1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/clocksource/arm_global_timer.c
*
* Copyright (C) 2013 STMicroelectronics (R&D) Limited.
* Author: Stuart Menefy <stuart.menefy@st.com>
* Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
*/
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/sched_clock.h>
#include <asm/cputype.h>
#define GT_COUNTER0 0x00
#define GT_COUNTER1 0x04
#define GT_CONTROL 0x08
#define GT_CONTROL_TIMER_ENABLE BIT(0) /* this bit is NOT banked */
#define GT_CONTROL_COMP_ENABLE BIT(1) /* banked */
#define GT_CONTROL_IRQ_ENABLE BIT(2) /* banked */
#define GT_CONTROL_AUTO_INC BIT(3) /* banked */
#define GT_CONTROL_PRESCALER_SHIFT 8
#define GT_CONTROL_PRESCALER_MAX 0xFF
#define GT_CONTROL_PRESCALER_MASK (GT_CONTROL_PRESCALER_MAX << \
GT_CONTROL_PRESCALER_SHIFT)
#define GT_INT_STATUS 0x0c
#define GT_INT_STATUS_EVENT_FLAG BIT(0)
#define GT_COMP0 0x10
#define GT_COMP1 0x14
#define GT_AUTO_INC 0x18
#define MAX_F_ERR 50
/*
* We are expecting to be clocked by the ARM peripheral clock.
*
* Note: it is assumed we are using a prescaler value of zero, so this is
* the units for all operations.
*/
static void __iomem *gt_base;
static struct notifier_block gt_clk_rate_change_nb;
static u32 gt_psv_new, gt_psv_bck, gt_target_rate;
static int gt_ppi;
static struct clock_event_device __percpu *gt_evt;
/*
* To get the value from the Global Timer Counter register proceed as follows:
* 1. Read the upper 32-bit timer counter register
* 2. Read the lower 32-bit timer counter register
* 3. Read the upper 32-bit timer counter register again. If the value is
* different to the 32-bit upper value read previously, go back to step 2.
* Otherwise the 64-bit timer counter value is correct.
*/
static u64 notrace _gt_counter_read(void)
{
u64 counter;
u32 lower;
u32 upper, old_upper;
upper = readl_relaxed(gt_base + GT_COUNTER1);
do {
old_upper = upper;
lower = readl_relaxed(gt_base + GT_COUNTER0);
upper = readl_relaxed(gt_base + GT_COUNTER1);
} while (upper != old_upper);
counter = upper;
counter <<= 32;
counter |= lower;
return counter;
}
static u64 gt_counter_read(void)
{
return _gt_counter_read();
}
/**
* To ensure that updates to comparator value register do not set the
* Interrupt Status Register proceed as follows:
* 1. Clear the Comp Enable bit in the Timer Control Register.
* 2. Write the lower 32-bit Comparator Value Register.
* 3. Write the upper 32-bit Comparator Value Register.
* 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
*/
static void gt_compare_set(unsigned long delta, int periodic)
{
u64 counter = gt_counter_read();
unsigned long ctrl;
counter += delta;
ctrl = readl(gt_base + GT_CONTROL);
ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
GT_CONTROL_AUTO_INC);
ctrl |= GT_CONTROL_TIMER_ENABLE;
writel_relaxed(ctrl, gt_base + GT_CONTROL);
writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
if (periodic) {
writel_relaxed(delta, gt_base + GT_AUTO_INC);
ctrl |= GT_CONTROL_AUTO_INC;
}
ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
writel_relaxed(ctrl, gt_base + GT_CONTROL);
}
static int gt_clockevent_shutdown(struct clock_event_device *evt)
{
unsigned long ctrl;
ctrl = readl(gt_base + GT_CONTROL);
ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
GT_CONTROL_AUTO_INC);
writel(ctrl, gt_base + GT_CONTROL);
return 0;
}
static int gt_clockevent_set_periodic(struct clock_event_device *evt)
{
gt_compare_set(DIV_ROUND_CLOSEST(gt_target_rate, HZ), 1);
return 0;
}
static int gt_clockevent_set_next_event(unsigned long evt,
struct clock_event_device *unused)
{
gt_compare_set(evt, 0);
return 0;
}
static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
GT_INT_STATUS_EVENT_FLAG))
return IRQ_NONE;
/**
* ERRATA 740657( Global Timer can send 2 interrupts for
* the same event in single-shot mode)
* Workaround:
* Either disable single-shot mode.
* Or
* Modify the Interrupt Handler to avoid the
* offending sequence. This is achieved by clearing
* the Global Timer flag _after_ having incremented
* the Comparator register value to a higher value.
*/
if (clockevent_state_oneshot(evt))
gt_compare_set(ULONG_MAX, 0);
writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
evt->event_handler(evt);
return IRQ_HANDLED;
}
static int gt_starting_cpu(unsigned int cpu)
{
struct clock_event_device *clk = this_cpu_ptr(gt_evt);
clk->name = "arm_global_timer";
clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_PERCPU;
clk->set_state_shutdown = gt_clockevent_shutdown;
clk->set_state_periodic = gt_clockevent_set_periodic;
clk->set_state_oneshot = gt_clockevent_shutdown;
clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
clk->set_next_event = gt_clockevent_set_next_event;
clk->cpumask = cpumask_of(cpu);
clk->rating = 300;
clk->irq = gt_ppi;
clockevents_config_and_register(clk, gt_target_rate,
1, 0xffffffff);
enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
return 0;
}
static int gt_dying_cpu(unsigned int cpu)
{
struct clock_event_device *clk = this_cpu_ptr(gt_evt);
gt_clockevent_shutdown(clk);
disable_percpu_irq(clk->irq);
return 0;
}
static u64 gt_clocksource_read(struct clocksource *cs)
{
return gt_counter_read();
}
static void gt_resume(struct clocksource *cs)
{
unsigned long ctrl;
ctrl = readl(gt_base + GT_CONTROL);
if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
/* re-enable timer on resume */
writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
}
static struct clocksource gt_clocksource = {
.name = "arm_global_timer",
.rating = 300,
.read = gt_clocksource_read,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.resume = gt_resume,
};
#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
static u64 notrace gt_sched_clock_read(void)
{
return _gt_counter_read();
}
#endif
static unsigned long gt_read_long(void)
{
return readl_relaxed(gt_base + GT_COUNTER0);
}
static struct delay_timer gt_delay_timer = {
.read_current_timer = gt_read_long,
};
static void gt_write_presc(u32 psv)
{
u32 reg;
reg = readl(gt_base + GT_CONTROL);
reg &= ~GT_CONTROL_PRESCALER_MASK;
reg |= psv << GT_CONTROL_PRESCALER_SHIFT;
writel(reg, gt_base + GT_CONTROL);
}
static u32 gt_read_presc(void)
{
u32 reg;
reg = readl(gt_base + GT_CONTROL);
reg &= GT_CONTROL_PRESCALER_MASK;
return reg >> GT_CONTROL_PRESCALER_SHIFT;
}
static void __init gt_delay_timer_init(void)
{
gt_delay_timer.freq = gt_target_rate;
register_current_timer_delay(>_delay_timer);
}
static int __init gt_clocksource_init(void)
{
writel(0, gt_base + GT_CONTROL);
writel(0, gt_base + GT_COUNTER0);
writel(0, gt_base + GT_COUNTER1);
/* set prescaler and enable timer on all the cores */
writel(((CONFIG_ARM_GT_INITIAL_PRESCALER_VAL - 1) <<
GT_CONTROL_PRESCALER_SHIFT)
| GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
sched_clock_register(gt_sched_clock_read, 64, gt_target_rate);
#endif
return clocksource_register_hz(>_clocksource, gt_target_rate);
}
static int gt_clk_rate_change_cb(struct notifier_block *nb,
unsigned long event, void *data)
{
struct clk_notifier_data *ndata = data;
switch (event) {
case PRE_RATE_CHANGE:
{
int psv;
psv = DIV_ROUND_CLOSEST(ndata->new_rate,
gt_target_rate);
if (abs(gt_target_rate - (ndata->new_rate / psv)) > MAX_F_ERR)
return NOTIFY_BAD;
psv--;
/* prescaler within legal range? */
if (psv < 0 || psv > GT_CONTROL_PRESCALER_MAX)
return NOTIFY_BAD;
/*
* store timer clock ctrl register so we can restore it in case
* of an abort.
*/
gt_psv_bck = gt_read_presc();
gt_psv_new = psv;
/* scale down: adjust divider in post-change notification */
if (ndata->new_rate < ndata->old_rate)
return NOTIFY_DONE;
/* scale up: adjust divider now - before frequency change */
gt_write_presc(psv);
break;
}
case POST_RATE_CHANGE:
/* scale up: pre-change notification did the adjustment */
if (ndata->new_rate > ndata->old_rate)
return NOTIFY_OK;
/* scale down: adjust divider now - after frequency change */
gt_write_presc(gt_psv_new);
break;
case ABORT_RATE_CHANGE:
/* we have to undo the adjustment in case we scale up */
if (ndata->new_rate < ndata->old_rate)
return NOTIFY_OK;
/* restore original register value */
gt_write_presc(gt_psv_bck);
break;
default:
return NOTIFY_DONE;
}
return NOTIFY_DONE;
}
static int __init global_timer_of_register(struct device_node *np)
{
struct clk *gt_clk;
static unsigned long gt_clk_rate;
int err = 0;
/*
* In A9 r2p0 the comparators for each processor with the global timer
* fire when the timer value is greater than or equal to. In previous
* revisions the comparators fired when the timer value was equal to.
*/
if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
&& (read_cpuid_id() & 0xf0000f) < 0x200000) {
pr_warn("global-timer: non support for this cpu version.\n");
return -ENOSYS;
}
gt_ppi = irq_of_parse_and_map(np, 0);
if (!gt_ppi) {
pr_warn("global-timer: unable to parse irq\n");
return -EINVAL;
}
gt_base = of_iomap(np, 0);
if (!gt_base) {
pr_warn("global-timer: invalid base address\n");
return -ENXIO;
}
gt_clk = of_clk_get(np, 0);
if (!IS_ERR(gt_clk)) {
err = clk_prepare_enable(gt_clk);
if (err)
goto out_unmap;
} else {
pr_warn("global-timer: clk not found\n");
err = -EINVAL;
goto out_unmap;
}
gt_clk_rate = clk_get_rate(gt_clk);
gt_target_rate = gt_clk_rate / CONFIG_ARM_GT_INITIAL_PRESCALER_VAL;
gt_clk_rate_change_nb.notifier_call =
gt_clk_rate_change_cb;
err = clk_notifier_register(gt_clk, >_clk_rate_change_nb);
if (err) {
pr_warn("Unable to register clock notifier\n");
goto out_clk;
}
gt_evt = alloc_percpu(struct clock_event_device);
if (!gt_evt) {
pr_warn("global-timer: can't allocate memory\n");
err = -ENOMEM;
goto out_clk_nb;
}
err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
"gt", gt_evt);
if (err) {
pr_warn("global-timer: can't register interrupt %d (%d)\n",
gt_ppi, err);
goto out_free;
}
/* Register and immediately configure the timer on the boot CPU */
err = gt_clocksource_init();
if (err)
goto out_irq;
err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
"clockevents/arm/global_timer:starting",
gt_starting_cpu, gt_dying_cpu);
if (err)
goto out_irq;
gt_delay_timer_init();
return 0;
out_irq:
free_percpu_irq(gt_ppi, gt_evt);
out_free:
free_percpu(gt_evt);
out_clk_nb:
clk_notifier_unregister(gt_clk, >_clk_rate_change_nb);
out_clk:
clk_disable_unprepare(gt_clk);
out_unmap:
iounmap(gt_base);
WARN(err, "ARM Global timer register failed (%d)\n", err);
return err;
}
/* Only tested on r2p2 and r3p0 */
TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
global_timer_of_register);
|