summaryrefslogtreecommitdiffstats
path: root/src/third-party/CLI/TypeTools.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/third-party/CLI/TypeTools.hpp')
-rw-r--r--src/third-party/CLI/TypeTools.hpp1558
1 files changed, 1558 insertions, 0 deletions
diff --git a/src/third-party/CLI/TypeTools.hpp b/src/third-party/CLI/TypeTools.hpp
new file mode 100644
index 0000000..c21d5e3
--- /dev/null
+++ b/src/third-party/CLI/TypeTools.hpp
@@ -0,0 +1,1558 @@
+// Copyright (c) 2017-2022, University of Cincinnati, developed by Henry Schreiner
+// under NSF AWARD 1414736 and by the respective contributors.
+// All rights reserved.
+//
+// SPDX-License-Identifier: BSD-3-Clause
+
+#pragma once
+
+// [CLI11:public_includes:set]
+#include <cstdint>
+#include <exception>
+#include <limits>
+#include <memory>
+#include <string>
+#include <type_traits>
+#include <utility>
+#include <vector>
+// [CLI11:public_includes:end]
+
+#include "StringTools.hpp"
+
+namespace CLI {
+// [CLI11:type_tools_hpp:verbatim]
+
+// Type tools
+
+// Utilities for type enabling
+namespace detail {
+// Based generally on https://rmf.io/cxx11/almost-static-if
+/// Simple empty scoped class
+enum class enabler {};
+
+/// An instance to use in EnableIf
+constexpr enabler dummy = {};
+} // namespace detail
+
+/// A copy of enable_if_t from C++14, compatible with C++11.
+///
+/// We could check to see if C++14 is being used, but it does not hurt to redefine this
+/// (even Google does this: https://github.com/google/skia/blob/main/include/private/SkTLogic.h)
+/// It is not in the std namespace anyway, so no harm done.
+template <bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;
+
+/// A copy of std::void_t from C++17 (helper for C++11 and C++14)
+template <typename... Ts> struct make_void { using type = void; };
+
+/// A copy of std::void_t from C++17 - same reasoning as enable_if_t, it does not hurt to redefine
+template <typename... Ts> using void_t = typename make_void<Ts...>::type;
+
+/// A copy of std::conditional_t from C++14 - same reasoning as enable_if_t, it does not hurt to redefine
+template <bool B, class T, class F> using conditional_t = typename std::conditional<B, T, F>::type;
+
+/// Check to see if something is bool (fail check by default)
+template <typename T> struct is_bool : std::false_type {};
+
+/// Check to see if something is bool (true if actually a bool)
+template <> struct is_bool<bool> : std::true_type {};
+
+/// Check to see if something is a shared pointer
+template <typename T> struct is_shared_ptr : std::false_type {};
+
+/// Check to see if something is a shared pointer (True if really a shared pointer)
+template <typename T> struct is_shared_ptr<std::shared_ptr<T>> : std::true_type {};
+
+/// Check to see if something is a shared pointer (True if really a shared pointer)
+template <typename T> struct is_shared_ptr<const std::shared_ptr<T>> : std::true_type {};
+
+/// Check to see if something is copyable pointer
+template <typename T> struct is_copyable_ptr {
+ static bool const value = is_shared_ptr<T>::value || std::is_pointer<T>::value;
+};
+
+/// This can be specialized to override the type deduction for IsMember.
+template <typename T> struct IsMemberType { using type = T; };
+
+/// The main custom type needed here is const char * should be a string.
+template <> struct IsMemberType<const char *> { using type = std::string; };
+
+namespace detail {
+
+// These are utilities for IsMember and other transforming objects
+
+/// Handy helper to access the element_type generically. This is not part of is_copyable_ptr because it requires that
+/// pointer_traits<T> be valid.
+
+/// not a pointer
+template <typename T, typename Enable = void> struct element_type { using type = T; };
+
+template <typename T> struct element_type<T, typename std::enable_if<is_copyable_ptr<T>::value>::type> {
+ using type = typename std::pointer_traits<T>::element_type;
+};
+
+/// Combination of the element type and value type - remove pointer (including smart pointers) and get the value_type of
+/// the container
+template <typename T> struct element_value_type { using type = typename element_type<T>::type::value_type; };
+
+/// Adaptor for set-like structure: This just wraps a normal container in a few utilities that do almost nothing.
+template <typename T, typename _ = void> struct pair_adaptor : std::false_type {
+ using value_type = typename T::value_type;
+ using first_type = typename std::remove_const<value_type>::type;
+ using second_type = typename std::remove_const<value_type>::type;
+
+ /// Get the first value (really just the underlying value)
+ template <typename Q> static auto first(Q &&pair_value) -> decltype(std::forward<Q>(pair_value)) {
+ return std::forward<Q>(pair_value);
+ }
+ /// Get the second value (really just the underlying value)
+ template <typename Q> static auto second(Q &&pair_value) -> decltype(std::forward<Q>(pair_value)) {
+ return std::forward<Q>(pair_value);
+ }
+};
+
+/// Adaptor for map-like structure (true version, must have key_type and mapped_type).
+/// This wraps a mapped container in a few utilities access it in a general way.
+template <typename T>
+struct pair_adaptor<
+ T,
+ conditional_t<false, void_t<typename T::value_type::first_type, typename T::value_type::second_type>, void>>
+ : std::true_type {
+ using value_type = typename T::value_type;
+ using first_type = typename std::remove_const<typename value_type::first_type>::type;
+ using second_type = typename std::remove_const<typename value_type::second_type>::type;
+
+ /// Get the first value (really just the underlying value)
+ template <typename Q> static auto first(Q &&pair_value) -> decltype(std::get<0>(std::forward<Q>(pair_value))) {
+ return std::get<0>(std::forward<Q>(pair_value));
+ }
+ /// Get the second value (really just the underlying value)
+ template <typename Q> static auto second(Q &&pair_value) -> decltype(std::get<1>(std::forward<Q>(pair_value))) {
+ return std::get<1>(std::forward<Q>(pair_value));
+ }
+};
+
+// Warning is suppressed due to "bug" in gcc<5.0 and gcc 7.0 with c++17 enabled that generates a Wnarrowing warning
+// in the unevaluated context even if the function that was using this wasn't used. The standard says narrowing in
+// brace initialization shouldn't be allowed but for backwards compatibility gcc allows it in some contexts. It is a
+// little fuzzy what happens in template constructs and I think that was something GCC took a little while to work out.
+// But regardless some versions of gcc generate a warning when they shouldn't from the following code so that should be
+// suppressed
+#ifdef __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wnarrowing"
+#endif
+// check for constructibility from a specific type and copy assignable used in the parse detection
+template <typename T, typename C> class is_direct_constructible {
+ template <typename TT, typename CC>
+ static auto test(int, std::true_type) -> decltype(
+// NVCC warns about narrowing conversions here
+#ifdef __CUDACC__
+#pragma diag_suppress 2361
+#endif
+ TT { std::declval<CC>() }
+#ifdef __CUDACC__
+#pragma diag_default 2361
+#endif
+ ,
+ std::is_move_assignable<TT>());
+
+ template <typename TT, typename CC> static auto test(int, std::false_type) -> std::false_type;
+
+ template <typename, typename> static auto test(...) -> std::false_type;
+
+ public:
+ static constexpr bool value = decltype(test<T, C>(0, typename std::is_constructible<T, C>::type()))::value;
+};
+#ifdef __GNUC__
+#pragma GCC diagnostic pop
+#endif
+
+// Check for output streamability
+// Based on https://stackoverflow.com/questions/22758291/how-can-i-detect-if-a-type-can-be-streamed-to-an-stdostream
+
+template <typename T, typename S = std::ostringstream> class is_ostreamable {
+ template <typename TT, typename SS>
+ static auto test(int) -> decltype(std::declval<SS &>() << std::declval<TT>(), std::true_type());
+
+ template <typename, typename> static auto test(...) -> std::false_type;
+
+ public:
+ static constexpr bool value = decltype(test<T, S>(0))::value;
+};
+
+/// Check for input streamability
+template <typename T, typename S = std::istringstream> class is_istreamable {
+ template <typename TT, typename SS>
+ static auto test(int) -> decltype(std::declval<SS &>() >> std::declval<TT &>(), std::true_type());
+
+ template <typename, typename> static auto test(...) -> std::false_type;
+
+ public:
+ static constexpr bool value = decltype(test<T, S>(0))::value;
+};
+
+/// Check for complex
+template <typename T> class is_complex {
+ template <typename TT>
+ static auto test(int) -> decltype(std::declval<TT>().real(), std::declval<TT>().imag(), std::true_type());
+
+ template <typename> static auto test(...) -> std::false_type;
+
+ public:
+ static constexpr bool value = decltype(test<T>(0))::value;
+};
+
+/// Templated operation to get a value from a stream
+template <typename T, enable_if_t<is_istreamable<T>::value, detail::enabler> = detail::dummy>
+bool from_stream(const std::string &istring, T &obj) {
+ std::istringstream is;
+ is.str(istring);
+ is >> obj;
+ return !is.fail() && !is.rdbuf()->in_avail();
+}
+
+template <typename T, enable_if_t<!is_istreamable<T>::value, detail::enabler> = detail::dummy>
+bool from_stream(const std::string & /*istring*/, T & /*obj*/) {
+ return false;
+}
+
+// check to see if an object is a mutable container (fail by default)
+template <typename T, typename _ = void> struct is_mutable_container : std::false_type {};
+
+/// type trait to test if a type is a mutable container meaning it has a value_type, it has an iterator, a clear, and
+/// end methods and an insert function. And for our purposes we exclude std::string and types that can be constructed
+/// from a std::string
+template <typename T>
+struct is_mutable_container<
+ T,
+ conditional_t<false,
+ void_t<typename T::value_type,
+ decltype(std::declval<T>().end()),
+ decltype(std::declval<T>().clear()),
+ decltype(std::declval<T>().insert(std::declval<decltype(std::declval<T>().end())>(),
+ std::declval<const typename T::value_type &>()))>,
+ void>>
+ : public conditional_t<std::is_constructible<T, std::string>::value, std::false_type, std::true_type> {};
+
+// check to see if an object is a mutable container (fail by default)
+template <typename T, typename _ = void> struct is_readable_container : std::false_type {};
+
+/// type trait to test if a type is a container meaning it has a value_type, it has an iterator, a clear, and an end
+/// methods and an insert function. And for our purposes we exclude std::string and types that can be constructed from
+/// a std::string
+template <typename T>
+struct is_readable_container<
+ T,
+ conditional_t<false, void_t<decltype(std::declval<T>().end()), decltype(std::declval<T>().begin())>, void>>
+ : public std::true_type {};
+
+// check to see if an object is a wrapper (fail by default)
+template <typename T, typename _ = void> struct is_wrapper : std::false_type {};
+
+// check if an object is a wrapper (it has a value_type defined)
+template <typename T>
+struct is_wrapper<T, conditional_t<false, void_t<typename T::value_type>, void>> : public std::true_type {};
+
+// Check for tuple like types, as in classes with a tuple_size type trait
+template <typename S> class is_tuple_like {
+ template <typename SS>
+ // static auto test(int)
+ // -> decltype(std::conditional<(std::tuple_size<SS>::value > 0), std::true_type, std::false_type>::type());
+ static auto test(int) -> decltype(std::tuple_size<typename std::decay<SS>::type>::value, std::true_type{});
+ template <typename> static auto test(...) -> std::false_type;
+
+ public:
+ static constexpr bool value = decltype(test<S>(0))::value;
+};
+
+/// Convert an object to a string (directly forward if this can become a string)
+template <typename T, enable_if_t<std::is_convertible<T, std::string>::value, detail::enabler> = detail::dummy>
+auto to_string(T &&value) -> decltype(std::forward<T>(value)) {
+ return std::forward<T>(value);
+}
+
+/// Construct a string from the object
+template <typename T,
+ enable_if_t<std::is_constructible<std::string, T>::value && !std::is_convertible<T, std::string>::value,
+ detail::enabler> = detail::dummy>
+std::string to_string(const T &value) {
+ return std::string(value);
+}
+
+/// Convert an object to a string (streaming must be supported for that type)
+template <typename T,
+ enable_if_t<!std::is_convertible<std::string, T>::value && !std::is_constructible<std::string, T>::value &&
+ is_ostreamable<T>::value,
+ detail::enabler> = detail::dummy>
+std::string to_string(T &&value) {
+ std::stringstream stream;
+ stream << value;
+ return stream.str();
+}
+
+/// If conversion is not supported, return an empty string (streaming is not supported for that type)
+template <typename T,
+ enable_if_t<!std::is_constructible<std::string, T>::value && !is_ostreamable<T>::value &&
+ !is_readable_container<typename std::remove_const<T>::type>::value,
+ detail::enabler> = detail::dummy>
+std::string to_string(T &&) {
+ return std::string{};
+}
+
+/// convert a readable container to a string
+template <typename T,
+ enable_if_t<!std::is_constructible<std::string, T>::value && !is_ostreamable<T>::value &&
+ is_readable_container<T>::value,
+ detail::enabler> = detail::dummy>
+std::string to_string(T &&variable) {
+ auto cval = variable.begin();
+ auto end = variable.end();
+ if(cval == end) {
+ return std::string("{}");
+ }
+ std::vector<std::string> defaults;
+ while(cval != end) {
+ defaults.emplace_back(CLI::detail::to_string(*cval));
+ ++cval;
+ }
+ return std::string("[" + detail::join(defaults) + "]");
+}
+
+/// special template overload
+template <typename T1,
+ typename T2,
+ typename T,
+ enable_if_t<std::is_same<T1, T2>::value, detail::enabler> = detail::dummy>
+auto checked_to_string(T &&value) -> decltype(to_string(std::forward<T>(value))) {
+ return to_string(std::forward<T>(value));
+}
+
+/// special template overload
+template <typename T1,
+ typename T2,
+ typename T,
+ enable_if_t<!std::is_same<T1, T2>::value, detail::enabler> = detail::dummy>
+std::string checked_to_string(T &&) {
+ return std::string{};
+}
+/// get a string as a convertible value for arithmetic types
+template <typename T, enable_if_t<std::is_arithmetic<T>::value, detail::enabler> = detail::dummy>
+std::string value_string(const T &value) {
+ return std::to_string(value);
+}
+/// get a string as a convertible value for enumerations
+template <typename T, enable_if_t<std::is_enum<T>::value, detail::enabler> = detail::dummy>
+std::string value_string(const T &value) {
+ return std::to_string(static_cast<typename std::underlying_type<T>::type>(value));
+}
+/// for other types just use the regular to_string function
+template <typename T,
+ enable_if_t<!std::is_enum<T>::value && !std::is_arithmetic<T>::value, detail::enabler> = detail::dummy>
+auto value_string(const T &value) -> decltype(to_string(value)) {
+ return to_string(value);
+}
+
+/// template to get the underlying value type if it exists or use a default
+template <typename T, typename def, typename Enable = void> struct wrapped_type { using type = def; };
+
+/// Type size for regular object types that do not look like a tuple
+template <typename T, typename def> struct wrapped_type<T, def, typename std::enable_if<is_wrapper<T>::value>::type> {
+ using type = typename T::value_type;
+};
+
+/// This will only trigger for actual void type
+template <typename T, typename Enable = void> struct type_count_base { static const int value{0}; };
+
+/// Type size for regular object types that do not look like a tuple
+template <typename T>
+struct type_count_base<T,
+ typename std::enable_if<!is_tuple_like<T>::value && !is_mutable_container<T>::value &&
+ !std::is_void<T>::value>::type> {
+ static constexpr int value{1};
+};
+
+/// the base tuple size
+template <typename T>
+struct type_count_base<T, typename std::enable_if<is_tuple_like<T>::value && !is_mutable_container<T>::value>::type> {
+ static constexpr int value{std::tuple_size<T>::value};
+};
+
+/// Type count base for containers is the type_count_base of the individual element
+template <typename T> struct type_count_base<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
+ static constexpr int value{type_count_base<typename T::value_type>::value};
+};
+
+/// Set of overloads to get the type size of an object
+
+/// forward declare the subtype_count structure
+template <typename T> struct subtype_count;
+
+/// forward declare the subtype_count_min structure
+template <typename T> struct subtype_count_min;
+
+/// This will only trigger for actual void type
+template <typename T, typename Enable = void> struct type_count { static const int value{0}; };
+
+/// Type size for regular object types that do not look like a tuple
+template <typename T>
+struct type_count<T,
+ typename std::enable_if<!is_wrapper<T>::value && !is_tuple_like<T>::value && !is_complex<T>::value &&
+ !std::is_void<T>::value>::type> {
+ static constexpr int value{1};
+};
+
+/// Type size for complex since it sometimes looks like a wrapper
+template <typename T> struct type_count<T, typename std::enable_if<is_complex<T>::value>::type> {
+ static constexpr int value{2};
+};
+
+/// Type size of types that are wrappers,except complex and tuples(which can also be wrappers sometimes)
+template <typename T> struct type_count<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
+ static constexpr int value{subtype_count<typename T::value_type>::value};
+};
+
+/// Type size of types that are wrappers,except containers complex and tuples(which can also be wrappers sometimes)
+template <typename T>
+struct type_count<T,
+ typename std::enable_if<is_wrapper<T>::value && !is_complex<T>::value && !is_tuple_like<T>::value &&
+ !is_mutable_container<T>::value>::type> {
+ static constexpr int value{type_count<typename T::value_type>::value};
+};
+
+/// 0 if the index > tuple size
+template <typename T, std::size_t I>
+constexpr typename std::enable_if<I == type_count_base<T>::value, int>::type tuple_type_size() {
+ return 0;
+}
+
+/// Recursively generate the tuple type name
+template <typename T, std::size_t I>
+ constexpr typename std::enable_if < I<type_count_base<T>::value, int>::type tuple_type_size() {
+ return subtype_count<typename std::tuple_element<I, T>::type>::value + tuple_type_size<T, I + 1>();
+}
+
+/// Get the type size of the sum of type sizes for all the individual tuple types
+template <typename T> struct type_count<T, typename std::enable_if<is_tuple_like<T>::value>::type> {
+ static constexpr int value{tuple_type_size<T, 0>()};
+};
+
+/// definition of subtype count
+template <typename T> struct subtype_count {
+ static constexpr int value{is_mutable_container<T>::value ? expected_max_vector_size : type_count<T>::value};
+};
+
+/// This will only trigger for actual void type
+template <typename T, typename Enable = void> struct type_count_min { static const int value{0}; };
+
+/// Type size for regular object types that do not look like a tuple
+template <typename T>
+struct type_count_min<
+ T,
+ typename std::enable_if<!is_mutable_container<T>::value && !is_tuple_like<T>::value && !is_wrapper<T>::value &&
+ !is_complex<T>::value && !std::is_void<T>::value>::type> {
+ static constexpr int value{type_count<T>::value};
+};
+
+/// Type size for complex since it sometimes looks like a wrapper
+template <typename T> struct type_count_min<T, typename std::enable_if<is_complex<T>::value>::type> {
+ static constexpr int value{1};
+};
+
+/// Type size min of types that are wrappers,except complex and tuples(which can also be wrappers sometimes)
+template <typename T>
+struct type_count_min<
+ T,
+ typename std::enable_if<is_wrapper<T>::value && !is_complex<T>::value && !is_tuple_like<T>::value>::type> {
+ static constexpr int value{subtype_count_min<typename T::value_type>::value};
+};
+
+/// 0 if the index > tuple size
+template <typename T, std::size_t I>
+constexpr typename std::enable_if<I == type_count_base<T>::value, int>::type tuple_type_size_min() {
+ return 0;
+}
+
+/// Recursively generate the tuple type name
+template <typename T, std::size_t I>
+ constexpr typename std::enable_if < I<type_count_base<T>::value, int>::type tuple_type_size_min() {
+ return subtype_count_min<typename std::tuple_element<I, T>::type>::value + tuple_type_size_min<T, I + 1>();
+}
+
+/// Get the type size of the sum of type sizes for all the individual tuple types
+template <typename T> struct type_count_min<T, typename std::enable_if<is_tuple_like<T>::value>::type> {
+ static constexpr int value{tuple_type_size_min<T, 0>()};
+};
+
+/// definition of subtype count
+template <typename T> struct subtype_count_min {
+ static constexpr int value{is_mutable_container<T>::value
+ ? ((type_count<T>::value < expected_max_vector_size) ? type_count<T>::value : 0)
+ : type_count_min<T>::value};
+};
+
+/// This will only trigger for actual void type
+template <typename T, typename Enable = void> struct expected_count { static const int value{0}; };
+
+/// For most types the number of expected items is 1
+template <typename T>
+struct expected_count<T,
+ typename std::enable_if<!is_mutable_container<T>::value && !is_wrapper<T>::value &&
+ !std::is_void<T>::value>::type> {
+ static constexpr int value{1};
+};
+/// number of expected items in a vector
+template <typename T> struct expected_count<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
+ static constexpr int value{expected_max_vector_size};
+};
+
+/// number of expected items in a vector
+template <typename T>
+struct expected_count<T, typename std::enable_if<!is_mutable_container<T>::value && is_wrapper<T>::value>::type> {
+ static constexpr int value{expected_count<typename T::value_type>::value};
+};
+
+// Enumeration of the different supported categorizations of objects
+enum class object_category : int {
+ char_value = 1,
+ integral_value = 2,
+ unsigned_integral = 4,
+ enumeration = 6,
+ boolean_value = 8,
+ floating_point = 10,
+ number_constructible = 12,
+ double_constructible = 14,
+ integer_constructible = 16,
+ // string like types
+ string_assignable = 23,
+ string_constructible = 24,
+ other = 45,
+ // special wrapper or container types
+ wrapper_value = 50,
+ complex_number = 60,
+ tuple_value = 70,
+ container_value = 80,
+
+};
+
+/// Set of overloads to classify an object according to type
+
+/// some type that is not otherwise recognized
+template <typename T, typename Enable = void> struct classify_object {
+ static constexpr object_category value{object_category::other};
+};
+
+/// Signed integers
+template <typename T>
+struct classify_object<
+ T,
+ typename std::enable_if<std::is_integral<T>::value && !std::is_same<T, char>::value && std::is_signed<T>::value &&
+ !is_bool<T>::value && !std::is_enum<T>::value>::type> {
+ static constexpr object_category value{object_category::integral_value};
+};
+
+/// Unsigned integers
+template <typename T>
+struct classify_object<T,
+ typename std::enable_if<std::is_integral<T>::value && std::is_unsigned<T>::value &&
+ !std::is_same<T, char>::value && !is_bool<T>::value>::type> {
+ static constexpr object_category value{object_category::unsigned_integral};
+};
+
+/// single character values
+template <typename T>
+struct classify_object<T, typename std::enable_if<std::is_same<T, char>::value && !std::is_enum<T>::value>::type> {
+ static constexpr object_category value{object_category::char_value};
+};
+
+/// Boolean values
+template <typename T> struct classify_object<T, typename std::enable_if<is_bool<T>::value>::type> {
+ static constexpr object_category value{object_category::boolean_value};
+};
+
+/// Floats
+template <typename T> struct classify_object<T, typename std::enable_if<std::is_floating_point<T>::value>::type> {
+ static constexpr object_category value{object_category::floating_point};
+};
+
+/// String and similar direct assignment
+template <typename T>
+struct classify_object<T,
+ typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
+ std::is_assignable<T &, std::string>::value>::type> {
+ static constexpr object_category value{object_category::string_assignable};
+};
+
+/// String and similar constructible and copy assignment
+template <typename T>
+struct classify_object<
+ T,
+ typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
+ !std::is_assignable<T &, std::string>::value && (type_count<T>::value == 1) &&
+ std::is_constructible<T, std::string>::value>::type> {
+ static constexpr object_category value{object_category::string_constructible};
+};
+
+/// Enumerations
+template <typename T> struct classify_object<T, typename std::enable_if<std::is_enum<T>::value>::type> {
+ static constexpr object_category value{object_category::enumeration};
+};
+
+template <typename T> struct classify_object<T, typename std::enable_if<is_complex<T>::value>::type> {
+ static constexpr object_category value{object_category::complex_number};
+};
+
+/// Handy helper to contain a bunch of checks that rule out many common types (integers, string like, floating point,
+/// vectors, and enumerations
+template <typename T> struct uncommon_type {
+ using type = typename std::conditional<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
+ !std::is_assignable<T &, std::string>::value &&
+ !std::is_constructible<T, std::string>::value && !is_complex<T>::value &&
+ !is_mutable_container<T>::value && !std::is_enum<T>::value,
+ std::true_type,
+ std::false_type>::type;
+ static constexpr bool value = type::value;
+};
+
+/// wrapper type
+template <typename T>
+struct classify_object<T,
+ typename std::enable_if<(!is_mutable_container<T>::value && is_wrapper<T>::value &&
+ !is_tuple_like<T>::value && uncommon_type<T>::value)>::type> {
+ static constexpr object_category value{object_category::wrapper_value};
+};
+
+/// Assignable from double or int
+template <typename T>
+struct classify_object<T,
+ typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
+ !is_wrapper<T>::value && is_direct_constructible<T, double>::value &&
+ is_direct_constructible<T, int>::value>::type> {
+ static constexpr object_category value{object_category::number_constructible};
+};
+
+/// Assignable from int
+template <typename T>
+struct classify_object<T,
+ typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
+ !is_wrapper<T>::value && !is_direct_constructible<T, double>::value &&
+ is_direct_constructible<T, int>::value>::type> {
+ static constexpr object_category value{object_category::integer_constructible};
+};
+
+/// Assignable from double
+template <typename T>
+struct classify_object<T,
+ typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
+ !is_wrapper<T>::value && is_direct_constructible<T, double>::value &&
+ !is_direct_constructible<T, int>::value>::type> {
+ static constexpr object_category value{object_category::double_constructible};
+};
+
+/// Tuple type
+template <typename T>
+struct classify_object<
+ T,
+ typename std::enable_if<is_tuple_like<T>::value &&
+ ((type_count<T>::value >= 2 && !is_wrapper<T>::value) ||
+ (uncommon_type<T>::value && !is_direct_constructible<T, double>::value &&
+ !is_direct_constructible<T, int>::value))>::type> {
+ static constexpr object_category value{object_category::tuple_value};
+ // the condition on this class requires it be like a tuple, but on some compilers (like Xcode) tuples can be
+ // constructed from just the first element so tuples of <string, int,int> can be constructed from a string, which
+ // could lead to issues so there are two variants of the condition, the first isolates things with a type size >=2
+ // mainly to get tuples on Xcode with the exception of wrappers, the second is the main one and just separating out
+ // those cases that are caught by other object classifications
+};
+
+/// container type
+template <typename T> struct classify_object<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
+ static constexpr object_category value{object_category::container_value};
+};
+
+// Type name print
+
+/// Was going to be based on
+/// http://stackoverflow.com/questions/1055452/c-get-name-of-type-in-template
+/// But this is cleaner and works better in this case
+
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::char_value, detail::enabler> = detail::dummy>
+constexpr const char *type_name() {
+ return "CHAR";
+}
+
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::integral_value ||
+ classify_object<T>::value == object_category::integer_constructible,
+ detail::enabler> = detail::dummy>
+constexpr const char *type_name() {
+ return "INT";
+}
+
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::unsigned_integral, detail::enabler> = detail::dummy>
+constexpr const char *type_name() {
+ return "UINT";
+}
+
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::floating_point ||
+ classify_object<T>::value == object_category::number_constructible ||
+ classify_object<T>::value == object_category::double_constructible,
+ detail::enabler> = detail::dummy>
+constexpr const char *type_name() {
+ return "FLOAT";
+}
+
+/// Print name for enumeration types
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::enumeration, detail::enabler> = detail::dummy>
+constexpr const char *type_name() {
+ return "ENUM";
+}
+
+/// Print name for enumeration types
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::boolean_value, detail::enabler> = detail::dummy>
+constexpr const char *type_name() {
+ return "BOOLEAN";
+}
+
+/// Print name for enumeration types
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::complex_number, detail::enabler> = detail::dummy>
+constexpr const char *type_name() {
+ return "COMPLEX";
+}
+
+/// Print for all other types
+template <typename T,
+ enable_if_t<classify_object<T>::value >= object_category::string_assignable &&
+ classify_object<T>::value <= object_category::other,
+ detail::enabler> = detail::dummy>
+constexpr const char *type_name() {
+ return "TEXT";
+}
+/// typename for tuple value
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count_base<T>::value >= 2,
+ detail::enabler> = detail::dummy>
+std::string type_name(); // forward declaration
+
+/// Generate type name for a wrapper or container value
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::container_value ||
+ classify_object<T>::value == object_category::wrapper_value,
+ detail::enabler> = detail::dummy>
+std::string type_name(); // forward declaration
+
+/// Print name for single element tuple types
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count_base<T>::value == 1,
+ detail::enabler> = detail::dummy>
+inline std::string type_name() {
+ return type_name<typename std::decay<typename std::tuple_element<0, T>::type>::type>();
+}
+
+/// Empty string if the index > tuple size
+template <typename T, std::size_t I>
+inline typename std::enable_if<I == type_count_base<T>::value, std::string>::type tuple_name() {
+ return std::string{};
+}
+
+/// Recursively generate the tuple type name
+template <typename T, std::size_t I>
+inline typename std::enable_if<(I < type_count_base<T>::value), std::string>::type tuple_name() {
+ std::string str = std::string(type_name<typename std::decay<typename std::tuple_element<I, T>::type>::type>()) +
+ ',' + tuple_name<T, I + 1>();
+ if(str.back() == ',')
+ str.pop_back();
+ return str;
+}
+
+/// Print type name for tuples with 2 or more elements
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count_base<T>::value >= 2,
+ detail::enabler>>
+inline std::string type_name() {
+ auto tname = std::string(1, '[') + tuple_name<T, 0>();
+ tname.push_back(']');
+ return tname;
+}
+
+/// get the type name for a type that has a value_type member
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::container_value ||
+ classify_object<T>::value == object_category::wrapper_value,
+ detail::enabler>>
+inline std::string type_name() {
+ return type_name<typename T::value_type>();
+}
+
+// Lexical cast
+
+/// Convert to an unsigned integral
+template <typename T, enable_if_t<std::is_unsigned<T>::value, detail::enabler> = detail::dummy>
+bool integral_conversion(const std::string &input, T &output) noexcept {
+ if(input.empty()) {
+ return false;
+ }
+ char *val = nullptr;
+ std::uint64_t output_ll = std::strtoull(input.c_str(), &val, 0);
+ output = static_cast<T>(output_ll);
+ if(val == (input.c_str() + input.size()) && static_cast<std::uint64_t>(output) == output_ll) {
+ return true;
+ }
+ val = nullptr;
+ std::int64_t output_sll = std::strtoll(input.c_str(), &val, 0);
+ if(val == (input.c_str() + input.size())) {
+ output = (output_sll < 0) ? static_cast<T>(0) : static_cast<T>(output_sll);
+ return (static_cast<std::int64_t>(output) == output_sll);
+ }
+ return false;
+}
+
+/// Convert to a signed integral
+template <typename T, enable_if_t<std::is_signed<T>::value, detail::enabler> = detail::dummy>
+bool integral_conversion(const std::string &input, T &output) noexcept {
+ if(input.empty()) {
+ return false;
+ }
+ char *val = nullptr;
+ std::int64_t output_ll = std::strtoll(input.c_str(), &val, 0);
+ output = static_cast<T>(output_ll);
+ if(val == (input.c_str() + input.size()) && static_cast<std::int64_t>(output) == output_ll) {
+ return true;
+ }
+ if(input == "true") {
+ // this is to deal with a few oddities with flags and wrapper int types
+ output = static_cast<T>(1);
+ return true;
+ }
+ return false;
+}
+
+/// Convert a flag into an integer value typically binary flags
+inline std::int64_t to_flag_value(std::string val) {
+ static const std::string trueString("true");
+ static const std::string falseString("false");
+ if(val == trueString) {
+ return 1;
+ }
+ if(val == falseString) {
+ return -1;
+ }
+ val = detail::to_lower(val);
+ std::int64_t ret;
+ if(val.size() == 1) {
+ if(val[0] >= '1' && val[0] <= '9') {
+ return (static_cast<std::int64_t>(val[0]) - '0');
+ }
+ switch(val[0]) {
+ case '0':
+ case 'f':
+ case 'n':
+ case '-':
+ ret = -1;
+ break;
+ case 't':
+ case 'y':
+ case '+':
+ ret = 1;
+ break;
+ default:
+ throw std::invalid_argument("unrecognized character");
+ }
+ return ret;
+ }
+ if(val == trueString || val == "on" || val == "yes" || val == "enable") {
+ ret = 1;
+ } else if(val == falseString || val == "off" || val == "no" || val == "disable") {
+ ret = -1;
+ } else {
+ ret = std::stoll(val);
+ }
+ return ret;
+}
+
+/// Integer conversion
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::integral_value ||
+ classify_object<T>::value == object_category::unsigned_integral,
+ detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ return integral_conversion(input, output);
+}
+
+/// char values
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::char_value, detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ if(input.size() == 1) {
+ output = static_cast<T>(input[0]);
+ return true;
+ }
+ return integral_conversion(input, output);
+}
+
+/// Boolean values
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::boolean_value, detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ try {
+ auto out = to_flag_value(input);
+ output = (out > 0);
+ return true;
+ } catch(const std::invalid_argument &) {
+ return false;
+ } catch(const std::out_of_range &) {
+ // if the number is out of the range of a 64 bit value then it is still a number and for this purpose is still
+ // valid all we care about the sign
+ output = (input[0] != '-');
+ return true;
+ }
+}
+
+/// Floats
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::floating_point, detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ if(input.empty()) {
+ return false;
+ }
+ char *val = nullptr;
+ auto output_ld = std::strtold(input.c_str(), &val);
+ output = static_cast<T>(output_ld);
+ return val == (input.c_str() + input.size());
+}
+
+/// complex
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::complex_number, detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ using XC = typename wrapped_type<T, double>::type;
+ XC x{0.0}, y{0.0};
+ auto str1 = input;
+ bool worked = false;
+ auto nloc = str1.find_last_of("+-");
+ if(nloc != std::string::npos && nloc > 0) {
+ worked = detail::lexical_cast(str1.substr(0, nloc), x);
+ str1 = str1.substr(nloc);
+ if(str1.back() == 'i' || str1.back() == 'j')
+ str1.pop_back();
+ worked = worked && detail::lexical_cast(str1, y);
+ } else {
+ if(str1.back() == 'i' || str1.back() == 'j') {
+ str1.pop_back();
+ worked = detail::lexical_cast(str1, y);
+ x = XC{0};
+ } else {
+ worked = detail::lexical_cast(str1, x);
+ y = XC{0};
+ }
+ }
+ if(worked) {
+ output = T{x, y};
+ return worked;
+ }
+ return from_stream(input, output);
+}
+
+/// String and similar direct assignment
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::string_assignable, detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ output = input;
+ return true;
+}
+
+/// String and similar constructible and copy assignment
+template <
+ typename T,
+ enable_if_t<classify_object<T>::value == object_category::string_constructible, detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ output = T(input);
+ return true;
+}
+
+/// Enumerations
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::enumeration, detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ typename std::underlying_type<T>::type val;
+ if(!integral_conversion(input, val)) {
+ return false;
+ }
+ output = static_cast<T>(val);
+ return true;
+}
+
+/// wrapper types
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::wrapper_value &&
+ std::is_assignable<T &, typename T::value_type>::value,
+ detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ typename T::value_type val;
+ if(lexical_cast(input, val)) {
+ output = val;
+ return true;
+ }
+ return from_stream(input, output);
+}
+
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::wrapper_value &&
+ !std::is_assignable<T &, typename T::value_type>::value && std::is_assignable<T &, T>::value,
+ detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ typename T::value_type val;
+ if(lexical_cast(input, val)) {
+ output = T{val};
+ return true;
+ }
+ return from_stream(input, output);
+}
+
+/// Assignable from double or int
+template <
+ typename T,
+ enable_if_t<classify_object<T>::value == object_category::number_constructible, detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ int val;
+ if(integral_conversion(input, val)) {
+ output = T(val);
+ return true;
+ } else {
+ double dval;
+ if(lexical_cast(input, dval)) {
+ output = T{dval};
+ return true;
+ }
+ }
+ return from_stream(input, output);
+}
+
+/// Assignable from int
+template <
+ typename T,
+ enable_if_t<classify_object<T>::value == object_category::integer_constructible, detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ int val;
+ if(integral_conversion(input, val)) {
+ output = T(val);
+ return true;
+ }
+ return from_stream(input, output);
+}
+
+/// Assignable from double
+template <
+ typename T,
+ enable_if_t<classify_object<T>::value == object_category::double_constructible, detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ double val;
+ if(lexical_cast(input, val)) {
+ output = T{val};
+ return true;
+ }
+ return from_stream(input, output);
+}
+
+/// Non-string convertible from an int
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::other && std::is_assignable<T &, int>::value,
+ detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ int val;
+ if(integral_conversion(input, val)) {
+#ifdef _MSC_VER
+#pragma warning(push)
+#pragma warning(disable : 4800)
+#endif
+ // with Atomic<XX> this could produce a warning due to the conversion but if atomic gets here it is an old style
+ // so will most likely still work
+ output = val;
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+ return true;
+ }
+ // LCOV_EXCL_START
+ // This version of cast is only used for odd cases in an older compilers the fail over
+ // from_stream is tested elsewhere an not relevant for coverage here
+ return from_stream(input, output);
+ // LCOV_EXCL_STOP
+}
+
+/// Non-string parsable by a stream
+template <typename T,
+ enable_if_t<classify_object<T>::value == object_category::other && !std::is_assignable<T &, int>::value,
+ detail::enabler> = detail::dummy>
+bool lexical_cast(const std::string &input, T &output) {
+ static_assert(is_istreamable<T>::value,
+ "option object type must have a lexical cast overload or streaming input operator(>>) defined, if it "
+ "is convertible from another type use the add_option<T, XC>(...) with XC being the known type");
+ return from_stream(input, output);
+}
+
+/// Assign a value through lexical cast operations
+/// Strings can be empty so we need to do a little different
+template <typename AssignTo,
+ typename ConvertTo,
+ enable_if_t<std::is_same<AssignTo, ConvertTo>::value &&
+ (classify_object<AssignTo>::value == object_category::string_assignable ||
+ classify_object<AssignTo>::value == object_category::string_constructible),
+ detail::enabler> = detail::dummy>
+bool lexical_assign(const std::string &input, AssignTo &output) {
+ return lexical_cast(input, output);
+}
+
+/// Assign a value through lexical cast operations
+template <typename AssignTo,
+ typename ConvertTo,
+ enable_if_t<std::is_same<AssignTo, ConvertTo>::value && std::is_assignable<AssignTo &, AssignTo>::value &&
+ classify_object<AssignTo>::value != object_category::string_assignable &&
+ classify_object<AssignTo>::value != object_category::string_constructible,
+ detail::enabler> = detail::dummy>
+bool lexical_assign(const std::string &input, AssignTo &output) {
+ if(input.empty()) {
+ output = AssignTo{};
+ return true;
+ }
+
+ return lexical_cast(input, output);
+}
+
+/// Assign a value through lexical cast operations
+template <typename AssignTo,
+ typename ConvertTo,
+ enable_if_t<std::is_same<AssignTo, ConvertTo>::value && !std::is_assignable<AssignTo &, AssignTo>::value &&
+ classify_object<AssignTo>::value == object_category::wrapper_value,
+ detail::enabler> = detail::dummy>
+bool lexical_assign(const std::string &input, AssignTo &output) {
+ if(input.empty()) {
+ typename AssignTo::value_type emptyVal{};
+ output = emptyVal;
+ return true;
+ }
+ return lexical_cast(input, output);
+}
+
+/// Assign a value through lexical cast operations for int compatible values
+/// mainly for atomic operations on some compilers
+template <typename AssignTo,
+ typename ConvertTo,
+ enable_if_t<std::is_same<AssignTo, ConvertTo>::value && !std::is_assignable<AssignTo &, AssignTo>::value &&
+ classify_object<AssignTo>::value != object_category::wrapper_value &&
+ std::is_assignable<AssignTo &, int>::value,
+ detail::enabler> = detail::dummy>
+bool lexical_assign(const std::string &input, AssignTo &output) {
+ if(input.empty()) {
+ output = 0;
+ return true;
+ }
+ int val;
+ if(lexical_cast(input, val)) {
+ output = val;
+ return true;
+ }
+ return false;
+}
+
+/// Assign a value converted from a string in lexical cast to the output value directly
+template <typename AssignTo,
+ typename ConvertTo,
+ enable_if_t<!std::is_same<AssignTo, ConvertTo>::value && std::is_assignable<AssignTo &, ConvertTo &>::value,
+ detail::enabler> = detail::dummy>
+bool lexical_assign(const std::string &input, AssignTo &output) {
+ ConvertTo val{};
+ bool parse_result = (!input.empty()) ? lexical_cast<ConvertTo>(input, val) : true;
+ if(parse_result) {
+ output = val;
+ }
+ return parse_result;
+}
+
+/// Assign a value from a lexical cast through constructing a value and move assigning it
+template <
+ typename AssignTo,
+ typename ConvertTo,
+ enable_if_t<!std::is_same<AssignTo, ConvertTo>::value && !std::is_assignable<AssignTo &, ConvertTo &>::value &&
+ std::is_move_assignable<AssignTo>::value,
+ detail::enabler> = detail::dummy>
+bool lexical_assign(const std::string &input, AssignTo &output) {
+ ConvertTo val{};
+ bool parse_result = input.empty() ? true : lexical_cast<ConvertTo>(input, val);
+ if(parse_result) {
+ output = AssignTo(val); // use () form of constructor to allow some implicit conversions
+ }
+ return parse_result;
+}
+
+/// primary lexical conversion operation, 1 string to 1 type of some kind
+template <typename AssignTo,
+ typename ConvertTo,
+ enable_if_t<classify_object<ConvertTo>::value <= object_category::other &&
+ classify_object<AssignTo>::value <= object_category::wrapper_value,
+ detail::enabler> = detail::dummy>
+bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
+ return lexical_assign<AssignTo, ConvertTo>(strings[0], output);
+}
+
+/// Lexical conversion if there is only one element but the conversion type is for two, then call a two element
+/// constructor
+template <typename AssignTo,
+ typename ConvertTo,
+ enable_if_t<(type_count<AssignTo>::value <= 2) && expected_count<AssignTo>::value == 1 &&
+ is_tuple_like<ConvertTo>::value && type_count_base<ConvertTo>::value == 2,
+ detail::enabler> = detail::dummy>
+bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
+ // the remove const is to handle pair types coming from a container
+ typename std::remove_const<typename std::tuple_element<0, ConvertTo>::type>::type v1;
+ typename std::tuple_element<1, ConvertTo>::type v2;
+ bool retval = lexical_assign<decltype(v1), decltype(v1)>(strings[0], v1);
+ if(strings.size() > 1) {
+ retval = retval && lexical_assign<decltype(v2), decltype(v2)>(strings[1], v2);
+ }
+ if(retval) {
+ output = AssignTo{v1, v2};
+ }
+ return retval;
+}
+
+/// Lexical conversion of a container types of single elements
+template <class AssignTo,
+ class ConvertTo,
+ enable_if_t<is_mutable_container<AssignTo>::value && is_mutable_container<ConvertTo>::value &&
+ type_count<ConvertTo>::value == 1,
+ detail::enabler> = detail::dummy>
+bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
+ output.erase(output.begin(), output.end());
+ if(strings.size() == 1 && strings[0] == "{}") {
+ return true;
+ }
+ bool skip_remaining = false;
+ if(strings.size() == 2 && strings[0] == "{}" && is_separator(strings[1])) {
+ skip_remaining = true;
+ }
+ for(const auto &elem : strings) {
+ typename AssignTo::value_type out;
+ bool retval = lexical_assign<typename AssignTo::value_type, typename ConvertTo::value_type>(elem, out);
+ if(!retval) {
+ return false;
+ }
+ output.insert(output.end(), std::move(out));
+ if(skip_remaining) {
+ break;
+ }
+ }
+ return (!output.empty());
+}
+
+/// Lexical conversion for complex types
+template <class AssignTo, class ConvertTo, enable_if_t<is_complex<ConvertTo>::value, detail::enabler> = detail::dummy>
+bool lexical_conversion(const std::vector<std::string> &strings, AssignTo &output) {
+
+ if(strings.size() >= 2 && !strings[1].empty()) {
+ using XC2 = typename wrapped_type<ConvertTo, double>::type;
+ XC2 x{0.0}, y{0.0};
+ auto str1 = strings[1];
+ if(str1.back() == 'i' || str1.back() == 'j') {
+ str1.pop_back();
+ }
+ auto worked = detail::lexical_cast(strings[0], x) && detail::lexical_cast(str1, y);
+ if(worked) {
+ output = ConvertTo{x, y};
+ }
+ return worked;
+ } else {
+ return lexical_assign<AssignTo, ConvertTo>(strings[0], output);
+ }
+}
+
+/// Conversion to a vector type using a particular single type as the conversion type
+template <class AssignTo,
+ class ConvertTo,
+ enable_if_t<is_mutable_container<AssignTo>::value && (expected_count<ConvertTo>::value == 1) &&
+ (type_count<ConvertTo>::value == 1),
+ detail::enabler> = detail::dummy>
+bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
+ bool retval = true;
+ output.clear();
+ output.reserve(strings.size());
+ for(const auto &elem : strings) {
+
+ output.emplace_back();
+ retval = retval && lexical_assign<typename AssignTo::value_type, ConvertTo>(elem, output.back());
+ }
+ return (!output.empty()) && retval;
+}
+
+// forward declaration
+
+/// Lexical conversion of a container types with conversion type of two elements
+template <class AssignTo,
+ class ConvertTo,
+ enable_if_t<is_mutable_container<AssignTo>::value && is_mutable_container<ConvertTo>::value &&
+ type_count_base<ConvertTo>::value == 2,
+ detail::enabler> = detail::dummy>
+bool lexical_conversion(std::vector<std::string> strings, AssignTo &output);
+
+/// Lexical conversion of a vector types with type_size >2 forward declaration
+template <class AssignTo,
+ class ConvertTo,
+ enable_if_t<is_mutable_container<AssignTo>::value && is_mutable_container<ConvertTo>::value &&
+ type_count_base<ConvertTo>::value != 2 &&
+ ((type_count<ConvertTo>::value > 2) ||
+ (type_count<ConvertTo>::value > type_count_base<ConvertTo>::value)),
+ detail::enabler> = detail::dummy>
+bool lexical_conversion(const std::vector<std::string> &strings, AssignTo &output);
+
+/// Conversion for tuples
+template <class AssignTo,
+ class ConvertTo,
+ enable_if_t<is_tuple_like<AssignTo>::value && is_tuple_like<ConvertTo>::value &&
+ (type_count_base<ConvertTo>::value != type_count<ConvertTo>::value ||
+ type_count<ConvertTo>::value > 2),
+ detail::enabler> = detail::dummy>
+bool lexical_conversion(const std::vector<std::string> &strings, AssignTo &output); // forward declaration
+
+/// Conversion for operations where the assigned type is some class but the conversion is a mutable container or large
+/// tuple
+template <typename AssignTo,
+ typename ConvertTo,
+ enable_if_t<!is_tuple_like<AssignTo>::value && !is_mutable_container<AssignTo>::value &&
+ classify_object<ConvertTo>::value != object_category::wrapper_value &&
+ (is_mutable_container<ConvertTo>::value || type_count<ConvertTo>::value > 2),
+ detail::enabler> = detail::dummy>
+bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
+
+ if(strings.size() > 1 || (!strings.empty() && !(strings.front().empty()))) {
+ ConvertTo val;
+ auto retval = lexical_conversion<ConvertTo, ConvertTo>(strings, val);
+ output = AssignTo{val};
+ return retval;
+ }
+ output = AssignTo{};
+ return true;
+}
+
+/// function template for converting tuples if the static Index is greater than the tuple size
+template <class AssignTo, class ConvertTo, std::size_t I>
+inline typename std::enable_if<(I >= type_count_base<AssignTo>::value), bool>::type
+tuple_conversion(const std::vector<std::string> &, AssignTo &) {
+ return true;
+}
+
+/// Conversion of a tuple element where the type size ==1 and not a mutable container
+template <class AssignTo, class ConvertTo>
+inline typename std::enable_if<!is_mutable_container<ConvertTo>::value && type_count<ConvertTo>::value == 1, bool>::type
+tuple_type_conversion(std::vector<std::string> &strings, AssignTo &output) {
+ auto retval = lexical_assign<AssignTo, ConvertTo>(strings[0], output);
+ strings.erase(strings.begin());
+ return retval;
+}
+
+/// Conversion of a tuple element where the type size !=1 but the size is fixed and not a mutable container
+template <class AssignTo, class ConvertTo>
+inline typename std::enable_if<!is_mutable_container<ConvertTo>::value && (type_count<ConvertTo>::value > 1) &&
+ type_count<ConvertTo>::value == type_count_min<ConvertTo>::value,
+ bool>::type
+tuple_type_conversion(std::vector<std::string> &strings, AssignTo &output) {
+ auto retval = lexical_conversion<AssignTo, ConvertTo>(strings, output);
+ strings.erase(strings.begin(), strings.begin() + type_count<ConvertTo>::value);
+ return retval;
+}
+
+/// Conversion of a tuple element where the type is a mutable container or a type with different min and max type sizes
+template <class AssignTo, class ConvertTo>
+inline typename std::enable_if<is_mutable_container<ConvertTo>::value ||
+ type_count<ConvertTo>::value != type_count_min<ConvertTo>::value,
+ bool>::type
+tuple_type_conversion(std::vector<std::string> &strings, AssignTo &output) {
+
+ std::size_t index{subtype_count_min<ConvertTo>::value};
+ const std::size_t mx_count{subtype_count<ConvertTo>::value};
+ const std::size_t mx{(std::max)(mx_count, strings.size())};
+
+ while(index < mx) {
+ if(is_separator(strings[index])) {
+ break;
+ }
+ ++index;
+ }
+ bool retval = lexical_conversion<AssignTo, ConvertTo>(
+ std::vector<std::string>(strings.begin(), strings.begin() + static_cast<std::ptrdiff_t>(index)), output);
+ strings.erase(strings.begin(), strings.begin() + static_cast<std::ptrdiff_t>(index) + 1);
+ return retval;
+}
+
+/// Tuple conversion operation
+template <class AssignTo, class ConvertTo, std::size_t I>
+inline typename std::enable_if<(I < type_count_base<AssignTo>::value), bool>::type
+tuple_conversion(std::vector<std::string> strings, AssignTo &output) {
+ bool retval = true;
+ using ConvertToElement = typename std::
+ conditional<is_tuple_like<ConvertTo>::value, typename std::tuple_element<I, ConvertTo>::type, ConvertTo>::type;
+ if(!strings.empty()) {
+ retval = retval && tuple_type_conversion<typename std::tuple_element<I, AssignTo>::type, ConvertToElement>(
+ strings, std::get<I>(output));
+ }
+ retval = retval && tuple_conversion<AssignTo, ConvertTo, I + 1>(std::move(strings), output);
+ return retval;
+}
+
+/// Lexical conversion of a container types with tuple elements of size 2
+template <class AssignTo,
+ class ConvertTo,
+ enable_if_t<is_mutable_container<AssignTo>::value && is_mutable_container<ConvertTo>::value &&
+ type_count_base<ConvertTo>::value == 2,
+ detail::enabler>>
+bool lexical_conversion(std::vector<std::string> strings, AssignTo &output) {
+ output.clear();
+ while(!strings.empty()) {
+
+ typename std::remove_const<typename std::tuple_element<0, typename ConvertTo::value_type>::type>::type v1;
+ typename std::tuple_element<1, typename ConvertTo::value_type>::type v2;
+ bool retval = tuple_type_conversion<decltype(v1), decltype(v1)>(strings, v1);
+ if(!strings.empty()) {
+ retval = retval && tuple_type_conversion<decltype(v2), decltype(v2)>(strings, v2);
+ }
+ if(retval) {
+ output.insert(output.end(), typename AssignTo::value_type{v1, v2});
+ } else {
+ return false;
+ }
+ }
+ return (!output.empty());
+}
+
+/// lexical conversion of tuples with type count>2 or tuples of types of some element with a type size>=2
+template <class AssignTo,
+ class ConvertTo,
+ enable_if_t<is_tuple_like<AssignTo>::value && is_tuple_like<ConvertTo>::value &&
+ (type_count_base<ConvertTo>::value != type_count<ConvertTo>::value ||
+ type_count<ConvertTo>::value > 2),
+ detail::enabler>>
+bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
+ static_assert(
+ !is_tuple_like<ConvertTo>::value || type_count_base<AssignTo>::value == type_count_base<ConvertTo>::value,
+ "if the conversion type is defined as a tuple it must be the same size as the type you are converting to");
+ return tuple_conversion<AssignTo, ConvertTo, 0>(strings, output);
+}
+
+/// Lexical conversion of a vector types for everything but tuples of two elements and types of size 1
+template <class AssignTo,
+ class ConvertTo,
+ enable_if_t<is_mutable_container<AssignTo>::value && is_mutable_container<ConvertTo>::value &&
+ type_count_base<ConvertTo>::value != 2 &&
+ ((type_count<ConvertTo>::value > 2) ||
+ (type_count<ConvertTo>::value > type_count_base<ConvertTo>::value)),
+ detail::enabler>>
+bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
+ bool retval = true;
+ output.clear();
+ std::vector<std::string> temp;
+ std::size_t ii{0};
+ std::size_t icount{0};
+ std::size_t xcm{type_count<ConvertTo>::value};
+ auto ii_max = strings.size();
+ while(ii < ii_max) {
+ temp.push_back(strings[ii]);
+ ++ii;
+ ++icount;
+ if(icount == xcm || is_separator(temp.back()) || ii == ii_max) {
+ if(static_cast<int>(xcm) > type_count_min<ConvertTo>::value && is_separator(temp.back())) {
+ temp.pop_back();
+ }
+ typename AssignTo::value_type temp_out;
+ retval = retval &&
+ lexical_conversion<typename AssignTo::value_type, typename ConvertTo::value_type>(temp, temp_out);
+ temp.clear();
+ if(!retval) {
+ return false;
+ }
+ output.insert(output.end(), std::move(temp_out));
+ icount = 0;
+ }
+ }
+ return retval;
+}
+
+/// conversion for wrapper types
+template <typename AssignTo,
+ class ConvertTo,
+ enable_if_t<classify_object<ConvertTo>::value == object_category::wrapper_value &&
+ std::is_assignable<ConvertTo &, ConvertTo>::value,
+ detail::enabler> = detail::dummy>
+bool lexical_conversion(const std::vector<std::string> &strings, AssignTo &output) {
+ if(strings.empty() || strings.front().empty()) {
+ output = ConvertTo{};
+ return true;
+ }
+ typename ConvertTo::value_type val;
+ if(lexical_conversion<typename ConvertTo::value_type, typename ConvertTo::value_type>(strings, val)) {
+ output = ConvertTo{val};
+ return true;
+ }
+ return false;
+}
+
+/// conversion for wrapper types
+template <typename AssignTo,
+ class ConvertTo,
+ enable_if_t<classify_object<ConvertTo>::value == object_category::wrapper_value &&
+ !std::is_assignable<AssignTo &, ConvertTo>::value,
+ detail::enabler> = detail::dummy>
+bool lexical_conversion(const std::vector<std::string> &strings, AssignTo &output) {
+ using ConvertType = typename ConvertTo::value_type;
+ if(strings.empty() || strings.front().empty()) {
+ output = ConvertType{};
+ return true;
+ }
+ ConvertType val;
+ if(lexical_conversion<typename ConvertTo::value_type, typename ConvertTo::value_type>(strings, val)) {
+ output = val;
+ return true;
+ }
+ return false;
+}
+
+/// Sum a vector of strings
+inline std::string sum_string_vector(const std::vector<std::string> &values) {
+ double val{0.0};
+ bool fail{false};
+ std::string output;
+ for(const auto &arg : values) {
+ double tv{0.0};
+ auto comp = detail::lexical_cast<double>(arg, tv);
+ if(!comp) {
+ try {
+ tv = static_cast<double>(detail::to_flag_value(arg));
+ } catch(const std::exception &) {
+ fail = true;
+ break;
+ }
+ }
+ val += tv;
+ }
+ if(fail) {
+ for(const auto &arg : values) {
+ output.append(arg);
+ }
+ } else {
+ if(val <= static_cast<double>(std::numeric_limits<std::int64_t>::min()) ||
+ val >= static_cast<double>(std::numeric_limits<std::int64_t>::max()) ||
+ val == static_cast<std::int64_t>(val)) {
+ output = detail::value_string(static_cast<int64_t>(val));
+ } else {
+ output = detail::value_string(val);
+ }
+ }
+ return output;
+}
+
+} // namespace detail
+// [CLI11:type_tools_hpp:end]
+} // namespace CLI