summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c')
-rw-r--r--drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c657
1 files changed, 657 insertions, 0 deletions
diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c
new file mode 100644
index 000000000..d573fb091
--- /dev/null
+++ b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c
@@ -0,0 +1,657 @@
+/*
+ * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ *
+ * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
+ *
+ */
+#include "priv.h"
+#include "gk20a.h"
+
+#include <core/tegra.h>
+#include <subdev/timer.h>
+
+static const u8 _pl_to_div[] = {
+/* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */
+/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
+};
+
+static u32 pl_to_div(u32 pl)
+{
+ if (pl >= ARRAY_SIZE(_pl_to_div))
+ return 1;
+
+ return _pl_to_div[pl];
+}
+
+static u32 div_to_pl(u32 div)
+{
+ u32 pl;
+
+ for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) {
+ if (_pl_to_div[pl] >= div)
+ return pl;
+ }
+
+ return ARRAY_SIZE(_pl_to_div) - 1;
+}
+
+static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
+ .min_vco = 1000000, .max_vco = 2064000,
+ .min_u = 12000, .max_u = 38000,
+ .min_m = 1, .max_m = 255,
+ .min_n = 8, .max_n = 255,
+ .min_pl = 1, .max_pl = 32,
+};
+
+void
+gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ u32 val;
+
+ val = nvkm_rd32(device, GPCPLL_COEFF);
+ pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
+ pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
+ pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
+}
+
+void
+gk20a_pllg_write_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ u32 val;
+
+ val = (pll->m & MASK(GPCPLL_COEFF_M_WIDTH)) << GPCPLL_COEFF_M_SHIFT;
+ val |= (pll->n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
+ val |= (pll->pl & MASK(GPCPLL_COEFF_P_WIDTH)) << GPCPLL_COEFF_P_SHIFT;
+ nvkm_wr32(device, GPCPLL_COEFF, val);
+}
+
+u32
+gk20a_pllg_calc_rate(struct gk20a_clk *clk, struct gk20a_pll *pll)
+{
+ u32 rate;
+ u32 divider;
+
+ rate = clk->parent_rate * pll->n;
+ divider = pll->m * clk->pl_to_div(pll->pl);
+
+ return rate / divider / 2;
+}
+
+int
+gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate,
+ struct gk20a_pll *pll)
+{
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ u32 target_clk_f, ref_clk_f, target_freq;
+ u32 min_vco_f, max_vco_f;
+ u32 low_pl, high_pl, best_pl;
+ u32 target_vco_f;
+ u32 best_m, best_n;
+ u32 best_delta = ~0;
+ u32 pl;
+
+ target_clk_f = rate * 2 / KHZ;
+ ref_clk_f = clk->parent_rate / KHZ;
+
+ target_vco_f = target_clk_f + target_clk_f / 50;
+ max_vco_f = max(clk->params->max_vco, target_vco_f);
+ min_vco_f = clk->params->min_vco;
+ best_m = clk->params->max_m;
+ best_n = clk->params->min_n;
+ best_pl = clk->params->min_pl;
+
+ /* min_pl <= high_pl <= max_pl */
+ high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
+ high_pl = min(high_pl, clk->params->max_pl);
+ high_pl = max(high_pl, clk->params->min_pl);
+ high_pl = clk->div_to_pl(high_pl);
+
+ /* min_pl <= low_pl <= max_pl */
+ low_pl = min_vco_f / target_vco_f;
+ low_pl = min(low_pl, clk->params->max_pl);
+ low_pl = max(low_pl, clk->params->min_pl);
+ low_pl = clk->div_to_pl(low_pl);
+
+ nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
+ clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl));
+
+ /* Select lowest possible VCO */
+ for (pl = low_pl; pl <= high_pl; pl++) {
+ u32 m, n, n2;
+
+ target_vco_f = target_clk_f * clk->pl_to_div(pl);
+
+ for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
+ u32 u_f = ref_clk_f / m;
+
+ if (u_f < clk->params->min_u)
+ break;
+ if (u_f > clk->params->max_u)
+ continue;
+
+ n = (target_vco_f * m) / ref_clk_f;
+ n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
+
+ if (n > clk->params->max_n)
+ break;
+
+ for (; n <= n2; n++) {
+ u32 vco_f;
+
+ if (n < clk->params->min_n)
+ continue;
+ if (n > clk->params->max_n)
+ break;
+
+ vco_f = ref_clk_f * n / m;
+
+ if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
+ u32 delta, lwv;
+
+ lwv = (vco_f + (clk->pl_to_div(pl) / 2))
+ / clk->pl_to_div(pl);
+ delta = abs(lwv - target_clk_f);
+
+ if (delta < best_delta) {
+ best_delta = delta;
+ best_m = m;
+ best_n = n;
+ best_pl = pl;
+
+ if (best_delta == 0)
+ goto found_match;
+ }
+ }
+ }
+ }
+ }
+
+found_match:
+ WARN_ON(best_delta == ~0);
+
+ if (best_delta != 0)
+ nvkm_debug(subdev,
+ "no best match for target @ %dMHz on gpc_pll",
+ target_clk_f / KHZ);
+
+ pll->m = best_m;
+ pll->n = best_n;
+ pll->pl = best_pl;
+
+ target_freq = gk20a_pllg_calc_rate(clk, pll);
+
+ nvkm_debug(subdev,
+ "actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n",
+ target_freq / KHZ, pll->m, pll->n, pll->pl,
+ clk->pl_to_div(pll->pl));
+ return 0;
+}
+
+static int
+gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
+{
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_device *device = subdev->device;
+ struct gk20a_pll pll;
+ int ret = 0;
+
+ /* get old coefficients */
+ gk20a_pllg_read_mnp(clk, &pll);
+ /* do nothing if NDIV is the same */
+ if (n == pll.n)
+ return 0;
+
+ /* pll slowdown mode */
+ nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
+ BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
+ BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
+
+ /* new ndiv ready for ramp */
+ pll.n = n;
+ udelay(1);
+ gk20a_pllg_write_mnp(clk, &pll);
+
+ /* dynamic ramp to new ndiv */
+ udelay(1);
+ nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
+ BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT),
+ BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT));
+
+ /* wait for ramping to complete */
+ if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG,
+ GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK,
+ GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0)
+ ret = -ETIMEDOUT;
+
+ /* exit slowdown mode */
+ nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
+ BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
+ BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
+ nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
+
+ return ret;
+}
+
+static int
+gk20a_pllg_enable(struct gk20a_clk *clk)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ u32 val;
+
+ nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
+ nvkm_rd32(device, GPCPLL_CFG);
+
+ /* enable lock detection */
+ val = nvkm_rd32(device, GPCPLL_CFG);
+ if (val & GPCPLL_CFG_LOCK_DET_OFF) {
+ val &= ~GPCPLL_CFG_LOCK_DET_OFF;
+ nvkm_wr32(device, GPCPLL_CFG, val);
+ }
+
+ /* wait for lock */
+ if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK,
+ GPCPLL_CFG_LOCK) < 0)
+ return -ETIMEDOUT;
+
+ /* switch to VCO mode */
+ nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
+ BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
+
+ return 0;
+}
+
+static void
+gk20a_pllg_disable(struct gk20a_clk *clk)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+
+ /* put PLL in bypass before disabling it */
+ nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
+
+ nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
+ nvkm_rd32(device, GPCPLL_CFG);
+}
+
+static int
+gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
+{
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_device *device = subdev->device;
+ struct gk20a_pll cur_pll;
+ int ret;
+
+ gk20a_pllg_read_mnp(clk, &cur_pll);
+
+ /* split VCO-to-bypass jump in half by setting out divider 1:2 */
+ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
+ GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
+ /* Intentional 2nd write to assure linear divider operation */
+ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
+ GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
+ nvkm_rd32(device, GPC2CLK_OUT);
+ udelay(2);
+
+ gk20a_pllg_disable(clk);
+
+ gk20a_pllg_write_mnp(clk, pll);
+
+ ret = gk20a_pllg_enable(clk);
+ if (ret)
+ return ret;
+
+ /* restore out divider 1:1 */
+ udelay(2);
+ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
+ GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
+ /* Intentional 2nd write to assure linear divider operation */
+ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
+ GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
+ nvkm_rd32(device, GPC2CLK_OUT);
+
+ return 0;
+}
+
+static int
+gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll)
+{
+ struct gk20a_pll cur_pll;
+ int ret;
+
+ if (gk20a_pllg_is_enabled(clk)) {
+ gk20a_pllg_read_mnp(clk, &cur_pll);
+
+ /* just do NDIV slide if there is no change to M and PL */
+ if (pll->m == cur_pll.m && pll->pl == cur_pll.pl)
+ return gk20a_pllg_slide(clk, pll->n);
+
+ /* slide down to current NDIV_LO */
+ cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
+ ret = gk20a_pllg_slide(clk, cur_pll.n);
+ if (ret)
+ return ret;
+ }
+
+ /* program MNP with the new clock parameters and new NDIV_LO */
+ cur_pll = *pll;
+ cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
+ ret = gk20a_pllg_program_mnp(clk, &cur_pll);
+ if (ret)
+ return ret;
+
+ /* slide up to new NDIV */
+ return gk20a_pllg_slide(clk, pll->n);
+}
+
+static struct nvkm_pstate
+gk20a_pstates[] = {
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 72000,
+ .voltage = 0,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 108000,
+ .voltage = 1,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 180000,
+ .voltage = 2,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 252000,
+ .voltage = 3,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 324000,
+ .voltage = 4,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 396000,
+ .voltage = 5,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 468000,
+ .voltage = 6,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 540000,
+ .voltage = 7,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 612000,
+ .voltage = 8,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 648000,
+ .voltage = 9,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 684000,
+ .voltage = 10,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 708000,
+ .voltage = 11,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 756000,
+ .voltage = 12,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 804000,
+ .voltage = 13,
+ },
+ },
+ {
+ .base = {
+ .domain[nv_clk_src_gpc] = 852000,
+ .voltage = 14,
+ },
+ },
+};
+
+int
+gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
+{
+ struct gk20a_clk *clk = gk20a_clk(base);
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_device *device = subdev->device;
+ struct gk20a_pll pll;
+
+ switch (src) {
+ case nv_clk_src_crystal:
+ return device->crystal;
+ case nv_clk_src_gpc:
+ gk20a_pllg_read_mnp(clk, &pll);
+ return gk20a_pllg_calc_rate(clk, &pll) / GK20A_CLK_GPC_MDIV;
+ default:
+ nvkm_error(subdev, "invalid clock source %d\n", src);
+ return -EINVAL;
+ }
+}
+
+int
+gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
+{
+ struct gk20a_clk *clk = gk20a_clk(base);
+
+ return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
+ GK20A_CLK_GPC_MDIV, &clk->pll);
+}
+
+int
+gk20a_clk_prog(struct nvkm_clk *base)
+{
+ struct gk20a_clk *clk = gk20a_clk(base);
+ int ret;
+
+ ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll);
+ if (ret)
+ ret = gk20a_pllg_program_mnp(clk, &clk->pll);
+
+ return ret;
+}
+
+void
+gk20a_clk_tidy(struct nvkm_clk *base)
+{
+}
+
+int
+gk20a_clk_setup_slide(struct gk20a_clk *clk)
+{
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_device *device = subdev->device;
+ u32 step_a, step_b;
+
+ switch (clk->parent_rate) {
+ case 12000000:
+ case 12800000:
+ case 13000000:
+ step_a = 0x2b;
+ step_b = 0x0b;
+ break;
+ case 19200000:
+ step_a = 0x12;
+ step_b = 0x08;
+ break;
+ case 38400000:
+ step_a = 0x04;
+ step_b = 0x05;
+ break;
+ default:
+ nvkm_error(subdev, "invalid parent clock rate %u KHz",
+ clk->parent_rate / KHZ);
+ return -EINVAL;
+ }
+
+ nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
+ step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT);
+ nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
+ step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT);
+
+ return 0;
+}
+
+void
+gk20a_clk_fini(struct nvkm_clk *base)
+{
+ struct nvkm_device *device = base->subdev.device;
+ struct gk20a_clk *clk = gk20a_clk(base);
+
+ /* slide to VCO min */
+ if (gk20a_pllg_is_enabled(clk)) {
+ struct gk20a_pll pll;
+ u32 n_lo;
+
+ gk20a_pllg_read_mnp(clk, &pll);
+ n_lo = gk20a_pllg_n_lo(clk, &pll);
+ gk20a_pllg_slide(clk, n_lo);
+ }
+
+ gk20a_pllg_disable(clk);
+
+ /* set IDDQ */
+ nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1);
+}
+
+static int
+gk20a_clk_init(struct nvkm_clk *base)
+{
+ struct gk20a_clk *clk = gk20a_clk(base);
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_device *device = subdev->device;
+ int ret;
+
+ /* get out from IDDQ */
+ nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
+ nvkm_rd32(device, GPCPLL_CFG);
+ udelay(5);
+
+ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
+ GPC2CLK_OUT_INIT_VAL);
+
+ ret = gk20a_clk_setup_slide(clk);
+ if (ret)
+ return ret;
+
+ /* Start with lowest frequency */
+ base->func->calc(base, &base->func->pstates[0].base);
+ ret = base->func->prog(&clk->base);
+ if (ret) {
+ nvkm_error(subdev, "cannot initialize clock\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static const struct nvkm_clk_func
+gk20a_clk = {
+ .init = gk20a_clk_init,
+ .fini = gk20a_clk_fini,
+ .read = gk20a_clk_read,
+ .calc = gk20a_clk_calc,
+ .prog = gk20a_clk_prog,
+ .tidy = gk20a_clk_tidy,
+ .pstates = gk20a_pstates,
+ .nr_pstates = ARRAY_SIZE(gk20a_pstates),
+ .domains = {
+ { nv_clk_src_crystal, 0xff },
+ { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
+ { nv_clk_src_max }
+ }
+};
+
+int
+gk20a_clk_ctor(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
+ const struct nvkm_clk_func *func, const struct gk20a_clk_pllg_params *params,
+ struct gk20a_clk *clk)
+{
+ struct nvkm_device_tegra *tdev = device->func->tegra(device);
+ int ret;
+ int i;
+
+ /* Finish initializing the pstates */
+ for (i = 0; i < func->nr_pstates; i++) {
+ INIT_LIST_HEAD(&func->pstates[i].list);
+ func->pstates[i].pstate = i + 1;
+ }
+
+ clk->params = params;
+ clk->parent_rate = clk_get_rate(tdev->clk);
+
+ ret = nvkm_clk_ctor(func, device, type, inst, true, &clk->base);
+ if (ret)
+ return ret;
+
+ nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
+ clk->parent_rate / KHZ);
+
+ return 0;
+}
+
+int
+gk20a_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
+ struct nvkm_clk **pclk)
+{
+ struct gk20a_clk *clk;
+ int ret;
+
+ clk = kzalloc(sizeof(*clk), GFP_KERNEL);
+ if (!clk)
+ return -ENOMEM;
+ *pclk = &clk->base;
+
+ ret = gk20a_clk_ctor(device, type, inst, &gk20a_clk, &gk20a_pllg_params, clk);
+
+ clk->pl_to_div = pl_to_div;
+ clk->div_to_pl = div_to_pl;
+ return ret;
+}