summaryrefslogtreecommitdiffstats
path: root/sql/opt_table_elimination.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 18:07:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 18:07:14 +0000
commita175314c3e5827eb193872241446f2f8f5c9d33c (patch)
treecd3d60ca99ae00829c52a6ca79150a5b6e62528b /sql/opt_table_elimination.cc
parentInitial commit. (diff)
downloadmariadb-10.5-a175314c3e5827eb193872241446f2f8f5c9d33c.tar.xz
mariadb-10.5-a175314c3e5827eb193872241446f2f8f5c9d33c.zip
Adding upstream version 1:10.5.12.upstream/1%10.5.12upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'sql/opt_table_elimination.cc')
-rw-r--r--sql/opt_table_elimination.cc1904
1 files changed, 1904 insertions, 0 deletions
diff --git a/sql/opt_table_elimination.cc b/sql/opt_table_elimination.cc
new file mode 100644
index 00000000..3958797e
--- /dev/null
+++ b/sql/opt_table_elimination.cc
@@ -0,0 +1,1904 @@
+/*
+ Copyright (c) 2009, 2011, Monty Program Ab
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
+
+/**
+ @file
+
+ @brief
+ Table Elimination Module
+
+ @defgroup Table_Elimination Table Elimination Module
+ @{
+*/
+
+#ifdef USE_PRAGMA_IMPLEMENTATION
+#pragma implementation // gcc: Class implementation
+#endif
+
+#include "mariadb.h"
+#include "my_bit.h"
+#include "sql_select.h"
+#include "opt_trace.h"
+#include "my_json_writer.h"
+
+/*
+ OVERVIEW
+ ========
+
+ This file contains table elimination module. The idea behind table
+ elimination is as follows: suppose we have a left join
+
+ SELECT * FROM t1 LEFT JOIN
+ (t2 JOIN t3) ON t2.primary_key=t1.col AND
+ t2.primary_key=t2.col
+ WHERE ...
+
+ such that
+ * columns of the inner tables are not used anywhere ouside the outer join
+ (not in WHERE, not in GROUP/ORDER BY clause, not in select list etc etc),
+ * inner side of the outer join is guaranteed to produce at most one matching
+ record combination for each record combination of outer tables.
+
+ then the inner side of the outer join can be removed from the query, as it
+ will always produce only one record combination (either real or
+ null-complemented one) and we don't care about what that record combination
+ is.
+
+
+ MODULE INTERFACE
+ ================
+
+ The module has one entry point - the eliminate_tables() function, which one
+ needs to call (once) at some point before join optimization.
+ eliminate_tables() operates over the JOIN structures. Logically, it
+ removes the inner tables of an outer join operation together with the
+ operation itself. Physically, it changes the following members:
+
+ * Eliminated tables are marked as constant and moved to the front of the
+ join order.
+
+ * In addition to this, they are recorded in JOIN::eliminated_tables bitmap.
+
+ * Items that became disused because they were in the ON expression of an
+ eliminated outer join are notified by means of the Item tree walk which
+ calls Item::mark_as_eliminated_processor for every item
+ - At the moment the only Item that cares whether it was eliminated is
+ Item_subselect with its Item_subselect::eliminated flag which is used
+ by EXPLAIN code to check if the subquery should be shown in EXPLAIN.
+
+ Table elimination is redone on every PS re-execution.
+
+
+ TABLE ELIMINATION ALGORITHM FOR ONE OUTER JOIN
+ ==============================================
+
+ As described above, we can remove inner side of an outer join if it is
+
+ 1. not referred to from any other parts of the query
+ 2. always produces one matching record combination.
+
+ We check #1 by doing a recursive descent down the join->join_list while
+ maintaining a union of used_tables() attribute of all Item expressions in
+ other parts of the query. When we encounter an outer join, we check if the
+ bitmap of tables on its inner side has intersection with tables that are used
+ elsewhere. No intersection means that inner side of the outer join could
+ potentially be eliminated.
+
+ In order to check #2, one needs to prove that inner side of an outer join
+ is functionally dependent on the outside. The proof is constructed from
+ functional dependencies of intermediate objects:
+
+ - Inner side of outer join is functionally dependent when each of its tables
+ are functionally dependent. (We assume a table is functionally dependent
+ when its dependencies allow to uniquely identify one table record, or no
+ records).
+
+ - Table is functionally dependent when it has got a unique key whose columns
+ are functionally dependent.
+
+ - A column is functionally dependent when we could locate an AND-part of a
+ certain ON clause in form
+
+ tblX.columnY= expr
+
+ where expr is functionally depdendent. expr is functionally dependent when
+ all columns that it refers to are functionally dependent.
+
+ These relationships are modeled as a bipartite directed graph that has
+ dependencies as edges and two kinds of nodes:
+
+ Value nodes:
+ - Table column values (each is a value of tblX.columnY)
+ - Table values (each node represents a table inside the join nest we're
+ trying to eliminate).
+ A value has one attribute, it is either bound (i.e. functionally dependent)
+ or not.
+
+ Module nodes:
+ - Modules representing tblX.colY=expr equalities. Equality module has
+ = incoming edges from columns used in expr
+ = outgoing edge to tblX.colY column.
+ - Nodes representing unique keys. Unique key has
+ = incoming edges from key component value modules
+ = outgoing edge to key's table module
+ - Inner side of outer join module. Outer join module has
+ = incoming edges from table value modules
+ = No outgoing edges. Once we reach it, we know we can eliminate the
+ outer join.
+ A module may depend on multiple values, and hence its primary attribute is
+ the number of its arguments that are not bound.
+
+ The algorithm starts with equality nodes that don't have any incoming edges
+ (their expressions are either constant or depend only on tables that are
+ outside of the outer join in question) and performns a breadth-first
+ traversal. If we reach the outer join nest node, it means outer join is
+ functionally dependent and can be eliminated. Otherwise it cannot be
+ eliminated.
+
+ HANDLING MULTIPLE NESTED OUTER JOINS
+ ====================================
+
+ Outer joins that are not nested one within another are eliminated
+ independently. For nested outer joins we have the following considerations:
+
+ 1. ON expressions from children outer joins must be taken into account
+
+ Consider this example:
+
+ SELECT t0.*
+ FROM
+ t0
+ LEFT JOIN
+ (t1 LEFT JOIN t2 ON t2.primary_key=t1.col1)
+ ON
+ t1.primary_key=t0.col AND t2.col1=t1.col2
+
+ Here we cannot eliminate the "... LEFT JOIN t2 ON ..." part alone because the
+ ON clause of top level outer join has references to table t2.
+ We can eliminate the entire "... LEFT JOIN (t1 LEFT JOIN t2) ON .." part,
+ but in order to do that, we must look at both ON expressions.
+
+ 2. ON expressions of parent outer joins are useless.
+ Consider an example:
+
+ SELECT t0.*
+ FROM
+ t0
+ LEFT JOIN
+ (t1 LEFT JOIN t2 ON some_expr)
+ ON
+ t2.primary_key=t1.col -- (*)
+
+ Here the uppermost ON expression has a clause that gives us functional
+ dependency of table t2 on t1 and hence could be used to eliminate the
+ "... LEFT JOIN t2 ON..." part.
+ However, we would not actually encounter this situation, because before the
+ table elimination we run simplify_joins(), which, among other things, upon
+ seeing a functional dependency condition like (*) will convert the outer join
+ of
+
+ "... LEFT JOIN t2 ON ..."
+
+ into inner join and thus make table elimination not to consider eliminating
+ table t2.
+*/
+
+class Dep_value;
+ class Dep_value_field;
+ class Dep_value_table;
+
+
+class Dep_module;
+ class Dep_module_expr;
+ class Dep_module_goal;
+ class Dep_module_key;
+
+class Dep_analysis_context;
+
+
+/*
+ A value, something that can be bound or not bound. One can also iterate over
+ unbound modules that depend on this value
+*/
+
+class Dep_value : public Sql_alloc
+{
+public:
+ Dep_value(): bound(FALSE) {}
+ virtual ~Dep_value(){} /* purecov: inspected */ /* stop compiler warnings */
+
+ bool is_bound() { return bound; }
+ void make_bound() { bound= TRUE; }
+
+ /* Iteration over unbound modules that depend on this value */
+ typedef char *Iterator;
+ virtual Iterator init_unbound_modules_iter(char *buf)=0;
+ virtual Dep_module* get_next_unbound_module(Dep_analysis_context *dac,
+ Iterator iter) = 0;
+ static const size_t iterator_size;
+protected:
+ bool bound;
+};
+
+
+/*
+ A table field value. There is exactly only one such object for any tblX.fieldY
+ - the field depends on its table and equalities
+ - expressions that use the field are its dependencies
+*/
+
+class Dep_value_field : public Dep_value
+{
+public:
+ Dep_value_field(Dep_value_table *table_arg, Field *field_arg) :
+ table(table_arg), field(field_arg)
+ {}
+
+ Dep_value_table *table; /* Table this field is from */
+ Field *field; /* Field this object is representing */
+
+ /* Iteration over unbound modules that are our dependencies */
+ Iterator init_unbound_modules_iter(char *buf);
+ Dep_module* get_next_unbound_module(Dep_analysis_context *dac,
+ Iterator iter);
+
+ void make_unbound_modules_iter_skip_keys(Iterator iter);
+
+ static const size_t iterator_size;
+private:
+ /*
+ Field_deps that belong to one table form a linked list, ordered by
+ field_index
+ */
+ Dep_value_field *next_table_field;
+
+ /*
+ Offset to bits in Dep_analysis_context::expr_deps (see comment to that
+ member for semantics of the bits).
+ */
+ uint bitmap_offset;
+
+ class Module_iter
+ {
+ public:
+ /* if not null, return this and advance */
+ Dep_module_key *key_dep;
+ /* Otherwise, this and advance */
+ uint equality_no;
+ };
+ friend class Dep_analysis_context;
+ friend class Field_dependency_recorder;
+ friend class Dep_value_table;
+};
+
+const size_t Dep_value_field::iterator_size=
+ ALIGN_SIZE(sizeof(Dep_value_field::Module_iter));
+
+
+/*
+ A table value. There is one Dep_value_table object for every table that can
+ potentially be eliminated.
+
+ Table becomes bound as soon as some of its unique keys becomes bound
+ Once the table is bound:
+ - all of its fields are bound
+ - its embedding outer join has one less unknown argument
+*/
+
+class Dep_value_table : public Dep_value
+{
+public:
+ Dep_value_table(TABLE *table_arg) :
+ table(table_arg), fields(NULL), keys(NULL)
+ {}
+ TABLE *table; /* Table this object is representing */
+ /* Ordered list of fields that belong to this table */
+ Dep_value_field *fields;
+ Dep_module_key *keys; /* Ordered list of Unique keys in this table */
+
+ /* Iteration over unbound modules that are our dependencies */
+ Iterator init_unbound_modules_iter(char *buf);
+ Dep_module* get_next_unbound_module(Dep_analysis_context *dac,
+ Iterator iter);
+ static const size_t iterator_size;
+private:
+ class Module_iter
+ {
+ public:
+ /* Space for field iterator */
+ char buf[Dep_value_field::iterator_size];
+ /* !NULL <=> iterating over depdenent modules of this field */
+ Dep_value_field *field_dep;
+ bool returned_goal;
+ };
+};
+
+
+const size_t Dep_value_table::iterator_size=
+ ALIGN_SIZE(sizeof(Dep_value_table::Module_iter));
+
+const size_t Dep_value::iterator_size=
+ MY_MAX(Dep_value_table::iterator_size, Dep_value_field::iterator_size);
+
+
+/*
+ A 'module'. Module has unsatisfied dependencies, number of whose is stored in
+ unbound_args. Modules also can be linked together in a list.
+*/
+
+class Dep_module : public Sql_alloc
+{
+public:
+ virtual ~Dep_module(){} /* purecov: inspected */ /* stop compiler warnings */
+
+ /* Mark as bound. Currently is non-virtual and does nothing */
+ void make_bound() {};
+
+ /*
+ The final module will return TRUE here. When we see that TRUE was returned,
+ that will mean that functional dependency check succeeded.
+ */
+ virtual bool is_final () { return FALSE; }
+
+ /*
+ Increment number of bound arguments. this is expected to change
+ is_applicable() from false to true after sufficient set of arguments is
+ bound.
+ */
+ void touch() { unbound_args--; }
+ bool is_applicable() { return !MY_TEST(unbound_args); }
+
+ /* Iteration over values that */
+ typedef char *Iterator;
+ virtual Iterator init_unbound_values_iter(char *buf)=0;
+ virtual Dep_value* get_next_unbound_value(Dep_analysis_context *dac,
+ Iterator iter)=0;
+ static const size_t iterator_size;
+protected:
+ uint unbound_args;
+
+ Dep_module() : unbound_args(0) {}
+ /* to bump unbound_args when constructing depedendencies */
+ friend class Field_dependency_recorder;
+ friend class Dep_analysis_context;
+};
+
+
+/*
+ This represents either
+ - "tbl.column= expr" equality dependency, i.e. tbl.column depends on fields
+ used in the expression, or
+ - tbl1.col1=tbl2.col2=... multi-equality.
+*/
+
+class Dep_module_expr : public Dep_module
+{
+public:
+ Dep_value_field *field;
+ Item *expr;
+
+ List<Dep_value_field> *mult_equal_fields;
+ /* Used during condition analysis only, similar to KEYUSE::level */
+ uint level;
+
+ Iterator init_unbound_values_iter(char *buf);
+ Dep_value* get_next_unbound_value(Dep_analysis_context *dac, Iterator iter);
+ static const size_t iterator_size;
+private:
+ class Value_iter
+ {
+ public:
+ Dep_value_field *field;
+ List_iterator<Dep_value_field> it;
+ };
+};
+
+const size_t Dep_module_expr::iterator_size=
+ ALIGN_SIZE(sizeof(Dep_module_expr::Value_iter));
+
+
+/*
+ A Unique key module
+ - Unique key has all of its components as arguments
+ - Once unique key is bound, its table value is known
+*/
+
+class Dep_module_key: public Dep_module
+{
+public:
+ Dep_module_key(Dep_value_table *table_arg, uint keyno_arg, uint n_parts_arg) :
+ table(table_arg), keyno(keyno_arg), next_table_key(NULL)
+ {
+ unbound_args= n_parts_arg;
+ }
+ Dep_value_table *table; /* Table this key is from */
+ uint keyno; /* The index we're representing */
+ /* Unique keys form a linked list, ordered by keyno */
+ Dep_module_key *next_table_key;
+
+ Iterator init_unbound_values_iter(char *buf);
+ Dep_value* get_next_unbound_value(Dep_analysis_context *dac, Iterator iter);
+ static const size_t iterator_size;
+private:
+ class Value_iter
+ {
+ public:
+ Dep_value_table *table;
+ };
+};
+
+const size_t Dep_module_key::iterator_size=
+ ALIGN_SIZE(sizeof(Dep_module_key::Value_iter));
+
+const size_t Dep_module::iterator_size=
+ MY_MAX(Dep_module_expr::iterator_size, Dep_module_key::iterator_size);
+
+
+/*
+ A module that represents outer join that we're trying to eliminate. If we
+ manage to declare this module to be bound, then outer join can be eliminated.
+*/
+
+class Dep_module_goal: public Dep_module
+{
+public:
+ Dep_module_goal(uint n_children)
+ {
+ unbound_args= n_children;
+ }
+ bool is_final() { return TRUE; }
+ /*
+ This is the goal module, so the running wave algorithm should terminate
+ once it sees that this module is applicable and should never try to apply
+ it, hence no use for unbound value iterator implementation.
+ */
+ Iterator init_unbound_values_iter(char *buf)
+ {
+ DBUG_ASSERT(0);
+ return NULL;
+ }
+ Dep_value* get_next_unbound_value(Dep_analysis_context *dac, Iterator iter)
+ {
+ DBUG_ASSERT(0);
+ return NULL;
+ }
+};
+
+
+/*
+ Functional dependency analyzer context
+*/
+class Dep_analysis_context
+{
+public:
+ bool setup_equality_modules_deps(List<Dep_module> *bound_modules);
+ bool run_wave(List<Dep_module> *new_bound_modules);
+
+ /* Tables that we're looking at eliminating */
+ table_map usable_tables;
+
+ /* Array of equality dependencies */
+ Dep_module_expr *equality_mods;
+ uint n_equality_mods; /* Number of elements in the array */
+ uint n_equality_mods_alloced;
+
+ /* tablenr -> Dep_value_table* mapping. */
+ Dep_value_table *table_deps[MAX_KEY];
+
+ /* Element for the outer join we're attempting to eliminate */
+ Dep_module_goal *outer_join_dep;
+
+ /*
+ Bitmap of how expressions depend on bits. Given a Dep_value_field object,
+ one can check bitmap_is_set(expr_deps, field_val->bitmap_offset + expr_no)
+ to see if expression equality_mods[expr_no] depends on the given field.
+ */
+ MY_BITMAP expr_deps;
+
+ Dep_value_table *create_table_value(TABLE *table);
+ Dep_value_field *get_field_value(Field *field);
+
+#ifndef DBUG_OFF
+ void dbug_print_deps();
+#endif
+};
+
+
+void eliminate_tables(JOIN *join);
+
+static bool
+eliminate_tables_for_list(JOIN *join,
+ List<TABLE_LIST> *join_list,
+ table_map tables_in_list,
+ Item *on_expr,
+ table_map tables_used_elsewhere,
+ Json_writer_array* trace_eliminate_tables);
+static
+bool check_func_dependency(JOIN *join,
+ table_map dep_tables,
+ List_iterator<TABLE_LIST> *it,
+ TABLE_LIST *oj_tbl,
+ Item* cond);
+static
+void build_eq_mods_for_cond(THD *thd, Dep_analysis_context *dac,
+ Dep_module_expr **eq_mod, uint *and_level,
+ Item *cond);
+static
+void check_equality(Dep_analysis_context *dac, Dep_module_expr **eq_mod,
+ uint and_level, Item_bool_func *cond,
+ Item *left, Item *right);
+static
+Dep_module_expr *merge_eq_mods(Dep_module_expr *start,
+ Dep_module_expr *new_fields,
+ Dep_module_expr *end, uint and_level);
+static void mark_as_eliminated(JOIN *join, TABLE_LIST *tbl,
+ Json_writer_array* trace_eliminate_tables);
+static
+void add_module_expr(Dep_analysis_context *dac, Dep_module_expr **eq_mod,
+ uint and_level, Dep_value_field *field_val, Item *right,
+ List<Dep_value_field>* mult_equal_fields);
+
+
+/*****************************************************************************/
+
+/*
+ Perform table elimination
+
+ SYNOPSIS
+ eliminate_tables()
+ join Join to work on
+
+ DESCRIPTION
+ This is the entry point for table elimination. Grep for MODULE INTERFACE
+ section in this file for calling convention.
+
+ The idea behind table elimination is that if we have an outer join:
+
+ SELECT * FROM t1 LEFT JOIN
+ (t2 JOIN t3) ON t2.primary_key=t1.col AND
+ t3.primary_key=t2.col
+ such that
+
+ 1. columns of the inner tables are not used anywhere ouside the outer
+ join (not in WHERE, not in GROUP/ORDER BY clause, not in select list
+ etc etc), and
+ 2. inner side of the outer join is guaranteed to produce at most one
+ record combination for each record combination of outer tables.
+
+ then the inner side of the outer join can be removed from the query.
+ This is because it will always produce one matching record (either a
+ real match or a NULL-complemented record combination), and since there
+ are no references to columns of the inner tables anywhere, it doesn't
+ matter which record combination it was.
+
+ This function primary handles checking #1. It collects a bitmap of
+ tables that are not used in select list/GROUP BY/ORDER BY/HAVING/etc and
+ thus can possibly be eliminated.
+
+ After this, if #1 is met, the function calls eliminate_tables_for_list()
+ that checks #2.
+
+ SIDE EFFECTS
+ See the OVERVIEW section at the top of this file.
+
+*/
+
+void eliminate_tables(JOIN *join)
+{
+ THD* thd= join->thd;
+ Item *item;
+ table_map used_tables;
+ DBUG_ENTER("eliminate_tables");
+
+ DBUG_ASSERT(join->eliminated_tables == 0);
+
+ /* If there are no outer joins, we have nothing to eliminate: */
+ if (!join->outer_join)
+ DBUG_VOID_RETURN;
+
+ if (!optimizer_flag(thd, OPTIMIZER_SWITCH_TABLE_ELIMINATION))
+ DBUG_VOID_RETURN; /* purecov: inspected */
+
+ Json_writer_object trace_wrapper(thd);
+
+ /* Find the tables that are referred to from WHERE/HAVING */
+ used_tables= (join->conds? join->conds->used_tables() : 0) |
+ (join->having? join->having->used_tables() : 0);
+
+ /*
+ For "INSERT ... SELECT ... ON DUPLICATE KEY UPDATE column = val"
+ we should also take into account tables mentioned in "val".
+ */
+ if (join->thd->lex->sql_command == SQLCOM_INSERT_SELECT &&
+ join->select_lex == thd->lex->first_select_lex())
+ {
+ List_iterator<Item> val_it(thd->lex->value_list);
+ while ((item= val_it++))
+ {
+ DBUG_ASSERT(item->is_fixed());
+ used_tables |= item->used_tables();
+ }
+ }
+
+ /* Add tables referred to from the select list */
+ List_iterator<Item> it(join->fields_list);
+ while ((item= it++))
+ used_tables |= item->used_tables();
+
+ /* Add tables referred to from ORDER BY and GROUP BY lists */
+ ORDER *all_lists[]= { join->order, join->group_list};
+ for (int i=0; i < 2; i++)
+ {
+ for (ORDER *cur_list= all_lists[i]; cur_list; cur_list= cur_list->next)
+ used_tables |= (*(cur_list->item))->used_tables();
+ }
+
+ if (join->select_lex == thd->lex->first_select_lex())
+ {
+
+ /* Multi-table UPDATE: don't eliminate tables referred from SET statement */
+ if (thd->lex->sql_command == SQLCOM_UPDATE_MULTI)
+ {
+ /* Multi-table UPDATE and DELETE: don't eliminate the tables we modify: */
+ used_tables |= thd->table_map_for_update;
+ List_iterator<Item> it2(thd->lex->value_list);
+ while ((item= it2++))
+ used_tables |= item->used_tables();
+ }
+
+ if (thd->lex->sql_command == SQLCOM_DELETE_MULTI)
+ {
+ TABLE_LIST *tbl;
+ for (tbl= (TABLE_LIST*)thd->lex->auxiliary_table_list.first;
+ tbl; tbl= tbl->next_local)
+ {
+ used_tables |= tbl->table->map;
+ }
+ }
+ }
+
+ table_map all_tables= join->all_tables_map();
+ Json_writer_array trace_eliminated_tables(thd,"eliminated_tables");
+ if (all_tables & ~used_tables)
+ {
+ /* There are some tables that we probably could eliminate. Try it. */
+ eliminate_tables_for_list(join, join->join_list, all_tables, NULL,
+ used_tables, &trace_eliminated_tables);
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Perform table elimination in a given join list
+
+ SYNOPSIS
+ eliminate_tables_for_list()
+ join The join we're working on
+ join_list Join list to eliminate tables from (and if
+ on_expr !=NULL, then try eliminating join_list
+ itself)
+ list_tables Bitmap of tables embedded in the join_list.
+ on_expr ON expression, if the join list is the inner side
+ of an outer join.
+ NULL means it's not an outer join but rather a
+ top-level join list.
+ tables_used_elsewhere Bitmap of tables that are referred to from
+ somewhere outside of the join list (e.g.
+ select list, HAVING, other ON expressions, etc).
+
+ DESCRIPTION
+ Perform table elimination in a given join list:
+ - First, walk through join list members and try doing table elimination for
+ them.
+ - Then, if the join list itself is an inner side of outer join
+ (on_expr!=NULL), then try to eliminate the entire join list.
+
+ See "HANDLING MULTIPLE NESTED OUTER JOINS" section at the top of this file
+ for more detailed description and justification.
+
+ RETURN
+ TRUE The entire join list eliminated
+ FALSE Join list wasn't eliminated (but some of its child outer joins
+ possibly were)
+*/
+
+static bool
+eliminate_tables_for_list(JOIN *join, List<TABLE_LIST> *join_list,
+ table_map list_tables, Item *on_expr,
+ table_map tables_used_elsewhere,
+ Json_writer_array *trace_eliminate_tables)
+{
+ TABLE_LIST *tbl;
+ List_iterator<TABLE_LIST> it(*join_list);
+ table_map tables_used_on_left= 0;
+ bool all_eliminated= TRUE;
+
+ while ((tbl= it++))
+ {
+ if (tbl->on_expr)
+ {
+ table_map outside_used_tables= tables_used_elsewhere |
+ tables_used_on_left;
+ if (on_expr)
+ outside_used_tables |= on_expr->used_tables();
+ if (tbl->nested_join)
+ {
+ /* This is "... LEFT JOIN (join_nest) ON cond" */
+ if (eliminate_tables_for_list(join,
+ &tbl->nested_join->join_list,
+ tbl->nested_join->used_tables,
+ tbl->on_expr,
+ outside_used_tables,
+ trace_eliminate_tables))
+ {
+ mark_as_eliminated(join, tbl, trace_eliminate_tables);
+ }
+ else
+ all_eliminated= FALSE;
+ }
+ else
+ {
+ /* This is "... LEFT JOIN tbl ON cond" */
+ if (!(tbl->table->map & outside_used_tables) &&
+ check_func_dependency(join, tbl->table->map, NULL, tbl,
+ tbl->on_expr))
+ {
+ mark_as_eliminated(join, tbl, trace_eliminate_tables);
+ }
+ else
+ all_eliminated= FALSE;
+ }
+ tables_used_on_left |= tbl->on_expr->used_tables();
+ }
+ else
+ {
+ DBUG_ASSERT(!tbl->nested_join || tbl->sj_on_expr);
+ //psergey-todo: is the following really correct or we'll need to descend
+ //down all ON clauses: ?
+ if (tbl->sj_on_expr)
+ tables_used_on_left |= tbl->sj_on_expr->used_tables();
+ }
+ }
+
+ /* Try eliminating the nest we're called for */
+ if (all_eliminated && on_expr && !(list_tables & tables_used_elsewhere))
+ {
+ it.rewind();
+ return check_func_dependency(join, list_tables & ~join->eliminated_tables,
+ &it, NULL, on_expr);
+ }
+ return FALSE; /* not eliminated */
+}
+
+
+/*
+ Check if given condition makes given set of tables functionally dependent
+
+ SYNOPSIS
+ check_func_dependency()
+ join Join we're procesing
+ dep_tables Tables that we check to be functionally dependent (on
+ everything else)
+ it Iterator that enumerates these tables, or NULL if we're
+ checking one single table and it is specified in oj_tbl
+ parameter.
+ oj_tbl NULL, or one single table that we're checking
+ cond Condition to use to prove functional dependency
+
+ DESCRIPTION
+ Check if we can use given condition to infer that the set of given tables
+ is functionally dependent on everything else.
+
+ RETURN
+ TRUE - Yes, functionally dependent
+ FALSE - No, or error
+*/
+
+static
+bool check_func_dependency(JOIN *join,
+ table_map dep_tables,
+ List_iterator<TABLE_LIST> *it,
+ TABLE_LIST *oj_tbl,
+ Item* cond)
+{
+ Dep_analysis_context dac;
+
+ /*
+ Pre-alloc some Dep_module_expr structures. We don't need this to be
+ guaranteed upper bound.
+ */
+ dac.n_equality_mods_alloced=
+ join->thd->lex->current_select->max_equal_elems +
+ (join->thd->lex->current_select->cond_count+1)*2 +
+ join->thd->lex->current_select->between_count;
+
+ bzero(dac.table_deps, sizeof(dac.table_deps));
+ if (!(dac.equality_mods= new Dep_module_expr[dac.n_equality_mods_alloced]))
+ return FALSE; /* purecov: inspected */
+
+ Dep_module_expr* last_eq_mod= dac.equality_mods;
+
+ /* Create Dep_value_table objects for all tables we're trying to eliminate */
+ if (oj_tbl)
+ {
+ if (!dac.create_table_value(oj_tbl->table))
+ return FALSE; /* purecov: inspected */
+ }
+ else
+ {
+ TABLE_LIST *tbl;
+ while ((tbl= (*it)++))
+ {
+ if (tbl->table && (tbl->table->map & dep_tables))
+ {
+ if (!dac.create_table_value(tbl->table))
+ return FALSE; /* purecov: inspected */
+ }
+ }
+ }
+ dac.usable_tables= dep_tables;
+
+ /*
+ Analyze the the ON expression and create Dep_module_expr objects and
+ Dep_value_field objects for the used fields.
+ */
+ uint and_level=0;
+ build_eq_mods_for_cond(join->thd, &dac, &last_eq_mod, &and_level, cond);
+ if (!(dac.n_equality_mods= (uint)(last_eq_mod - dac.equality_mods)))
+ return FALSE; /* No useful conditions */
+
+ List<Dep_module> bound_modules;
+
+ if (!(dac.outer_join_dep= new Dep_module_goal(my_count_bits(dep_tables))) ||
+ dac.setup_equality_modules_deps(&bound_modules))
+ {
+ return FALSE; /* OOM, default to non-dependent */ /* purecov: inspected */
+ }
+
+ DBUG_EXECUTE("test", dac.dbug_print_deps(); );
+
+ return dac.run_wave(&bound_modules);
+}
+
+
+/*
+ Running wave functional dependency check algorithm
+
+ SYNOPSIS
+ Dep_analysis_context::run_wave()
+ new_bound_modules List of bound modules to start the running wave from.
+ The list is destroyed during execution
+
+ DESCRIPTION
+ This function uses running wave algorithm to check if the join nest is
+ functionally-dependent.
+ We start from provided list of bound modules, and then run the wave across
+ dependency edges, trying the reach the Dep_module_goal module. If we manage
+ to reach it, then the join nest is functionally-dependent, otherwise it is
+ not.
+
+ RETURN
+ TRUE Yes, functionally dependent
+ FALSE No.
+*/
+
+bool Dep_analysis_context::run_wave(List<Dep_module> *new_bound_modules)
+{
+ List<Dep_value> new_bound_values;
+
+ Dep_value *value;
+ Dep_module *module;
+
+ while (!new_bound_modules->is_empty())
+ {
+ /*
+ The "wave" is in new_bound_modules list. Iterate over values that can be
+ reached from these modules but are not yet bound, and collect the next
+ wave generation in new_bound_values list.
+ */
+ List_iterator<Dep_module> modules_it(*new_bound_modules);
+ while ((module= modules_it++))
+ {
+ char iter_buf[Dep_module::iterator_size + ALIGN_MAX_UNIT];
+ Dep_module::Iterator iter;
+ iter= module->init_unbound_values_iter(iter_buf);
+ while ((value= module->get_next_unbound_value(this, iter)))
+ {
+ if (!value->is_bound())
+ {
+ value->make_bound();
+ new_bound_values.push_back(value);
+ }
+ }
+ }
+ new_bound_modules->empty();
+
+ /*
+ Now walk over list of values we've just found to be bound and check which
+ unbound modules can be reached from them. If there are some modules that
+ became bound, collect them in new_bound_modules list.
+ */
+ List_iterator<Dep_value> value_it(new_bound_values);
+ while ((value= value_it++))
+ {
+ char iter_buf[Dep_value::iterator_size + ALIGN_MAX_UNIT];
+ Dep_value::Iterator iter;
+ iter= value->init_unbound_modules_iter(iter_buf);
+ while ((module= value->get_next_unbound_module(this, iter)))
+ {
+ module->touch();
+ if (!module->is_applicable())
+ continue;
+ if (module->is_final())
+ return TRUE; /* Functionally dependent */
+ module->make_bound();
+ new_bound_modules->push_back(module);
+ }
+ }
+ new_bound_values.empty();
+ }
+ return FALSE;
+}
+
+
+/*
+ This is used to analyze expressions in "tbl.col=expr" dependencies so
+ that we can figure out which fields the expression depends on.
+*/
+
+class Field_dependency_recorder : public Field_enumerator
+{
+public:
+ Field_dependency_recorder(Dep_analysis_context *ctx_arg): ctx(ctx_arg)
+ {}
+
+ void visit_field(Item_field *item)
+ {
+ Field *field= item->field;
+ Dep_value_table *tbl_dep;
+ if ((tbl_dep= ctx->table_deps[field->table->tablenr]))
+ {
+ for (Dep_value_field *field_dep= tbl_dep->fields; field_dep;
+ field_dep= field_dep->next_table_field)
+ {
+ if (field->field_index == field_dep->field->field_index)
+ {
+ uint offs= field_dep->bitmap_offset + expr_offset;
+ if (!bitmap_is_set(&ctx->expr_deps, offs))
+ ctx->equality_mods[expr_offset].unbound_args++;
+ bitmap_set_bit(&ctx->expr_deps, offs);
+ return;
+ }
+ }
+ /*
+ We got here if didn't find this field. It's not a part of
+ a unique key, and/or there is no field=expr element for it.
+ Bump the dependency anyway, this will signal that this dependency
+ cannot be satisfied.
+ */
+ ctx->equality_mods[expr_offset].unbound_args++;
+ }
+ else
+ visited_other_tables= TRUE;
+ }
+
+ Dep_analysis_context *ctx;
+ /* Offset of the expression we're processing in the dependency bitmap */
+ uint expr_offset;
+
+ bool visited_other_tables;
+};
+
+
+
+
+/*
+ Setup inbound dependency relationships for tbl.col=expr equalities
+
+ SYNOPSIS
+ setup_equality_modules_deps()
+ bound_deps_list Put here modules that were found not to depend on
+ any non-bound columns.
+
+ DESCRIPTION
+ Setup inbound dependency relationships for tbl.col=expr equalities:
+ - allocate a bitmap where we store such dependencies
+ - for each "tbl.col=expr" equality, analyze the expr part and find out
+ which fields it refers to and set appropriate dependencies.
+
+ RETURN
+ FALSE OK
+ TRUE Out of memory
+*/
+
+bool Dep_analysis_context::setup_equality_modules_deps(List<Dep_module>
+ *bound_modules)
+{
+ THD *thd= current_thd;
+ DBUG_ENTER("setup_equality_modules_deps");
+
+ /*
+ Count Dep_value_field objects and assign each of them a unique
+ bitmap_offset value.
+ */
+ uint offset= 0;
+ for (Dep_value_table **tbl_dep= table_deps;
+ tbl_dep < table_deps + MAX_TABLES;
+ tbl_dep++)
+ {
+ if (*tbl_dep)
+ {
+ for (Dep_value_field *field_dep= (*tbl_dep)->fields;
+ field_dep;
+ field_dep= field_dep->next_table_field)
+ {
+ field_dep->bitmap_offset= offset;
+ offset += n_equality_mods;
+ }
+ }
+ }
+
+ void *buf;
+ if (!(buf= thd->alloc(bitmap_buffer_size(offset))) ||
+ my_bitmap_init(&expr_deps, (my_bitmap_map*)buf, offset, FALSE))
+ {
+ DBUG_RETURN(TRUE); /* purecov: inspected */
+ }
+ bitmap_clear_all(&expr_deps);
+
+ /*
+ Analyze all "field=expr" dependencies, and have expr_deps encode
+ dependencies of expressions from fields.
+
+ Also collect a linked list of equalities that are bound.
+ */
+ Field_dependency_recorder deps_recorder(this);
+ for (Dep_module_expr *eq_mod= equality_mods;
+ eq_mod < equality_mods + n_equality_mods;
+ eq_mod++)
+ {
+ deps_recorder.expr_offset= (uint)(eq_mod - equality_mods);
+ deps_recorder.visited_other_tables= FALSE;
+ eq_mod->unbound_args= 0;
+
+ if (eq_mod->field)
+ {
+ /* Regular tbl.col=expr(tblX1.col1, tblY1.col2, ...) */
+ eq_mod->expr->walk(&Item::enumerate_field_refs_processor, FALSE,
+ &deps_recorder);
+ }
+ else
+ {
+ /* It's a multi-equality */
+ eq_mod->unbound_args= !MY_TEST(eq_mod->expr);
+ List_iterator<Dep_value_field> it(*eq_mod->mult_equal_fields);
+ Dep_value_field* field_val;
+ while ((field_val= it++))
+ {
+ uint offs= (uint)(field_val->bitmap_offset + eq_mod - equality_mods);
+ bitmap_set_bit(&expr_deps, offs);
+ }
+ }
+
+ if (!eq_mod->unbound_args)
+ bound_modules->push_back(eq_mod, thd->mem_root);
+ }
+
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Ordering that we're using whenever we need to maintain a no-duplicates list
+ of field value objects.
+*/
+
+static
+int compare_field_values(Dep_value_field *a, Dep_value_field *b, void *unused)
+{
+ uint a_ratio= a->field->table->tablenr*MAX_FIELDS +
+ a->field->field_index;
+
+ uint b_ratio= b->field->table->tablenr*MAX_FIELDS +
+ b->field->field_index;
+ return (a_ratio < b_ratio)? 1 : ((a_ratio == b_ratio)? 0 : -1);
+}
+
+
+/*
+ Produce Dep_module_expr elements for given condition.
+
+ SYNOPSIS
+ build_eq_mods_for_cond()
+ ctx Table elimination context
+ eq_mod INOUT Put produced equality conditions here
+ and_level INOUT AND-level (like in add_key_fields)
+ cond Condition to process
+
+ DESCRIPTION
+ Analyze the given condition and produce an array of Dep_module_expr
+ dependencies from it. The idea of analysis is as follows:
+ There are useful equalities that have form
+
+ eliminable_tbl.field = expr (denote as useful_equality)
+
+ The condition is composed of useful equalities and other conditions that
+ are combined together with AND and OR operators. We process the condition
+ in recursive fashion according to these basic rules:
+
+ useful_equality1 AND useful_equality2 -> make array of two
+ Dep_module_expr objects
+
+ useful_equality AND other_cond -> discard other_cond
+
+ useful_equality OR other_cond -> discard everything
+
+ useful_equality1 OR useful_equality2 -> check if both sides of OR are the
+ same equality. If yes, that's the
+ result, otherwise discard
+ everything.
+
+ The rules are used to map the condition into an array Dep_module_expr
+ elements. The array will specify functional dependencies that logically
+ follow from the condition.
+
+ SEE ALSO
+ This function is modeled after add_key_fields()
+*/
+
+static
+void build_eq_mods_for_cond(THD *thd, Dep_analysis_context *ctx,
+ Dep_module_expr **eq_mod,
+ uint *and_level, Item *cond)
+{
+ if (cond->type() == Item_func::COND_ITEM)
+ {
+ List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
+ size_t orig_offset= *eq_mod - ctx->equality_mods;
+
+ /* AND/OR */
+ if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
+ {
+ Item *item;
+ while ((item=li++))
+ build_eq_mods_for_cond(thd, ctx, eq_mod, and_level, item);
+
+ for (Dep_module_expr *mod_exp= ctx->equality_mods + orig_offset;
+ mod_exp != *eq_mod ; mod_exp++)
+ {
+ mod_exp->level= *and_level;
+ }
+ }
+ else
+ {
+ Item *item;
+ (*and_level)++;
+ build_eq_mods_for_cond(thd, ctx, eq_mod, and_level, li++);
+ while ((item=li++))
+ {
+ Dep_module_expr *start_key_fields= *eq_mod;
+ (*and_level)++;
+ build_eq_mods_for_cond(thd, ctx, eq_mod, and_level, item);
+ *eq_mod= merge_eq_mods(ctx->equality_mods + orig_offset,
+ start_key_fields, *eq_mod,
+ ++(*and_level));
+ }
+ }
+ return;
+ }
+
+ if (cond->type() != Item::FUNC_ITEM)
+ return;
+
+ Item_func *cond_func= (Item_func*) cond;
+ Item **args= cond_func->arguments();
+
+ switch (cond_func->functype()) {
+ case Item_func::BETWEEN:
+ {
+ Item *fld;
+ Item_func_between *func= (Item_func_between *) cond_func;
+ if (!func->negated &&
+ (fld= args[0]->real_item())->type() == Item::FIELD_ITEM &&
+ args[1]->eq(args[2], ((Item_field*)fld)->field->binary()))
+ {
+ check_equality(ctx, eq_mod, *and_level, func, args[0], args[1]);
+ check_equality(ctx, eq_mod, *and_level, func, args[1], args[0]);
+ }
+ break;
+ }
+ case Item_func::EQ_FUNC:
+ case Item_func::EQUAL_FUNC:
+ {
+ Item_bool_rowready_func2 *func= (Item_bool_rowready_func2*) cond_func;
+ check_equality(ctx, eq_mod, *and_level, func, args[0], args[1]);
+ check_equality(ctx, eq_mod, *and_level, func, args[1], args[0]);
+ break;
+ }
+ case Item_func::ISNULL_FUNC:
+ {
+ Item *tmp=new (thd->mem_root) Item_null(thd);
+ if (tmp)
+ check_equality(ctx, eq_mod, *and_level,
+ (Item_func_isnull*) cond_func, args[0], tmp);
+ break;
+ }
+ case Item_func::MULT_EQUAL_FUNC:
+ {
+ /*
+ The condition is a
+
+ tbl1.field1 = tbl2.field2 = tbl3.field3 [= const_expr]
+
+ multiple-equality. Do two things:
+ - Collect List<Dep_value_field> of tblX.colY where tblX is one of the
+ tables we're trying to eliminate.
+ - rembember if there was a bound value, either const_expr or tblY.colZ
+ swher tblY is not a table that we're trying to eliminate.
+ Store all collected information in a Dep_module_expr object.
+ */
+ Item_equal *item_equal= (Item_equal*)cond;
+ List<Dep_value_field> *fvl;
+ if (!(fvl= new List<Dep_value_field>))
+ break; /* purecov: inspected */
+
+ Item_equal_fields_iterator it(*item_equal);
+ Item *item;
+ Item *bound_item= item_equal->get_const();
+ while ((item= it++))
+ {
+ Field *equal_field= it.get_curr_field();
+ if ((item->used_tables() & ctx->usable_tables))
+ {
+ Dep_value_field *field_val;
+ if ((field_val= ctx->get_field_value(equal_field)))
+ fvl->push_back(field_val, thd->mem_root);
+ }
+ else
+ {
+ if (!bound_item)
+ bound_item= item;
+ }
+ }
+ /*
+ Multiple equality is only useful if it includes at least one field from
+ the table that we could potentially eliminate:
+ */
+ if (fvl->elements)
+ {
+
+ bubble_sort<Dep_value_field>(fvl, compare_field_values, NULL);
+ add_module_expr(ctx, eq_mod, *and_level, NULL, bound_item, fvl);
+ }
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+
+/*
+ Perform an OR operation on two (adjacent) Dep_module_expr arrays.
+
+ SYNOPSIS
+ merge_eq_mods()
+ start Start of left OR-part
+ new_fields Start of right OR-part
+ end End of right OR-part
+ and_level AND-level (like in add_key_fields)
+
+ DESCRIPTION
+ This function is invoked for two adjacent arrays of Dep_module_expr elements:
+
+ $LEFT_PART $RIGHT_PART
+ +-----------------------+-----------------------+
+ start new_fields end
+
+ The goal is to produce an array which would correspond to the combined
+
+ $LEFT_PART OR $RIGHT_PART
+
+ condition. This is achieved as follows: First, we apply distrubutive law:
+
+ (fdep_A_1 AND fdep_A_2 AND ...) OR (fdep_B_1 AND fdep_B_2 AND ...) =
+
+ = AND_ij (fdep_A_[i] OR fdep_B_[j])
+
+ Then we walk over the obtained "fdep_A_[i] OR fdep_B_[j]" pairs, and
+ - Discard those that that have left and right part referring to different
+ columns. We can't infer anything useful from "col1=expr1 OR col2=expr2".
+ - When left and right parts refer to the same column, we check if they are
+ essentially the same.
+ = If they are the same, we keep one copy
+ "t.col=expr OR t.col=expr" -> "t.col=expr
+ = if they are different , then we discard both
+ "t.col=expr1 OR t.col=expr2" -> (nothing useful)
+
+ (no per-table or for-index FUNC_DEPS exist yet at this phase).
+
+ See also merge_key_fields().
+
+ RETURN
+ End of the result array
+*/
+
+static
+Dep_module_expr *merge_eq_mods(Dep_module_expr *start,
+ Dep_module_expr *new_fields,
+ Dep_module_expr *end, uint and_level)
+{
+ if (start == new_fields)
+ return start; /* (nothing) OR (...) -> (nothing) */
+ if (new_fields == end)
+ return start; /* (...) OR (nothing) -> (nothing) */
+
+ Dep_module_expr *first_free= new_fields;
+
+ for (; new_fields != end ; new_fields++)
+ {
+ for (Dep_module_expr *old=start ; old != first_free ; old++)
+ {
+ if (old->field == new_fields->field)
+ {
+ if (!old->field)
+ {
+ /*
+ OR-ing two multiple equalities. We must compute an intersection of
+ used fields, and check the constants according to these rules:
+
+ a=b=c=d OR a=c=e=f -> a=c (compute intersection)
+ a=const1 OR a=b -> (nothing)
+ a=const1 OR a=const1 -> a=const1
+ a=const1 OR a=const2 -> (nothing)
+
+ If we're performing an OR operation over multiple equalities, e.g.
+
+ (a=b=c AND p=q) OR (a=b AND v=z)
+
+ then we'll need to try combining each equality with each. ANDed
+ equalities are guaranteed to be disjoint, so we'll only get one
+ hit.
+ */
+ Field *eq_field= old->mult_equal_fields->head()->field;
+ if (old->expr && new_fields->expr &&
+ old->expr->eq_by_collation(new_fields->expr, eq_field->binary(),
+ eq_field->charset()))
+ {
+ /* Ok, keep */
+ }
+ else
+ {
+ /* no single constant/bound item. */
+ old->expr= NULL;
+ }
+
+ List <Dep_value_field> *fv;
+ if (!(fv= new List<Dep_value_field>))
+ break; /* purecov: inspected */
+
+ List_iterator<Dep_value_field> it1(*old->mult_equal_fields);
+ List_iterator<Dep_value_field> it2(*new_fields->mult_equal_fields);
+ Dep_value_field *lfield= it1++;
+ Dep_value_field *rfield= it2++;
+ /* Intersect two ordered lists */
+ while (lfield && rfield)
+ {
+ if (lfield == rfield)
+ {
+ fv->push_back(lfield);
+ lfield=it1++;
+ rfield=it2++;
+ }
+ else
+ {
+ if (compare_field_values(lfield, rfield, NULL) < 0)
+ lfield= it1++;
+ else
+ rfield= it2++;
+ }
+ }
+
+ if (fv->elements + MY_TEST(old->expr) > 1)
+ {
+ old->mult_equal_fields= fv;
+ old->level= and_level;
+ }
+ }
+ else if (!new_fields->expr->const_item())
+ {
+ /*
+ If the value matches, we can use the key reference.
+ If not, we keep it until we have examined all new values
+ */
+ if (old->expr->eq(new_fields->expr,
+ old->field->field->binary()))
+ {
+ old->level= and_level;
+ }
+ }
+ else if (old->expr->eq_by_collation(new_fields->expr,
+ old->field->field->binary(),
+ old->field->field->charset()))
+ {
+ old->level= and_level;
+ }
+ else
+ {
+ /* The expressions are different. */
+ if (old == --first_free) // If last item
+ break;
+ *old= *first_free; // Remove old value
+ old--; // Retry this value
+ }
+ }
+ }
+ }
+
+ /*
+ Ok, the results are within the [start, first_free) range, and the useful
+ elements have level==and_level. Now, remove all unusable elements:
+ */
+ for (Dep_module_expr *old=start ; old != first_free ;)
+ {
+ if (old->level != and_level)
+ { // Not used in all levels
+ if (old == --first_free)
+ break;
+ *old= *first_free; // Remove old value
+ continue;
+ }
+ old++;
+ }
+ return first_free;
+}
+
+
+/*
+ Add an Dep_module_expr element for left=right condition
+
+ SYNOPSIS
+ check_equality()
+ fda Table elimination context
+ eq_mod INOUT Store created Dep_module_expr here and increment ptr if
+ you do so
+ and_level AND-level (like in add_key_fields)
+ cond Condition we've inferred the left=right equality from.
+ left Left expression
+ right Right expression
+ usable_tables Create Dep_module_expr only if Left_expression's table
+ belongs to this set.
+
+ DESCRIPTION
+ Check if the passed left=right equality is such that
+ - 'left' is an Item_field referring to a field in a table we're checking
+ to be functionally depdendent,
+ - the equality allows to conclude that 'left' expression is functionally
+ dependent on the 'right',
+ and if so, create an Dep_module_expr object.
+*/
+
+static
+void check_equality(Dep_analysis_context *ctx, Dep_module_expr **eq_mod,
+ uint and_level, Item_bool_func *cond,
+ Item *left, Item *right)
+{
+ if ((left->used_tables() & ctx->usable_tables) &&
+ !(right->used_tables() & RAND_TABLE_BIT) &&
+ left->real_item()->type() == Item::FIELD_ITEM)
+ {
+ Field *field= ((Item_field*)left->real_item())->field;
+ if (!field->can_optimize_outer_join_table_elimination(cond, right))
+ return;
+ Dep_value_field *field_val;
+ if ((field_val= ctx->get_field_value(field)))
+ add_module_expr(ctx, eq_mod, and_level, field_val, right, NULL);
+ }
+}
+
+
+/*
+ Add a Dep_module_expr object with the specified parameters.
+
+ DESCRIPTION
+ Add a Dep_module_expr object with the specified parameters. Re-allocate
+ the ctx->equality_mods array if it has no space left.
+*/
+
+static
+void add_module_expr(Dep_analysis_context *ctx, Dep_module_expr **eq_mod,
+ uint and_level, Dep_value_field *field_val,
+ Item *right, List<Dep_value_field>* mult_equal_fields)
+{
+ if (*eq_mod == ctx->equality_mods + ctx->n_equality_mods_alloced)
+ {
+ /*
+ We've filled the entire equality_mods array. Replace it with a bigger
+ one. We do it somewhat inefficiently but it doesn't matter.
+ */
+ /* purecov: begin inspected */
+ Dep_module_expr *new_arr;
+ if (!(new_arr= new Dep_module_expr[ctx->n_equality_mods_alloced *2]))
+ return;
+ ctx->n_equality_mods_alloced *= 2;
+ for (int i= 0; i < *eq_mod - ctx->equality_mods; i++)
+ new_arr[i]= ctx->equality_mods[i];
+
+ ctx->equality_mods= new_arr;
+ *eq_mod= new_arr + (*eq_mod - ctx->equality_mods);
+ /* purecov: end */
+ }
+
+ (*eq_mod)->field= field_val;
+ (*eq_mod)->expr= right;
+ (*eq_mod)->level= and_level;
+ (*eq_mod)->mult_equal_fields= mult_equal_fields;
+ (*eq_mod)++;
+}
+
+
+/*
+ Create a Dep_value_table object for the given table
+
+ SYNOPSIS
+ Dep_analysis_context::create_table_value()
+ table Table to create object for
+
+ DESCRIPTION
+ Create a Dep_value_table object for the given table. Also create
+ Dep_module_key objects for all unique keys in the table.
+
+ RETURN
+ Created table value object
+ NULL if out of memory
+*/
+
+Dep_value_table *Dep_analysis_context::create_table_value(TABLE *table)
+{
+ Dep_value_table *tbl_dep;
+ if (!(tbl_dep= new Dep_value_table(table)))
+ return NULL; /* purecov: inspected */
+
+ Dep_module_key **key_list= &(tbl_dep->keys);
+ /* Add dependencies for unique keys */
+ for (uint i=0; i < table->s->keys; i++)
+ {
+ KEY *key= table->key_info + i;
+ if (key->flags & HA_NOSAME)
+ {
+ Dep_module_key *key_dep;
+ if (!(key_dep= new Dep_module_key(tbl_dep, i, key->user_defined_key_parts)))
+ return NULL;
+ *key_list= key_dep;
+ key_list= &(key_dep->next_table_key);
+ }
+ }
+ return table_deps[table->tablenr]= tbl_dep;
+}
+
+
+/*
+ Get a Dep_value_field object for the given field, creating it if necessary
+
+ SYNOPSIS
+ Dep_analysis_context::get_field_value()
+ field Field to create object for
+
+ DESCRIPTION
+ Get a Dep_value_field object for the given field. First, we search for it
+ in the list of Dep_value_field objects we have already created. If we don't
+ find it, we create a new Dep_value_field and put it into the list of field
+ objects we have for the table.
+
+ RETURN
+ Created field value object
+ NULL if out of memory
+*/
+
+Dep_value_field *Dep_analysis_context::get_field_value(Field *field)
+{
+ TABLE *table= field->table;
+ Dep_value_table *tbl_dep= table_deps[table->tablenr];
+
+ /* Try finding the field in field list */
+ Dep_value_field **pfield= &(tbl_dep->fields);
+ while (*pfield && (*pfield)->field->field_index < field->field_index)
+ {
+ pfield= &((*pfield)->next_table_field);
+ }
+ if (*pfield && (*pfield)->field->field_index == field->field_index)
+ return *pfield;
+
+ /* Create the field and insert it in the list */
+ Dep_value_field *new_field= new Dep_value_field(tbl_dep, field);
+ new_field->next_table_field= *pfield;
+ *pfield= new_field;
+
+ return new_field;
+}
+
+
+/*
+ Iteration over unbound modules that are our dependencies.
+ for those we have:
+ - dependendencies of our fields
+ - outer join we're in
+*/
+char *Dep_value_table::init_unbound_modules_iter(char *buf)
+{
+ Module_iter *iter= ALIGN_PTR(my_ptrdiff_t(buf), Module_iter);
+ iter->field_dep= fields;
+ if (fields)
+ {
+ fields->init_unbound_modules_iter(iter->buf);
+ fields->make_unbound_modules_iter_skip_keys(iter->buf);
+ }
+ iter->returned_goal= FALSE;
+ return (char*)iter;
+}
+
+
+Dep_module*
+Dep_value_table::get_next_unbound_module(Dep_analysis_context *dac,
+ char *iter)
+{
+ Module_iter *di= (Module_iter*)iter;
+ while (di->field_dep)
+ {
+ Dep_module *res;
+ if ((res= di->field_dep->get_next_unbound_module(dac, di->buf)))
+ return res;
+ if ((di->field_dep= di->field_dep->next_table_field))
+ {
+ char *field_iter= ((Module_iter*)iter)->buf;
+ di->field_dep->init_unbound_modules_iter(field_iter);
+ di->field_dep->make_unbound_modules_iter_skip_keys(field_iter);
+ }
+ }
+
+ if (!di->returned_goal)
+ {
+ di->returned_goal= TRUE;
+ return dac->outer_join_dep;
+ }
+ return NULL;
+}
+
+
+char *Dep_module_expr::init_unbound_values_iter(char *buf)
+{
+ Value_iter *iter= ALIGN_PTR(my_ptrdiff_t(buf), Value_iter);
+ iter->field= field;
+ if (!field)
+ {
+ new (&iter->it) List_iterator<Dep_value_field>(*mult_equal_fields);
+ }
+ return (char*)iter;
+}
+
+
+Dep_value* Dep_module_expr::get_next_unbound_value(Dep_analysis_context *dac,
+ char *buf)
+{
+ Dep_value *res;
+ if (field)
+ {
+ res= ((Value_iter*)buf)->field;
+ ((Value_iter*)buf)->field= NULL;
+ return (!res || res->is_bound())? NULL : res;
+ }
+ else
+ {
+ while ((res= ((Value_iter*)buf)->it++))
+ {
+ if (!res->is_bound())
+ return res;
+ }
+ return NULL;
+ }
+}
+
+
+char *Dep_module_key::init_unbound_values_iter(char *buf)
+{
+ Value_iter *iter= ALIGN_PTR(my_ptrdiff_t(buf), Value_iter);
+ iter->table= table;
+ return (char*)iter;
+}
+
+
+Dep_value* Dep_module_key::get_next_unbound_value(Dep_analysis_context *dac,
+ Dep_module::Iterator iter)
+{
+ Dep_value* res= ((Value_iter*)iter)->table;
+ ((Value_iter*)iter)->table= NULL;
+ return res;
+}
+
+
+Dep_value::Iterator Dep_value_field::init_unbound_modules_iter(char *buf)
+{
+ Module_iter *iter= ALIGN_PTR(my_ptrdiff_t(buf), Module_iter);
+ iter->key_dep= table->keys;
+ iter->equality_no= 0;
+ return (char*)iter;
+}
+
+
+void
+Dep_value_field::make_unbound_modules_iter_skip_keys(Dep_value::Iterator iter)
+{
+ ((Module_iter*)iter)->key_dep= NULL;
+}
+
+
+Dep_module* Dep_value_field::get_next_unbound_module(Dep_analysis_context *dac,
+ Dep_value::Iterator iter)
+{
+ Module_iter *di= (Module_iter*)iter;
+ Dep_module_key *key_dep= di->key_dep;
+
+ /*
+ First, enumerate all unique keys that are
+ - not yet applicable
+ - have this field as a part of them
+ */
+ while (key_dep && (key_dep->is_applicable() ||
+ !field->part_of_key_not_clustered.is_set(key_dep->keyno)))
+ {
+ key_dep= key_dep->next_table_key;
+ }
+
+ if (key_dep)
+ {
+ di->key_dep= key_dep->next_table_key;
+ return key_dep;
+ }
+ else
+ di->key_dep= NULL;
+
+ /*
+ Then walk through [multi]equalities and find those that
+ - depend on this field
+ - and are not bound yet.
+ */
+ uint eq_no= di->equality_no;
+ while (eq_no < dac->n_equality_mods &&
+ (!bitmap_is_set(&dac->expr_deps, bitmap_offset + eq_no) ||
+ dac->equality_mods[eq_no].is_applicable()))
+ {
+ eq_no++;
+ }
+
+ if (eq_no < dac->n_equality_mods)
+ {
+ di->equality_no= eq_no+1;
+ return &dac->equality_mods[eq_no];
+ }
+ return NULL;
+}
+
+
+/*
+ Mark one table or the whole join nest as eliminated.
+*/
+
+static void mark_as_eliminated(JOIN *join, TABLE_LIST *tbl,
+ Json_writer_array* trace_eliminate_tables)
+{
+ TABLE *table;
+ /*
+ NOTE: there are TABLE_LIST object that have
+ tbl->table!= NULL && tbl->nested_join!=NULL and
+ tbl->table == tbl->nested_join->join_list->element(..)->table
+ */
+ if (tbl->nested_join)
+ {
+ TABLE_LIST *child;
+ List_iterator<TABLE_LIST> it(tbl->nested_join->join_list);
+ while ((child= it++))
+ mark_as_eliminated(join, child, trace_eliminate_tables);
+ }
+ else if ((table= tbl->table))
+ {
+ JOIN_TAB *tab= tbl->table->reginfo.join_tab;
+ if (!(join->const_table_map & tab->table->map))
+ {
+ DBUG_PRINT("info", ("Eliminated table %s", table->alias.c_ptr()));
+ tab->type= JT_CONST;
+ tab->table->const_table= 1;
+ join->eliminated_tables |= table->map;
+ trace_eliminate_tables->add(table->alias.c_ptr_safe());
+ join->const_table_map|= table->map;
+ set_position(join, join->const_tables++, tab, (KEYUSE*)0);
+ }
+ }
+
+ if (tbl->on_expr)
+ tbl->on_expr->walk(&Item::mark_as_eliminated_processor, FALSE, NULL);
+}
+
+
+#ifndef DBUG_OFF
+/* purecov: begin inspected */
+void Dep_analysis_context::dbug_print_deps()
+{
+ DBUG_ENTER("dbug_print_deps");
+ DBUG_LOCK_FILE;
+
+ fprintf(DBUG_FILE,"deps {\n");
+
+ /* Start with printing equalities */
+ for (Dep_module_expr *eq_mod= equality_mods;
+ eq_mod != equality_mods + n_equality_mods; eq_mod++)
+ {
+ char buf[128];
+ String str(buf, sizeof(buf), &my_charset_bin);
+ str.length(0);
+ eq_mod->expr->print(&str, QT_ORDINARY);
+ if (eq_mod->field)
+ {
+ fprintf(DBUG_FILE, " equality%ld: %s -> %s.%s\n",
+ (long)(eq_mod - equality_mods),
+ str.c_ptr(),
+ eq_mod->field->table->table->alias.c_ptr(),
+ eq_mod->field->field->field_name.str);
+ }
+ else
+ {
+ fprintf(DBUG_FILE, " equality%ld: multi-equality",
+ (long)(eq_mod - equality_mods));
+ }
+ }
+ fprintf(DBUG_FILE,"\n");
+
+ /* Then tables and their fields */
+ for (uint i=0; i < MAX_TABLES; i++)
+ {
+ Dep_value_table *table_dep;
+ if ((table_dep= table_deps[i]))
+ {
+ /* Print table */
+ fprintf(DBUG_FILE, " table %s\n", table_dep->table->alias.c_ptr());
+ /* Print fields */
+ for (Dep_value_field *field_dep= table_dep->fields; field_dep;
+ field_dep= field_dep->next_table_field)
+ {
+ fprintf(DBUG_FILE, " field %s.%s ->",
+ table_dep->table->alias.c_ptr(),
+ field_dep->field->field_name.str);
+ uint ofs= field_dep->bitmap_offset;
+ for (uint bit= ofs; bit < ofs + n_equality_mods; bit++)
+ {
+ if (bitmap_is_set(&expr_deps, bit))
+ fprintf(DBUG_FILE, " equality%d ", bit - ofs);
+ }
+ fprintf(DBUG_FILE, "\n");
+ }
+ }
+ }
+ fprintf(DBUG_FILE,"\n}\n");
+ DBUG_UNLOCK_FILE;
+ DBUG_VOID_RETURN;
+}
+/* purecov: end */
+
+#endif
+/**
+ @} (end of group Table_Elimination)
+*/
+