summaryrefslogtreecommitdiffstats
path: root/mysys/crc32/crc_ppc64.h
blob: eb9379abc6cf0b232146dd0abc35643ca5762034 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
/*
 * Calculate the checksum of data that is 16 byte aligned and a multiple of
 * 16 bytes.
 *
 * The first step is to reduce it to 1024 bits. We do this in 8 parallel
 * chunks in order to mask the latency of the vpmsum instructions. If we
 * have more than 32 kB of data to checksum we repeat this step multiple
 * times, passing in the previous 1024 bits.
 *
 * The next step is to reduce the 1024 bits to 64 bits. This step adds
 * 32 bits of 0s to the end - this matches what a CRC does. We just
 * calculate constants that land the data in this 32 bits.
 *
 * We then use fixed point Barrett reduction to compute a mod n over GF(2)
 * for n = CRC using POWER8 instructions. We use x = 32.
 *
 * http://en.wikipedia.org/wiki/Barrett_reduction
 *
 * This code uses gcc vector builtins instead using assembly directly.
 *
 * Copyright (C) 2017 Rogerio Alves <rogealve@br.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of either:
 *
 *  a) the GNU General Public License as published by the Free Software
 *     Foundation; either version 2 of the License, or (at your option)
 *     any later version, or
 *  b) the Apache License, Version 2.0
 */

#include <altivec.h>


#define VMX_ALIGN	16
#define VMX_ALIGN_MASK	(VMX_ALIGN-1)

#ifdef REFLECT
static unsigned int crc32_align(unsigned int crc, const unsigned char *p,
			       unsigned long len)
{
	while (len--)
		crc = crc_table[(crc ^ *p++) & 0xff] ^ (crc >> 8);
	return crc;
}
#else
static unsigned int crc32_align(unsigned int crc, const unsigned char *p,
				unsigned long len)
{
	while (len--)
		crc = crc_table[((crc >> 24) ^ *p++) & 0xff] ^ (crc << 8);
	return crc;
}
#endif

static unsigned int __attribute__ ((aligned (32)))
__crc32_vpmsum(unsigned int crc, const void* p, unsigned long len);


unsigned int CRC32_FUNCTION(unsigned int crc, const unsigned char *p,
			    unsigned long len)
{
	unsigned int prealign;
	unsigned int tail;

#ifdef CRC_XOR
	crc ^= 0xffffffff;
#endif

	if (len < VMX_ALIGN + VMX_ALIGN_MASK) {
		crc = crc32_align(crc, p, len);
		goto out;
	}

	if ((unsigned long)p & VMX_ALIGN_MASK) {
		prealign = VMX_ALIGN - ((unsigned long)p & VMX_ALIGN_MASK);
		crc = crc32_align(crc, p, prealign);
		len -= prealign;
		p += prealign;
	}

	crc = __crc32_vpmsum(crc, p, len & ~VMX_ALIGN_MASK);

	tail = len & VMX_ALIGN_MASK;
	if (tail) {
		p += len & ~VMX_ALIGN_MASK;
		crc = crc32_align(crc, p, tail);
	}

out:
#ifdef CRC_XOR
	crc ^= 0xffffffff;
#endif

	return crc;
}

#if defined (__clang__)
#include "clang_workaround.h"
#else
#define __builtin_pack_vector(a, b)  __builtin_pack_vector_int128 ((a), (b))
#define __builtin_unpack_vector_0(a) __builtin_unpack_vector_int128 ((vector __int128_t)(a), 0)
#define __builtin_unpack_vector_1(a) __builtin_unpack_vector_int128 ((vector __int128_t)(a), 1)
#endif

/* When we have a load-store in a single-dispatch group and address overlap
 * such that foward is not allowed (load-hit-store) the group must be flushed.
 * A group ending NOP prevents the flush.
 */
#define GROUP_ENDING_NOP asm("ori 2,2,0" ::: "memory")

#if defined(__BIG_ENDIAN__) && defined (REFLECT)
#define BYTESWAP_DATA
#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT)
#define BYTESWAP_DATA
#endif

#ifdef BYTESWAP_DATA
#define VEC_PERM(vr, va, vb, vc) vr = vec_perm(va, vb,\
			(__vector unsigned char) vc)
#if defined(__LITTLE_ENDIAN__)
/* Byte reverse permute constant LE. */
static const __vector unsigned long long vperm_const
	__attribute__ ((aligned(16))) = { 0x08090A0B0C0D0E0FUL,
			0x0001020304050607UL };
#else
static const __vector unsigned long long vperm_const
	__attribute__ ((aligned(16))) = { 0x0F0E0D0C0B0A0908UL,
			0X0706050403020100UL };
#endif
#else
#define VEC_PERM(vr, va, vb, vc)
#endif

static unsigned int __attribute__ ((aligned (32)))
__crc32_vpmsum(unsigned int crc, const void* p, unsigned long len) {

	const __vector unsigned long long vzero = {0,0};
	const __vector unsigned long long vones = {0xffffffffffffffffUL,
		0xffffffffffffffffUL};

#ifdef REFLECT
	__vector unsigned char vsht_splat;
	const __vector unsigned long long vmask_32bit =
		(__vector unsigned long long)vec_sld((__vector unsigned char)vzero,
			(__vector unsigned char)vones, 4);
#endif

	const __vector unsigned long long vmask_64bit =
		(__vector unsigned long long)vec_sld((__vector unsigned char)vzero,
			(__vector unsigned char)vones, 8);

	__vector unsigned long long vcrc;

	__vector unsigned long long vconst1, vconst2;

	/* vdata0-vdata7 will contain our data (p). */
	__vector unsigned long long vdata0, vdata1, vdata2, vdata3, vdata4,
		vdata5, vdata6, vdata7;

	/* v0-v7 will contain our checksums */
	__vector unsigned long long v0 = {0,0};
	__vector unsigned long long v1 = {0,0};
	__vector unsigned long long v2 = {0,0};
	__vector unsigned long long v3 = {0,0};
	__vector unsigned long long v4 = {0,0};
	__vector unsigned long long v5 = {0,0};
	__vector unsigned long long v6 = {0,0};
	__vector unsigned long long v7 = {0,0};


	/* Vector auxiliary variables. */
	__vector unsigned long long va0, va1, va2, va3, va4, va5, va6, va7;

	unsigned int result = 0;
	unsigned int offset; /* Constant table offset. */

	unsigned long i; /* Counter. */
	unsigned long chunks;

	unsigned long block_size;
	int next_block = 0;

	/* Align by 128 bits. The last 128 bit block will be processed at end. */
	unsigned long length = len & 0xFFFFFFFFFFFFFF80UL;

#ifdef REFLECT
	vcrc = (__vector unsigned long long)__builtin_pack_vector(0UL, crc);
#else
	vcrc = (__vector unsigned long long)__builtin_pack_vector(crc, 0UL);

	/* Shift into top 32 bits */
	vcrc = (__vector unsigned long long)vec_sld((__vector unsigned char)vcrc,
        (__vector unsigned char)vzero, 4);
#endif

	/* Short version. */
	if (len < 256) {
		/* Calculate where in the constant table we need to start. */
		offset = 256 - len;

		vconst1 = vec_ld(offset, vcrc_short_const);
		vdata0 = vec_ld(0, (__vector unsigned long long*) p);
		VEC_PERM(vdata0, vdata0, vconst1, vperm_const);

		/* xor initial value*/
		vdata0 = vec_xor(vdata0, vcrc);

		vdata0 = (__vector unsigned long long) __builtin_crypto_vpmsumw
				((__vector unsigned int)vdata0, (__vector unsigned int)vconst1);
		v0 = vec_xor(v0, vdata0);

		for (i = 16; i < len; i += 16) {
			vconst1 = vec_ld(offset + i, vcrc_short_const);
			vdata0 = vec_ld(i, (__vector unsigned long long*) p);
			VEC_PERM(vdata0, vdata0, vconst1, vperm_const);
			vdata0 = (__vector unsigned long long) __builtin_crypto_vpmsumw
				((__vector unsigned int)vdata0, (__vector unsigned int)vconst1);
			v0 = vec_xor(v0, vdata0);
		}
	} else {

		/* Load initial values. */
		vdata0 = vec_ld(0, (__vector unsigned long long*) p);
		vdata1 = vec_ld(16, (__vector unsigned long long*) p);

		VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
		VEC_PERM(vdata1, vdata1, vdata1, vperm_const);

		vdata2 = vec_ld(32, (__vector unsigned long long*) p);
		vdata3 = vec_ld(48, (__vector unsigned long long*) p);

		VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
		VEC_PERM(vdata3, vdata3, vdata3, vperm_const);

		vdata4 = vec_ld(64, (__vector unsigned long long*) p);
		vdata5 = vec_ld(80, (__vector unsigned long long*) p);

		VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
		VEC_PERM(vdata5, vdata5, vdata5, vperm_const);

		vdata6 = vec_ld(96, (__vector unsigned long long*) p);
		vdata7 = vec_ld(112, (__vector unsigned long long*) p);

		VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
		VEC_PERM(vdata7, vdata7, vdata7, vperm_const);

		/* xor in initial value */
		vdata0 = vec_xor(vdata0, vcrc);

		p = (char *)p + 128;

		do {
			/* Checksum in blocks of MAX_SIZE. */
			block_size = length;
			if (block_size > MAX_SIZE) {
				block_size = MAX_SIZE;
			}

			length = length - block_size;

			/*
			* Work out the offset into the constants table to start at. Each
			* constant is 16 bytes, and it is used against 128 bytes of input
			* data - 128 / 16 = 8
			*/
			offset = (MAX_SIZE/8) - (block_size/8);
			/* We reduce our final 128 bytes in a separate step */
			chunks = (block_size/128)-1;

		    vconst1 = vec_ld(offset, vcrc_const);

			va0 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata0,
						(__vector unsigned long long)vconst1);
			va1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata1,
						(__vector unsigned long long)vconst1);
			va2 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata2,
						(__vector unsigned long long)vconst1);
			va3 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata3,
						(__vector unsigned long long)vconst1);
			va4 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata4,
						(__vector unsigned long long)vconst1);
			va5 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata5,
						(__vector unsigned long long)vconst1);
			va6 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata6,
						(__vector unsigned long long)vconst1);
			va7 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata7,
						(__vector unsigned long long)vconst1);

			if (chunks > 1) {
				offset += 16;
				vconst2 = vec_ld(offset, vcrc_const);
				GROUP_ENDING_NOP;

				vdata0 = vec_ld(0, (__vector unsigned long long*) p);
				VEC_PERM(vdata0, vdata0, vdata0, vperm_const);

				vdata1 = vec_ld(16, (__vector unsigned long long*) p);
				VEC_PERM(vdata1, vdata1, vdata1, vperm_const);

				vdata2 = vec_ld(32, (__vector unsigned long long*) p);
				VEC_PERM(vdata2, vdata2, vdata2, vperm_const);

				vdata3 = vec_ld(48, (__vector unsigned long long*) p);
				VEC_PERM(vdata3, vdata3, vdata3, vperm_const);

				vdata4 = vec_ld(64, (__vector unsigned long long*) p);
				VEC_PERM(vdata4, vdata4, vdata4, vperm_const);

				vdata5 = vec_ld(80, (__vector unsigned long long*) p);
				VEC_PERM(vdata5, vdata5, vdata5, vperm_const);

				vdata6 = vec_ld(96, (__vector unsigned long long*) p);
				VEC_PERM(vdata6, vdata6, vdata6, vperm_const);

				vdata7 = vec_ld(112, (__vector unsigned long long*) p);
				VEC_PERM(vdata7, vdata7, vdata7, vperm_const);

				p = (char *)p + 128;

				/*
				 * main loop. We modulo schedule it such that it takes three
				 * iterations to complete - first iteration load, second
				 * iteration vpmsum, third iteration xor.
				 */
				for (i = 0; i < chunks-2; i++) {
					vconst1 = vec_ld(offset, vcrc_const);
					offset += 16;
					GROUP_ENDING_NOP;

					v0 = vec_xor(v0, va0);
					va0 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata0, (__vector unsigned long long)vconst2);
					vdata0 = vec_ld(0, (__vector unsigned long long*) p);
					VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
					GROUP_ENDING_NOP;

					v1 = vec_xor(v1, va1);
					va1 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata1, (__vector unsigned long long)vconst2);
					vdata1 = vec_ld(16, (__vector unsigned long long*) p);
					VEC_PERM(vdata1, vdata1, vdata1, vperm_const);
					GROUP_ENDING_NOP;

					v2 = vec_xor(v2, va2);
					va2 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata2, (__vector unsigned long long)vconst2);
					vdata2 = vec_ld(32, (__vector unsigned long long*) p);
					VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
					GROUP_ENDING_NOP;

					v3 = vec_xor(v3, va3);
					va3 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata3, (__vector unsigned long long)vconst2);
					vdata3 = vec_ld(48, (__vector unsigned long long*) p);
					VEC_PERM(vdata3, vdata3, vdata3, vperm_const);

					vconst2 = vec_ld(offset, vcrc_const);
					GROUP_ENDING_NOP;

					v4 = vec_xor(v4, va4);
					va4 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata4, (__vector unsigned long long)vconst1);
					vdata4 = vec_ld(64, (__vector unsigned long long*) p);
					VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
					GROUP_ENDING_NOP;

					v5 = vec_xor(v5, va5);
					va5 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata5, (__vector unsigned long long)vconst1);
					vdata5 = vec_ld(80, (__vector unsigned long long*) p);
					VEC_PERM(vdata5, vdata5, vdata5, vperm_const);
					GROUP_ENDING_NOP;

					v6 = vec_xor(v6, va6);
					va6 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata6, (__vector unsigned long long)vconst1);
					vdata6 = vec_ld(96, (__vector unsigned long long*) p);
					VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
					GROUP_ENDING_NOP;

					v7 = vec_xor(v7, va7);
					va7 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata7, (__vector unsigned long long)vconst1);
					vdata7 = vec_ld(112, (__vector unsigned long long*) p);
					VEC_PERM(vdata7, vdata7, vdata7, vperm_const);

					p = (char *)p + 128;
				}

				/* First cool down*/
				vconst1 = vec_ld(offset, vcrc_const);
				offset += 16;

				v0 = vec_xor(v0, va0);
				va0 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata0, (__vector unsigned long long)vconst1);
				GROUP_ENDING_NOP;

				v1 = vec_xor(v1, va1);
				va1 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata1, (__vector unsigned long long)vconst1);
				GROUP_ENDING_NOP;

				v2 = vec_xor(v2, va2);
				va2 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata2, (__vector unsigned long long)vconst1);
				GROUP_ENDING_NOP;

				v3 = vec_xor(v3, va3);
				va3 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata3, (__vector unsigned long long)vconst1);
				GROUP_ENDING_NOP;

				v4 = vec_xor(v4, va4);
				va4 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata4, (__vector unsigned long long)vconst1);
				GROUP_ENDING_NOP;

				v5 = vec_xor(v5, va5);
				va5 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata5, (__vector unsigned long long)vconst1);
				GROUP_ENDING_NOP;

				v6 = vec_xor(v6, va6);
				va6 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata6, (__vector unsigned long long)vconst1);
				GROUP_ENDING_NOP;

				v7 = vec_xor(v7, va7);
				va7 = __builtin_crypto_vpmsumd ((__vector unsigned long
							long)vdata7, (__vector unsigned long long)vconst1);
			}/* else */

			/* Second cool down. */
			v0 = vec_xor(v0, va0);
			v1 = vec_xor(v1, va1);
			v2 = vec_xor(v2, va2);
			v3 = vec_xor(v3, va3);
			v4 = vec_xor(v4, va4);
			v5 = vec_xor(v5, va5);
			v6 = vec_xor(v6, va6);
			v7 = vec_xor(v7, va7);

#ifdef REFLECT
			/*
			 * vpmsumd produces a 96 bit result in the least significant bits
			 * of the register. Since we are bit reflected we have to shift it
			 * left 32 bits so it occupies the least significant bits in the
			 * bit reflected domain.
			 */
			v0 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0,
					(__vector unsigned char)vzero, 4);
			v1 = (__vector unsigned long long)vec_sld((__vector unsigned char)v1,
					(__vector unsigned char)vzero, 4);
			v2 = (__vector unsigned long long)vec_sld((__vector unsigned char)v2,
					(__vector unsigned char)vzero, 4);
			v3 = (__vector unsigned long long)vec_sld((__vector unsigned char)v3,
					(__vector unsigned char)vzero, 4);
			v4 = (__vector unsigned long long)vec_sld((__vector unsigned char)v4,
					(__vector unsigned char)vzero, 4);
			v5 = (__vector unsigned long long)vec_sld((__vector unsigned char)v5,
					(__vector unsigned char)vzero, 4);
			v6 = (__vector unsigned long long)vec_sld((__vector unsigned char)v6,
					(__vector unsigned char)vzero, 4);
			v7 = (__vector unsigned long long)vec_sld((__vector unsigned char)v7,
					(__vector unsigned char)vzero, 4);
#endif

			/* xor with the last 1024 bits. */
			va0 = vec_ld(0, (__vector unsigned long long*) p);
			VEC_PERM(va0, va0, va0, vperm_const);

			va1 = vec_ld(16, (__vector unsigned long long*) p);
			VEC_PERM(va1, va1, va1, vperm_const);

			va2 = vec_ld(32, (__vector unsigned long long*) p);
			VEC_PERM(va2, va2, va2, vperm_const);

			va3 = vec_ld(48, (__vector unsigned long long*) p);
			VEC_PERM(va3, va3, va3, vperm_const);

			va4 = vec_ld(64, (__vector unsigned long long*) p);
			VEC_PERM(va4, va4, va4, vperm_const);

			va5 = vec_ld(80, (__vector unsigned long long*) p);
			VEC_PERM(va5, va5, va5, vperm_const);

			va6 = vec_ld(96, (__vector unsigned long long*) p);
			VEC_PERM(va6, va6, va6, vperm_const);

			va7 = vec_ld(112, (__vector unsigned long long*) p);
			VEC_PERM(va7, va7, va7, vperm_const);

			p = (char *)p + 128;

			vdata0 = vec_xor(v0, va0);
			vdata1 = vec_xor(v1, va1);
			vdata2 = vec_xor(v2, va2);
			vdata3 = vec_xor(v3, va3);
			vdata4 = vec_xor(v4, va4);
			vdata5 = vec_xor(v5, va5);
			vdata6 = vec_xor(v6, va6);
			vdata7 = vec_xor(v7, va7);

			/* Check if we have more blocks to process */
			next_block = 0;
			if (length != 0) {
				next_block = 1;

			    /* zero v0-v7 */
				v0 = vec_xor(v0, v0);
				v1 = vec_xor(v1, v1);
				v2 = vec_xor(v2, v2);
				v3 = vec_xor(v3, v3);
				v4 = vec_xor(v4, v4);
				v5 = vec_xor(v5, v5);
				v6 = vec_xor(v6, v6);
				v7 = vec_xor(v7, v7);
			}
			length = length + 128;

		} while (next_block);

		/* Calculate how many bytes we have left. */
		length = (len & 127);

		/* Calculate where in (short) constant table we need to start. */
		offset = 128 - length;

		v0 = vec_ld(offset, vcrc_short_const);
		v1 = vec_ld(offset + 16, vcrc_short_const);
		v2 = vec_ld(offset + 32, vcrc_short_const);
		v3 = vec_ld(offset + 48, vcrc_short_const);
		v4 = vec_ld(offset + 64, vcrc_short_const);
		v5 = vec_ld(offset + 80, vcrc_short_const);
		v6 = vec_ld(offset + 96, vcrc_short_const);
		v7 = vec_ld(offset + 112, vcrc_short_const);

		offset += 128;

		v0 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
			(__vector unsigned int)vdata0,(__vector unsigned int)v0);
		v1 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
			(__vector unsigned int)vdata1,(__vector unsigned int)v1);
		v2 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
			(__vector unsigned int)vdata2,(__vector unsigned int)v2);
		v3 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
			(__vector unsigned int)vdata3,(__vector unsigned int)v3);
		v4 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
			(__vector unsigned int)vdata4,(__vector unsigned int)v4);
		v5 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
			(__vector unsigned int)vdata5,(__vector unsigned int)v5);
		v6 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
			(__vector unsigned int)vdata6,(__vector unsigned int)v6);
		v7 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
			(__vector unsigned int)vdata7,(__vector unsigned int)v7);

		/* Now reduce the tail (0-112 bytes). */
		for (i = 0; i < length; i+=16) {
			vdata0 = vec_ld(i,(__vector unsigned long long*)p);
			VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
			va0 = vec_ld(offset + i,vcrc_short_const);
			va0 = (__vector unsigned long long)__builtin_crypto_vpmsumw (
			(__vector unsigned int)vdata0,(__vector unsigned int)va0);
			v0 = vec_xor(v0, va0);
		}

		/* xor all parallel chunks together. */
		v0 = vec_xor(v0, v1);
		v2 = vec_xor(v2, v3);
		v4 = vec_xor(v4, v5);
		v6 = vec_xor(v6, v7);

		v0 = vec_xor(v0, v2);
		v4 = vec_xor(v4, v6);

		v0 = vec_xor(v0, v4);
	}

	/* Barrett Reduction */
	vconst1 = vec_ld(0, v_Barrett_const);
	vconst2 = vec_ld(16, v_Barrett_const);

	v1 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0,
			(__vector unsigned char)v0, 8);
	v0 = vec_xor(v1,v0);

#ifdef REFLECT
	/* shift left one bit */
	vsht_splat = vec_splat_u8 (1);
	v0 = (__vector unsigned long long)vec_sll ((__vector unsigned char)v0,
			vsht_splat);
#endif

	v0 = vec_and(v0, vmask_64bit);

#ifndef REFLECT

	/*
	 * Now for the actual algorithm. The idea is to calculate q,
	 * the multiple of our polynomial that we need to subtract. By
	 * doing the computation 2x bits higher (ie 64 bits) and shifting the
	 * result back down 2x bits, we round down to the nearest multiple.
	 */

	/* ma */
	v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v0,
			(__vector unsigned long long)vconst1);
	/* q = floor(ma/(2^64)) */
	v1 = (__vector unsigned long long)vec_sld ((__vector unsigned char)vzero,
			(__vector unsigned char)v1, 8);
	/* qn */
	v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
			(__vector unsigned long long)vconst2);
	/* a - qn, subtraction is xor in GF(2) */
	v0 = vec_xor (v0, v1);
	/*
	 * Get the result into r3. We need to shift it left 8 bytes:
	 * V0 [ 0 1 2 X ]
	 * V0 [ 0 X 2 3 ]
	 */
	result = __builtin_unpack_vector_1 (v0);
#else

	/*
	 * The reflected version of Barrett reduction. Instead of bit
	 * reflecting our data (which is expensive to do), we bit reflect our
	 * constants and our algorithm, which means the intermediate data in
	 * our vector registers goes from 0-63 instead of 63-0. We can reflect
	 * the algorithm because we don't carry in mod 2 arithmetic.
	 */

	/* bottom 32 bits of a */
	v1 = vec_and(v0, vmask_32bit);

	/* ma */
	v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
			(__vector unsigned long long)vconst1);

	/* bottom 32bits of ma */
	v1 = vec_and(v1, vmask_32bit);
	/* qn */
	v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1,
			(__vector unsigned long long)vconst2);
	/* a - qn, subtraction is xor in GF(2) */
	v0 = vec_xor (v0, v1);

	/*
	 * Since we are bit reflected, the result (ie the low 32 bits) is in
	 * the high 32 bits. We just need to shift it left 4 bytes
	 * V0 [ 0 1 X 3 ]
	 * V0 [ 0 X 2 3 ]
	 */

	/* shift result into top 64 bits of */
	v0 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0,
        (__vector unsigned char)vzero, 4);

	result = __builtin_unpack_vector_0 (v0);
#endif

	return result;
}