summaryrefslogtreecommitdiffstats
path: root/mysys_ssl/my_crypt.cc
blob: e512eee9066c4b5d365571d998bfebbdb19557ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
 Copyright (c) 2014 Google Inc.
 Copyright (c) 2014, 2019, MariaDB Corporation.

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; version 2 of the License.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335  USA */

#include <my_global.h>
#include <string.h>

#define template _template /* bug in WolfSSL 4.4.0, see also violite.h */
#include <openssl/evp.h>
#undef template
#include <openssl/aes.h>
#include <openssl/err.h>
#include <openssl/rand.h>

#include <my_crypt.h>
#include <ssl_compat.h>
#include <cstdint>

#ifdef HAVE_WOLFSSL
#define CTX_ALIGN 16
#else
#define CTX_ALIGN 0
#endif

class MyCTX
{
public:
  char ctx_buf[EVP_CIPHER_CTX_SIZE + CTX_ALIGN];
  EVP_CIPHER_CTX* ctx;
  MyCTX()
  {
#if CTX_ALIGN > 0
    uintptr_t p= ((uintptr_t)ctx_buf + (CTX_ALIGN - 1)) & ~(CTX_ALIGN - 1);
    ctx = reinterpret_cast<EVP_CIPHER_CTX*>(p);
#else
    ctx = (EVP_CIPHER_CTX*)ctx_buf;
#endif

    EVP_CIPHER_CTX_init(ctx);
  }
  virtual ~MyCTX()
  {
    EVP_CIPHER_CTX_reset(ctx);
    ERR_remove_state(0);
  }

  virtual int init(const EVP_CIPHER *cipher, int encrypt, const uchar *key,
                   uint klen, const uchar *iv, uint ivlen)
  {
    compile_time_assert(MY_AES_CTX_SIZE >= sizeof(MyCTX));
    if (unlikely(!cipher))
      return MY_AES_BAD_KEYSIZE;

    if (EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, encrypt) != 1)
      return MY_AES_OPENSSL_ERROR;

    DBUG_ASSERT(EVP_CIPHER_CTX_key_length(ctx) == (int)klen);
    DBUG_ASSERT(EVP_CIPHER_CTX_iv_length(ctx) <= (int)ivlen);

    return MY_AES_OK;
  }
  virtual int update(const uchar *src, uint slen, uchar *dst, uint *dlen)
  {
#ifdef HAVE_WOLFSSL
    // WolfSSL checks parameters and does not like NULL pointers to be passed to function below.
    if (!src)
    {
      static uchar dummy[MY_AES_BLOCK_SIZE];
      DBUG_ASSERT(!slen);
      src=dummy;
    }
#endif

    if (EVP_CipherUpdate(ctx, dst, (int*)dlen, src, slen) != 1)
      return MY_AES_OPENSSL_ERROR;
    return MY_AES_OK;
  }
  virtual int finish(uchar *dst, uint *dlen)
  {
    if (EVP_CipherFinal_ex(ctx, dst, (int*)dlen) != 1)
      return MY_AES_BAD_DATA;
    return MY_AES_OK;
  }
};

class MyCTX_nopad : public MyCTX
{
public:
  const uchar *key;
  uint klen, buf_len;
  uchar oiv[MY_AES_BLOCK_SIZE];

  MyCTX_nopad() : MyCTX() { }
  ~MyCTX_nopad() { }

  int init(const EVP_CIPHER *cipher, int encrypt, const uchar *key, uint klen,
           const uchar *iv, uint ivlen)
  {
    compile_time_assert(MY_AES_CTX_SIZE >= sizeof(MyCTX_nopad));
    this->key= key;
    this->klen= klen;
    this->buf_len= 0;
    if (ivlen)
      memcpy(oiv, iv, ivlen);
    DBUG_ASSERT(ivlen == 0 || ivlen == sizeof(oiv));

    int res= MyCTX::init(cipher, encrypt, key, klen, iv, ivlen);

    EVP_CIPHER_CTX_set_padding(ctx, 0);
    return res;
  }

  int update(const uchar *src, uint slen, uchar *dst, uint *dlen)
  {
    buf_len+= slen;
    return MyCTX::update(src, slen, dst, dlen);
  }

  int finish(uchar *dst, uint *dlen)
  {
    buf_len %= MY_AES_BLOCK_SIZE;
    if (buf_len)
    {
      uchar *buf= EVP_CIPHER_CTX_buf_noconst(ctx);
      /*
        Not much we can do, block ciphers cannot encrypt data that aren't
        a multiple of the block length. At least not without padding.
        Let's do something CTR-like for the last partial block.

        NOTE this assumes that there are only buf_len bytes in the buf.
        If OpenSSL will change that, we'll need to change the implementation
        of this class too.
      */
      uchar mask[MY_AES_BLOCK_SIZE];
      uint mlen;

      int rc= my_aes_crypt(MY_AES_ECB, ENCRYPTION_FLAG_ENCRYPT | ENCRYPTION_FLAG_NOPAD,
                   oiv, sizeof(mask), mask, &mlen, key, klen, 0, 0);
      DBUG_ASSERT(rc == MY_AES_OK);
      if (rc)
        return rc;
      DBUG_ASSERT(mlen == sizeof(mask));

      for (uint i=0; i < buf_len; i++)
        dst[i]= buf[i] ^ mask[i];
    }
    *dlen= buf_len;
    return MY_AES_OK;
  }
};

#define make_aes_dispatcher(mode)                               \
  static inline const EVP_CIPHER *aes_ ## mode(uint klen)       \
  {                                                             \
    switch (klen) {                                             \
    case 16: return EVP_aes_128_ ## mode();                     \
    case 24: return EVP_aes_192_ ## mode();                     \
    case 32: return EVP_aes_256_ ## mode();                     \
    default: return 0;                                          \
    }                                                           \
  }

make_aes_dispatcher(ecb)
make_aes_dispatcher(cbc)
#ifdef HAVE_EncryptAes128Ctr
make_aes_dispatcher(ctr)
#endif /* HAVE_EncryptAes128Ctr */
#ifdef HAVE_EncryptAes128Gcm
make_aes_dispatcher(gcm)

/*
  special implementation for GCM; to fit OpenSSL AES-GCM into the
  existing my_aes_* API it does the following:
    - IV tail (over 12 bytes) goes to AAD
    - the tag is appended to the ciphertext
*/

class MyCTX_gcm : public MyCTX
{
public:
  const uchar *aad;
  int aadlen;
  MyCTX_gcm() : MyCTX() { }
  ~MyCTX_gcm() { }

  int init(const EVP_CIPHER *cipher, int encrypt, const uchar *key, uint klen,
           const uchar *iv, uint ivlen)
  {
    compile_time_assert(MY_AES_CTX_SIZE >= sizeof(MyCTX_gcm));
    int res= MyCTX::init(cipher, encrypt, key, klen, iv, ivlen);
    int real_ivlen= EVP_CIPHER_CTX_iv_length(ctx);
    aad= iv + real_ivlen;
    aadlen= ivlen - real_ivlen;
    return res;
  }

  int update(const uchar *src, uint slen, uchar *dst, uint *dlen)
  {
    /*
      note that this GCM class cannot do streaming decryption, because
      it needs the tag (which is located at the end of encrypted data)
      before decrypting the data. it can encrypt data piecewise, like, first
      half, then the second half, but it must decrypt all at once
    */
    if (!EVP_CIPHER_CTX_encrypting(ctx))
    {
      /* encrypted string must contain authenticaton tag (see MDEV-11174) */
      if (slen < MY_AES_BLOCK_SIZE)
        return MY_AES_BAD_DATA;
      slen-= MY_AES_BLOCK_SIZE;
      if(!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, MY_AES_BLOCK_SIZE,
                              (void*)(src + slen)))
        return MY_AES_OPENSSL_ERROR;
    }
    int unused;
    if (aadlen && !EVP_CipherUpdate(ctx, NULL, &unused, aad, aadlen))
      return MY_AES_OPENSSL_ERROR;
    aadlen= 0;
    return MyCTX::update(src, slen, dst, dlen);
  }

  int finish(uchar *dst, uint *dlen)
  {
    int fin;
    if (!EVP_CipherFinal_ex(ctx, dst, &fin))
      return MY_AES_BAD_DATA;
    DBUG_ASSERT(fin == 0);

    if (EVP_CIPHER_CTX_encrypting(ctx))
    {
      if(!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, MY_AES_BLOCK_SIZE, dst))
        return MY_AES_OPENSSL_ERROR;
      *dlen= MY_AES_BLOCK_SIZE;
    }
    else
      *dlen= 0;
    return MY_AES_OK;
  }
};

#endif

const EVP_CIPHER *(*ciphers[])(uint)= {
    aes_ecb, aes_cbc
#ifdef HAVE_EncryptAes128Ctr
  , aes_ctr
#ifdef HAVE_EncryptAes128Gcm
  , aes_gcm
#endif
#endif
};

extern "C" {

int my_aes_crypt_init(void *ctx, enum my_aes_mode mode, int flags,
                      const unsigned char* key, unsigned int klen,
                      const unsigned char* iv, unsigned int ivlen)
{
#ifdef HAVE_EncryptAes128Ctr
#ifdef HAVE_EncryptAes128Gcm
  if (mode == MY_AES_GCM)
    if (flags & ENCRYPTION_FLAG_NOPAD)
      return MY_AES_OPENSSL_ERROR;
    else
      new (ctx) MyCTX_gcm();
  else
#endif
  if (mode == MY_AES_CTR)
    new (ctx) MyCTX();
  else
#endif
  if (flags & ENCRYPTION_FLAG_NOPAD)
    new (ctx) MyCTX_nopad();
  else
    new (ctx) MyCTX();
  return ((MyCTX*)ctx)->init(ciphers[mode](klen), flags & 1,
                             key, klen, iv, ivlen);
}

int my_aes_crypt_update(void *ctx, const uchar *src, uint slen,
                        uchar *dst, uint *dlen)
{
  return ((MyCTX*)ctx)->update(src, slen, dst, dlen);
}

int my_aes_crypt_finish(void *ctx, uchar *dst, uint *dlen)
{
  int res= ((MyCTX*)ctx)->finish(dst, dlen);
  ((MyCTX*)ctx)->~MyCTX();
  return res;
}

int my_aes_crypt(enum my_aes_mode mode, int flags,
                 const uchar *src, uint slen, uchar *dst, uint *dlen,
                 const uchar *key, uint klen, const uchar *iv, uint ivlen)
{
  void *ctx= alloca(MY_AES_CTX_SIZE);
  int res1, res2;
  uint d1= 0, d2;
  if ((res1= my_aes_crypt_init(ctx, mode, flags, key, klen, iv, ivlen)))
    return res1;
  res1= my_aes_crypt_update(ctx, src, slen, dst, &d1);
  res2= my_aes_crypt_finish(ctx, dst + d1, &d2);
  if (res1 || res2)
    ERR_remove_state(0); /* in case of failure clear error queue */
  else
    *dlen= d1 + d2;
  return res1 ? res1 : res2;
}


/*
  calculate the length of the cyphertext from the length of the plaintext
  for different AES encryption modes with padding enabled.
  Without padding (ENCRYPTION_FLAG_NOPAD) cyphertext has the same length
  as the plaintext
*/
unsigned int my_aes_get_size(enum my_aes_mode mode __attribute__((unused)), unsigned int source_length)
{
#ifdef HAVE_EncryptAes128Ctr
  if (mode == MY_AES_CTR)
    return source_length;
#ifdef HAVE_EncryptAes128Gcm
  if (mode == MY_AES_GCM)
    return source_length + MY_AES_BLOCK_SIZE;
#endif
#endif
  return (source_length / MY_AES_BLOCK_SIZE + 1) * MY_AES_BLOCK_SIZE;
}


unsigned int my_aes_ctx_size(enum my_aes_mode)
{
  return MY_AES_CTX_SIZE;
}

int my_random_bytes(uchar *buf, int num)
{
  if (RAND_bytes(buf, num) != 1)
    return MY_AES_OPENSSL_ERROR;
  return MY_AES_OK;
}

}