1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/media/i2c/ccs/ccs-quirk.c
*
* Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
*
* Copyright (C) 2020 Intel Corporation
* Copyright (C) 2011--2012 Nokia Corporation
* Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
*/
#include <linux/delay.h>
#include "ccs.h"
#include "ccs-limits.h"
static int ccs_write_addr_8s(struct ccs_sensor *sensor,
const struct ccs_reg_8 *regs, int len)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
for (; len > 0; len--, regs++) {
rval = ccs_write_addr(sensor, regs->reg, regs->val);
if (rval < 0) {
dev_err(&client->dev,
"error %d writing reg 0x%4.4x, val 0x%2.2x",
rval, regs->reg, regs->val);
return rval;
}
}
return 0;
}
static int jt8ew9_limits(struct ccs_sensor *sensor)
{
if (sensor->minfo.revision_number < 0x0300)
sensor->frame_skip = 1;
/* Below 24 gain doesn't have effect at all, */
/* but ~59 is needed for full dynamic range */
ccs_replace_limit(sensor, CCS_L_ANALOG_GAIN_CODE_MIN, 0, 59);
ccs_replace_limit(sensor, CCS_L_ANALOG_GAIN_CODE_MAX, 0, 6000);
return 0;
}
static int jt8ew9_post_poweron(struct ccs_sensor *sensor)
{
static const struct ccs_reg_8 regs[] = {
{ 0x30a3, 0xd8 }, /* Output port control : LVDS ports only */
{ 0x30ae, 0x00 }, /* 0x0307 pll_multiplier maximum value on PLL input 9.6MHz ( 19.2MHz is divided on pre_pll_div) */
{ 0x30af, 0xd0 }, /* 0x0307 pll_multiplier maximum value on PLL input 9.6MHz ( 19.2MHz is divided on pre_pll_div) */
{ 0x322d, 0x04 }, /* Adjusting Processing Image Size to Scaler Toshiba Recommendation Setting */
{ 0x3255, 0x0f }, /* Horizontal Noise Reduction Control Toshiba Recommendation Setting */
{ 0x3256, 0x15 }, /* Horizontal Noise Reduction Control Toshiba Recommendation Setting */
{ 0x3258, 0x70 }, /* Analog Gain Control Toshiba Recommendation Setting */
{ 0x3259, 0x70 }, /* Analog Gain Control Toshiba Recommendation Setting */
{ 0x325f, 0x7c }, /* Analog Gain Control Toshiba Recommendation Setting */
{ 0x3302, 0x06 }, /* Pixel Reference Voltage Control Toshiba Recommendation Setting */
{ 0x3304, 0x00 }, /* Pixel Reference Voltage Control Toshiba Recommendation Setting */
{ 0x3307, 0x22 }, /* Pixel Reference Voltage Control Toshiba Recommendation Setting */
{ 0x3308, 0x8d }, /* Pixel Reference Voltage Control Toshiba Recommendation Setting */
{ 0x331e, 0x0f }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */
{ 0x3320, 0x30 }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */
{ 0x3321, 0x11 }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */
{ 0x3322, 0x98 }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */
{ 0x3323, 0x64 }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */
{ 0x3325, 0x83 }, /* Read Out Timing Control Toshiba Recommendation Setting */
{ 0x3330, 0x18 }, /* Read Out Timing Control Toshiba Recommendation Setting */
{ 0x333c, 0x01 }, /* Read Out Timing Control Toshiba Recommendation Setting */
{ 0x3345, 0x2f }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */
{ 0x33de, 0x38 }, /* Horizontal Noise Reduction Control Toshiba Recommendation Setting */
/* Taken from v03. No idea what the rest are. */
{ 0x32e0, 0x05 },
{ 0x32e1, 0x05 },
{ 0x32e2, 0x04 },
{ 0x32e5, 0x04 },
{ 0x32e6, 0x04 },
};
return ccs_write_addr_8s(sensor, regs, ARRAY_SIZE(regs));
}
const struct ccs_quirk smiapp_jt8ew9_quirk = {
.limits = jt8ew9_limits,
.post_poweron = jt8ew9_post_poweron,
};
static int imx125es_post_poweron(struct ccs_sensor *sensor)
{
/* Taken from v02. No idea what the other two are. */
static const struct ccs_reg_8 regs[] = {
/*
* 0x3302: clk during frame blanking:
* 0x00 - HS mode, 0x01 - LP11
*/
{ 0x3302, 0x01 },
{ 0x302d, 0x00 },
{ 0x3b08, 0x8c },
};
return ccs_write_addr_8s(sensor, regs, ARRAY_SIZE(regs));
}
const struct ccs_quirk smiapp_imx125es_quirk = {
.post_poweron = imx125es_post_poweron,
};
static int jt8ev1_limits(struct ccs_sensor *sensor)
{
ccs_replace_limit(sensor, CCS_L_X_ADDR_MAX, 0, 4271);
ccs_replace_limit(sensor, CCS_L_MIN_LINE_BLANKING_PCK_BIN, 0, 184);
return 0;
}
static int jt8ev1_post_poweron(struct ccs_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
static const struct ccs_reg_8 regs[] = {
{ 0x3031, 0xcd }, /* For digital binning (EQ_MONI) */
{ 0x30a3, 0xd0 }, /* FLASH STROBE enable */
{ 0x3237, 0x00 }, /* For control of pulse timing for ADC */
{ 0x3238, 0x43 },
{ 0x3301, 0x06 }, /* For analog bias for sensor */
{ 0x3302, 0x06 },
{ 0x3304, 0x00 },
{ 0x3305, 0x88 },
{ 0x332a, 0x14 },
{ 0x332c, 0x6b },
{ 0x3336, 0x01 },
{ 0x333f, 0x1f },
{ 0x3355, 0x00 },
{ 0x3356, 0x20 },
{ 0x33bf, 0x20 }, /* Adjust the FBC speed */
{ 0x33c9, 0x20 },
{ 0x33ce, 0x30 }, /* Adjust the parameter for logic function */
{ 0x33cf, 0xec }, /* For Black sun */
{ 0x3328, 0x80 }, /* Ugh. No idea what's this. */
};
static const struct ccs_reg_8 regs_96[] = {
{ 0x30ae, 0x00 }, /* For control of ADC clock */
{ 0x30af, 0xd0 },
{ 0x30b0, 0x01 },
};
rval = ccs_write_addr_8s(sensor, regs, ARRAY_SIZE(regs));
if (rval < 0)
return rval;
switch (sensor->hwcfg.ext_clk) {
case 9600000:
return ccs_write_addr_8s(sensor, regs_96,
ARRAY_SIZE(regs_96));
default:
dev_warn(&client->dev, "no MSRs for %d Hz ext_clk\n",
sensor->hwcfg.ext_clk);
return 0;
}
}
static int jt8ev1_pre_streamon(struct ccs_sensor *sensor)
{
return ccs_write_addr(sensor, 0x3328, 0x00);
}
static int jt8ev1_post_streamoff(struct ccs_sensor *sensor)
{
int rval;
/* Workaround: allows fast standby to work properly */
rval = ccs_write_addr(sensor, 0x3205, 0x04);
if (rval < 0)
return rval;
/* Wait for 1 ms + one line => 2 ms is likely enough */
usleep_range(2000, 2050);
/* Restore it */
rval = ccs_write_addr(sensor, 0x3205, 0x00);
if (rval < 0)
return rval;
return ccs_write_addr(sensor, 0x3328, 0x80);
}
static int jt8ev1_init(struct ccs_sensor *sensor)
{
sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL |
CCS_PLL_FLAG_LINK_DECOUPLED;
sensor->pll.vt_lanes = 1;
sensor->pll.op_lanes = sensor->pll.csi2.lanes;
return 0;
}
const struct ccs_quirk smiapp_jt8ev1_quirk = {
.limits = jt8ev1_limits,
.post_poweron = jt8ev1_post_poweron,
.pre_streamon = jt8ev1_pre_streamon,
.post_streamoff = jt8ev1_post_streamoff,
.init = jt8ev1_init,
};
static int tcm8500md_limits(struct ccs_sensor *sensor)
{
ccs_replace_limit(sensor, CCS_L_MIN_PLL_IP_CLK_FREQ_MHZ, 0, 2700000);
return 0;
}
const struct ccs_quirk smiapp_tcm8500md_quirk = {
.limits = tcm8500md_limits,
};
|