summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/nouveau/nvkm/subdev/clk/nv50.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/nouveau/nvkm/subdev/clk/nv50.c')
-rw-r--r--drivers/gpu/drm/nouveau/nvkm/subdev/clk/nv50.c563
1 files changed, 563 insertions, 0 deletions
diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/clk/nv50.c b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/nv50.c
new file mode 100644
index 000000000..e1d31c62f
--- /dev/null
+++ b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/nv50.c
@@ -0,0 +1,563 @@
+/*
+ * Copyright 2012 Red Hat Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * Authors: Ben Skeggs
+ */
+#include "nv50.h"
+#include "pll.h"
+#include "seq.h"
+
+#include <subdev/bios.h>
+#include <subdev/bios/pll.h>
+
+static u32
+read_div(struct nv50_clk *clk)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ switch (device->chipset) {
+ case 0x50: /* it exists, but only has bit 31, not the dividers.. */
+ case 0x84:
+ case 0x86:
+ case 0x98:
+ case 0xa0:
+ return nvkm_rd32(device, 0x004700);
+ case 0x92:
+ case 0x94:
+ case 0x96:
+ return nvkm_rd32(device, 0x004800);
+ default:
+ return 0x00000000;
+ }
+}
+
+static u32
+read_pll_src(struct nv50_clk *clk, u32 base)
+{
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_device *device = subdev->device;
+ u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal);
+ u32 rsel = nvkm_rd32(device, 0x00e18c);
+ int P, N, M, id;
+
+ switch (device->chipset) {
+ case 0x50:
+ case 0xa0:
+ switch (base) {
+ case 0x4020:
+ case 0x4028: id = !!(rsel & 0x00000004); break;
+ case 0x4008: id = !!(rsel & 0x00000008); break;
+ case 0x4030: id = 0; break;
+ default:
+ nvkm_error(subdev, "ref: bad pll %06x\n", base);
+ return 0;
+ }
+
+ coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c));
+ ref *= (coef & 0x01000000) ? 2 : 4;
+ P = (coef & 0x00070000) >> 16;
+ N = ((coef & 0x0000ff00) >> 8) + 1;
+ M = ((coef & 0x000000ff) >> 0) + 1;
+ break;
+ case 0x84:
+ case 0x86:
+ case 0x92:
+ coef = nvkm_rd32(device, 0x00e81c);
+ P = (coef & 0x00070000) >> 16;
+ N = (coef & 0x0000ff00) >> 8;
+ M = (coef & 0x000000ff) >> 0;
+ break;
+ case 0x94:
+ case 0x96:
+ case 0x98:
+ rsel = nvkm_rd32(device, 0x00c050);
+ switch (base) {
+ case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
+ case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
+ case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
+ case 0x4030: rsel = 3; break;
+ default:
+ nvkm_error(subdev, "ref: bad pll %06x\n", base);
+ return 0;
+ }
+
+ switch (rsel) {
+ case 0: id = 1; break;
+ case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
+ case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href);
+ case 3: id = 0; break;
+ }
+
+ coef = nvkm_rd32(device, 0x00e81c + (id * 0x28));
+ P = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
+ P += (coef & 0x00070000) >> 16;
+ N = (coef & 0x0000ff00) >> 8;
+ M = (coef & 0x000000ff) >> 0;
+ break;
+ default:
+ BUG();
+ }
+
+ if (M)
+ return (ref * N / M) >> P;
+
+ return 0;
+}
+
+static u32
+read_pll_ref(struct nv50_clk *clk, u32 base)
+{
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_device *device = subdev->device;
+ u32 src, mast = nvkm_rd32(device, 0x00c040);
+
+ switch (base) {
+ case 0x004028:
+ src = !!(mast & 0x00200000);
+ break;
+ case 0x004020:
+ src = !!(mast & 0x00400000);
+ break;
+ case 0x004008:
+ src = !!(mast & 0x00010000);
+ break;
+ case 0x004030:
+ src = !!(mast & 0x02000000);
+ break;
+ case 0x00e810:
+ return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
+ default:
+ nvkm_error(subdev, "bad pll %06x\n", base);
+ return 0;
+ }
+
+ if (src)
+ return nvkm_clk_read(&clk->base, nv_clk_src_href);
+
+ return read_pll_src(clk, base);
+}
+
+static u32
+read_pll(struct nv50_clk *clk, u32 base)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ u32 mast = nvkm_rd32(device, 0x00c040);
+ u32 ctrl = nvkm_rd32(device, base + 0);
+ u32 coef = nvkm_rd32(device, base + 4);
+ u32 ref = read_pll_ref(clk, base);
+ u32 freq = 0;
+ int N1, N2, M1, M2;
+
+ if (base == 0x004028 && (mast & 0x00100000)) {
+ /* wtf, appears to only disable post-divider on gt200 */
+ if (device->chipset != 0xa0)
+ return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
+ }
+
+ N2 = (coef & 0xff000000) >> 24;
+ M2 = (coef & 0x00ff0000) >> 16;
+ N1 = (coef & 0x0000ff00) >> 8;
+ M1 = (coef & 0x000000ff);
+ if ((ctrl & 0x80000000) && M1) {
+ freq = ref * N1 / M1;
+ if ((ctrl & 0x40000100) == 0x40000000) {
+ if (M2)
+ freq = freq * N2 / M2;
+ else
+ freq = 0;
+ }
+ }
+
+ return freq;
+}
+
+int
+nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
+{
+ struct nv50_clk *clk = nv50_clk(base);
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_device *device = subdev->device;
+ u32 mast = nvkm_rd32(device, 0x00c040);
+ u32 P = 0;
+
+ switch (src) {
+ case nv_clk_src_crystal:
+ return device->crystal;
+ case nv_clk_src_href:
+ return 100000; /* PCIE reference clock */
+ case nv_clk_src_hclk:
+ return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000);
+ case nv_clk_src_hclkm3:
+ return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
+ case nv_clk_src_hclkm3d2:
+ return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2;
+ case nv_clk_src_host:
+ switch (mast & 0x30000000) {
+ case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
+ case 0x10000000: break;
+ case 0x20000000: /* !0x50 */
+ case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
+ }
+ break;
+ case nv_clk_src_core:
+ if (!(mast & 0x00100000))
+ P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
+ switch (mast & 0x00000003) {
+ case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
+ case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
+ case 0x00000002: return read_pll(clk, 0x004020) >> P;
+ case 0x00000003: return read_pll(clk, 0x004028) >> P;
+ }
+ break;
+ case nv_clk_src_shader:
+ P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
+ switch (mast & 0x00000030) {
+ case 0x00000000:
+ if (mast & 0x00000080)
+ return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P;
+ return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
+ case 0x00000010: break;
+ case 0x00000020: return read_pll(clk, 0x004028) >> P;
+ case 0x00000030: return read_pll(clk, 0x004020) >> P;
+ }
+ break;
+ case nv_clk_src_mem:
+ P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16;
+ if (nvkm_rd32(device, 0x004008) & 0x00000200) {
+ switch (mast & 0x0000c000) {
+ case 0x00000000:
+ return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
+ case 0x00008000:
+ case 0x0000c000:
+ return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
+ }
+ } else {
+ return read_pll(clk, 0x004008) >> P;
+ }
+ break;
+ case nv_clk_src_vdec:
+ P = (read_div(clk) & 0x00000700) >> 8;
+ switch (device->chipset) {
+ case 0x84:
+ case 0x86:
+ case 0x92:
+ case 0x94:
+ case 0x96:
+ case 0xa0:
+ switch (mast & 0x00000c00) {
+ case 0x00000000:
+ if (device->chipset == 0xa0) /* wtf?? */
+ return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
+ return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
+ case 0x00000400:
+ return 0;
+ case 0x00000800:
+ if (mast & 0x01000000)
+ return read_pll(clk, 0x004028) >> P;
+ return read_pll(clk, 0x004030) >> P;
+ case 0x00000c00:
+ return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
+ }
+ break;
+ case 0x98:
+ switch (mast & 0x00000c00) {
+ case 0x00000000:
+ return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
+ case 0x00000400:
+ return 0;
+ case 0x00000800:
+ return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P;
+ case 0x00000c00:
+ return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P;
+ }
+ break;
+ }
+ break;
+ case nv_clk_src_dom6:
+ switch (device->chipset) {
+ case 0x50:
+ case 0xa0:
+ return read_pll(clk, 0x00e810) >> 2;
+ case 0x84:
+ case 0x86:
+ case 0x92:
+ case 0x94:
+ case 0x96:
+ case 0x98:
+ P = (read_div(clk) & 0x00000007) >> 0;
+ switch (mast & 0x0c000000) {
+ case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
+ case 0x04000000: break;
+ case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
+ case 0x0c000000:
+ return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P;
+ }
+ break;
+ default:
+ break;
+ }
+ break;
+ default:
+ break;
+ }
+
+ nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
+ return -EINVAL;
+}
+
+static u32
+calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
+{
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvbios_pll pll;
+ int ret;
+
+ ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
+ if (ret)
+ return 0;
+
+ pll.vco2.max_freq = 0;
+ pll.refclk = read_pll_ref(clk, reg);
+ if (!pll.refclk)
+ return 0;
+
+ return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P);
+}
+
+static inline u32
+calc_div(u32 src, u32 target, int *div)
+{
+ u32 clk0 = src, clk1 = src;
+ for (*div = 0; *div <= 7; (*div)++) {
+ if (clk0 <= target) {
+ clk1 = clk0 << (*div ? 1 : 0);
+ break;
+ }
+ clk0 >>= 1;
+ }
+
+ if (target - clk0 <= clk1 - target)
+ return clk0;
+ (*div)--;
+ return clk1;
+}
+
+static inline u32
+clk_same(u32 a, u32 b)
+{
+ return ((a / 1000) == (b / 1000));
+}
+
+int
+nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
+{
+ struct nv50_clk *clk = nv50_clk(base);
+ struct nv50_clk_hwsq *hwsq = &clk->hwsq;
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_device *device = subdev->device;
+ const int shader = cstate->domain[nv_clk_src_shader];
+ const int core = cstate->domain[nv_clk_src_core];
+ const int vdec = cstate->domain[nv_clk_src_vdec];
+ const int dom6 = cstate->domain[nv_clk_src_dom6];
+ u32 mastm = 0, mastv = 0;
+ u32 divsm = 0, divsv = 0;
+ int N, M, P1, P2;
+ int freq, out;
+
+ /* prepare a hwsq script from which we'll perform the reclock */
+ out = clk_init(hwsq, subdev);
+ if (out)
+ return out;
+
+ clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
+ clk_nsec(hwsq, 8000);
+ clk_setf(hwsq, 0x10, 0x00); /* disable fb */
+ clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
+
+ /* vdec: avoid modifying xpll until we know exactly how the other
+ * clock domains work, i suspect at least some of them can also be
+ * tied to xpll...
+ */
+ if (vdec) {
+ /* see how close we can get using nvclk as a source */
+ freq = calc_div(core, vdec, &P1);
+
+ /* see how close we can get using xpll/hclk as a source */
+ if (device->chipset != 0x98)
+ out = read_pll(clk, 0x004030);
+ else
+ out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2);
+ out = calc_div(out, vdec, &P2);
+
+ /* select whichever gets us closest */
+ if (abs(vdec - freq) <= abs(vdec - out)) {
+ if (device->chipset != 0x98)
+ mastv |= 0x00000c00;
+ divsv |= P1 << 8;
+ } else {
+ mastv |= 0x00000800;
+ divsv |= P2 << 8;
+ }
+
+ mastm |= 0x00000c00;
+ divsm |= 0x00000700;
+ }
+
+ /* dom6: nfi what this is, but we're limited to various combinations
+ * of the host clock frequency
+ */
+ if (dom6) {
+ if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) {
+ mastv |= 0x00000000;
+ } else
+ if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) {
+ mastv |= 0x08000000;
+ } else {
+ freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
+ calc_div(freq, dom6, &P1);
+
+ mastv |= 0x0c000000;
+ divsv |= P1;
+ }
+
+ mastm |= 0x0c000000;
+ divsm |= 0x00000007;
+ }
+
+ /* vdec/dom6: switch to "safe" clocks temporarily, update dividers
+ * and then switch to target clocks
+ */
+ clk_mask(hwsq, mast, mastm, 0x00000000);
+ clk_mask(hwsq, divs, divsm, divsv);
+ clk_mask(hwsq, mast, mastm, mastv);
+
+ /* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
+ * sclk to hclk) before reprogramming
+ */
+ if (device->chipset < 0x92)
+ clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
+ else
+ clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
+
+ /* core: for the moment at least, always use nvpll */
+ freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
+ if (freq == 0)
+ return -ERANGE;
+
+ clk_mask(hwsq, nvpll[0], 0xc03f0100,
+ 0x80000000 | (P1 << 19) | (P1 << 16));
+ clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
+
+ /* shader: tie to nvclk if possible, otherwise use spll. have to be
+ * very careful that the shader clock is at least twice the core, or
+ * some chipsets will be very unhappy. i expect most or all of these
+ * cases will be handled by tying to nvclk, but it's possible there's
+ * corners
+ */
+ if (P1-- && shader == (core << 1)) {
+ clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
+ clk_mask(hwsq, mast, 0x00100033, 0x00000023);
+ } else {
+ freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
+ if (freq == 0)
+ return -ERANGE;
+
+ clk_mask(hwsq, spll[0], 0xc03f0100,
+ 0x80000000 | (P1 << 19) | (P1 << 16));
+ clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
+ clk_mask(hwsq, mast, 0x00100033, 0x00000033);
+ }
+
+ /* restore normal operation */
+ clk_setf(hwsq, 0x10, 0x01); /* enable fb */
+ clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
+ clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
+ return 0;
+}
+
+int
+nv50_clk_prog(struct nvkm_clk *base)
+{
+ struct nv50_clk *clk = nv50_clk(base);
+ return clk_exec(&clk->hwsq, true);
+}
+
+void
+nv50_clk_tidy(struct nvkm_clk *base)
+{
+ struct nv50_clk *clk = nv50_clk(base);
+ clk_exec(&clk->hwsq, false);
+}
+
+int
+nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device,
+ enum nvkm_subdev_type type, int inst, bool allow_reclock, struct nvkm_clk **pclk)
+{
+ struct nv50_clk *clk;
+ int ret;
+
+ if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
+ return -ENOMEM;
+ ret = nvkm_clk_ctor(func, device, type, inst, allow_reclock, &clk->base);
+ *pclk = &clk->base;
+ if (ret)
+ return ret;
+
+ clk->hwsq.r_fifo = hwsq_reg(0x002504);
+ clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
+ clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
+ clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
+ clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
+ switch (device->chipset) {
+ case 0x92:
+ case 0x94:
+ case 0x96:
+ clk->hwsq.r_divs = hwsq_reg(0x004800);
+ break;
+ default:
+ clk->hwsq.r_divs = hwsq_reg(0x004700);
+ break;
+ }
+ clk->hwsq.r_mast = hwsq_reg(0x00c040);
+ return 0;
+}
+
+static const struct nvkm_clk_func
+nv50_clk = {
+ .read = nv50_clk_read,
+ .calc = nv50_clk_calc,
+ .prog = nv50_clk_prog,
+ .tidy = nv50_clk_tidy,
+ .domains = {
+ { nv_clk_src_crystal, 0xff },
+ { nv_clk_src_href , 0xff },
+ { nv_clk_src_core , 0xff, 0, "core", 1000 },
+ { nv_clk_src_shader , 0xff, 0, "shader", 1000 },
+ { nv_clk_src_mem , 0xff, 0, "memory", 1000 },
+ { nv_clk_src_max }
+ }
+};
+
+int
+nv50_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
+ struct nvkm_clk **pclk)
+{
+ return nv50_clk_new_(&nv50_clk, device, type, inst, false, pclk);
+}