summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/display/intel_vrr.c
blob: 5eac99021875ed88dc8b19fe16d8d062194fe5e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2020 Intel Corporation
 *
 */

#include "i915_drv.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_vrr.h"

bool intel_vrr_is_capable(struct intel_connector *connector)
{
	const struct drm_display_info *info = &connector->base.display_info;
	struct drm_i915_private *i915 = to_i915(connector->base.dev);
	struct intel_dp *intel_dp;

	/*
	 * DP Sink is capable of VRR video timings if
	 * Ignore MSA bit is set in DPCD.
	 * EDID monitor range also should be atleast 10 for reasonable
	 * Adaptive Sync or Variable Refresh Rate end user experience.
	 */
	switch (connector->base.connector_type) {
	case DRM_MODE_CONNECTOR_eDP:
		if (!connector->panel.vbt.vrr)
			return false;
		fallthrough;
	case DRM_MODE_CONNECTOR_DisplayPort:
		intel_dp = intel_attached_dp(connector);

		if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd))
			return false;

		break;
	default:
		return false;
	}

	return HAS_VRR(i915) &&
		info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10;
}

void
intel_vrr_check_modeset(struct intel_atomic_state *state)
{
	int i;
	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
	struct intel_crtc *crtc;

	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		if (new_crtc_state->uapi.vrr_enabled !=
		    old_crtc_state->uapi.vrr_enabled)
			new_crtc_state->uapi.mode_changed = true;
	}
}

/*
 * Without VRR registers get latched at:
 *  vblank_start
 *
 * With VRR the earliest registers can get latched is:
 *  intel_vrr_vmin_vblank_start(), which if we want to maintain
 *  the correct min vtotal is >=vblank_start+1
 *
 * The latest point registers can get latched is the vmax decision boundary:
 *  intel_vrr_vmax_vblank_start()
 *
 * Between those two points the vblank exit starts (and hence registers get
 * latched) ASAP after a push is sent.
 *
 * framestart_delay is programmable 1-4.
 */
static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);

	/* The hw imposes the extra scanline before frame start */
	if (DISPLAY_VER(i915) >= 13)
		return crtc_state->vrr.guardband + crtc_state->framestart_delay + 1;
	else
		return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1;
}

int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
{
	/* Min vblank actually determined by flipline that is always >=vmin+1 */
	return crtc_state->vrr.vmin + 1 - intel_vrr_vblank_exit_length(crtc_state);
}

int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state)
{
	return crtc_state->vrr.vmax - intel_vrr_vblank_exit_length(crtc_state);
}

void
intel_vrr_compute_config(struct intel_crtc_state *crtc_state,
			 struct drm_connector_state *conn_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
	struct intel_connector *connector =
		to_intel_connector(conn_state->connector);
	struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
	const struct drm_display_info *info = &connector->base.display_info;
	int vmin, vmax;

	if (!intel_vrr_is_capable(connector))
		return;

	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
		return;

	if (!crtc_state->uapi.vrr_enabled)
		return;

	vmin = DIV_ROUND_UP(adjusted_mode->crtc_clock * 1000,
			    adjusted_mode->crtc_htotal * info->monitor_range.max_vfreq);
	vmax = adjusted_mode->crtc_clock * 1000 /
		(adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq);

	vmin = max_t(int, vmin, adjusted_mode->crtc_vtotal);
	vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal);

	if (vmin >= vmax)
		return;

	/*
	 * flipline determines the min vblank length the hardware will
	 * generate, and flipline>=vmin+1, hence we reduce vmin by one
	 * to make sure we can get the actual min vblank length.
	 */
	crtc_state->vrr.vmin = vmin - 1;
	crtc_state->vrr.vmax = vmax;
	crtc_state->vrr.enable = true;

	crtc_state->vrr.flipline = crtc_state->vrr.vmin + 1;

	/*
	 * For XE_LPD+, we use guardband and pipeline override
	 * is deprecated.
	 */
	if (DISPLAY_VER(i915) >= 13) {
		/*
		 * FIXME: Subtract Window2 delay from below value.
		 *
		 * Window2 specifies time required to program DSB (Window2) in
		 * number of scan lines. Assuming 0 for no DSB.
		 */
		crtc_state->vrr.guardband =
			crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay;
	} else {
		/*
		 * FIXME: s/4/framestart_delay/ to get consistent
		 * earliest/latest points for register latching regardless
		 * of the framestart_delay used?
		 *
		 * FIXME: this really needs the extra scanline to provide consistent
		 * behaviour for all framestart_delay values. Otherwise with
		 * framestart_delay==4 we will end up extending the min vblank by
		 * one extra line.
		 */
		crtc_state->vrr.pipeline_full =
			min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay - 4 - 1);
	}

	crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}

void intel_vrr_enable(struct intel_encoder *encoder,
		      const struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
	u32 trans_vrr_ctl;

	if (!crtc_state->vrr.enable)
		return;

	if (DISPLAY_VER(dev_priv) >= 13)
		trans_vrr_ctl = VRR_CTL_VRR_ENABLE |
			VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
			XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
	else
		trans_vrr_ctl = VRR_CTL_VRR_ENABLE |
			VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
			VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) |
			VRR_CTL_PIPELINE_FULL_OVERRIDE;

	intel_de_write(dev_priv, TRANS_VRR_VMIN(cpu_transcoder), crtc_state->vrr.vmin - 1);
	intel_de_write(dev_priv, TRANS_VRR_VMAX(cpu_transcoder), crtc_state->vrr.vmax - 1);
	intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), trans_vrr_ctl);
	intel_de_write(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder), crtc_state->vrr.flipline - 1);
	intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), TRANS_PUSH_EN);
}

void intel_vrr_send_push(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;

	if (!crtc_state->vrr.enable)
		return;

	intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder),
		       TRANS_PUSH_EN | TRANS_PUSH_SEND);
}

bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;

	if (!crtc_state->vrr.enable)
		return false;

	return intel_de_read(dev_priv, TRANS_PUSH(cpu_transcoder)) & TRANS_PUSH_SEND;
}

void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;

	if (!old_crtc_state->vrr.enable)
		return;

	intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), 0);
	intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), 0);
}

void intel_vrr_get_config(struct intel_crtc *crtc,
			  struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
	u32 trans_vrr_ctl;

	trans_vrr_ctl = intel_de_read(dev_priv, TRANS_VRR_CTL(cpu_transcoder));
	crtc_state->vrr.enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE;
	if (!crtc_state->vrr.enable)
		return;

	if (DISPLAY_VER(dev_priv) >= 13)
		crtc_state->vrr.guardband =
			REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl);
	else
		if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE)
			crtc_state->vrr.pipeline_full =
				REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl);
	if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN)
		crtc_state->vrr.flipline = intel_de_read(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder)) + 1;
	crtc_state->vrr.vmax = intel_de_read(dev_priv, TRANS_VRR_VMAX(cpu_transcoder)) + 1;
	crtc_state->vrr.vmin = intel_de_read(dev_priv, TRANS_VRR_VMIN(cpu_transcoder)) + 1;

	crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}