1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
// SPDX-License-Identifier: BSD-3-Clause
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*
* I3C HCI v1.0/v1.1 Command Descriptor Handling
*/
#include <linux/bitfield.h>
#include <linux/i3c/master.h>
#include "hci.h"
#include "cmd.h"
#include "dat.h"
#include "dct.h"
/*
* Address Assignment Command
*/
#define CMD_0_ATTR_A FIELD_PREP(CMD_0_ATTR, 0x2)
#define CMD_A0_TOC W0_BIT_(31)
#define CMD_A0_ROC W0_BIT_(30)
#define CMD_A0_DEV_COUNT(v) FIELD_PREP(W0_MASK(29, 26), v)
#define CMD_A0_DEV_INDEX(v) FIELD_PREP(W0_MASK(20, 16), v)
#define CMD_A0_CMD(v) FIELD_PREP(W0_MASK(14, 7), v)
#define CMD_A0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v)
/*
* Immediate Data Transfer Command
*/
#define CMD_0_ATTR_I FIELD_PREP(CMD_0_ATTR, 0x1)
#define CMD_I1_DATA_BYTE_4(v) FIELD_PREP(W1_MASK(63, 56), v)
#define CMD_I1_DATA_BYTE_3(v) FIELD_PREP(W1_MASK(55, 48), v)
#define CMD_I1_DATA_BYTE_2(v) FIELD_PREP(W1_MASK(47, 40), v)
#define CMD_I1_DATA_BYTE_1(v) FIELD_PREP(W1_MASK(39, 32), v)
#define CMD_I1_DEF_BYTE(v) FIELD_PREP(W1_MASK(39, 32), v)
#define CMD_I0_TOC W0_BIT_(31)
#define CMD_I0_ROC W0_BIT_(30)
#define CMD_I0_RNW W0_BIT_(29)
#define CMD_I0_MODE(v) FIELD_PREP(W0_MASK(28, 26), v)
#define CMD_I0_DTT(v) FIELD_PREP(W0_MASK(25, 23), v)
#define CMD_I0_DEV_INDEX(v) FIELD_PREP(W0_MASK(20, 16), v)
#define CMD_I0_CP W0_BIT_(15)
#define CMD_I0_CMD(v) FIELD_PREP(W0_MASK(14, 7), v)
#define CMD_I0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v)
/*
* Regular Data Transfer Command
*/
#define CMD_0_ATTR_R FIELD_PREP(CMD_0_ATTR, 0x0)
#define CMD_R1_DATA_LENGTH(v) FIELD_PREP(W1_MASK(63, 48), v)
#define CMD_R1_DEF_BYTE(v) FIELD_PREP(W1_MASK(39, 32), v)
#define CMD_R0_TOC W0_BIT_(31)
#define CMD_R0_ROC W0_BIT_(30)
#define CMD_R0_RNW W0_BIT_(29)
#define CMD_R0_MODE(v) FIELD_PREP(W0_MASK(28, 26), v)
#define CMD_R0_DBP W0_BIT_(25)
#define CMD_R0_DEV_INDEX(v) FIELD_PREP(W0_MASK(20, 16), v)
#define CMD_R0_CP W0_BIT_(15)
#define CMD_R0_CMD(v) FIELD_PREP(W0_MASK(14, 7), v)
#define CMD_R0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v)
/*
* Combo Transfer (Write + Write/Read) Command
*/
#define CMD_0_ATTR_C FIELD_PREP(CMD_0_ATTR, 0x3)
#define CMD_C1_DATA_LENGTH(v) FIELD_PREP(W1_MASK(63, 48), v)
#define CMD_C1_OFFSET(v) FIELD_PREP(W1_MASK(47, 32), v)
#define CMD_C0_TOC W0_BIT_(31)
#define CMD_C0_ROC W0_BIT_(30)
#define CMD_C0_RNW W0_BIT_(29)
#define CMD_C0_MODE(v) FIELD_PREP(W0_MASK(28, 26), v)
#define CMD_C0_16_BIT_SUBOFFSET W0_BIT_(25)
#define CMD_C0_FIRST_PHASE_MODE W0_BIT_(24)
#define CMD_C0_DATA_LENGTH_POSITION(v) FIELD_PREP(W0_MASK(23, 22), v)
#define CMD_C0_DEV_INDEX(v) FIELD_PREP(W0_MASK(20, 16), v)
#define CMD_C0_CP W0_BIT_(15)
#define CMD_C0_CMD(v) FIELD_PREP(W0_MASK(14, 7), v)
#define CMD_C0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v)
/*
* Internal Control Command
*/
#define CMD_0_ATTR_M FIELD_PREP(CMD_0_ATTR, 0x7)
#define CMD_M1_VENDOR_SPECIFIC W1_MASK(63, 32)
#define CMD_M0_MIPI_RESERVED W0_MASK(31, 12)
#define CMD_M0_MIPI_CMD W0_MASK(11, 8)
#define CMD_M0_VENDOR_INFO_PRESENT W0_BIT_( 7)
#define CMD_M0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v)
/* Data Transfer Speed and Mode */
enum hci_cmd_mode {
MODE_I3C_SDR0 = 0x0,
MODE_I3C_SDR1 = 0x1,
MODE_I3C_SDR2 = 0x2,
MODE_I3C_SDR3 = 0x3,
MODE_I3C_SDR4 = 0x4,
MODE_I3C_HDR_TSx = 0x5,
MODE_I3C_HDR_DDR = 0x6,
MODE_I3C_HDR_BT = 0x7,
MODE_I3C_Fm_FmP = 0x8,
MODE_I2C_Fm = 0x0,
MODE_I2C_FmP = 0x1,
MODE_I2C_UD1 = 0x2,
MODE_I2C_UD2 = 0x3,
MODE_I2C_UD3 = 0x4,
};
static enum hci_cmd_mode get_i3c_mode(struct i3c_hci *hci)
{
struct i3c_bus *bus = i3c_master_get_bus(&hci->master);
if (bus->scl_rate.i3c >= 12500000)
return MODE_I3C_SDR0;
if (bus->scl_rate.i3c > 8000000)
return MODE_I3C_SDR1;
if (bus->scl_rate.i3c > 6000000)
return MODE_I3C_SDR2;
if (bus->scl_rate.i3c > 4000000)
return MODE_I3C_SDR3;
if (bus->scl_rate.i3c > 2000000)
return MODE_I3C_SDR4;
return MODE_I3C_Fm_FmP;
}
static enum hci_cmd_mode get_i2c_mode(struct i3c_hci *hci)
{
struct i3c_bus *bus = i3c_master_get_bus(&hci->master);
if (bus->scl_rate.i2c >= 1000000)
return MODE_I2C_FmP;
return MODE_I2C_Fm;
}
static void fill_data_bytes(struct hci_xfer *xfer, u8 *data,
unsigned int data_len)
{
xfer->cmd_desc[1] = 0;
switch (data_len) {
case 4:
xfer->cmd_desc[1] |= CMD_I1_DATA_BYTE_4(data[3]);
fallthrough;
case 3:
xfer->cmd_desc[1] |= CMD_I1_DATA_BYTE_3(data[2]);
fallthrough;
case 2:
xfer->cmd_desc[1] |= CMD_I1_DATA_BYTE_2(data[1]);
fallthrough;
case 1:
xfer->cmd_desc[1] |= CMD_I1_DATA_BYTE_1(data[0]);
fallthrough;
case 0:
break;
}
/* we consumed all the data with the cmd descriptor */
xfer->data = NULL;
}
static int hci_cmd_v1_prep_ccc(struct i3c_hci *hci,
struct hci_xfer *xfer,
u8 ccc_addr, u8 ccc_cmd, bool raw)
{
unsigned int dat_idx = 0;
enum hci_cmd_mode mode = get_i3c_mode(hci);
u8 *data = xfer->data;
unsigned int data_len = xfer->data_len;
bool rnw = xfer->rnw;
int ret;
/* this should never happen */
if (WARN_ON(raw))
return -EINVAL;
if (ccc_addr != I3C_BROADCAST_ADDR) {
ret = mipi_i3c_hci_dat_v1.get_index(hci, ccc_addr);
if (ret < 0)
return ret;
dat_idx = ret;
}
xfer->cmd_tid = hci_get_tid();
if (!rnw && data_len <= 4) {
/* we use an Immediate Data Transfer Command */
xfer->cmd_desc[0] =
CMD_0_ATTR_I |
CMD_I0_TID(xfer->cmd_tid) |
CMD_I0_CMD(ccc_cmd) | CMD_I0_CP |
CMD_I0_DEV_INDEX(dat_idx) |
CMD_I0_DTT(data_len) |
CMD_I0_MODE(mode);
fill_data_bytes(xfer, data, data_len);
} else {
/* we use a Regular Data Transfer Command */
xfer->cmd_desc[0] =
CMD_0_ATTR_R |
CMD_R0_TID(xfer->cmd_tid) |
CMD_R0_CMD(ccc_cmd) | CMD_R0_CP |
CMD_R0_DEV_INDEX(dat_idx) |
CMD_R0_MODE(mode) |
(rnw ? CMD_R0_RNW : 0);
xfer->cmd_desc[1] =
CMD_R1_DATA_LENGTH(data_len);
}
return 0;
}
static void hci_cmd_v1_prep_i3c_xfer(struct i3c_hci *hci,
struct i3c_dev_desc *dev,
struct hci_xfer *xfer)
{
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
unsigned int dat_idx = dev_data->dat_idx;
enum hci_cmd_mode mode = get_i3c_mode(hci);
u8 *data = xfer->data;
unsigned int data_len = xfer->data_len;
bool rnw = xfer->rnw;
xfer->cmd_tid = hci_get_tid();
if (!rnw && data_len <= 4) {
/* we use an Immediate Data Transfer Command */
xfer->cmd_desc[0] =
CMD_0_ATTR_I |
CMD_I0_TID(xfer->cmd_tid) |
CMD_I0_DEV_INDEX(dat_idx) |
CMD_I0_DTT(data_len) |
CMD_I0_MODE(mode);
fill_data_bytes(xfer, data, data_len);
} else {
/* we use a Regular Data Transfer Command */
xfer->cmd_desc[0] =
CMD_0_ATTR_R |
CMD_R0_TID(xfer->cmd_tid) |
CMD_R0_DEV_INDEX(dat_idx) |
CMD_R0_MODE(mode) |
(rnw ? CMD_R0_RNW : 0);
xfer->cmd_desc[1] =
CMD_R1_DATA_LENGTH(data_len);
}
}
static void hci_cmd_v1_prep_i2c_xfer(struct i3c_hci *hci,
struct i2c_dev_desc *dev,
struct hci_xfer *xfer)
{
struct i3c_hci_dev_data *dev_data = i2c_dev_get_master_data(dev);
unsigned int dat_idx = dev_data->dat_idx;
enum hci_cmd_mode mode = get_i2c_mode(hci);
u8 *data = xfer->data;
unsigned int data_len = xfer->data_len;
bool rnw = xfer->rnw;
xfer->cmd_tid = hci_get_tid();
if (!rnw && data_len <= 4) {
/* we use an Immediate Data Transfer Command */
xfer->cmd_desc[0] =
CMD_0_ATTR_I |
CMD_I0_TID(xfer->cmd_tid) |
CMD_I0_DEV_INDEX(dat_idx) |
CMD_I0_DTT(data_len) |
CMD_I0_MODE(mode);
fill_data_bytes(xfer, data, data_len);
} else {
/* we use a Regular Data Transfer Command */
xfer->cmd_desc[0] =
CMD_0_ATTR_R |
CMD_R0_TID(xfer->cmd_tid) |
CMD_R0_DEV_INDEX(dat_idx) |
CMD_R0_MODE(mode) |
(rnw ? CMD_R0_RNW : 0);
xfer->cmd_desc[1] =
CMD_R1_DATA_LENGTH(data_len);
}
}
static int hci_cmd_v1_daa(struct i3c_hci *hci)
{
struct hci_xfer *xfer;
int ret, dat_idx = -1;
u8 next_addr = 0;
u64 pid;
unsigned int dcr, bcr;
DECLARE_COMPLETION_ONSTACK(done);
xfer = hci_alloc_xfer(2);
if (!xfer)
return -ENOMEM;
/*
* Simple for now: we allocate a temporary DAT entry, do a single
* DAA, register the device which will allocate its own DAT entry
* via the core callback, then free the temporary DAT entry.
* Loop until there is no more devices to assign an address to.
* Yes, there is room for improvements.
*/
for (;;) {
ret = mipi_i3c_hci_dat_v1.alloc_entry(hci);
if (ret < 0)
break;
dat_idx = ret;
ret = i3c_master_get_free_addr(&hci->master, next_addr);
if (ret < 0)
break;
next_addr = ret;
DBG("next_addr = 0x%02x, DAA using DAT %d", next_addr, dat_idx);
mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, dat_idx, next_addr);
mipi_i3c_hci_dct_index_reset(hci);
xfer->cmd_tid = hci_get_tid();
xfer->cmd_desc[0] =
CMD_0_ATTR_A |
CMD_A0_TID(xfer->cmd_tid) |
CMD_A0_CMD(I3C_CCC_ENTDAA) |
CMD_A0_DEV_INDEX(dat_idx) |
CMD_A0_DEV_COUNT(1) |
CMD_A0_ROC | CMD_A0_TOC;
xfer->cmd_desc[1] = 0;
hci->io->queue_xfer(hci, xfer, 1);
if (!wait_for_completion_timeout(&done, HZ) &&
hci->io->dequeue_xfer(hci, xfer, 1)) {
ret = -ETIME;
break;
}
if (RESP_STATUS(xfer[0].response) == RESP_ERR_NACK &&
RESP_STATUS(xfer[0].response) == 1) {
ret = 0; /* no more devices to be assigned */
break;
}
if (RESP_STATUS(xfer[0].response) != RESP_SUCCESS) {
ret = -EIO;
break;
}
i3c_hci_dct_get_val(hci, 0, &pid, &dcr, &bcr);
DBG("assigned address %#x to device PID=0x%llx DCR=%#x BCR=%#x",
next_addr, pid, dcr, bcr);
mipi_i3c_hci_dat_v1.free_entry(hci, dat_idx);
dat_idx = -1;
/*
* TODO: Extend the subsystem layer to allow for registering
* new device and provide BCR/DCR/PID at the same time.
*/
ret = i3c_master_add_i3c_dev_locked(&hci->master, next_addr);
if (ret)
break;
}
if (dat_idx >= 0)
mipi_i3c_hci_dat_v1.free_entry(hci, dat_idx);
hci_free_xfer(xfer, 1);
return ret;
}
const struct hci_cmd_ops mipi_i3c_hci_cmd_v1 = {
.prep_ccc = hci_cmd_v1_prep_ccc,
.prep_i3c_xfer = hci_cmd_v1_prep_i3c_xfer,
.prep_i2c_xfer = hci_cmd_v1_prep_i2c_xfer,
.perform_daa = hci_cmd_v1_daa,
};
|