1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Twofish Cipher 8-way parallel algorithm (AVX/x86_64)
*
* Copyright (C) 2012 Johannes Goetzfried
* <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
*
* Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*/
#include <linux/linkage.h>
#include <asm/frame.h>
#include "glue_helper-asm-avx.S"
.file "twofish-avx-x86_64-asm_64.S"
.section .rodata.cst16.bswap128_mask, "aM", @progbits, 16
.align 16
.Lbswap128_mask:
.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
.text
/* structure of crypto context */
#define s0 0
#define s1 1024
#define s2 2048
#define s3 3072
#define w 4096
#define k 4128
/**********************************************************************
8-way AVX twofish
**********************************************************************/
#define CTX %rdi
#define RA1 %xmm0
#define RB1 %xmm1
#define RC1 %xmm2
#define RD1 %xmm3
#define RA2 %xmm4
#define RB2 %xmm5
#define RC2 %xmm6
#define RD2 %xmm7
#define RX0 %xmm8
#define RY0 %xmm9
#define RX1 %xmm10
#define RY1 %xmm11
#define RK1 %xmm12
#define RK2 %xmm13
#define RT %xmm14
#define RR %xmm15
#define RID1 %r13
#define RID1d %r13d
#define RID2 %rsi
#define RID2d %esi
#define RGI1 %rdx
#define RGI1bl %dl
#define RGI1bh %dh
#define RGI2 %rcx
#define RGI2bl %cl
#define RGI2bh %ch
#define RGI3 %rax
#define RGI3bl %al
#define RGI3bh %ah
#define RGI4 %rbx
#define RGI4bl %bl
#define RGI4bh %bh
#define RGS1 %r8
#define RGS1d %r8d
#define RGS2 %r9
#define RGS2d %r9d
#define RGS3 %r10
#define RGS3d %r10d
#define lookup_32bit(t0, t1, t2, t3, src, dst, interleave_op, il_reg) \
movzbl src ## bl, RID1d; \
movzbl src ## bh, RID2d; \
shrq $16, src; \
movl t0(CTX, RID1, 4), dst ## d; \
movl t1(CTX, RID2, 4), RID2d; \
movzbl src ## bl, RID1d; \
xorl RID2d, dst ## d; \
movzbl src ## bh, RID2d; \
interleave_op(il_reg); \
xorl t2(CTX, RID1, 4), dst ## d; \
xorl t3(CTX, RID2, 4), dst ## d;
#define dummy(d) /* do nothing */
#define shr_next(reg) \
shrq $16, reg;
#define G(gi1, gi2, x, t0, t1, t2, t3) \
lookup_32bit(t0, t1, t2, t3, ##gi1, RGS1, shr_next, ##gi1); \
lookup_32bit(t0, t1, t2, t3, ##gi2, RGS3, shr_next, ##gi2); \
\
lookup_32bit(t0, t1, t2, t3, ##gi1, RGS2, dummy, none); \
shlq $32, RGS2; \
orq RGS1, RGS2; \
lookup_32bit(t0, t1, t2, t3, ##gi2, RGS1, dummy, none); \
shlq $32, RGS1; \
orq RGS1, RGS3;
#define round_head_2(a, b, x1, y1, x2, y2) \
vmovq b ## 1, RGI3; \
vpextrq $1, b ## 1, RGI4; \
\
G(RGI1, RGI2, x1, s0, s1, s2, s3); \
vmovq a ## 2, RGI1; \
vpextrq $1, a ## 2, RGI2; \
vmovq RGS2, x1; \
vpinsrq $1, RGS3, x1, x1; \
\
G(RGI3, RGI4, y1, s1, s2, s3, s0); \
vmovq b ## 2, RGI3; \
vpextrq $1, b ## 2, RGI4; \
vmovq RGS2, y1; \
vpinsrq $1, RGS3, y1, y1; \
\
G(RGI1, RGI2, x2, s0, s1, s2, s3); \
vmovq RGS2, x2; \
vpinsrq $1, RGS3, x2, x2; \
\
G(RGI3, RGI4, y2, s1, s2, s3, s0); \
vmovq RGS2, y2; \
vpinsrq $1, RGS3, y2, y2;
#define encround_tail(a, b, c, d, x, y, prerotate) \
vpaddd x, y, x; \
vpaddd x, RK1, RT;\
prerotate(b); \
vpxor RT, c, c; \
vpaddd y, x, y; \
vpaddd y, RK2, y; \
vpsrld $1, c, RT; \
vpslld $(32 - 1), c, c; \
vpor c, RT, c; \
vpxor d, y, d; \
#define decround_tail(a, b, c, d, x, y, prerotate) \
vpaddd x, y, x; \
vpaddd x, RK1, RT;\
prerotate(a); \
vpxor RT, c, c; \
vpaddd y, x, y; \
vpaddd y, RK2, y; \
vpxor d, y, d; \
vpsrld $1, d, y; \
vpslld $(32 - 1), d, d; \
vpor d, y, d; \
#define rotate_1l(x) \
vpslld $1, x, RR; \
vpsrld $(32 - 1), x, x; \
vpor x, RR, x;
#define preload_rgi(c) \
vmovq c, RGI1; \
vpextrq $1, c, RGI2;
#define encrypt_round(n, a, b, c, d, preload, prerotate) \
vbroadcastss (k+4*(2*(n)))(CTX), RK1; \
vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \
round_head_2(a, b, RX0, RY0, RX1, RY1); \
encround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \
preload(c ## 1); \
encround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate);
#define decrypt_round(n, a, b, c, d, preload, prerotate) \
vbroadcastss (k+4*(2*(n)))(CTX), RK1; \
vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \
round_head_2(a, b, RX0, RY0, RX1, RY1); \
decround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \
preload(c ## 1); \
decround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate);
#define encrypt_cycle(n) \
encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \
encrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l);
#define encrypt_cycle_last(n) \
encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \
encrypt_round(((2*n) + 1), RC, RD, RA, RB, dummy, dummy);
#define decrypt_cycle(n) \
decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \
decrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l);
#define decrypt_cycle_last(n) \
decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \
decrypt_round((2*n), RA, RB, RC, RD, dummy, dummy);
#define transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
vpunpckldq x1, x0, t0; \
vpunpckhdq x1, x0, t2; \
vpunpckldq x3, x2, t1; \
vpunpckhdq x3, x2, x3; \
\
vpunpcklqdq t1, t0, x0; \
vpunpckhqdq t1, t0, x1; \
vpunpcklqdq x3, t2, x2; \
vpunpckhqdq x3, t2, x3;
#define inpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \
vpxor x0, wkey, x0; \
vpxor x1, wkey, x1; \
vpxor x2, wkey, x2; \
vpxor x3, wkey, x3; \
\
transpose_4x4(x0, x1, x2, x3, t0, t1, t2)
#define outunpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \
transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
\
vpxor x0, wkey, x0; \
vpxor x1, wkey, x1; \
vpxor x2, wkey, x2; \
vpxor x3, wkey, x3;
.align 8
SYM_FUNC_START_LOCAL(__twofish_enc_blk8)
/* input:
* %rdi: ctx, CTX
* RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: blocks
* output:
* RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks
*/
vmovdqu w(CTX), RK1;
pushq %r13;
pushq %rbx;
pushq %rcx;
inpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2);
preload_rgi(RA1);
rotate_1l(RD1);
inpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2);
rotate_1l(RD2);
encrypt_cycle(0);
encrypt_cycle(1);
encrypt_cycle(2);
encrypt_cycle(3);
encrypt_cycle(4);
encrypt_cycle(5);
encrypt_cycle(6);
encrypt_cycle_last(7);
vmovdqu (w+4*4)(CTX), RK1;
popq %rcx;
popq %rbx;
popq %r13;
outunpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
outunpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
RET;
SYM_FUNC_END(__twofish_enc_blk8)
.align 8
SYM_FUNC_START_LOCAL(__twofish_dec_blk8)
/* input:
* %rdi: ctx, CTX
* RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks
* output:
* RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: decrypted blocks
*/
vmovdqu (w+4*4)(CTX), RK1;
pushq %r13;
pushq %rbx;
inpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
preload_rgi(RC1);
rotate_1l(RA1);
inpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
rotate_1l(RA2);
decrypt_cycle(7);
decrypt_cycle(6);
decrypt_cycle(5);
decrypt_cycle(4);
decrypt_cycle(3);
decrypt_cycle(2);
decrypt_cycle(1);
decrypt_cycle_last(0);
vmovdqu (w)(CTX), RK1;
popq %rbx;
popq %r13;
outunpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2);
outunpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2);
RET;
SYM_FUNC_END(__twofish_dec_blk8)
SYM_FUNC_START(twofish_ecb_enc_8way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src
*/
FRAME_BEGIN
movq %rsi, %r11;
load_8way(%rdx, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
call __twofish_enc_blk8;
store_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
FRAME_END
RET;
SYM_FUNC_END(twofish_ecb_enc_8way)
SYM_FUNC_START(twofish_ecb_dec_8way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src
*/
FRAME_BEGIN
movq %rsi, %r11;
load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
call __twofish_dec_blk8;
store_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
FRAME_END
RET;
SYM_FUNC_END(twofish_ecb_dec_8way)
SYM_FUNC_START(twofish_cbc_dec_8way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src
*/
FRAME_BEGIN
pushq %r12;
movq %rsi, %r11;
movq %rdx, %r12;
load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
call __twofish_dec_blk8;
store_cbc_8way(%r12, %r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
popq %r12;
FRAME_END
RET;
SYM_FUNC_END(twofish_cbc_dec_8way)
|