diff options
Diffstat (limited to 'Documentation/networking/device_drivers/ethernet/google')
-rw-r--r-- | Documentation/networking/device_drivers/ethernet/google/gve.rst | 166 |
1 files changed, 166 insertions, 0 deletions
diff --git a/Documentation/networking/device_drivers/ethernet/google/gve.rst b/Documentation/networking/device_drivers/ethernet/google/gve.rst new file mode 100644 index 000000000..6d73ee78f --- /dev/null +++ b/Documentation/networking/device_drivers/ethernet/google/gve.rst @@ -0,0 +1,166 @@ +.. SPDX-License-Identifier: GPL-2.0+ + +============================================================== +Linux kernel driver for Compute Engine Virtual Ethernet (gve): +============================================================== + +Supported Hardware +=================== +The GVE driver binds to a single PCI device id used by the virtual +Ethernet device found in some Compute Engine VMs. + ++--------------+----------+---------+ +|Field | Value | Comments| ++==============+==========+=========+ +|Vendor ID | `0x1AE0` | Google | ++--------------+----------+---------+ +|Device ID | `0x0042` | | ++--------------+----------+---------+ +|Sub-vendor ID | `0x1AE0` | Google | ++--------------+----------+---------+ +|Sub-device ID | `0x0058` | | ++--------------+----------+---------+ +|Revision ID | `0x0` | | ++--------------+----------+---------+ +|Device Class | `0x200` | Ethernet| ++--------------+----------+---------+ + +PCI Bars +======== +The gVNIC PCI device exposes three 32-bit memory BARS: +- Bar0 - Device configuration and status registers. +- Bar1 - MSI-X vector table +- Bar2 - IRQ, RX and TX doorbells + +Device Interactions +=================== +The driver interacts with the device in the following ways: + - Registers + - A block of MMIO registers + - See gve_register.h for more detail + - Admin Queue + - See description below + - Reset + - At any time the device can be reset + - Interrupts + - See supported interrupts below + - Transmit and Receive Queues + - See description below + +Descriptor Formats +------------------ +GVE supports two descriptor formats: GQI and DQO. These two formats have +entirely different descriptors, which will be described below. + +Registers +--------- +All registers are MMIO. + +The registers are used for initializing and configuring the device as well as +querying device status in response to management interrupts. + +Endianness +---------- +- Admin Queue messages and registers are all Big Endian. +- GQI descriptors and datapath registers are Big Endian. +- DQO descriptors and datapath registers are Little Endian. + +Admin Queue (AQ) +---------------- +The Admin Queue is a PAGE_SIZE memory block, treated as an array of AQ +commands, used by the driver to issue commands to the device and set up +resources.The driver and the device maintain a count of how many commands +have been submitted and executed. To issue AQ commands, the driver must do +the following (with proper locking): + +1) Copy new commands into next available slots in the AQ array +2) Increment its counter by he number of new commands +3) Write the counter into the GVE_ADMIN_QUEUE_DOORBELL register +4) Poll the ADMIN_QUEUE_EVENT_COUNTER register until it equals + the value written to the doorbell, or until a timeout. + +The device will update the status field in each AQ command reported as +executed through the ADMIN_QUEUE_EVENT_COUNTER register. + +Device Resets +------------- +A device reset is triggered by writing 0x0 to the AQ PFN register. +This causes the device to release all resources allocated by the +driver, including the AQ itself. + +Interrupts +---------- +The following interrupts are supported by the driver: + +Management Interrupt +~~~~~~~~~~~~~~~~~~~~ +The management interrupt is used by the device to tell the driver to +look at the GVE_DEVICE_STATUS register. + +The handler for the management irq simply queues the service task in +the workqueue to check the register and acks the irq. + +Notification Block Interrupts +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The notification block interrupts are used to tell the driver to poll +the queues associated with that interrupt. + +The handler for these irqs schedule the napi for that block to run +and poll the queues. + +GQI Traffic Queues +------------------ +GQI queues are composed of a descriptor ring and a buffer and are assigned to a +notification block. + +The descriptor rings are power-of-two-sized ring buffers consisting of +fixed-size descriptors. They advance their head pointer using a __be32 +doorbell located in Bar2. The tail pointers are advanced by consuming +descriptors in-order and updating a __be32 counter. Both the doorbell +and the counter overflow to zero. + +Each queue's buffers must be registered in advance with the device as a +queue page list, and packet data can only be put in those pages. + +Transmit +~~~~~~~~ +gve maps the buffers for transmit rings into a FIFO and copies the packets +into the FIFO before sending them to the NIC. + +Receive +~~~~~~~ +The buffers for receive rings are put into a data ring that is the same +length as the descriptor ring and the head and tail pointers advance over +the rings together. + +DQO Traffic Queues +------------------ +- Every TX and RX queue is assigned a notification block. + +- TX and RX buffers queues, which send descriptors to the device, use MMIO + doorbells to notify the device of new descriptors. + +- RX and TX completion queues, which receive descriptors from the device, use a + "generation bit" to know when a descriptor was populated by the device. The + driver initializes all bits with the "current generation". The device will + populate received descriptors with the "next generation" which is inverted + from the current generation. When the ring wraps, the current/next generation + are swapped. + +- It's the driver's responsibility to ensure that the RX and TX completion + queues are not overrun. This can be accomplished by limiting the number of + descriptors posted to HW. + +- TX packets have a 16 bit completion_tag and RX buffers have a 16 bit + buffer_id. These will be returned on the TX completion and RX queues + respectively to let the driver know which packet/buffer was completed. + +Transmit +~~~~~~~~ +A packet's buffers are DMA mapped for the device to access before transmission. +After the packet was successfully transmitted, the buffers are unmapped. + +Receive +~~~~~~~ +The driver posts fixed sized buffers to HW on the RX buffer queue. The packet +received on the associated RX queue may span multiple descriptors. |