1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License, version 3,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
======= */
#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
#include "test.h"
#include <util/omt.h>
static void
parse_args (int argc, const char *argv[]) {
const char *argv0=argv[0];
while (argc>1) {
int resultcode=0;
if (strcmp(argv[1], "-v")==0) {
verbose++;
} else if (strcmp(argv[1], "-q")==0) {
verbose = 0;
} else if (strcmp(argv[1], "-h")==0) {
do_usage:
fprintf(stderr, "Usage:\n%s [-v|-h]\n", argv0);
exit(resultcode);
} else {
resultcode=1;
goto do_usage;
}
argc--;
argv++;
}
}
/* End ".h like" stuff. */
struct value {
uint32_t number;
};
#define V(x) ((struct value *)(x))
enum rand_type {
TEST_RANDOM,
TEST_SORTED,
TEST_IDENTITY
};
enum close_when_done {
CLOSE_WHEN_DONE,
KEEP_WHEN_DONE
};
enum create_type {
STEAL_ARRAY,
BATCH_INSERT,
INSERT_AT,
INSERT_AT_ALMOST_RANDOM,
};
/* Globals */
typedef void *OMTVALUE;
toku::omt<OMTVALUE> *global_omt;
OMTVALUE* global_values = NULL;
struct value* global_nums = NULL;
uint32_t global_length;
static void
cleanup_globals (void) {
assert(global_values);
toku_free(global_values);
global_values = NULL;
assert(global_nums);
toku_free(global_nums);
global_nums = NULL;
}
/* Some test wrappers */
struct functor {
int (*f)(OMTVALUE, uint32_t, void *);
void *v;
};
int call_functor(const OMTVALUE &v, uint32_t idx, functor *const ftor);
int call_functor(const OMTVALUE &v, uint32_t idx, functor *const ftor) {
return ftor->f(const_cast<OMTVALUE>(v), idx, ftor->v);
}
static int omt_iterate(toku::omt<void *> *omt, int (*f)(OMTVALUE, uint32_t, void*), void*v) {
struct functor ftor = { .f = f, .v = v };
return omt->iterate<functor, call_functor>(&ftor);
}
struct heftor {
int (*h)(OMTVALUE, void *v);
void *v;
};
int call_heftor(const OMTVALUE &v, const heftor &htor);
int call_heftor(const OMTVALUE &v, const heftor &htor) {
return htor.h(const_cast<OMTVALUE>(v), htor.v);
}
static int omt_insert(toku::omt<void *> *omt, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v, uint32_t *index) {
struct heftor htor = { .h = h, .v = v };
return omt->insert<heftor, call_heftor>(value, htor, index);
}
static int omt_find_zero(toku::omt<void *> *V, int (*h)(OMTVALUE, void*extra), void*extra, OMTVALUE *value, uint32_t *index) {
struct heftor htor = { .h = h, .v = extra };
return V->find_zero<heftor, call_heftor>(htor, value, index);
}
static int omt_find(toku::omt<void *> *V, int (*h)(OMTVALUE, void*extra), void*extra, int direction, OMTVALUE *value, uint32_t *index) {
struct heftor htor = { .h = h, .v = extra };
return V->find<heftor, call_heftor>(htor, direction, value, index);
}
static int omt_split_at(toku::omt<void *> *omt, toku::omt<void *> **newomtp, uint32_t index) {
toku::omt<void *> *XMALLOC(newomt);
int r = omt->split_at(newomt, index);
if (r != 0) {
toku_free(newomt);
} else {
*newomtp = newomt;
}
return r;
}
static int omt_merge(toku::omt<void *> *leftomt, toku::omt<void *> *rightomt, toku::omt<void *> **newomtp) {
toku::omt<void *> *XMALLOC(newomt);
newomt->merge(leftomt, rightomt);
toku_free(leftomt);
toku_free(rightomt);
*newomtp = newomt;
return 0;
}
const unsigned int random_seed = 0xFEADACBA;
static void
init_init_values (unsigned int seed, uint32_t num_elements) {
srandom(seed);
cleanup_globals();
XMALLOC_N(num_elements, global_values);
XMALLOC_N(num_elements, global_nums);
global_length = num_elements;
}
static void
init_identity_values (unsigned int seed, uint32_t num_elements) {
uint32_t i;
init_init_values(seed, num_elements);
for (i = 0; i < global_length; i++) {
global_nums[i].number = i;
global_values[i] = (OMTVALUE)&global_nums[i];
}
}
static void
init_distinct_sorted_values (unsigned int seed, uint32_t num_elements) {
uint32_t i;
init_init_values(seed, num_elements);
uint32_t number = 0;
for (i = 0; i < global_length; i++) {
number += (uint32_t)(random() % 32) + 1;
global_nums[i].number = number;
global_values[i] = (OMTVALUE)&global_nums[i];
}
}
static void
init_distinct_random_values (unsigned int seed, uint32_t num_elements) {
init_distinct_sorted_values(seed, num_elements);
uint32_t i;
uint32_t choice;
uint32_t choices;
struct value temp;
for (i = 0; i < global_length - 1; i++) {
choices = global_length - i;
choice = random() % choices;
if (choice != i) {
temp = global_nums[i];
global_nums[i] = global_nums[choice];
global_nums[choice] = temp;
}
}
}
static void
init_globals (void) {
XMALLOC_N(1, global_values);
XMALLOC_N(1, global_nums);
global_length = 1;
}
static void
test_close (enum close_when_done do_close) {
if (do_close == KEEP_WHEN_DONE) {
return;
}
assert(do_close == CLOSE_WHEN_DONE);
global_omt->destroy();
toku_free(global_omt);
}
static void
test_create (enum close_when_done do_close) {
XMALLOC(global_omt);
global_omt->create();
test_close(do_close);
}
static void
test_create_size (enum close_when_done do_close) {
test_create(KEEP_WHEN_DONE);
assert(global_omt->size() == 0);
test_close(do_close);
}
static void
test_create_insert_at_almost_random (enum close_when_done do_close) {
uint32_t i;
int r;
uint32_t size = 0;
test_create(KEEP_WHEN_DONE);
r = global_omt->insert_at(global_values[0], global_omt->size()+1);
CKERR2(r, EINVAL);
r = global_omt->insert_at(global_values[0], global_omt->size()+2);
CKERR2(r, EINVAL);
for (i = 0; i < global_length/2; i++) {
assert(size==global_omt->size());
r = global_omt->insert_at(global_values[i], i);
CKERR(r);
assert(++size==global_omt->size());
r = global_omt->insert_at(global_values[global_length-1-i], i+1);
CKERR(r);
assert(++size==global_omt->size());
}
r = global_omt->insert_at(global_values[0], global_omt->size()+1);
CKERR2(r, EINVAL);
r = global_omt->insert_at(global_values[0], global_omt->size()+2);
CKERR2(r, EINVAL);
assert(size==global_omt->size());
test_close(do_close);
}
static void
test_create_insert_at_sequential (enum close_when_done do_close) {
uint32_t i;
int r;
uint32_t size = 0;
test_create(KEEP_WHEN_DONE);
r = global_omt->insert_at(global_values[0], global_omt->size()+1);
CKERR2(r, EINVAL);
r = global_omt->insert_at(global_values[0], global_omt->size()+2);
CKERR2(r, EINVAL);
for (i = 0; i < global_length; i++) {
assert(size==global_omt->size());
r = global_omt->insert_at(global_values[i], i);
CKERR(r);
assert(++size==global_omt->size());
}
r = global_omt->insert_at(global_values[0], global_omt->size()+1);
CKERR2(r, EINVAL);
r = global_omt->insert_at(global_values[0], global_omt->size()+2);
CKERR2(r, EINVAL);
assert(size==global_omt->size());
test_close(do_close);
}
static void
test_create_from_sorted_array (enum create_type create_choice, enum close_when_done do_close) {
global_omt = NULL;
if (create_choice == BATCH_INSERT) {
XMALLOC(global_omt);
global_omt->create_from_sorted_array(global_values, global_length);
}
else if (create_choice == STEAL_ARRAY) {
XMALLOC(global_omt);
OMTVALUE* XMALLOC_N(global_length, values_copy);
memcpy(values_copy, global_values, global_length*sizeof(*global_values));
global_omt->create_steal_sorted_array(&values_copy, global_length, global_length);
assert(values_copy==NULL);
}
else if (create_choice == INSERT_AT) {
test_create_insert_at_sequential(KEEP_WHEN_DONE);
}
else if (create_choice == INSERT_AT_ALMOST_RANDOM) {
test_create_insert_at_almost_random(KEEP_WHEN_DONE);
}
else {
assert(false);
}
assert(global_omt!=NULL);
test_close(do_close);
}
static void
test_create_from_sorted_array_size (enum create_type create_choice, enum close_when_done do_close) {
test_create_from_sorted_array(create_choice, KEEP_WHEN_DONE);
assert(global_omt->size()==global_length);
test_close(do_close);
}
static void
test_fetch_verify (toku::omt<void *> *omtree, OMTVALUE* val, uint32_t len ) {
uint32_t i;
int r;
OMTVALUE v = (OMTVALUE)&i;
OMTVALUE oldv = v;
assert(len == omtree->size());
for (i = 0; i < len; i++) {
assert(oldv!=val[i]);
v = NULL;
r = omtree->fetch(i, &v);
CKERR(r);
assert(v != NULL);
assert(v != oldv);
assert(v == val[i]);
assert(V(v)->number == V(val[i])->number);
v = oldv;
}
for (i = len; i < len*2; i++) {
v = oldv;
r = omtree->fetch(i, &v);
CKERR2(r, EINVAL);
assert(v == oldv);
}
}
static void
test_create_fetch_verify (enum create_type create_choice, enum close_when_done do_close) {
test_create_from_sorted_array(create_choice, KEEP_WHEN_DONE);
test_fetch_verify(global_omt, global_values, global_length);
test_close(do_close);
}
static int iterate_helper_error_return = 1;
static int
iterate_helper (OMTVALUE v, uint32_t idx, void* extra) {
if (extra == NULL) return iterate_helper_error_return;
OMTVALUE* vals = (OMTVALUE *)extra;
assert(v != NULL);
assert(v == vals[idx]);
assert(V(v)->number == V(vals[idx])->number);
return 0;
}
static void
test_iterate_verify (toku::omt<void *> *omtree, OMTVALUE* vals, uint32_t len) {
int r;
iterate_helper_error_return = 0;
r = omt_iterate(omtree, iterate_helper, (void*)vals);
CKERR(r);
iterate_helper_error_return = 0xFEEDABBA;
r = omt_iterate(omtree, iterate_helper, NULL);
if (!len) {
CKERR2(r, 0);
}
else {
CKERR2(r, iterate_helper_error_return);
}
}
static void
test_create_iterate_verify (enum create_type create_choice, enum close_when_done do_close) {
test_create_from_sorted_array(create_choice, KEEP_WHEN_DONE);
test_iterate_verify(global_omt, global_values, global_length);
test_close(do_close);
}
static void
permute_array (uint32_t* arr, uint32_t len) {
//
// create a permutation of 0...size-1
//
uint32_t i = 0;
for (i = 0; i < len; i++) {
arr[i] = i;
}
for (i = 0; i < len - 1; i++) {
uint32_t choices = len - i;
uint32_t choice = random() % choices;
if (choice != i) {
uint32_t temp = arr[i];
arr[i] = arr[choice];
arr[choice] = temp;
}
}
}
static void
test_create_set_at (enum create_type create_choice, enum close_when_done do_close) {
uint32_t i = 0;
struct value* old_nums = NULL;
XMALLOC_N(global_length, old_nums);
uint32_t* perm = NULL;
XMALLOC_N(global_length, perm);
OMTVALUE* old_values = NULL;
XMALLOC_N(global_length, old_values);
permute_array(perm, global_length);
//
// These are going to be the new global_values
//
for (i = 0; i < global_length; i++) {
old_nums[i] = global_nums[i];
old_values[i] = &old_nums[i];
global_values[i] = &old_nums[i];
}
test_create_from_sorted_array(create_choice, KEEP_WHEN_DONE);
int r;
r = global_omt->set_at(global_values[0], global_length);
CKERR2(r,EINVAL);
r = global_omt->set_at(global_values[0], global_length+1);
CKERR2(r,EINVAL);
for (i = 0; i < global_length; i++) {
uint32_t choice = perm[i];
global_values[choice] = &global_nums[choice];
global_nums[choice].number = (uint32_t)random();
r = global_omt->set_at(global_values[choice], choice);
CKERR(r);
test_iterate_verify(global_omt, global_values, global_length);
test_fetch_verify(global_omt, global_values, global_length);
}
r = global_omt->set_at(global_values[0], global_length);
CKERR2(r,EINVAL);
r = global_omt->set_at(global_values[0], global_length+1);
CKERR2(r,EINVAL);
toku_free(perm);
toku_free(old_values);
toku_free(old_nums);
test_close(do_close);
}
static int
insert_helper (OMTVALUE value, void* extra_insert) {
OMTVALUE to_insert = (OMTVALUE)extra_insert;
assert(to_insert);
if (V(value)->number < V(to_insert)->number) return -1;
if (V(value)->number > V(to_insert)->number) return +1;
return 0;
}
static void
test_create_insert (enum close_when_done do_close) {
uint32_t i = 0;
uint32_t* perm = NULL;
XMALLOC_N(global_length, perm);
permute_array(perm, global_length);
test_create(KEEP_WHEN_DONE);
int r;
uint32_t size = global_length;
global_length = 0;
while (global_length < size) {
uint32_t choice = perm[global_length];
OMTVALUE to_insert = &global_nums[choice];
uint32_t idx = UINT32_MAX;
assert(global_length==global_omt->size());
r = omt_insert(global_omt, to_insert, insert_helper, to_insert, &idx);
CKERR(r);
assert(idx <= global_length);
if (idx > 0) {
assert(V(to_insert)->number > V(global_values[idx-1])->number);
}
if (idx < global_length) {
assert(V(to_insert)->number < V(global_values[idx])->number);
}
global_length++;
assert(global_length==global_omt->size());
/* Make room */
for (i = global_length-1; i > idx; i--) {
global_values[i] = global_values[i-1];
}
global_values[idx] = to_insert;
test_fetch_verify(global_omt, global_values, global_length);
test_iterate_verify(global_omt, global_values, global_length);
idx = UINT32_MAX;
r = omt_insert(global_omt, to_insert, insert_helper, to_insert, &idx);
CKERR2(r, DB_KEYEXIST);
assert(idx < global_length);
assert(V(global_values[idx])->number == V(to_insert)->number);
assert(global_length==global_omt->size());
test_iterate_verify(global_omt, global_values, global_length);
test_fetch_verify(global_omt, global_values, global_length);
}
toku_free(perm);
test_close(do_close);
}
static void
test_create_delete_at (enum create_type create_choice, enum close_when_done do_close) {
uint32_t i = 0;
int r = ENOSYS;
test_create_from_sorted_array(create_choice, KEEP_WHEN_DONE);
assert(global_length == global_omt->size());
r = global_omt->delete_at(global_length);
CKERR2(r,EINVAL);
assert(global_length == global_omt->size());
r = global_omt->delete_at(global_length+1);
CKERR2(r,EINVAL);
while (global_length > 0) {
assert(global_length == global_omt->size());
uint32_t index_to_delete = random()%global_length;
r = global_omt->delete_at(index_to_delete);
CKERR(r);
for (i = index_to_delete+1; i < global_length; i++) {
global_values[i-1] = global_values[i];
}
global_length--;
test_fetch_verify(global_omt, global_values, global_length);
test_iterate_verify(global_omt, global_values, global_length);
}
assert(global_length == 0);
assert(global_length == global_omt->size());
r = global_omt->delete_at(global_length);
CKERR2(r, EINVAL);
assert(global_length == global_omt->size());
r = global_omt->delete_at(global_length+1);
CKERR2(r, EINVAL);
test_close(do_close);
}
static void
test_split_merge (enum create_type create_choice, enum close_when_done do_close) {
int r = ENOSYS;
uint32_t i = 0;
toku::omt<void *> *left_split = NULL;
toku::omt<void *> *right_split = NULL;
test_create_from_sorted_array(create_choice, KEEP_WHEN_DONE);
for (i = 0; i <= global_length; i++) {
r = omt_split_at(global_omt, &right_split, global_length+1);
CKERR2(r,EINVAL);
r = omt_split_at(global_omt, &right_split, global_length+2);
CKERR2(r,EINVAL);
//
// test successful split
//
r = omt_split_at(global_omt, &right_split, i);
CKERR(r);
left_split = global_omt;
global_omt = NULL;
assert(left_split->size() == i);
assert(right_split->size() == global_length - i);
test_fetch_verify(left_split, global_values, i);
test_iterate_verify(left_split, global_values, i);
test_fetch_verify(right_split, &global_values[i], global_length - i);
test_iterate_verify(right_split, &global_values[i], global_length - i);
//
// verify that new global_omt's cannot do bad splits
//
r = omt_split_at(left_split, &global_omt, i+1);
CKERR2(r,EINVAL);
assert(left_split->size() == i);
assert(right_split->size() == global_length - i);
r = omt_split_at(left_split, &global_omt, i+2);
CKERR2(r,EINVAL);
assert(left_split->size() == i);
assert(right_split->size() == global_length - i);
r = omt_split_at(right_split, &global_omt, global_length - i + 1);
CKERR2(r,EINVAL);
assert(left_split->size() == i);
assert(right_split->size() == global_length - i);
r = omt_split_at(right_split, &global_omt, global_length - i + 1);
CKERR2(r,EINVAL);
assert(left_split->size() == i);
assert(right_split->size() == global_length - i);
//
// test merge
//
r = omt_merge(left_split,right_split,&global_omt);
CKERR(r);
left_split = NULL;
right_split = NULL;
assert(global_omt->size() == global_length);
test_fetch_verify(global_omt, global_values, global_length);
test_iterate_verify(global_omt, global_values, global_length);
}
test_close(do_close);
}
static void
init_values (enum rand_type rand_choice) {
const uint32_t test_size = 100;
if (rand_choice == TEST_RANDOM) {
init_distinct_random_values(random_seed, test_size);
}
else if (rand_choice == TEST_SORTED) {
init_distinct_sorted_values(random_seed, test_size);
}
else if (rand_choice == TEST_IDENTITY) {
init_identity_values( random_seed, test_size);
}
else assert(false);
}
static void
test_create_array (enum create_type create_choice, enum rand_type rand_choice) {
/* ********************************************************************** */
init_values(rand_choice);
test_create_from_sorted_array( create_choice, CLOSE_WHEN_DONE);
test_create_from_sorted_array_size(create_choice, CLOSE_WHEN_DONE);
/* ********************************************************************** */
init_values(rand_choice);
test_create_fetch_verify( create_choice, CLOSE_WHEN_DONE);
/* ********************************************************************** */
init_values(rand_choice);
test_create_iterate_verify( create_choice, CLOSE_WHEN_DONE);
/* ********************************************************************** */
init_values(rand_choice);
test_create_set_at( create_choice, CLOSE_WHEN_DONE);
/* ********************************************************************** */
init_values(rand_choice);
test_create_delete_at( create_choice, CLOSE_WHEN_DONE);
/* ********************************************************************** */
init_values(rand_choice);
test_create_insert( CLOSE_WHEN_DONE);
/* ********************************************************************** */
init_values(rand_choice);
test_split_merge( create_choice, CLOSE_WHEN_DONE);
}
typedef struct {
uint32_t first_zero;
uint32_t first_pos;
} h_extra;
static int
test_heaviside (OMTVALUE v_omt, void* x) {
OMTVALUE v = (OMTVALUE) v_omt;
h_extra* extra = (h_extra*)x;
assert(v && x);
assert(extra->first_zero <= extra->first_pos);
uint32_t value = V(v)->number;
if (value < extra->first_zero) return -1;
if (value < extra->first_pos) return 0;
return 1;
}
static void
heavy_extra (h_extra* extra, uint32_t first_zero, uint32_t first_pos) {
extra->first_zero = first_zero;
extra->first_pos = first_pos;
}
static void
test_find_dir (int dir, void* extra, int (*h)(OMTVALUE, void*),
int r_expect, bool idx_will_change, uint32_t idx_expect,
uint32_t number_expect, bool UU(cursor_valid)) {
uint32_t idx = UINT32_MAX;
uint32_t old_idx = idx;
OMTVALUE omt_val;
int r;
omt_val = NULL;
/* Verify we can pass NULL value. */
omt_val = NULL;
idx = old_idx;
if (dir == 0) {
r = omt_find_zero(global_omt, h, extra, NULL, &idx);
}
else {
r = omt_find( global_omt, h, extra, dir, NULL, &idx);
}
CKERR2(r, r_expect);
if (idx_will_change) {
assert(idx == idx_expect);
}
else {
assert(idx == old_idx);
}
assert(omt_val == NULL);
/* Verify we can pass NULL idx. */
omt_val = NULL;
idx = old_idx;
if (dir == 0) {
r = omt_find_zero(global_omt, h, extra, &omt_val, 0);
}
else {
r = omt_find( global_omt, h, extra, dir, &omt_val, 0);
}
CKERR2(r, r_expect);
assert(idx == old_idx);
if (r == DB_NOTFOUND) {
assert(omt_val == NULL);
}
else {
assert(V(omt_val)->number == number_expect);
}
/* Verify we can pass NULL both. */
omt_val = NULL;
idx = old_idx;
if (dir == 0) {
r = omt_find_zero(global_omt, h, extra, NULL, 0);
}
else {
r = omt_find( global_omt, h, extra, dir, NULL, 0);
}
CKERR2(r, r_expect);
assert(idx == old_idx);
assert(omt_val == NULL);
}
static void
test_find (enum create_type create_choice, enum close_when_done do_close) {
h_extra extra;
init_identity_values(random_seed, 100);
test_create_from_sorted_array(create_choice, KEEP_WHEN_DONE);
/*
-...-
A
*/
heavy_extra(&extra, global_length, global_length);
test_find_dir(-1, &extra, test_heaviside, 0, true, global_length-1, global_length-1, true);
test_find_dir(+1, &extra, test_heaviside, DB_NOTFOUND, false, 0, 0, false);
test_find_dir(0, &extra, test_heaviside, DB_NOTFOUND, true, global_length, global_length, false);
/*
+...+
B
*/
heavy_extra(&extra, 0, 0);
test_find_dir(-1, &extra, test_heaviside, DB_NOTFOUND, false, 0, 0, false);
test_find_dir(+1, &extra, test_heaviside, 0, true, 0, 0, true);
test_find_dir(0, &extra, test_heaviside, DB_NOTFOUND, true, 0, 0, false);
/*
0...0
C
*/
heavy_extra(&extra, 0, global_length);
test_find_dir(-1, &extra, test_heaviside, DB_NOTFOUND, false, 0, 0, false);
test_find_dir(+1, &extra, test_heaviside, DB_NOTFOUND, false, 0, 0, false);
test_find_dir(0, &extra, test_heaviside, 0, true, 0, 0, true);
/*
-...-0...0
AC
*/
heavy_extra(&extra, global_length/2, global_length);
test_find_dir(-1, &extra, test_heaviside, 0, true, global_length/2-1, global_length/2-1, true);
test_find_dir(+1, &extra, test_heaviside, DB_NOTFOUND, false, 0, 0, false);
test_find_dir(0, &extra, test_heaviside, 0, true, global_length/2, global_length/2, true);
/*
0...0+...+
C B
*/
heavy_extra(&extra, 0, global_length/2);
test_find_dir(-1, &extra, test_heaviside, DB_NOTFOUND, false, 0, 0, false);
test_find_dir(+1, &extra, test_heaviside, 0, true, global_length/2, global_length/2, true);
test_find_dir(0, &extra, test_heaviside, 0, true, 0, 0, true);
/*
-...-+...+
AB
*/
heavy_extra(&extra, global_length/2, global_length/2);
test_find_dir(-1, &extra, test_heaviside, 0, true, global_length/2-1, global_length/2-1, true);
test_find_dir(+1, &extra, test_heaviside, 0, true, global_length/2, global_length/2, true);
test_find_dir(0, &extra, test_heaviside, DB_NOTFOUND, true, global_length/2, global_length/2, false);
/*
-...-0...0+...+
AC B
*/
heavy_extra(&extra, global_length/3, 2*global_length/3);
test_find_dir(-1, &extra, test_heaviside, 0, true, global_length/3-1, global_length/3-1, true);
test_find_dir(+1, &extra, test_heaviside, 0, true, 2*global_length/3, 2*global_length/3, true);
test_find_dir(0, &extra, test_heaviside, 0, true, global_length/3, global_length/3, true);
/* Cleanup */
test_close(do_close);
}
static void
runtests_create_choice (enum create_type create_choice) {
test_create_array(create_choice, TEST_SORTED);
test_create_array(create_choice, TEST_RANDOM);
test_create_array(create_choice, TEST_IDENTITY);
test_find( create_choice, CLOSE_WHEN_DONE);
}
static void
test_clone(uint32_t nelts)
// Test that each clone operation gives the right data back. If nelts is
// zero, also tests that you still get a valid omt back and that the way
// to deallocate it still works.
{
toku::omt<void *> *src = NULL, *dest = NULL;
int r;
XMALLOC(src);
src->create();
for (long i = 0; i < nelts; ++i) {
r = src->insert_at((OMTVALUE) i, i);
assert_zero(r);
}
XMALLOC(dest);
dest->clone(*src);
assert(dest != NULL);
assert(dest->size() == nelts);
for (long i = 0; i < nelts; ++i) {
OMTVALUE v;
long l;
r = dest->fetch(i, &v);
assert_zero(r);
l = (long) v;
assert(l == i);
}
dest->destroy();
toku_free(dest);
src->destroy();
toku_free(src);
}
int
test_main(int argc, const char *argv[]) {
parse_args(argc, argv);
init_globals();
test_create( CLOSE_WHEN_DONE);
test_create_size( CLOSE_WHEN_DONE);
runtests_create_choice(BATCH_INSERT);
runtests_create_choice(STEAL_ARRAY);
runtests_create_choice(INSERT_AT);
runtests_create_choice(INSERT_AT_ALMOST_RANDOM);
test_clone(0);
test_clone(1);
test_clone(1000);
test_clone(10000);
cleanup_globals();
return 0;
}
|