1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */
#include <crypto/aes.h>
#include <crypto/aead.h>
#include <crypto/algapi.h>
#include <crypto/authenc.h>
#include <crypto/des.h>
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/des.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include "sec.h"
#include "sec_crypto.h"
#define SEC_PRIORITY 4001
#define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET 1
#define SEC_CIPHER_OFFSET 4
#define SEC_SCENE_OFFSET 3
#define SEC_DST_SGL_OFFSET 2
#define SEC_SRC_SGL_OFFSET 7
#define SEC_CKEY_OFFSET 9
#define SEC_CMODE_OFFSET 12
#define SEC_AKEY_OFFSET 5
#define SEC_AEAD_ALG_OFFSET 11
#define SEC_AUTH_OFFSET 6
#define SEC_DE_OFFSET_V3 9
#define SEC_SCENE_OFFSET_V3 5
#define SEC_CKEY_OFFSET_V3 13
#define SEC_CTR_CNT_OFFSET 25
#define SEC_CTR_CNT_ROLLOVER 2
#define SEC_SRC_SGL_OFFSET_V3 11
#define SEC_DST_SGL_OFFSET_V3 14
#define SEC_CALG_OFFSET_V3 4
#define SEC_AKEY_OFFSET_V3 9
#define SEC_MAC_OFFSET_V3 4
#define SEC_AUTH_ALG_OFFSET_V3 15
#define SEC_CIPHER_AUTH_V3 0xbf
#define SEC_AUTH_CIPHER_V3 0x40
#define SEC_FLAG_OFFSET 7
#define SEC_FLAG_MASK 0x0780
#define SEC_TYPE_MASK 0x0F
#define SEC_DONE_MASK 0x0001
#define SEC_ICV_MASK 0x000E
#define SEC_SQE_LEN_RATE_MASK 0x3
#define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth))
#define SEC_SGL_SGE_NR 128
#define SEC_CIPHER_AUTH 0xfe
#define SEC_AUTH_CIPHER 0x1
#define SEC_MAX_MAC_LEN 64
#define SEC_MAX_AAD_LEN 65535
#define SEC_MAX_CCM_AAD_LEN 65279
#define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
#define SEC_PBUF_SZ 512
#define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
#define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
#define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
SEC_MAX_MAC_LEN * 2)
#define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
#define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM)
#define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \
SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
#define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \
SEC_PBUF_LEFT_SZ(depth))
#define SEC_SQE_LEN_RATE 4
#define SEC_SQE_CFLAG 2
#define SEC_SQE_AEAD_FLAG 3
#define SEC_SQE_DONE 0x1
#define SEC_ICV_ERR 0x2
#define MIN_MAC_LEN 4
#define MAC_LEN_MASK 0x1U
#define MAX_INPUT_DATA_LEN 0xFFFE00
#define BITS_MASK 0xFF
#define BYTE_BITS 0x8
#define SEC_XTS_NAME_SZ 0x3
#define IV_CM_CAL_NUM 2
#define IV_CL_MASK 0x7
#define IV_CL_MIN 2
#define IV_CL_MID 4
#define IV_CL_MAX 8
#define IV_FLAGS_OFFSET 0x6
#define IV_CM_OFFSET 0x3
#define IV_LAST_BYTE1 1
#define IV_LAST_BYTE2 2
#define IV_LAST_BYTE_MASK 0xFF
#define IV_CTR_INIT 0x1
#define IV_BYTE_OFFSET 0x8
struct sec_skcipher {
u64 alg_msk;
struct skcipher_alg alg;
};
struct sec_aead {
u64 alg_msk;
struct aead_alg alg;
};
/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
if (req->c_req.encrypt)
return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
ctx->hlf_q_num;
return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
ctx->hlf_q_num;
}
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
if (req->c_req.encrypt)
atomic_dec(&ctx->enc_qcyclic);
else
atomic_dec(&ctx->dec_qcyclic);
}
static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
int req_id;
spin_lock_bh(&qp_ctx->req_lock);
req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
spin_unlock_bh(&qp_ctx->req_lock);
if (unlikely(req_id < 0)) {
dev_err(req->ctx->dev, "alloc req id fail!\n");
return req_id;
}
req->qp_ctx = qp_ctx;
qp_ctx->req_list[req_id] = req;
return req_id;
}
static void sec_free_req_id(struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
int req_id = req->req_id;
if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
dev_err(req->ctx->dev, "free request id invalid!\n");
return;
}
qp_ctx->req_list[req_id] = NULL;
req->qp_ctx = NULL;
spin_lock_bh(&qp_ctx->req_lock);
idr_remove(&qp_ctx->req_idr, req_id);
spin_unlock_bh(&qp_ctx->req_lock);
}
static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
{
struct sec_sqe *bd = resp;
status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
status->flag = (le16_to_cpu(bd->type2.done_flag) &
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
status->tag = le16_to_cpu(bd->type2.tag);
status->err_type = bd->type2.error_type;
return bd->type_cipher_auth & SEC_TYPE_MASK;
}
static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
{
struct sec_sqe3 *bd3 = resp;
status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
status->flag = (le16_to_cpu(bd3->done_flag) &
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
status->tag = le64_to_cpu(bd3->tag);
status->err_type = bd3->error_type;
return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
}
static int sec_cb_status_check(struct sec_req *req,
struct bd_status *status)
{
struct sec_ctx *ctx = req->ctx;
if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
req->err_type, status->done);
return -EIO;
}
if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
if (unlikely(status->flag != SEC_SQE_CFLAG)) {
dev_err_ratelimited(ctx->dev, "flag[%u]\n",
status->flag);
return -EIO;
}
} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
status->icv == SEC_ICV_ERR)) {
dev_err_ratelimited(ctx->dev,
"flag[%u], icv[%u]\n",
status->flag, status->icv);
return -EBADMSG;
}
}
return 0;
}
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
u8 type_supported = qp_ctx->ctx->type_supported;
struct bd_status status;
struct sec_ctx *ctx;
struct sec_req *req;
int err;
u8 type;
if (type_supported == SEC_BD_TYPE2) {
type = pre_parse_finished_bd(&status, resp);
req = qp_ctx->req_list[status.tag];
} else {
type = pre_parse_finished_bd3(&status, resp);
req = (void *)(uintptr_t)status.tag;
}
if (unlikely(type != type_supported)) {
atomic64_inc(&dfx->err_bd_cnt);
pr_err("err bd type [%u]\n", type);
return;
}
if (unlikely(!req)) {
atomic64_inc(&dfx->invalid_req_cnt);
atomic_inc(&qp->qp_status.used);
return;
}
req->err_type = status.err_type;
ctx = req->ctx;
err = sec_cb_status_check(req, &status);
if (err)
atomic64_inc(&dfx->done_flag_cnt);
atomic64_inc(&dfx->recv_cnt);
ctx->req_op->buf_unmap(ctx, req);
ctx->req_op->callback(ctx, req, err);
}
static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
int ret;
if (ctx->fake_req_limit <=
atomic_read(&qp_ctx->qp->qp_status.used) &&
!(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
spin_lock_bh(&qp_ctx->req_lock);
ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
if (ctx->fake_req_limit <=
atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
list_add_tail(&req->backlog_head, &qp_ctx->backlog);
atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
spin_unlock_bh(&qp_ctx->req_lock);
return -EBUSY;
}
spin_unlock_bh(&qp_ctx->req_lock);
if (unlikely(ret == -EBUSY))
return -ENOBUFS;
if (likely(!ret)) {
ret = -EINPROGRESS;
atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
}
return ret;
}
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
u16 q_depth = res->depth;
int i;
res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
&res->c_ivin_dma, GFP_KERNEL);
if (!res->c_ivin)
return -ENOMEM;
for (i = 1; i < q_depth; i++) {
res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
}
return 0;
}
static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->c_ivin)
dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
res->c_ivin, res->c_ivin_dma);
}
static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
u16 q_depth = res->depth;
int i;
res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
&res->a_ivin_dma, GFP_KERNEL);
if (!res->a_ivin)
return -ENOMEM;
for (i = 1; i < q_depth; i++) {
res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
}
return 0;
}
static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->a_ivin)
dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
res->a_ivin, res->a_ivin_dma);
}
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
u16 q_depth = res->depth;
int i;
res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
&res->out_mac_dma, GFP_KERNEL);
if (!res->out_mac)
return -ENOMEM;
for (i = 1; i < q_depth; i++) {
res[i].out_mac_dma = res->out_mac_dma +
i * (SEC_MAX_MAC_LEN << 1);
res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
}
return 0;
}
static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->out_mac)
dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
res->out_mac, res->out_mac_dma);
}
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->pbuf)
dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
res->pbuf, res->pbuf_dma);
}
/*
* To improve performance, pbuffer is used for
* small packets (< 512Bytes) as IOMMU translation using.
*/
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
u16 q_depth = res->depth;
int size = SEC_PBUF_PAGE_NUM(q_depth);
int pbuf_page_offset;
int i, j, k;
res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
&res->pbuf_dma, GFP_KERNEL);
if (!res->pbuf)
return -ENOMEM;
/*
* SEC_PBUF_PKG contains data pbuf, iv and
* out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
* Every PAGE contains six SEC_PBUF_PKG
* The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
* So we need SEC_PBUF_PAGE_NUM numbers of PAGE
* for the SEC_TOTAL_PBUF_SZ
*/
for (i = 0; i <= size; i++) {
pbuf_page_offset = PAGE_SIZE * i;
for (j = 0; j < SEC_PBUF_NUM; j++) {
k = i * SEC_PBUF_NUM + j;
if (k == q_depth)
break;
res[k].pbuf = res->pbuf +
j * SEC_PBUF_PKG + pbuf_page_offset;
res[k].pbuf_dma = res->pbuf_dma +
j * SEC_PBUF_PKG + pbuf_page_offset;
}
}
return 0;
}
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct sec_alg_res *res = qp_ctx->res;
struct device *dev = ctx->dev;
int ret;
ret = sec_alloc_civ_resource(dev, res);
if (ret)
return ret;
if (ctx->alg_type == SEC_AEAD) {
ret = sec_alloc_aiv_resource(dev, res);
if (ret)
goto alloc_aiv_fail;
ret = sec_alloc_mac_resource(dev, res);
if (ret)
goto alloc_mac_fail;
}
if (ctx->pbuf_supported) {
ret = sec_alloc_pbuf_resource(dev, res);
if (ret) {
dev_err(dev, "fail to alloc pbuf dma resource!\n");
goto alloc_pbuf_fail;
}
}
return 0;
alloc_pbuf_fail:
if (ctx->alg_type == SEC_AEAD)
sec_free_mac_resource(dev, qp_ctx->res);
alloc_mac_fail:
if (ctx->alg_type == SEC_AEAD)
sec_free_aiv_resource(dev, res);
alloc_aiv_fail:
sec_free_civ_resource(dev, res);
return ret;
}
static void sec_alg_resource_free(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct device *dev = ctx->dev;
sec_free_civ_resource(dev, qp_ctx->res);
if (ctx->pbuf_supported)
sec_free_pbuf_resource(dev, qp_ctx->res);
if (ctx->alg_type == SEC_AEAD)
sec_free_mac_resource(dev, qp_ctx->res);
}
static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
u16 q_depth = qp_ctx->qp->sq_depth;
struct device *dev = ctx->dev;
int ret = -ENOMEM;
qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
if (!qp_ctx->req_list)
return ret;
qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
if (!qp_ctx->res)
goto err_free_req_list;
qp_ctx->res->depth = q_depth;
qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
if (IS_ERR(qp_ctx->c_in_pool)) {
dev_err(dev, "fail to create sgl pool for input!\n");
goto err_free_res;
}
qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
if (IS_ERR(qp_ctx->c_out_pool)) {
dev_err(dev, "fail to create sgl pool for output!\n");
goto err_free_c_in_pool;
}
ret = sec_alg_resource_alloc(ctx, qp_ctx);
if (ret)
goto err_free_c_out_pool;
return 0;
err_free_c_out_pool:
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_free_res:
kfree(qp_ctx->res);
err_free_req_list:
kfree(qp_ctx->req_list);
return ret;
}
static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
{
struct device *dev = ctx->dev;
sec_alg_resource_free(ctx, qp_ctx);
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
kfree(qp_ctx->res);
kfree(qp_ctx->req_list);
}
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
int qp_ctx_id, int alg_type)
{
struct sec_qp_ctx *qp_ctx;
struct hisi_qp *qp;
int ret;
qp_ctx = &ctx->qp_ctx[qp_ctx_id];
qp = ctx->qps[qp_ctx_id];
qp->req_type = 0;
qp->qp_ctx = qp_ctx;
qp_ctx->qp = qp;
qp_ctx->ctx = ctx;
qp->req_cb = sec_req_cb;
spin_lock_init(&qp_ctx->req_lock);
idr_init(&qp_ctx->req_idr);
INIT_LIST_HEAD(&qp_ctx->backlog);
ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx);
if (ret)
goto err_destroy_idr;
ret = hisi_qm_start_qp(qp, 0);
if (ret < 0)
goto err_resource_free;
return 0;
err_resource_free:
sec_free_qp_ctx_resource(ctx, qp_ctx);
err_destroy_idr:
idr_destroy(&qp_ctx->req_idr);
return ret;
}
static void sec_release_qp_ctx(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
hisi_qm_stop_qp(qp_ctx->qp);
sec_free_qp_ctx_resource(ctx, qp_ctx);
idr_destroy(&qp_ctx->req_idr);
}
static int sec_ctx_base_init(struct sec_ctx *ctx)
{
struct sec_dev *sec;
int i, ret;
ctx->qps = sec_create_qps();
if (!ctx->qps) {
pr_err("Can not create sec qps!\n");
return -ENODEV;
}
sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
ctx->sec = sec;
ctx->dev = &sec->qm.pdev->dev;
ctx->hlf_q_num = sec->ctx_q_num >> 1;
ctx->pbuf_supported = ctx->sec->iommu_used;
/* Half of queue depth is taken as fake requests limit in the queue. */
ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
GFP_KERNEL);
if (!ctx->qp_ctx) {
ret = -ENOMEM;
goto err_destroy_qps;
}
for (i = 0; i < sec->ctx_q_num; i++) {
ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
if (ret)
goto err_sec_release_qp_ctx;
}
return 0;
err_sec_release_qp_ctx:
for (i = i - 1; i >= 0; i--)
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
kfree(ctx->qp_ctx);
err_destroy_qps:
sec_destroy_qps(ctx->qps, sec->ctx_q_num);
return ret;
}
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
{
int i;
for (i = 0; i < ctx->sec->ctx_q_num; i++)
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
kfree(ctx->qp_ctx);
}
static int sec_cipher_init(struct sec_ctx *ctx)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
&c_ctx->c_key_dma, GFP_KERNEL);
if (!c_ctx->c_key)
return -ENOMEM;
return 0;
}
static void sec_cipher_uninit(struct sec_ctx *ctx)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
c_ctx->c_key, c_ctx->c_key_dma);
}
static int sec_auth_init(struct sec_ctx *ctx)
{
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
&a_ctx->a_key_dma, GFP_KERNEL);
if (!a_ctx->a_key)
return -ENOMEM;
return 0;
}
static void sec_auth_uninit(struct sec_ctx *ctx)
{
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
a_ctx->a_key, a_ctx->a_key_dma);
}
static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
{
const char *alg = crypto_tfm_alg_name(&tfm->base);
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
c_ctx->fallback = false;
/* Currently, only XTS mode need fallback tfm when using 192bit key */
if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
return 0;
c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(c_ctx->fbtfm)) {
pr_err("failed to alloc xts mode fallback tfm!\n");
return PTR_ERR(c_ctx->fbtfm);
}
return 0;
}
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
ctx->alg_type = SEC_SKCIPHER;
crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
pr_err("get error skcipher iv size!\n");
return -EINVAL;
}
ret = sec_ctx_base_init(ctx);
if (ret)
return ret;
ret = sec_cipher_init(ctx);
if (ret)
goto err_cipher_init;
ret = sec_skcipher_fbtfm_init(tfm);
if (ret)
goto err_fbtfm_init;
return 0;
err_fbtfm_init:
sec_cipher_uninit(ctx);
err_cipher_init:
sec_ctx_base_uninit(ctx);
return ret;
}
static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
if (ctx->c_ctx.fbtfm)
crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
sec_cipher_uninit(ctx);
sec_ctx_base_uninit(ctx);
}
static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
const u32 keylen,
const enum sec_cmode c_mode)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
int ret;
ret = verify_skcipher_des3_key(tfm, key);
if (ret)
return ret;
switch (keylen) {
case SEC_DES3_2KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
break;
case SEC_DES3_3KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
break;
default:
return -EINVAL;
}
return 0;
}
static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
const u32 keylen,
const enum sec_cmode c_mode)
{
if (c_mode == SEC_CMODE_XTS) {
switch (keylen) {
case SEC_XTS_MIN_KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case SEC_XTS_MID_KEY_SIZE:
c_ctx->fallback = true;
break;
case SEC_XTS_MAX_KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: xts mode key error!\n");
return -EINVAL;
}
} else {
if (c_ctx->c_alg == SEC_CALG_SM4 &&
keylen != AES_KEYSIZE_128) {
pr_err("hisi_sec2: sm4 key error!\n");
return -EINVAL;
} else {
switch (keylen) {
case AES_KEYSIZE_128:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case AES_KEYSIZE_192:
c_ctx->c_key_len = SEC_CKEY_192BIT;
break;
case AES_KEYSIZE_256:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: aes key error!\n");
return -EINVAL;
}
}
}
return 0;
}
static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
const u32 keylen, const enum sec_calg c_alg,
const enum sec_cmode c_mode)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct device *dev = ctx->dev;
int ret;
if (c_mode == SEC_CMODE_XTS) {
ret = xts_verify_key(tfm, key, keylen);
if (ret) {
dev_err(dev, "xts mode key err!\n");
return ret;
}
}
c_ctx->c_alg = c_alg;
c_ctx->c_mode = c_mode;
switch (c_alg) {
case SEC_CALG_3DES:
ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
break;
case SEC_CALG_AES:
case SEC_CALG_SM4:
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
break;
default:
return -EINVAL;
}
if (ret) {
dev_err(dev, "set sec key err!\n");
return ret;
}
memcpy(c_ctx->c_key, key, keylen);
if (c_ctx->fallback && c_ctx->fbtfm) {
ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
if (ret) {
dev_err(dev, "failed to set fallback skcipher key!\n");
return ret;
}
}
return 0;
}
#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
u32 keylen) \
{ \
return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
}
GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *src)
{
struct sec_aead_req *a_req = &req->aead_req;
struct aead_request *aead_req = a_req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct device *dev = ctx->dev;
int copy_size, pbuf_length;
int req_id = req->req_id;
struct crypto_aead *tfm;
size_t authsize;
u8 *mac_offset;
if (ctx->alg_type == SEC_AEAD)
copy_size = aead_req->cryptlen + aead_req->assoclen;
else
copy_size = c_req->c_len;
pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
qp_ctx->res[req_id].pbuf, copy_size);
if (unlikely(pbuf_length != copy_size)) {
dev_err(dev, "copy src data to pbuf error!\n");
return -EINVAL;
}
if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
tfm = crypto_aead_reqtfm(aead_req);
authsize = crypto_aead_authsize(tfm);
mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
memcpy(a_req->out_mac, mac_offset, authsize);
}
req->in_dma = qp_ctx->res[req_id].pbuf_dma;
c_req->c_out_dma = req->in_dma;
return 0;
}
static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *dst)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
int copy_size, pbuf_length;
int req_id = req->req_id;
if (ctx->alg_type == SEC_AEAD)
copy_size = c_req->c_len + aead_req->assoclen;
else
copy_size = c_req->c_len;
pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
qp_ctx->res[req_id].pbuf, copy_size);
if (unlikely(pbuf_length != copy_size))
dev_err(ctx->dev, "copy pbuf data to dst error!\n");
}
static int sec_aead_mac_init(struct sec_aead_req *req)
{
struct aead_request *aead_req = req->aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
size_t authsize = crypto_aead_authsize(tfm);
u8 *mac_out = req->out_mac;
struct scatterlist *sgl = aead_req->src;
size_t copy_size;
off_t skip_size;
/* Copy input mac */
skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
authsize, skip_size);
if (unlikely(copy_size != authsize))
return -EINVAL;
return 0;
}
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *src, struct scatterlist *dst)
{
struct sec_cipher_req *c_req = &req->c_req;
struct sec_aead_req *a_req = &req->aead_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct sec_alg_res *res = &qp_ctx->res[req->req_id];
struct device *dev = ctx->dev;
int ret;
if (req->use_pbuf) {
c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
if (ctx->alg_type == SEC_AEAD) {
a_req->a_ivin = res->a_ivin;
a_req->a_ivin_dma = res->a_ivin_dma;
a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
a_req->out_mac_dma = res->pbuf_dma +
SEC_PBUF_MAC_OFFSET;
}
ret = sec_cipher_pbuf_map(ctx, req, src);
return ret;
}
c_req->c_ivin = res->c_ivin;
c_req->c_ivin_dma = res->c_ivin_dma;
if (ctx->alg_type == SEC_AEAD) {
a_req->a_ivin = res->a_ivin;
a_req->a_ivin_dma = res->a_ivin_dma;
a_req->out_mac = res->out_mac;
a_req->out_mac_dma = res->out_mac_dma;
}
req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
qp_ctx->c_in_pool,
req->req_id,
&req->in_dma);
if (IS_ERR(req->in)) {
dev_err(dev, "fail to dma map input sgl buffers!\n");
return PTR_ERR(req->in);
}
if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
ret = sec_aead_mac_init(a_req);
if (unlikely(ret)) {
dev_err(dev, "fail to init mac data for ICV!\n");
return ret;
}
}
if (dst == src) {
c_req->c_out = req->in;
c_req->c_out_dma = req->in_dma;
} else {
c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
qp_ctx->c_out_pool,
req->req_id,
&c_req->c_out_dma);
if (IS_ERR(c_req->c_out)) {
dev_err(dev, "fail to dma map output sgl buffers!\n");
hisi_acc_sg_buf_unmap(dev, src, req->in);
return PTR_ERR(c_req->c_out);
}
}
return 0;
}
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *src, struct scatterlist *dst)
{
struct sec_cipher_req *c_req = &req->c_req;
struct device *dev = ctx->dev;
if (req->use_pbuf) {
sec_cipher_pbuf_unmap(ctx, req, dst);
} else {
if (dst != src)
hisi_acc_sg_buf_unmap(dev, src, req->in);
hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
}
}
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sq = req->c_req.sk_req;
return sec_cipher_map(ctx, req, sq->src, sq->dst);
}
static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sq = req->c_req.sk_req;
sec_cipher_unmap(ctx, req, sq->src, sq->dst);
}
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
struct crypto_authenc_keys *keys)
{
switch (keys->enckeylen) {
case AES_KEYSIZE_128:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case AES_KEYSIZE_192:
c_ctx->c_key_len = SEC_CKEY_192BIT;
break;
case AES_KEYSIZE_256:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: aead aes key error!\n");
return -EINVAL;
}
memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
return 0;
}
static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
struct crypto_authenc_keys *keys)
{
struct crypto_shash *hash_tfm = ctx->hash_tfm;
int blocksize, digestsize, ret;
if (!keys->authkeylen) {
pr_err("hisi_sec2: aead auth key error!\n");
return -EINVAL;
}
blocksize = crypto_shash_blocksize(hash_tfm);
digestsize = crypto_shash_digestsize(hash_tfm);
if (keys->authkeylen > blocksize) {
ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
keys->authkeylen, ctx->a_key);
if (ret) {
pr_err("hisi_sec2: aead auth digest error!\n");
return -EINVAL;
}
ctx->a_key_len = digestsize;
} else {
memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
ctx->a_key_len = keys->authkeylen;
}
return 0;
}
static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
{
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
if (unlikely(a_ctx->fallback_aead_tfm))
return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
return 0;
}
static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
}
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
const u32 keylen, const enum sec_hash_alg a_alg,
const enum sec_calg c_alg,
const enum sec_mac_len mac_len,
const enum sec_cmode c_mode)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
struct device *dev = ctx->dev;
struct crypto_authenc_keys keys;
int ret;
ctx->a_ctx.a_alg = a_alg;
ctx->c_ctx.c_alg = c_alg;
ctx->a_ctx.mac_len = mac_len;
c_ctx->c_mode = c_mode;
if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
if (ret) {
dev_err(dev, "set sec aes ccm cipher key err!\n");
return ret;
}
memcpy(c_ctx->c_key, key, keylen);
if (unlikely(a_ctx->fallback_aead_tfm)) {
ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
if (ret)
return ret;
}
return 0;
}
if (crypto_authenc_extractkeys(&keys, key, keylen))
goto bad_key;
ret = sec_aead_aes_set_key(c_ctx, &keys);
if (ret) {
dev_err(dev, "set sec cipher key err!\n");
goto bad_key;
}
ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
if (ret) {
dev_err(dev, "set sec auth key err!\n");
goto bad_key;
}
if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) ||
(ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
dev_err(dev, "MAC or AUTH key length error!\n");
goto bad_key;
}
return 0;
bad_key:
memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
return -EINVAL;
}
#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
u32 keylen) \
{ \
return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aq = req->aead_req.aead_req;
return sec_cipher_map(ctx, req, aq->src, aq->dst);
}
static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aq = req->aead_req.aead_req;
sec_cipher_unmap(ctx, req, aq->src, aq->dst);
}
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
int ret;
ret = ctx->req_op->buf_map(ctx, req);
if (unlikely(ret))
return ret;
ctx->req_op->do_transfer(ctx, req);
ret = ctx->req_op->bd_fill(ctx, req);
if (unlikely(ret))
goto unmap_req_buf;
return ret;
unmap_req_buf:
ctx->req_op->buf_unmap(ctx, req);
return ret;
}
static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
ctx->req_op->buf_unmap(ctx, req);
}
static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sk_req = req->c_req.sk_req;
struct sec_cipher_req *c_req = &req->c_req;
memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
}
static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_sqe *sec_sqe = &req->sec_sqe;
u8 scene, sa_type, da_type;
u8 bd_type, cipher;
u8 de = 0;
memset(sec_sqe, 0, sizeof(struct sec_sqe));
sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
SEC_CMODE_OFFSET);
sec_sqe->type2.c_alg = c_ctx->c_alg;
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
SEC_CKEY_OFFSET);
bd_type = SEC_BD_TYPE2;
if (c_req->encrypt)
cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
else
cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
sec_sqe->type_cipher_auth = bd_type | cipher;
/* Set destination and source address type */
if (req->use_pbuf) {
sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
} else {
sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
}
sec_sqe->sdm_addr_type |= da_type;
scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
if (req->in_dma != c_req->c_out_dma)
de = 0x1 << SEC_DE_OFFSET;
sec_sqe->sds_sa_type = (de | scene | sa_type);
sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
return 0;
}
static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct sec_cipher_req *c_req = &req->c_req;
u32 bd_param = 0;
u16 cipher;
memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
c_ctx->c_mode;
sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
SEC_CKEY_OFFSET_V3);
if (c_req->encrypt)
cipher = SEC_CIPHER_ENC;
else
cipher = SEC_CIPHER_DEC;
sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
/* Set the CTR counter mode is 128bit rollover */
sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
SEC_CTR_CNT_OFFSET);
if (req->use_pbuf) {
bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
} else {
bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
}
bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
if (req->in_dma != c_req->c_out_dma)
bd_param |= 0x1 << SEC_DE_OFFSET_V3;
bd_param |= SEC_BD_TYPE3;
sec_sqe3->bd_param = cpu_to_le32(bd_param);
sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
sec_sqe3->tag = cpu_to_le64(req);
return 0;
}
/* increment counter (128-bit int) */
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
{
do {
--bits;
nums += counter[bits];
counter[bits] = nums & BITS_MASK;
nums >>= BYTE_BITS;
} while (bits && nums);
}
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct skcipher_request *sk_req = req->c_req.sk_req;
u32 iv_size = req->ctx->c_ctx.ivsize;
struct scatterlist *sgl;
unsigned int cryptlen;
size_t sz;
u8 *iv;
if (req->c_req.encrypt)
sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
else
sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
if (alg_type == SEC_SKCIPHER) {
iv = sk_req->iv;
cryptlen = sk_req->cryptlen;
} else {
iv = aead_req->iv;
cryptlen = aead_req->cryptlen;
}
if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
cryptlen - iv_size);
if (unlikely(sz != iv_size))
dev_err(req->ctx->dev, "copy output iv error!\n");
} else {
sz = cryptlen / iv_size;
if (cryptlen % iv_size)
sz += 1;
ctr_iv_inc(iv, iv_size, sz);
}
}
static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct sec_req *backlog_req = NULL;
spin_lock_bh(&qp_ctx->req_lock);
if (ctx->fake_req_limit >=
atomic_read(&qp_ctx->qp->qp_status.used) &&
!list_empty(&qp_ctx->backlog)) {
backlog_req = list_first_entry(&qp_ctx->backlog,
typeof(*backlog_req), backlog_head);
list_del(&backlog_req->backlog_head);
}
spin_unlock_bh(&qp_ctx->req_lock);
return backlog_req;
}
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
int err)
{
struct skcipher_request *sk_req = req->c_req.sk_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct skcipher_request *backlog_sk_req;
struct sec_req *backlog_req;
sec_free_req_id(req);
/* IV output at encrypto of CBC/CTR mode */
if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
sec_update_iv(req, SEC_SKCIPHER);
while (1) {
backlog_req = sec_back_req_clear(ctx, qp_ctx);
if (!backlog_req)
break;
backlog_sk_req = backlog_req->c_req.sk_req;
backlog_sk_req->base.complete(&backlog_sk_req->base,
-EINPROGRESS);
atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
}
sk_req->base.complete(&sk_req->base, err);
}
static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_aead_req *a_req = &req->aead_req;
size_t authsize = ctx->a_ctx.mac_len;
u32 data_size = aead_req->cryptlen;
u8 flage = 0;
u8 cm, cl;
/* the specification has been checked in aead_iv_demension_check() */
cl = c_req->c_ivin[0] + 1;
c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
/* the last 3bit is L' */
flage |= c_req->c_ivin[0] & IV_CL_MASK;
/* the M' is bit3~bit5, the Flags is bit6 */
cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
flage |= cm << IV_CM_OFFSET;
if (aead_req->assoclen)
flage |= 0x01 << IV_FLAGS_OFFSET;
memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
a_req->a_ivin[0] = flage;
/*
* the last 32bit is counter's initial number,
* but the nonce uses the first 16bit
* the tail 16bit fill with the cipher length
*/
if (!c_req->encrypt)
data_size = aead_req->cryptlen - authsize;
a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
data_size & IV_LAST_BYTE_MASK;
data_size >>= IV_BYTE_OFFSET;
a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
data_size & IV_LAST_BYTE_MASK;
}
static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
size_t authsize = crypto_aead_authsize(tfm);
struct sec_cipher_req *c_req = &req->c_req;
struct sec_aead_req *a_req = &req->aead_req;
memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
/*
* CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
* the counter must set to 0x01
*/
ctx->a_ctx.mac_len = authsize;
/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
set_aead_auth_iv(ctx, req);
}
/* GCM 12Byte Cipher_IV == Auth_IV */
if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
ctx->a_ctx.mac_len = authsize;
memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
}
}
static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
struct sec_req *req, struct sec_sqe *sec_sqe)
{
struct sec_aead_req *a_req = &req->aead_req;
struct aead_request *aq = a_req->aead_req;
/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
if (dir)
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
else
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
}
static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
struct sec_req *req, struct sec_sqe3 *sqe3)
{
struct sec_aead_req *a_req = &req->aead_req;
struct aead_request *aq = a_req->aead_req;
/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
sqe3->a_key_addr = sqe3->c_key_addr;
sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
sqe3->auth_mac_key |= SEC_NO_AUTH;
if (dir)
sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
else
sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
sqe3->a_len_key = cpu_to_le32(aq->assoclen);
sqe3->auth_src_offset = cpu_to_le16(0x0);
sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
}
static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
struct sec_req *req, struct sec_sqe *sec_sqe)
{
struct sec_aead_req *a_req = &req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct aead_request *aq = a_req->aead_req;
sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
sec_sqe->type2.mac_key_alg =
cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
sec_sqe->type2.mac_key_alg |=
cpu_to_le32((u32)((ctx->a_key_len) /
SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
sec_sqe->type2.mac_key_alg |=
cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
if (dir) {
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
} else {
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
}
sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
}
static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
struct sec_sqe *sec_sqe = &req->sec_sqe;
int ret;
ret = sec_skcipher_bd_fill(ctx, req);
if (unlikely(ret)) {
dev_err(ctx->dev, "skcipher bd fill is error!\n");
return ret;
}
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
ctx->c_ctx.c_mode == SEC_CMODE_GCM)
sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
else
sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
return 0;
}
static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
struct sec_req *req, struct sec_sqe3 *sqe3)
{
struct sec_aead_req *a_req = &req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct aead_request *aq = a_req->aead_req;
sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
sqe3->auth_mac_key |=
cpu_to_le32((u32)(ctx->mac_len /
SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
sqe3->auth_mac_key |=
cpu_to_le32((u32)(ctx->a_key_len /
SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
sqe3->auth_mac_key |=
cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
if (dir) {
sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
} else {
sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
}
sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
}
static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
int ret;
ret = sec_skcipher_bd_fill_v3(ctx, req);
if (unlikely(ret)) {
dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
return ret;
}
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
ctx->c_ctx.c_mode == SEC_CMODE_GCM)
sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
req, sec_sqe3);
else
sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
req, sec_sqe3);
return 0;
}
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
struct aead_request *a_req = req->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
struct sec_aead_req *aead_req = &req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
size_t authsize = crypto_aead_authsize(tfm);
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct aead_request *backlog_aead_req;
struct sec_req *backlog_req;
size_t sz;
if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
sec_update_iv(req, SEC_AEAD);
/* Copy output mac */
if (!err && c_req->encrypt) {
struct scatterlist *sgl = a_req->dst;
sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
aead_req->out_mac,
authsize, a_req->cryptlen +
a_req->assoclen);
if (unlikely(sz != authsize)) {
dev_err(c->dev, "copy out mac err!\n");
err = -EINVAL;
}
}
sec_free_req_id(req);
while (1) {
backlog_req = sec_back_req_clear(c, qp_ctx);
if (!backlog_req)
break;
backlog_aead_req = backlog_req->aead_req.aead_req;
backlog_aead_req->base.complete(&backlog_aead_req->base,
-EINPROGRESS);
atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
}
a_req->base.complete(&a_req->base, err);
}
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
sec_free_req_id(req);
sec_free_queue_id(ctx, req);
}
static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx;
int queue_id;
/* To load balance */
queue_id = sec_alloc_queue_id(ctx, req);
qp_ctx = &ctx->qp_ctx[queue_id];
req->req_id = sec_alloc_req_id(req, qp_ctx);
if (unlikely(req->req_id < 0)) {
sec_free_queue_id(ctx, req);
return req->req_id;
}
return 0;
}
static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_cipher_req *c_req = &req->c_req;
int ret;
ret = sec_request_init(ctx, req);
if (unlikely(ret))
return ret;
ret = sec_request_transfer(ctx, req);
if (unlikely(ret))
goto err_uninit_req;
/* Output IV as decrypto */
if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
ctx->c_ctx.c_mode == SEC_CMODE_CTR))
sec_update_iv(req, ctx->alg_type);
ret = ctx->req_op->bd_send(ctx, req);
if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
goto err_send_req;
}
return ret;
err_send_req:
/* As failing, restore the IV from user */
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
if (ctx->alg_type == SEC_SKCIPHER)
memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
ctx->c_ctx.ivsize);
else
memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
ctx->c_ctx.ivsize);
}
sec_request_untransfer(ctx, req);
err_uninit_req:
sec_request_uninit(ctx, req);
return ret;
}
static const struct sec_req_op sec_skcipher_req_ops = {
.buf_map = sec_skcipher_sgl_map,
.buf_unmap = sec_skcipher_sgl_unmap,
.do_transfer = sec_skcipher_copy_iv,
.bd_fill = sec_skcipher_bd_fill,
.bd_send = sec_bd_send,
.callback = sec_skcipher_callback,
.process = sec_process,
};
static const struct sec_req_op sec_aead_req_ops = {
.buf_map = sec_aead_sgl_map,
.buf_unmap = sec_aead_sgl_unmap,
.do_transfer = sec_aead_set_iv,
.bd_fill = sec_aead_bd_fill,
.bd_send = sec_bd_send,
.callback = sec_aead_callback,
.process = sec_process,
};
static const struct sec_req_op sec_skcipher_req_ops_v3 = {
.buf_map = sec_skcipher_sgl_map,
.buf_unmap = sec_skcipher_sgl_unmap,
.do_transfer = sec_skcipher_copy_iv,
.bd_fill = sec_skcipher_bd_fill_v3,
.bd_send = sec_bd_send,
.callback = sec_skcipher_callback,
.process = sec_process,
};
static const struct sec_req_op sec_aead_req_ops_v3 = {
.buf_map = sec_aead_sgl_map,
.buf_unmap = sec_aead_sgl_unmap,
.do_transfer = sec_aead_set_iv,
.bd_fill = sec_aead_bd_fill_v3,
.bd_send = sec_bd_send,
.callback = sec_aead_callback,
.process = sec_process,
};
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
ret = sec_skcipher_init(tfm);
if (ret)
return ret;
if (ctx->sec->qm.ver < QM_HW_V3) {
ctx->type_supported = SEC_BD_TYPE2;
ctx->req_op = &sec_skcipher_req_ops;
} else {
ctx->type_supported = SEC_BD_TYPE3;
ctx->req_op = &sec_skcipher_req_ops_v3;
}
return ret;
}
static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
sec_skcipher_uninit(tfm);
}
static int sec_aead_init(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
ctx->alg_type = SEC_AEAD;
ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
ctx->c_ctx.ivsize > SEC_IV_SIZE) {
pr_err("get error aead iv size!\n");
return -EINVAL;
}
ret = sec_ctx_base_init(ctx);
if (ret)
return ret;
if (ctx->sec->qm.ver < QM_HW_V3) {
ctx->type_supported = SEC_BD_TYPE2;
ctx->req_op = &sec_aead_req_ops;
} else {
ctx->type_supported = SEC_BD_TYPE3;
ctx->req_op = &sec_aead_req_ops_v3;
}
ret = sec_auth_init(ctx);
if (ret)
goto err_auth_init;
ret = sec_cipher_init(ctx);
if (ret)
goto err_cipher_init;
return ret;
err_cipher_init:
sec_auth_uninit(ctx);
err_auth_init:
sec_ctx_base_uninit(ctx);
return ret;
}
static void sec_aead_exit(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
sec_cipher_uninit(ctx);
sec_auth_uninit(ctx);
sec_ctx_base_uninit(ctx);
}
static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
int ret;
ret = sec_aead_init(tfm);
if (ret) {
pr_err("hisi_sec2: aead init error!\n");
return ret;
}
auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
if (IS_ERR(auth_ctx->hash_tfm)) {
dev_err(ctx->dev, "aead alloc shash error!\n");
sec_aead_exit(tfm);
return PTR_ERR(auth_ctx->hash_tfm);
}
return 0;
}
static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
crypto_free_shash(ctx->a_ctx.hash_tfm);
sec_aead_exit(tfm);
}
static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
const char *aead_name = alg->base.cra_name;
int ret;
ret = sec_aead_init(tfm);
if (ret) {
dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
return ret;
}
a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ASYNC);
if (IS_ERR(a_ctx->fallback_aead_tfm)) {
dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
sec_aead_exit(tfm);
return PTR_ERR(a_ctx->fallback_aead_tfm);
}
a_ctx->fallback = false;
return 0;
}
static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
sec_aead_exit(tfm);
}
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha1");
}
static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha256");
}
static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha512");
}
static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx,
struct sec_req *sreq)
{
u32 cryptlen = sreq->c_req.sk_req->cryptlen;
struct device *dev = ctx->dev;
u8 c_mode = ctx->c_ctx.c_mode;
int ret = 0;
switch (c_mode) {
case SEC_CMODE_XTS:
if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
dev_err(dev, "skcipher XTS mode input length error!\n");
ret = -EINVAL;
}
break;
case SEC_CMODE_ECB:
case SEC_CMODE_CBC:
if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
dev_err(dev, "skcipher AES input length error!\n");
ret = -EINVAL;
}
break;
case SEC_CMODE_CFB:
case SEC_CMODE_OFB:
case SEC_CMODE_CTR:
if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
dev_err(dev, "skcipher HW version error!\n");
ret = -EINVAL;
}
break;
default:
ret = -EINVAL;
}
return ret;
}
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
struct skcipher_request *sk_req = sreq->c_req.sk_req;
struct device *dev = ctx->dev;
u8 c_alg = ctx->c_ctx.c_alg;
if (unlikely(!sk_req->src || !sk_req->dst ||
sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
dev_err(dev, "skcipher input param error!\n");
return -EINVAL;
}
sreq->c_req.c_len = sk_req->cryptlen;
if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
sreq->use_pbuf = true;
else
sreq->use_pbuf = false;
if (c_alg == SEC_CALG_3DES) {
if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
dev_err(dev, "skcipher 3des input length error!\n");
return -EINVAL;
}
return 0;
} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
return sec_skcipher_cryptlen_ckeck(ctx, sreq);
}
dev_err(dev, "skcipher algorithm error!\n");
return -EINVAL;
}
static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
struct skcipher_request *sreq, bool encrypt)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
struct device *dev = ctx->dev;
int ret;
if (!c_ctx->fbtfm) {
dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
return -EINVAL;
}
skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
/* software need sync mode to do crypto */
skcipher_request_set_callback(subreq, sreq->base.flags,
NULL, NULL);
skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
sreq->cryptlen, sreq->iv);
if (encrypt)
ret = crypto_skcipher_encrypt(subreq);
else
ret = crypto_skcipher_decrypt(subreq);
skcipher_request_zero(subreq);
return ret;
}
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
struct sec_req *req = skcipher_request_ctx(sk_req);
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
if (!sk_req->cryptlen) {
if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
return -EINVAL;
return 0;
}
req->flag = sk_req->base.flags;
req->c_req.sk_req = sk_req;
req->c_req.encrypt = encrypt;
req->ctx = ctx;
ret = sec_skcipher_param_check(ctx, req);
if (unlikely(ret))
return -EINVAL;
if (unlikely(ctx->c_ctx.fallback))
return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
return ctx->req_op->process(ctx, req);
}
static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
return sec_skcipher_crypto(sk_req, true);
}
static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
return sec_skcipher_crypto(sk_req, false);
}
#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
.base = {\
.cra_name = sec_cra_name,\
.cra_driver_name = "hisi_sec_"sec_cra_name,\
.cra_priority = SEC_PRIORITY,\
.cra_flags = CRYPTO_ALG_ASYNC |\
CRYPTO_ALG_NEED_FALLBACK,\
.cra_blocksize = blk_size,\
.cra_ctxsize = sizeof(struct sec_ctx),\
.cra_module = THIS_MODULE,\
},\
.init = ctx_init,\
.exit = ctx_exit,\
.setkey = sec_set_key,\
.decrypt = sec_skcipher_decrypt,\
.encrypt = sec_skcipher_encrypt,\
.min_keysize = sec_min_key_size,\
.max_keysize = sec_max_key_size,\
.ivsize = iv_size,\
}
#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
max_key_size, blk_size, iv_size) \
SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
static struct sec_skcipher sec_skciphers[] = {
{
.alg_msk = BIT(0),
.alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
},
{
.alg_msk = BIT(1),
.alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(2),
.alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE,
AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(3),
.alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE,
SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(4),
.alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb, AES_MIN_KEY_SIZE,
AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(5),
.alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb, AES_MIN_KEY_SIZE,
AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(12),
.alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE,
AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(13),
.alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(14),
.alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE,
SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(15),
.alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb, AES_MIN_KEY_SIZE,
AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(16),
.alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb, AES_MIN_KEY_SIZE,
AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(23),
.alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
},
{
.alg_msk = BIT(24),
.alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
DES3_EDE_BLOCK_SIZE),
},
};
static int aead_iv_demension_check(struct aead_request *aead_req)
{
u8 cl;
cl = aead_req->iv[0] + 1;
if (cl < IV_CL_MIN || cl > IV_CL_MAX)
return -EINVAL;
if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
return -EOVERFLOW;
return 0;
}
static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
struct aead_request *req = sreq->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
size_t authsize = crypto_aead_authsize(tfm);
u8 c_mode = ctx->c_ctx.c_mode;
struct device *dev = ctx->dev;
int ret;
if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
req->assoclen > SEC_MAX_AAD_LEN)) {
dev_err(dev, "aead input spec error!\n");
return -EINVAL;
}
if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
(c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
authsize & MAC_LEN_MASK)))) {
dev_err(dev, "aead input mac length error!\n");
return -EINVAL;
}
if (c_mode == SEC_CMODE_CCM) {
if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
return -EINVAL;
}
ret = aead_iv_demension_check(req);
if (ret) {
dev_err(dev, "aead input iv param error!\n");
return ret;
}
}
if (sreq->c_req.encrypt)
sreq->c_req.c_len = req->cryptlen;
else
sreq->c_req.c_len = req->cryptlen - authsize;
if (c_mode == SEC_CMODE_CBC) {
if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
dev_err(dev, "aead crypto length error!\n");
return -EINVAL;
}
}
return 0;
}
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
struct aead_request *req = sreq->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
size_t authsize = crypto_aead_authsize(tfm);
struct device *dev = ctx->dev;
u8 c_alg = ctx->c_ctx.c_alg;
if (unlikely(!req->src || !req->dst)) {
dev_err(dev, "aead input param error!\n");
return -EINVAL;
}
if (ctx->sec->qm.ver == QM_HW_V2) {
if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
req->cryptlen <= authsize))) {
ctx->a_ctx.fallback = true;
return -EINVAL;
}
}
/* Support AES or SM4 */
if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
dev_err(dev, "aead crypto alg error!\n");
return -EINVAL;
}
if (unlikely(sec_aead_spec_check(ctx, sreq)))
return -EINVAL;
if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
SEC_PBUF_SZ)
sreq->use_pbuf = true;
else
sreq->use_pbuf = false;
return 0;
}
static int sec_aead_soft_crypto(struct sec_ctx *ctx,
struct aead_request *aead_req,
bool encrypt)
{
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
struct device *dev = ctx->dev;
struct aead_request *subreq;
int ret;
/* Kunpeng920 aead mode not support input 0 size */
if (!a_ctx->fallback_aead_tfm) {
dev_err(dev, "aead fallback tfm is NULL!\n");
return -EINVAL;
}
subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
if (!subreq)
return -ENOMEM;
aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
aead_request_set_callback(subreq, aead_req->base.flags,
aead_req->base.complete, aead_req->base.data);
aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
aead_req->cryptlen, aead_req->iv);
aead_request_set_ad(subreq, aead_req->assoclen);
if (encrypt)
ret = crypto_aead_encrypt(subreq);
else
ret = crypto_aead_decrypt(subreq);
aead_request_free(subreq);
return ret;
}
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
struct sec_req *req = aead_request_ctx(a_req);
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
req->flag = a_req->base.flags;
req->aead_req.aead_req = a_req;
req->c_req.encrypt = encrypt;
req->ctx = ctx;
ret = sec_aead_param_check(ctx, req);
if (unlikely(ret)) {
if (ctx->a_ctx.fallback)
return sec_aead_soft_crypto(ctx, a_req, encrypt);
return -EINVAL;
}
return ctx->req_op->process(ctx, req);
}
static int sec_aead_encrypt(struct aead_request *a_req)
{
return sec_aead_crypto(a_req, true);
}
static int sec_aead_decrypt(struct aead_request *a_req)
{
return sec_aead_crypto(a_req, false);
}
#define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
ctx_exit, blk_size, iv_size, max_authsize)\
{\
.base = {\
.cra_name = sec_cra_name,\
.cra_driver_name = "hisi_sec_"sec_cra_name,\
.cra_priority = SEC_PRIORITY,\
.cra_flags = CRYPTO_ALG_ASYNC |\
CRYPTO_ALG_NEED_FALLBACK,\
.cra_blocksize = blk_size,\
.cra_ctxsize = sizeof(struct sec_ctx),\
.cra_module = THIS_MODULE,\
},\
.init = ctx_init,\
.exit = ctx_exit,\
.setkey = sec_set_key,\
.setauthsize = sec_aead_setauthsize,\
.decrypt = sec_aead_decrypt,\
.encrypt = sec_aead_encrypt,\
.ivsize = iv_size,\
.maxauthsize = max_authsize,\
}
static struct sec_aead sec_aeads[] = {
{
.alg_msk = BIT(6),
.alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(7),
.alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(17),
.alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(18),
.alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(43),
.alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
},
{
.alg_msk = BIT(44),
.alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
},
{
.alg_msk = BIT(45),
.alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
},
};
static void sec_unregister_skcipher(u64 alg_mask, int end)
{
int i;
for (i = 0; i < end; i++)
if (sec_skciphers[i].alg_msk & alg_mask)
crypto_unregister_skcipher(&sec_skciphers[i].alg);
}
static int sec_register_skcipher(u64 alg_mask)
{
int i, ret, count;
count = ARRAY_SIZE(sec_skciphers);
for (i = 0; i < count; i++) {
if (!(sec_skciphers[i].alg_msk & alg_mask))
continue;
ret = crypto_register_skcipher(&sec_skciphers[i].alg);
if (ret)
goto err;
}
return 0;
err:
sec_unregister_skcipher(alg_mask, i);
return ret;
}
static void sec_unregister_aead(u64 alg_mask, int end)
{
int i;
for (i = 0; i < end; i++)
if (sec_aeads[i].alg_msk & alg_mask)
crypto_unregister_aead(&sec_aeads[i].alg);
}
static int sec_register_aead(u64 alg_mask)
{
int i, ret, count;
count = ARRAY_SIZE(sec_aeads);
for (i = 0; i < count; i++) {
if (!(sec_aeads[i].alg_msk & alg_mask))
continue;
ret = crypto_register_aead(&sec_aeads[i].alg);
if (ret)
goto err;
}
return 0;
err:
sec_unregister_aead(alg_mask, i);
return ret;
}
int sec_register_to_crypto(struct hisi_qm *qm)
{
u64 alg_mask;
int ret = 0;
alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
SEC_DRV_ALG_BITMAP_LOW_IDX);
ret = sec_register_skcipher(alg_mask);
if (ret)
return ret;
ret = sec_register_aead(alg_mask);
if (ret)
sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
return ret;
}
void sec_unregister_from_crypto(struct hisi_qm *qm)
{
u64 alg_mask;
alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
SEC_DRV_ALG_BITMAP_LOW_IDX);
sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
}
|