
+ struct iov_iter *from)
+{
+ struct inode *inode = iocb->ki_filp->f_mapping->host;
+ struct xfs_inode *ip = XFS_I(inode);
+ ssize_t ret;
+ size_t ocount = iov_iter_count(from);
+
+ XFS_STATS_INC(ip->i_mount, xs_write_calls);
+
+ if (ocount == 0)
+ return 0;
+
+ if (xfs_is_shutdown(ip->i_mount))
+ return -EIO;
+
+ if (IS_DAX(inode))
+ return xfs_file_dax_write(iocb, from);
+
+ if (iocb->ki_flags & IOCB_DIRECT) {
+ /*
+ * Allow a directio write to fall back to a buffered
+ * write *only* in the case that we're doing a reflink
+ * CoW. In all other directio scenarios we do not
+ * allow an operation to fall back to buffered mode.
+ */
+ ret = xfs_file_dio_write(iocb, from);
+ if (ret != -ENOTBLK)
+ return ret;
+ }
+
+ return xfs_file_buffered_write(iocb, from);
+}
+
+static void
+xfs_wait_dax_page(
+ struct inode *inode)
+{
+ struct xfs_inode *ip = XFS_I(inode);
+
+ xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
+ schedule();
+ xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
+}
+
+int
+xfs_break_dax_layouts(
+ struct inode *inode,
+ bool *retry)
+{
+ struct page *page;
+
+ ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
+
+ page = dax_layout_busy_page(inode->i_mapping);
+ if (!page)
+ return 0;
+
+ *retry = true;
+ return ___wait_var_event(&page->_refcount,
+ atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
+ 0, 0, xfs_wait_dax_page(inode));
+}
+
+int
+xfs_break_layouts(
+ struct inode *inode,
+ uint *iolock,
+ enum layout_break_reason reason)
+{
+ bool retry;
+ int error;
+
+ ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
+
+ do {
+ retry = false;
+ switch (reason) {
+ case BREAK_UNMAP:
+ error = xfs_break_dax_layouts(inode, &retry);
+ if (error || retry)
+ break;
+ fallthrough;
+ case BREAK_WRITE:
+ error = xfs_break_leased_layouts(inode, iolock, &retry);
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ error = -EINVAL;
+ }
+ } while (error == 0 && retry);
+
+ return error;
+}
+
+/* Does this file, inode, or mount want synchronous writes? */
+static inline bool xfs_file_sync_writes(struct file *filp)
+{
+ struct xfs_inode *ip = XFS_I(file_inode(filp));
+
+ if (xfs_has_wsync(ip->i_mount))
+ return true;
+ if (filp->f_flags & (__O_SYNC | O_DSYNC))
+ return true;
+ if (IS_SYNC(file_inode(filp)))
+ return true;
+
+ return false;
+}
+
+#define XFS_FALLOC_FL_SUPPORTED \
+ (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
+ FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
+ FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
+
+STATIC long
+xfs_file_fallocate(
+ struct file *file,
+ int mode,
+ loff_t offset,
+ loff_t len)
+{
+ struct inode *inode = file_inode(file);
+ struct xfs_inode *ip = XFS_I(inode);
+ long error;
+ uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
+ loff_t new_size = 0;
+ bool do_file_insert = false;
+
+ if (!S_ISREG(inode->i_mode))
+ return -EINVAL;
+ if (mode & ~XFS_FALLOC_FL_SUPPORTED)
+ return -EOPNOTSUPP;
+
+ xfs_ilock(ip, iolock);
+ error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
+ if (error)
+ goto out_unlock;
+
+ /*
+ * Must wait for all AIO to complete before we continue as AIO can
+ * change the file size on completion without holding any locks we
+ * currently hold. We must do this first because AIO can update both
+ * the on disk and in memory inode sizes, and the operations that follow
+ * require the in-memory size to be fully up-to-date.
+ */
+ inode_dio_wait(inode);
+
+ /*
+ * Now AIO and DIO has drained we flush and (if necessary) invalidate
+ * the cached range over the first operation we are about to run.
+ *
+ * We care about zero and collapse here because they both run a hole
+ * punch over the range first. Because that can zero data, and the range
+ * of invalidation for the shift operations is much larger, we still do
+ * the required flush for collapse in xfs_prepare_shift().
+ *
+ * Insert has the same range requirements as collapse, and we extend the
+ * file first which can zero data. Hence insert has the same
+ * flush/invalidate requirements as collapse and so they are both
+ * handled at the right time by xfs_prepare_shift().
+ */
+ if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
+ FALLOC_FL_COLLAPSE_RANGE)) {
+ error = xfs_flush_unmap_range(ip, offset, len);
+ if (error)
+ goto out_unlock;
+ }
+
+ error = file_modified(file);
+ if (error)
+ goto out_unlock;
+
+ if (mode & FALLOC_FL_PUNCH_HOLE) {
+ error = xfs_free_file_space(ip, offset, len);
+ if (error)
+ goto out_unlock;
+ } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
+ if (!xfs_is_falloc_aligned(ip, offset, len)) {
+ error = -EINVAL;
+ goto out_unlock;
+ }
+
+ /*
+ * There is no need to overlap collapse range with EOF,
+ * in which case it is effectively a truncate operation
+ */
+ if (offset + len >= i_size_read(inode)) {
+ error = -EINVAL;
+ goto out_unlock;
+ }
+
+ new_size = i_size_read(inode) - len;
+
+ error = xfs_collapse_file_space(ip, offset, len);
+ if (error)
+ goto out_unlock;
+ } else if (mode & FALLOC_FL_INSERT_RANGE) {
+ loff_t isize = i_size_read(inode);
+
+ if (!xfs_is_falloc_aligned(ip, offset, len)) {
+ error = -EINVAL;
+ goto out_unlock;
+ }
+
+ /*
+ * New inode size must not exceed ->s_maxbytes, accounting for
+ * possible signed overflow.
+ */
+ if (inode->i_sb->s_maxbytes - isize < len) {
+ error = -EFBIG;
+ goto out_unlock;
+ }
+ new_size = isize + len;
+
+ /* Offset should be less than i_size */
+ if (offset >= isize) {
+ error = -EINVAL;
+ goto out_unlock;
+ }
+ do_file_insert = true;
+ } else {
+ if (!(mode & FALLOC_FL_KEEP_SIZE) &&
+ offset + len > i_size_read(inode)) {
+ new_size = offset + len;
+ error = inode_newsize_ok(inode, new_size);
+ if (error)
+ goto out_unlock;
+ }
+
+ if (mode & FALLOC_FL_ZERO_RANGE) {
+ /*
+ * Punch a hole and prealloc the range. We use a hole
+ * punch rather than unwritten extent conversion for two
+ * reasons:
+ *
+ * 1.) Hole punch handles partial block zeroing for us.
+ * 2.) If prealloc returns ENOSPC, the file range is
+ * still zero-valued by virtue of the hole punch.
+ */
+ unsigned int blksize = i_blocksize(inode);
+
+ trace_xfs_zero_file_space(ip);
+
+ error = xfs_free_file_space(ip, offset, len);
+ if (error)
+ goto out_unlock;
+
+ len = round_up(offset + len, blksize) -
+ round_down(offset, blksize);
+ offset = round_down(offset, blksize);
+ } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
+ error = xfs_reflink_unshare(ip, offset, len);
+ if (error)
+ goto out_unlock;
+ } else {
+ /*
+ * If always_cow mode we can't use preallocations and
+ * thus should not create them.
+ */
+ if (xfs_is_always_cow_inode(ip)) {
+ error = -EOPNOTSUPP;
+ goto out_unlock;
+ }
+ }
+
+ if (!xfs_is_always_cow_inode(ip)) {
+ error = xfs_alloc_file_space(ip, offset, len);
+ if (error)
+ goto out_unlock;
+ }
+ }
+
+ /* Change file size if needed */
+ if (new_size) {
+ struct iattr iattr;
+
+ iattr.ia_valid = ATTR_SIZE;
+ iattr.ia_size = new_size;
+ error = xfs_vn_setattr_size(file_mnt_user_ns(file),
+ file_dentry(file), &iattr);
+ if (error)
+ goto out_unlock;
+ }
+
+ /*
+ * Perform hole insertion now that the file size has been
+ * updated so that if we crash during the operation we don't
+ * leave shifted extents past EOF and hence losing access to
+ * the data that is contained within them.
+ */
+ if (do_file_insert) {
+ error = xfs_insert_file_space(ip, offset, len);
+ if (error)
+ goto out_unlock;
+ }
+
+ if (xfs_file_sync_writes(file))
+ error = xfs_log_force_inode(ip);
+
+out_unlock:
+ xfs_iunlock(ip, iolock);
+ return error;
+}
+
+STATIC int
+xfs_file_fadvise(
+ struct file *file,
+ loff_t start,
+ loff_t end,
+ int advice)
+{
+ struct xfs_inode *ip = XFS_I(file_inode(file));
+ int ret;
+ int lockflags = 0;
+
+ /*
+ * Operations creating pages in page cache need protection from hole
+ * punching and similar ops
+ */
+ if (advice == POSIX_FADV_WILLNEED) {
+ lockflags = XFS_IOLOCK_SHARED;
+ xfs_ilock(ip, lockflags);
+ }
+ ret = generic_fadvise(file, start, end, advice);
+ if (lockflags)
+ xfs_iunlock(ip, lockflags);
+ return ret;
+}
+
+STATIC loff_t
+xfs_file_remap_range(
+ struct file *file_in,
+ loff_t pos_in,
+ struct file *file_out,
+ loff_t pos_out,
+ loff_t len,
+ unsigned int remap_flags)
+{
+ struct inode *inode_in = file_inode(file_in);
+ struct xfs_inode *src = XFS_I(inode_in);
+ struct inode *inode_out = file_inode(file_out);
+ struct xfs_inode *dest = XFS_I(inode_out);
+ struct xfs_mount *mp = src->i_mount;
+ loff_t remapped = 0;
+ xfs_extlen_t cowextsize;
+ int ret;
+
+ if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
+ return -EINVAL;
+
+ if (!xfs_has_reflink(mp))
+ return -EOPNOTSUPP;
+
+ if (xfs_is_shutdown(mp))
+ return -EIO;
+
+ /* Prepare and then clone file data. */
+ ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
+ &len, remap_flags);
+ if (ret || len == 0)
+ return ret;
+
+ trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
+
+ ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
+ &remapped);
+ if (ret)
+ goto out_unlock;
+
+ /*
+ * Carry the cowextsize hint from src to dest if we're sharing the
+ * entire source file to the entire destination file, the source file
+ * has a cowextsize hint, and the destination file does not.
+ */
+ cowextsize = 0;
+ if (pos_in == 0 && len == i_size_read(inode_in) &&
+ (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
+ pos_out == 0 && len >= i_size_read(inode_out) &&
+ !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
+ cowextsize = src->i_cowextsize;
+
+ ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
+ remap_flags);
+ if (ret)
+ goto out_unlock;
+
+ if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
+ xfs_log_force_inode(dest);
+out_unlock:
+ xfs_iunlock2_io_mmap(src, dest);
+ if (ret)
+ trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
+ return remapped > 0 ? remapped : ret;
+}
+
+STATIC int
+xfs_file_open(
+ struct inode *inode,
+ struct file *file)
+{
+ if (xfs_is_shutdown(XFS_M(inode->i_sb)))
+ return -EIO;
+ file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
+ return generic_file_open(inode, file);
+}
+
+STATIC int
+xfs_dir_open(
+ struct inode *inode,
+ struct file *file)
+{
+ struct xfs_inode *ip = XFS_I(inode);
+ unsigned int mode;
+ int error;
+
+ error = xfs_file_open(inode, file);
+ if (error)
+ return error;
+
+ /*
+ * If there are any blocks, read-ahead block 0 as we're almost
+ * certain to have the next operation be a read there.
+ */
+ mode = xfs_ilock_data_map_shared(ip);
+ if (ip->i_df.if_nextents > 0)
+ error = xfs_dir3_data_readahead(ip, 0, 0);
+ xfs_iunlock(ip, mode);
+ return error;
+}
+
+STATIC int
+xfs_file_release(
+ struct inode *inode,
+ struct file *filp)
+{
+ return xfs_release(XFS_I(inode));
+}
+
+STATIC int
+xfs_file_readdir(
+ struct file *file,
+ struct dir_context *ctx)
+{
+ struct inode *inode = file_inode(file);
+ xfs_inode_t *ip = XFS_I(inode);
+ size_t bufsize;
+
+ /*
+ * The Linux API doesn't pass down the total size of the buffer
+ * we read into down to the filesystem. With the filldir concept
+ * it's not needed for correct information, but the XFS dir2 leaf
+ * code wants an estimate of the buffer size to calculate it's
+ * readahead window and size the buffers used for mapping to
+ * physical blocks.
+ *
+ * Try to give it an estimate that's good enough, maybe at some
+ * point we can change the ->readdir prototype to include the
+ * buffer size. For now we use the current glibc buffer size.
+ */
+ bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
+
+ return xfs_readdir(NULL, ip, ctx, bufsize);
+}
+
+STATIC loff_t
+xfs_file_llseek(
+ struct file *file,
+ loff_t offset,
+ int whence)
+{
+ struct inode *inode = file->f_mapping->host;
+
+ if (xfs_is_shutdown(XFS_I(inode)->i_mount))
+ return -EIO;
+
+ switch (whence) {
+ default:
+ return generic_file_llseek(file, offset, whence);
+ case SEEK_HOLE:
+ offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
+ break;
+ case SEEK_DATA:
+ offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
+ break;
+ }
+
+ if (offset < 0)
+ return offset;
+ return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
+}
+
+#ifdef CONFIG_FS_DAX
+static inline vm_fault_t
+xfs_dax_fault(
+ struct vm_fault *vmf,
+ enum page_entry_size pe_size,
+ bool write_fault,
+ pfn_t *pfn)
+{
+ return dax_iomap_fault(vmf, pe_size, pfn, NULL,
+ (write_fault && !vmf->cow_page) ?
+ &xfs_dax_write_iomap_ops :
+ &xfs_read_iomap_ops);
+}
+#else
+static inline vm_fault_t
+xfs_dax_fault(
+ struct vm_fault *vmf,
+ enum page_entry_size pe_size,
+ bool write_fault,
+ pfn_t *pfn)
+{
+ ASSERT(0);
+ return VM_FAULT_SIGBUS;
+}
+#endif
+
+/*
+ * Locking for serialisation of IO during page faults. This results in a lock
+ * ordering of:
+ *
+ * mmap_lock (MM)
+ * sb_start_pagefault(vfs, freeze)
+ * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
+ * page_lock (MM)
+ * i_lock (XFS - extent map serialisation)
+ */
+static vm_fault_t
+__xfs_filemap_fault(
+ struct vm_fault *vmf,
+ enum page_entry_size pe_size,
+ bool write_fault)
+{
+ struct inode *inode = file_inode(vmf->vma->vm_file);
+ struct xfs_inode *ip = XFS_I(inode);
+ vm_fault_t ret;
+
+ trace_xfs_filemap_fault(ip, pe_size, write_fault);
+
+ if (write_fault) {
+ sb_start_pagefault(inode->i_sb);
+ file_update_time(vmf->vma->vm_file);
+ }
+
+ if (IS_DAX(inode)) {
+ pfn_t pfn;
+
+ xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+ ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn);
+ if (ret & VM_FAULT_NEEDDSYNC)
+ ret = dax_finish_sync_fault(vmf, pe_size, pfn);
+ xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+ } else {
+ if (write_fault) {
+ xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+ ret = iomap_page_mkwrite(vmf,
+ &xfs_buffered_write_iomap_ops);
+ xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+ } else {
+ ret = filemap_fault(vmf);
+ }
+ }
+
+ if (write_fault)
+ sb_end_pagefault(inode->i_sb);
+ return ret;
+}
+
+static inline bool
+xfs_is_write_fault(
+ struct vm_fault *vmf)
+{
+ return (vmf->flags & FAULT_FLAG_WRITE) &&
+ (vmf->vma->vm_flags & VM_SHARED);
+}
+
+static vm_fault_t
+xfs_filemap_fault(
+ struct vm_fault *vmf)
+{
+ /* DAX can shortcut the normal fault path on write faults! */
+ return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
+ IS_DAX(file_inode(vmf->vma->vm_file)) &&
+ xfs_is_write_fault(vmf));
+}
+
+static vm_fault_t
+xfs_filemap_huge_fault(
+ struct vm_fault *vmf,
+ enum page_entry_size pe_size)
+{
+ if (!IS_DAX(file_inode(vmf->vma->vm_file)))
+ return VM_FAULT_FALLBACK;
+
+ /* DAX can shortcut the normal fault path on write faults! */
+ return __xfs_filemap_fault(vmf, pe_size,
+ xfs_is_write_fault(vmf));
+}
+
+static vm_fault_t
+xfs_filemap_page_mkwrite(
+ struct vm_fault *vmf)
+{
+ return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
+}
+
+/*
+ * pfn_mkwrite was originally intended to ensure we capture time stamp updates
+ * on write faults. In reality, it needs to serialise against truncate and
+ * prepare memory for writing so handle is as standard write fault.
+ */
+static vm_fault_t
+xfs_filemap_pfn_mkwrite(
+ struct vm_fault *vmf)
+{
+
+ return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
+}
+
+static vm_fault_t
+xfs_filemap_map_pages(
+ struct vm_fault *vmf,
+ pgoff_t start_pgoff,
+ pgoff_t end_pgoff)
+{
+ struct inode *inode = file_inode(vmf->vma->vm_file);
+ vm_fault_t ret;
+
+ xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+ ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
+ xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+ return ret;
+}
+
+static const struct vm_operations_struct xfs_file_vm_ops = {
+ .fault = xfs_filemap_fault,
+ .huge_fault = xfs_filemap_huge_fault,
+ .map_pages = xfs_filemap_map_pages,
+ .page_mkwrite = xfs_filemap_page_mkwrite,
+ .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
+};
+
+STATIC int
+xfs_file_mmap(
+ struct file *file,
+ struct vm_area_struct *vma)
+{
+ struct inode *inode = file_inode(file);
+ struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
+
+ /*
+ * We don't support synchronous mappings for non-DAX files and
+ * for DAX files if underneath dax_device is not synchronous.
+ */
+ if (!daxdev_mapping_supported(vma, target->bt_daxdev))
+ return -EOPNOTSUPP;
+
+ file_accessed(file);
+ vma->vm_ops = &xfs_file_vm_ops;
+ if (IS_DAX(inode))
+ vma->vm_flags |= VM_HUGEPAGE;
+ return 0;
+}
+
+const struct file_operations xfs_file_operations = {
+ .llseek = xfs_file_llseek,
+ .read_iter = xfs_file_read_iter,
+ .write_iter = xfs_file_write_iter,
+ .splice_read = generic_file_splice_read,
+ .splice_write = iter_file_splice_write,
+ .iopoll = iocb_bio_iopoll,
+ .unlocked_ioctl = xfs_file_ioctl,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = xfs_file_compat_ioctl,
+#endif
+ .mmap = xfs_file_mmap,
+ .mmap_supported_flags = MAP_SYNC,
+ .open = xfs_file_open,
+ .release = xfs_file_release,
+ .fsync = xfs_file_fsync,
+ .get_unmapped_area = thp_get_unmapped_area,
+ .fallocate = xfs_file_fallocate,
+ .fadvise = xfs_file_fadvise,
+ .remap_file_range = xfs_file_remap_range,
+};
+
+const struct file_operations xfs_dir_file_operations = {
+ .open = xfs_dir_open,
+ .read = generic_read_dir,
+ .iterate_shared = xfs_file_readdir,
+ .llseek = generic_file_llseek,
+ .unlocked_ioctl = xfs_file_ioctl,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = xfs_file_compat_ioctl,
+#endif
+ .fsync = xfs_dir_fsync,
+};