summaryrefslogtreecommitdiffstats
path: root/drivers/thunderbolt/tmu.c
blob: 49146f97bb16e7cd19ba516ca46affcfc1b17eca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
// SPDX-License-Identifier: GPL-2.0
/*
 * Thunderbolt Time Management Unit (TMU) support
 *
 * Copyright (C) 2019, Intel Corporation
 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
 *	    Rajmohan Mani <rajmohan.mani@intel.com>
 */

#include <linux/delay.h>

#include "tb.h"

static int tb_switch_set_tmu_mode_params(struct tb_switch *sw,
					 enum tb_switch_tmu_rate rate)
{
	u32 freq_meas_wind[2] = { 30, 800 };
	u32 avg_const[2] = { 4, 8 };
	u32 freq, avg, val;
	int ret;

	if (rate == TB_SWITCH_TMU_RATE_NORMAL) {
		freq = freq_meas_wind[0];
		avg = avg_const[0];
	} else if (rate == TB_SWITCH_TMU_RATE_HIFI) {
		freq = freq_meas_wind[1];
		avg = avg_const[1];
	} else {
		return 0;
	}

	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
			 sw->tmu.cap + TMU_RTR_CS_0, 1);
	if (ret)
		return ret;

	val &= ~TMU_RTR_CS_0_FREQ_WIND_MASK;
	val |= FIELD_PREP(TMU_RTR_CS_0_FREQ_WIND_MASK, freq);

	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH,
			  sw->tmu.cap + TMU_RTR_CS_0, 1);
	if (ret)
		return ret;

	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
			 sw->tmu.cap + TMU_RTR_CS_15, 1);
	if (ret)
		return ret;

	val &= ~TMU_RTR_CS_15_FREQ_AVG_MASK &
		~TMU_RTR_CS_15_DELAY_AVG_MASK &
		~TMU_RTR_CS_15_OFFSET_AVG_MASK &
		~TMU_RTR_CS_15_ERROR_AVG_MASK;
	val |=  FIELD_PREP(TMU_RTR_CS_15_FREQ_AVG_MASK, avg) |
		FIELD_PREP(TMU_RTR_CS_15_DELAY_AVG_MASK, avg) |
		FIELD_PREP(TMU_RTR_CS_15_OFFSET_AVG_MASK, avg) |
		FIELD_PREP(TMU_RTR_CS_15_ERROR_AVG_MASK, avg);

	return tb_sw_write(sw, &val, TB_CFG_SWITCH,
			   sw->tmu.cap + TMU_RTR_CS_15, 1);
}

static const char *tb_switch_tmu_mode_name(const struct tb_switch *sw)
{
	bool root_switch = !tb_route(sw);

	switch (sw->tmu.rate) {
	case TB_SWITCH_TMU_RATE_OFF:
		return "off";

	case TB_SWITCH_TMU_RATE_HIFI:
		/* Root switch does not have upstream directionality */
		if (root_switch)
			return "HiFi";
		if (sw->tmu.unidirectional)
			return "uni-directional, HiFi";
		return "bi-directional, HiFi";

	case TB_SWITCH_TMU_RATE_NORMAL:
		if (root_switch)
			return "normal";
		return "uni-directional, normal";

	default:
		return "unknown";
	}
}

static bool tb_switch_tmu_ucap_supported(struct tb_switch *sw)
{
	int ret;
	u32 val;

	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
			 sw->tmu.cap + TMU_RTR_CS_0, 1);
	if (ret)
		return false;

	return !!(val & TMU_RTR_CS_0_UCAP);
}

static int tb_switch_tmu_rate_read(struct tb_switch *sw)
{
	int ret;
	u32 val;

	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
			 sw->tmu.cap + TMU_RTR_CS_3, 1);
	if (ret)
		return ret;

	val >>= TMU_RTR_CS_3_TS_PACKET_INTERVAL_SHIFT;
	return val;
}

static int tb_switch_tmu_rate_write(struct tb_switch *sw, int rate)
{
	int ret;
	u32 val;

	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
			 sw->tmu.cap + TMU_RTR_CS_3, 1);
	if (ret)
		return ret;

	val &= ~TMU_RTR_CS_3_TS_PACKET_INTERVAL_MASK;
	val |= rate << TMU_RTR_CS_3_TS_PACKET_INTERVAL_SHIFT;

	return tb_sw_write(sw, &val, TB_CFG_SWITCH,
			   sw->tmu.cap + TMU_RTR_CS_3, 1);
}

static int tb_port_tmu_write(struct tb_port *port, u8 offset, u32 mask,
			     u32 value)
{
	u32 data;
	int ret;

	ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_tmu + offset, 1);
	if (ret)
		return ret;

	data &= ~mask;
	data |= value;

	return tb_port_write(port, &data, TB_CFG_PORT,
			     port->cap_tmu + offset, 1);
}

static int tb_port_tmu_set_unidirectional(struct tb_port *port,
					  bool unidirectional)
{
	u32 val;

	if (!port->sw->tmu.has_ucap)
		return 0;

	val = unidirectional ? TMU_ADP_CS_3_UDM : 0;
	return tb_port_tmu_write(port, TMU_ADP_CS_3, TMU_ADP_CS_3_UDM, val);
}

static inline int tb_port_tmu_unidirectional_disable(struct tb_port *port)
{
	return tb_port_tmu_set_unidirectional(port, false);
}

static inline int tb_port_tmu_unidirectional_enable(struct tb_port *port)
{
	return tb_port_tmu_set_unidirectional(port, true);
}

static bool tb_port_tmu_is_unidirectional(struct tb_port *port)
{
	int ret;
	u32 val;

	ret = tb_port_read(port, &val, TB_CFG_PORT,
			   port->cap_tmu + TMU_ADP_CS_3, 1);
	if (ret)
		return false;

	return val & TMU_ADP_CS_3_UDM;
}

static int tb_port_tmu_time_sync(struct tb_port *port, bool time_sync)
{
	u32 val = time_sync ? TMU_ADP_CS_6_DTS : 0;

	return tb_port_tmu_write(port, TMU_ADP_CS_6, TMU_ADP_CS_6_DTS, val);
}

static int tb_port_tmu_time_sync_disable(struct tb_port *port)
{
	return tb_port_tmu_time_sync(port, true);
}

static int tb_port_tmu_time_sync_enable(struct tb_port *port)
{
	return tb_port_tmu_time_sync(port, false);
}

static int tb_switch_tmu_set_time_disruption(struct tb_switch *sw, bool set)
{
	u32 val, offset, bit;
	int ret;

	if (tb_switch_is_usb4(sw)) {
		offset = sw->tmu.cap + TMU_RTR_CS_0;
		bit = TMU_RTR_CS_0_TD;
	} else {
		offset = sw->cap_vsec_tmu + TB_TIME_VSEC_3_CS_26;
		bit = TB_TIME_VSEC_3_CS_26_TD;
	}

	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
	if (ret)
		return ret;

	if (set)
		val |= bit;
	else
		val &= ~bit;

	return tb_sw_write(sw, &val, TB_CFG_SWITCH, offset, 1);
}

/**
 * tb_switch_tmu_init() - Initialize switch TMU structures
 * @sw: Switch to initialized
 *
 * This function must be called before other TMU related functions to
 * makes the internal structures are filled in correctly. Does not
 * change any hardware configuration.
 */
int tb_switch_tmu_init(struct tb_switch *sw)
{
	struct tb_port *port;
	int ret;

	if (tb_switch_is_icm(sw))
		return 0;

	ret = tb_switch_find_cap(sw, TB_SWITCH_CAP_TMU);
	if (ret > 0)
		sw->tmu.cap = ret;

	tb_switch_for_each_port(sw, port) {
		int cap;

		cap = tb_port_find_cap(port, TB_PORT_CAP_TIME1);
		if (cap > 0)
			port->cap_tmu = cap;
	}

	ret = tb_switch_tmu_rate_read(sw);
	if (ret < 0)
		return ret;

	sw->tmu.rate = ret;

	sw->tmu.has_ucap = tb_switch_tmu_ucap_supported(sw);
	if (sw->tmu.has_ucap) {
		tb_sw_dbg(sw, "TMU: supports uni-directional mode\n");

		if (tb_route(sw)) {
			struct tb_port *up = tb_upstream_port(sw);

			sw->tmu.unidirectional =
				tb_port_tmu_is_unidirectional(up);
		}
	} else {
		sw->tmu.unidirectional = false;
	}

	tb_sw_dbg(sw, "TMU: current mode: %s\n", tb_switch_tmu_mode_name(sw));
	return 0;
}

/**
 * tb_switch_tmu_post_time() - Update switch local time
 * @sw: Switch whose time to update
 *
 * Updates switch local time using time posting procedure.
 */
int tb_switch_tmu_post_time(struct tb_switch *sw)
{
	unsigned int post_time_high_offset, post_time_high = 0;
	unsigned int post_local_time_offset, post_time_offset;
	struct tb_switch *root_switch = sw->tb->root_switch;
	u64 hi, mid, lo, local_time, post_time;
	int i, ret, retries = 100;
	u32 gm_local_time[3];

	if (!tb_route(sw))
		return 0;

	if (!tb_switch_is_usb4(sw))
		return 0;

	/* Need to be able to read the grand master time */
	if (!root_switch->tmu.cap)
		return 0;

	ret = tb_sw_read(root_switch, gm_local_time, TB_CFG_SWITCH,
			 root_switch->tmu.cap + TMU_RTR_CS_1,
			 ARRAY_SIZE(gm_local_time));
	if (ret)
		return ret;

	for (i = 0; i < ARRAY_SIZE(gm_local_time); i++)
		tb_sw_dbg(root_switch, "local_time[%d]=0x%08x\n", i,
			  gm_local_time[i]);

	/* Convert to nanoseconds (drop fractional part) */
	hi = gm_local_time[2] & TMU_RTR_CS_3_LOCAL_TIME_NS_MASK;
	mid = gm_local_time[1];
	lo = (gm_local_time[0] & TMU_RTR_CS_1_LOCAL_TIME_NS_MASK) >>
		TMU_RTR_CS_1_LOCAL_TIME_NS_SHIFT;
	local_time = hi << 48 | mid << 16 | lo;

	/* Tell the switch that time sync is disrupted for a while */
	ret = tb_switch_tmu_set_time_disruption(sw, true);
	if (ret)
		return ret;

	post_local_time_offset = sw->tmu.cap + TMU_RTR_CS_22;
	post_time_offset = sw->tmu.cap + TMU_RTR_CS_24;
	post_time_high_offset = sw->tmu.cap + TMU_RTR_CS_25;

	/*
	 * Write the Grandmaster time to the Post Local Time registers
	 * of the new switch.
	 */
	ret = tb_sw_write(sw, &local_time, TB_CFG_SWITCH,
			  post_local_time_offset, 2);
	if (ret)
		goto out;

	/*
	 * Have the new switch update its local time by:
	 * 1) writing 0x1 to the Post Time Low register and 0xffffffff to
	 * Post Time High register.
	 * 2) write 0 to Post Time High register and then wait for
	 * the completion of the post_time register becomes 0.
	 * This means the time has been converged properly.
	 */
	post_time = 0xffffffff00000001ULL;

	ret = tb_sw_write(sw, &post_time, TB_CFG_SWITCH, post_time_offset, 2);
	if (ret)
		goto out;

	ret = tb_sw_write(sw, &post_time_high, TB_CFG_SWITCH,
			  post_time_high_offset, 1);
	if (ret)
		goto out;

	do {
		usleep_range(5, 10);
		ret = tb_sw_read(sw, &post_time, TB_CFG_SWITCH,
				 post_time_offset, 2);
		if (ret)
			goto out;
	} while (--retries && post_time);

	if (!retries) {
		ret = -ETIMEDOUT;
		goto out;
	}

	tb_sw_dbg(sw, "TMU: updated local time to %#llx\n", local_time);

out:
	tb_switch_tmu_set_time_disruption(sw, false);
	return ret;
}

/**
 * tb_switch_tmu_disable() - Disable TMU of a switch
 * @sw: Switch whose TMU to disable
 *
 * Turns off TMU of @sw if it is enabled. If not enabled does nothing.
 */
int tb_switch_tmu_disable(struct tb_switch *sw)
{
	/*
	 * No need to disable TMU on devices that don't support CLx since
	 * on these devices e.g. Alpine Ridge and earlier, the TMU mode
	 * HiFi bi-directional is enabled by default and we don't change it.
	 */
	if (!tb_switch_is_clx_supported(sw))
		return 0;

	/* Already disabled? */
	if (sw->tmu.rate == TB_SWITCH_TMU_RATE_OFF)
		return 0;


	if (tb_route(sw)) {
		bool unidirectional = sw->tmu.unidirectional;
		struct tb_switch *parent = tb_switch_parent(sw);
		struct tb_port *down, *up;
		int ret;

		down = tb_port_at(tb_route(sw), parent);
		up = tb_upstream_port(sw);
		/*
		 * In case of uni-directional time sync, TMU handshake is
		 * initiated by upstream router. In case of bi-directional
		 * time sync, TMU handshake is initiated by downstream router.
		 * We change downstream router's rate to off for both uni/bidir
		 * cases although it is needed only for the bi-directional mode.
		 * We avoid changing upstream router's mode since it might
		 * have another downstream router plugged, that is set to
		 * uni-directional mode and we don't want to change it's TMU
		 * mode.
		 */
		ret = tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_OFF);
		if (ret)
			return ret;

		tb_port_tmu_time_sync_disable(up);
		ret = tb_port_tmu_time_sync_disable(down);
		if (ret)
			return ret;

		if (unidirectional) {
			/* The switch may be unplugged so ignore any errors */
			tb_port_tmu_unidirectional_disable(up);
			ret = tb_port_tmu_unidirectional_disable(down);
			if (ret)
				return ret;
		}
	} else {
		tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_OFF);
	}

	sw->tmu.unidirectional = false;
	sw->tmu.rate = TB_SWITCH_TMU_RATE_OFF;

	tb_sw_dbg(sw, "TMU: disabled\n");
	return 0;
}

static void __tb_switch_tmu_off(struct tb_switch *sw, bool unidirectional)
{
	struct tb_switch *parent = tb_switch_parent(sw);
	struct tb_port *down, *up;

	down = tb_port_at(tb_route(sw), parent);
	up = tb_upstream_port(sw);
	/*
	 * In case of any failure in one of the steps when setting
	 * bi-directional or uni-directional TMU mode, get back to the TMU
	 * configurations in off mode. In case of additional failures in
	 * the functions below, ignore them since the caller shall already
	 * report a failure.
	 */
	tb_port_tmu_time_sync_disable(down);
	tb_port_tmu_time_sync_disable(up);
	if (unidirectional)
		tb_switch_tmu_rate_write(parent, TB_SWITCH_TMU_RATE_OFF);
	else
		tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_OFF);

	tb_switch_set_tmu_mode_params(sw, sw->tmu.rate);
	tb_port_tmu_unidirectional_disable(down);
	tb_port_tmu_unidirectional_disable(up);
}

/*
 * This function is called when the previous TMU mode was
 * TB_SWITCH_TMU_RATE_OFF.
 */
static int __tb_switch_tmu_enable_bidirectional(struct tb_switch *sw)
{
	struct tb_switch *parent = tb_switch_parent(sw);
	struct tb_port *up, *down;
	int ret;

	up = tb_upstream_port(sw);
	down = tb_port_at(tb_route(sw), parent);

	ret = tb_port_tmu_unidirectional_disable(up);
	if (ret)
		return ret;

	ret = tb_port_tmu_unidirectional_disable(down);
	if (ret)
		goto out;

	ret = tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_HIFI);
	if (ret)
		goto out;

	ret = tb_port_tmu_time_sync_enable(up);
	if (ret)
		goto out;

	ret = tb_port_tmu_time_sync_enable(down);
	if (ret)
		goto out;

	return 0;

out:
	__tb_switch_tmu_off(sw, false);
	return ret;
}

static int tb_switch_tmu_objection_mask(struct tb_switch *sw)
{
	u32 val;
	int ret;

	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
			 sw->cap_vsec_tmu + TB_TIME_VSEC_3_CS_9, 1);
	if (ret)
		return ret;

	val &= ~TB_TIME_VSEC_3_CS_9_TMU_OBJ_MASK;

	return tb_sw_write(sw, &val, TB_CFG_SWITCH,
			   sw->cap_vsec_tmu + TB_TIME_VSEC_3_CS_9, 1);
}

static int tb_switch_tmu_unidirectional_enable(struct tb_switch *sw)
{
	struct tb_port *up = tb_upstream_port(sw);

	return tb_port_tmu_write(up, TMU_ADP_CS_6,
				 TMU_ADP_CS_6_DISABLE_TMU_OBJ_MASK,
				 TMU_ADP_CS_6_DISABLE_TMU_OBJ_MASK);
}

/*
 * This function is called when the previous TMU mode was
 * TB_SWITCH_TMU_RATE_OFF.
 */
static int __tb_switch_tmu_enable_unidirectional(struct tb_switch *sw)
{
	struct tb_switch *parent = tb_switch_parent(sw);
	struct tb_port *up, *down;
	int ret;

	up = tb_upstream_port(sw);
	down = tb_port_at(tb_route(sw), parent);
	ret = tb_switch_tmu_rate_write(parent, sw->tmu.rate_request);
	if (ret)
		return ret;

	ret = tb_switch_set_tmu_mode_params(sw, sw->tmu.rate_request);
	if (ret)
		return ret;

	ret = tb_port_tmu_unidirectional_enable(up);
	if (ret)
		goto out;

	ret = tb_port_tmu_time_sync_enable(up);
	if (ret)
		goto out;

	ret = tb_port_tmu_unidirectional_enable(down);
	if (ret)
		goto out;

	ret = tb_port_tmu_time_sync_enable(down);
	if (ret)
		goto out;

	return 0;

out:
	__tb_switch_tmu_off(sw, true);
	return ret;
}

static void __tb_switch_tmu_change_mode_prev(struct tb_switch *sw)
{
	struct tb_switch *parent = tb_switch_parent(sw);
	struct tb_port *down, *up;

	down = tb_port_at(tb_route(sw), parent);
	up = tb_upstream_port(sw);
	/*
	 * In case of any failure in one of the steps when change mode,
	 * get back to the TMU configurations in previous mode.
	 * In case of additional failures in the functions below,
	 * ignore them since the caller shall already report a failure.
	 */
	tb_port_tmu_set_unidirectional(down, sw->tmu.unidirectional);
	if (sw->tmu.unidirectional_request)
		tb_switch_tmu_rate_write(parent, sw->tmu.rate);
	else
		tb_switch_tmu_rate_write(sw, sw->tmu.rate);

	tb_switch_set_tmu_mode_params(sw, sw->tmu.rate);
	tb_port_tmu_set_unidirectional(up, sw->tmu.unidirectional);
}

static int __tb_switch_tmu_change_mode(struct tb_switch *sw)
{
	struct tb_switch *parent = tb_switch_parent(sw);
	struct tb_port *up, *down;
	int ret;

	up = tb_upstream_port(sw);
	down = tb_port_at(tb_route(sw), parent);
	ret = tb_port_tmu_set_unidirectional(down, sw->tmu.unidirectional_request);
	if (ret)
		goto out;

	if (sw->tmu.unidirectional_request)
		ret = tb_switch_tmu_rate_write(parent, sw->tmu.rate_request);
	else
		ret = tb_switch_tmu_rate_write(sw, sw->tmu.rate_request);
	if (ret)
		return ret;

	ret = tb_switch_set_tmu_mode_params(sw, sw->tmu.rate_request);
	if (ret)
		return ret;

	ret = tb_port_tmu_set_unidirectional(up, sw->tmu.unidirectional_request);
	if (ret)
		goto out;

	ret = tb_port_tmu_time_sync_enable(down);
	if (ret)
		goto out;

	ret = tb_port_tmu_time_sync_enable(up);
	if (ret)
		goto out;

	return 0;

out:
	__tb_switch_tmu_change_mode_prev(sw);
	return ret;
}

/**
 * tb_switch_tmu_enable() - Enable TMU on a router
 * @sw: Router whose TMU to enable
 *
 * Enables TMU of a router to be in uni-directional Normal/HiFi
 * or bi-directional HiFi mode. Calling tb_switch_tmu_configure() is required
 * before calling this function, to select the mode Normal/HiFi and
 * directionality (uni-directional/bi-directional).
 * In HiFi mode all tunneling should work. In Normal mode, DP tunneling can't
 * work. Uni-directional mode is required for CLx (Link Low-Power) to work.
 */
int tb_switch_tmu_enable(struct tb_switch *sw)
{
	bool unidirectional = sw->tmu.unidirectional_request;
	int ret;

	if (unidirectional && !sw->tmu.has_ucap)
		return -EOPNOTSUPP;

	/*
	 * No need to enable TMU on devices that don't support CLx since on
	 * these devices e.g. Alpine Ridge and earlier, the TMU mode HiFi
	 * bi-directional is enabled by default.
	 */
	if (!tb_switch_is_clx_supported(sw))
		return 0;

	if (tb_switch_tmu_is_enabled(sw, sw->tmu.unidirectional_request))
		return 0;

	if (tb_switch_is_titan_ridge(sw) && unidirectional) {
		/*
		 * Titan Ridge supports CL0s and CL1 only. CL0s and CL1 are
		 * enabled and supported together.
		 */
		if (!tb_switch_is_clx_enabled(sw, TB_CL1))
			return -EOPNOTSUPP;

		ret = tb_switch_tmu_objection_mask(sw);
		if (ret)
			return ret;

		ret = tb_switch_tmu_unidirectional_enable(sw);
		if (ret)
			return ret;
	}

	ret = tb_switch_tmu_set_time_disruption(sw, true);
	if (ret)
		return ret;

	if (tb_route(sw)) {
		/*
		 * The used mode changes are from OFF to
		 * HiFi-Uni/HiFi-BiDir/Normal-Uni or from Normal-Uni to
		 * HiFi-Uni.
		 */
		if (sw->tmu.rate == TB_SWITCH_TMU_RATE_OFF) {
			if (unidirectional)
				ret = __tb_switch_tmu_enable_unidirectional(sw);
			else
				ret = __tb_switch_tmu_enable_bidirectional(sw);
			if (ret)
				return ret;
		} else if (sw->tmu.rate == TB_SWITCH_TMU_RATE_NORMAL) {
			ret = __tb_switch_tmu_change_mode(sw);
			if (ret)
				return ret;
		}
		sw->tmu.unidirectional = unidirectional;
	} else {
		/*
		 * Host router port configurations are written as
		 * part of configurations for downstream port of the parent
		 * of the child node - see above.
		 * Here only the host router' rate configuration is written.
		 */
		ret = tb_switch_tmu_rate_write(sw, sw->tmu.rate_request);
		if (ret)
			return ret;
	}

	sw->tmu.rate = sw->tmu.rate_request;

	tb_sw_dbg(sw, "TMU: mode set to: %s\n", tb_switch_tmu_mode_name(sw));
	return tb_switch_tmu_set_time_disruption(sw, false);
}

/**
 * tb_switch_tmu_configure() - Configure the TMU rate and directionality
 * @sw: Router whose mode to change
 * @rate: Rate to configure Off/Normal/HiFi
 * @unidirectional: If uni-directional (bi-directional otherwise)
 *
 * Selects the rate of the TMU and directionality (uni-directional or
 * bi-directional). Must be called before tb_switch_tmu_enable().
 */
void tb_switch_tmu_configure(struct tb_switch *sw,
			     enum tb_switch_tmu_rate rate, bool unidirectional)
{
	sw->tmu.unidirectional_request = unidirectional;
	sw->tmu.rate_request = rate;
}

static int tb_switch_tmu_config_enable(struct device *dev, void *rate)
{
	if (tb_is_switch(dev)) {
		struct tb_switch *sw = tb_to_switch(dev);

		tb_switch_tmu_configure(sw, *(enum tb_switch_tmu_rate *)rate,
					tb_switch_is_clx_enabled(sw, TB_CL1));
		if (tb_switch_tmu_enable(sw))
			tb_sw_dbg(sw, "fail switching TMU mode for 1st depth router\n");
	}

	return 0;
}

/**
 * tb_switch_enable_tmu_1st_child - Configure and enable TMU for 1st chidren
 * @sw: The router to configure and enable it's children TMU
 * @rate: Rate of the TMU to configure the router's chidren to
 *
 * Configures and enables the TMU mode of 1st depth children of the specified
 * router to the specified rate.
 */
void tb_switch_enable_tmu_1st_child(struct tb_switch *sw,
				    enum tb_switch_tmu_rate rate)
{
	device_for_each_child(&sw->dev, &rate,
			      tb_switch_tmu_config_enable);
}