1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
/**
* Copyright (c) 2007-2019, Timothy Stack
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Timothy Stack nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* @file auto_mem.hh
*/
#ifndef lnav_auto_mem_hh
#define lnav_auto_mem_hh
#include <exception>
#include <iterator>
#include <string>
#include <utility>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "base/result.h"
using free_func_t = void (*)(void*);
/**
* Resource management class for memory allocated by a custom allocator.
*
* @param T The object type.
* @param auto_free The function to call to free the managed object.
*/
template<class T, free_func_t default_free = free>
class auto_mem {
public:
static void noop_free(void*) {}
static auto_mem<T> leak(T* ptr)
{
auto_mem<T> retval(noop_free);
retval = ptr;
return retval;
}
explicit auto_mem(T* ptr = nullptr)
: am_ptr(ptr), am_free_func(default_free)
{
}
auto_mem(const auto_mem& am) = delete;
template<typename F>
explicit auto_mem(F free_func) noexcept
: am_ptr(nullptr), am_free_func((free_func_t) free_func)
{
}
auto_mem(auto_mem&& other) noexcept
: am_ptr(other.release()), am_free_func(other.am_free_func)
{
}
~auto_mem() { this->reset(); }
bool empty() const { return this->am_ptr == nullptr; }
operator T*() const { return this->am_ptr; }
T* operator->() { return this->am_ptr; }
auto_mem& operator=(T* ptr)
{
this->reset(ptr);
return *this;
}
auto_mem& operator=(auto_mem&) = delete;
auto_mem& operator=(auto_mem&& am) noexcept
{
this->reset(am.release());
this->am_free_func = am.am_free_func;
return *this;
}
T* release()
{
T* retval = this->am_ptr;
this->am_ptr = nullptr;
return retval;
}
T* in() const { return this->am_ptr; }
T** out()
{
this->reset();
return &this->am_ptr;
}
template<typename F>
F get_free_func() const
{
return (F) this->am_free_func;
}
void reset(T* ptr = nullptr)
{
if (this->am_ptr != ptr) {
if (this->am_ptr != nullptr) {
this->am_free_func((void*) this->am_ptr);
}
this->am_ptr = ptr;
}
}
private:
T* am_ptr;
void (*am_free_func)(void*);
};
template<typename T, void (*free_func)(T*)>
class static_root_mem {
public:
static_root_mem() { memset(&this->srm_value, 0, sizeof(T)); }
~static_root_mem() { free_func(&this->srm_value); }
const T* operator->() const { return &this->srm_value; }
const T& in() const { return this->srm_value; }
T* inout()
{
free_func(&this->srm_value);
memset(&this->srm_value, 0, sizeof(T));
return &this->srm_value;
}
private:
static_root_mem& operator=(T&) { return *this; }
static_root_mem& operator=(static_root_mem&) { return *this; }
T srm_value;
};
class auto_buffer {
public:
using value_type = char;
static auto_buffer alloc(size_t capacity)
{
return auto_buffer{capacity == 0 ? nullptr : (char*) malloc(capacity),
capacity};
}
static auto_buffer alloc_bitmap(size_t capacity_in_bits)
{
return alloc((capacity_in_bits + 7) / 8);
}
static auto_buffer from(const char* mem, size_t size)
{
auto retval = alloc(size);
retval.resize(size);
memcpy(retval.in(), mem, size);
return retval;
}
auto_buffer(const auto_buffer&) = delete;
auto_buffer(auto_buffer&& other) noexcept
: ab_buffer(other.ab_buffer), ab_size(other.ab_size),
ab_capacity(other.ab_capacity)
{
other.ab_buffer = nullptr;
other.ab_size = 0;
other.ab_capacity = 0;
}
~auto_buffer()
{
free(this->ab_buffer);
this->ab_buffer = nullptr;
this->ab_size = 0;
this->ab_capacity = 0;
}
auto_buffer& operator=(auto_buffer&) = delete;
auto_buffer& operator=(auto_buffer&& other) noexcept
{
free(this->ab_buffer);
this->ab_buffer = std::exchange(other.ab_buffer, nullptr);
this->ab_size = std::exchange(other.ab_size, 0);
this->ab_capacity = std::exchange(other.ab_capacity, 0);
return *this;
}
void swap(auto_buffer& other)
{
std::swap(this->ab_buffer, other.ab_buffer);
std::swap(this->ab_size, other.ab_size);
std::swap(this->ab_capacity, other.ab_capacity);
}
char* in() { return this->ab_buffer; }
char* at(size_t offset) { return &this->ab_buffer[offset]; }
const char* at(size_t offset) const { return &this->ab_buffer[offset]; }
char* begin() { return this->ab_buffer; }
const char* begin() const { return this->ab_buffer; }
auto_buffer& push_back(char ch)
{
if (this->ab_size == this->ab_capacity) {
this->expand_by(256);
}
this->ab_buffer[this->ab_size] = ch;
this->ab_size += 1;
return *this;
}
void pop_back() { this->ab_size -= 1; }
bool is_bit_set(size_t bit_offset) const
{
size_t byte_offset = bit_offset / 8;
auto bitmask = 1UL << (bit_offset % 8);
return this->ab_buffer[byte_offset] & bitmask;
}
void set_bit(size_t bit_offset)
{
size_t byte_offset = bit_offset / 8;
auto bitmask = 1UL << (bit_offset % 8);
this->ab_buffer[byte_offset] |= bitmask;
}
void clear_bit(size_t bit_offset)
{
size_t byte_offset = bit_offset / 8;
auto bitmask = 1UL << (bit_offset % 8);
this->ab_buffer[byte_offset] &= ~bitmask;
}
std::reverse_iterator<char*> rbegin()
{
return std::reverse_iterator<char*>(this->end());
}
std::reverse_iterator<const char*> rbegin() const
{
return std::reverse_iterator<const char*>(this->end());
}
char* end() { return &this->ab_buffer[this->ab_size]; }
const char* end() const { return &this->ab_buffer[this->ab_size]; }
std::reverse_iterator<char*> rend()
{
return std::reverse_iterator<char*>(this->begin());
}
std::reverse_iterator<const char*> rend() const
{
return std::reverse_iterator<const char*>(this->begin());
}
std::pair<char*, size_t> release()
{
auto retval = std::make_pair(this->ab_buffer, this->ab_size);
this->ab_buffer = nullptr;
this->ab_size = 0;
this->ab_capacity = 0;
return retval;
}
size_t size() const { return this->ab_size; }
size_t bitmap_size() const { return this->ab_size * 8; }
bool empty() const { return this->ab_size == 0; }
bool full() const { return this->ab_size == this->ab_capacity; }
size_t capacity() const { return this->ab_capacity; }
size_t available() const { return this->ab_capacity - this->ab_size; }
void clear() { this->resize(0); }
auto_buffer& resize(size_t new_size)
{
assert(new_size <= this->ab_capacity);
this->ab_size = new_size;
return *this;
}
auto_buffer& resize_bitmap(size_t new_size_in_bits, int fill = 0)
{
auto new_size = (new_size_in_bits + 7) / 8;
assert(new_size <= this->ab_capacity);
auto old_size = std::exchange(this->ab_size, new_size);
memset(this->at(old_size), 0, this->ab_size - old_size);
return *this;
}
auto_buffer& resize_by(ssize_t amount)
{
return this->resize(this->ab_size + amount);
}
void expand_to(size_t new_capacity)
{
if (new_capacity <= this->ab_capacity) {
return;
}
auto* new_buffer = (char*) realloc(this->ab_buffer, new_capacity);
if (new_buffer == nullptr) {
throw std::bad_alloc();
}
this->ab_buffer = new_buffer;
this->ab_capacity = new_capacity;
}
void expand_bitmap_to(size_t new_capacity_in_bits)
{
this->expand_to((new_capacity_in_bits + 7) / 8);
}
void expand_by(size_t amount)
{
if (amount == 0) {
return;
}
this->expand_to(this->ab_capacity + amount);
}
std::string to_string() const { return {this->ab_buffer, this->ab_size}; }
private:
auto_buffer(char* buffer, size_t capacity)
: ab_buffer(buffer), ab_capacity(capacity)
{
}
char* ab_buffer;
size_t ab_size{0};
size_t ab_capacity;
};
struct text_auto_buffer {
auto_buffer inner;
};
struct blob_auto_buffer {
auto_buffer inner;
};
#endif
|