diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 14:31:17 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 14:31:17 +0000 |
commit | 8020f71afd34d7696d7933659df2d763ab05542f (patch) | |
tree | 2fdf1b5447ffd8bdd61e702ca183e814afdcb4fc /web/api/queries/weights.c | |
parent | Initial commit. (diff) | |
download | netdata-upstream.tar.xz netdata-upstream.zip |
Adding upstream version 1.37.1.upstream/1.37.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'web/api/queries/weights.c')
-rw-r--r-- | web/api/queries/weights.c | 1107 |
1 files changed, 1107 insertions, 0 deletions
diff --git a/web/api/queries/weights.c b/web/api/queries/weights.c new file mode 100644 index 0000000..a9555a6 --- /dev/null +++ b/web/api/queries/weights.c @@ -0,0 +1,1107 @@ +// SPDX-License-Identifier: GPL-3.0-or-later + +#include "daemon/common.h" +#include "database/KolmogorovSmirnovDist.h" + +#define MAX_POINTS 10000 +int enable_metric_correlations = CONFIG_BOOLEAN_YES; +int metric_correlations_version = 1; +WEIGHTS_METHOD default_metric_correlations_method = WEIGHTS_METHOD_MC_KS2; + +typedef struct weights_stats { + NETDATA_DOUBLE max_base_high_ratio; + size_t db_points; + size_t result_points; + size_t db_queries; + size_t db_points_per_tier[RRD_STORAGE_TIERS]; + size_t binary_searches; +} WEIGHTS_STATS; + +// ---------------------------------------------------------------------------- +// parse and render metric correlations methods + +static struct { + const char *name; + WEIGHTS_METHOD value; +} weights_methods[] = { + { "ks2" , WEIGHTS_METHOD_MC_KS2} + , { "volume" , WEIGHTS_METHOD_MC_VOLUME} + , { "anomaly-rate" , WEIGHTS_METHOD_ANOMALY_RATE} + , { NULL , 0 } +}; + +WEIGHTS_METHOD weights_string_to_method(const char *method) { + for(int i = 0; weights_methods[i].name ;i++) + if(strcmp(method, weights_methods[i].name) == 0) + return weights_methods[i].value; + + return default_metric_correlations_method; +} + +const char *weights_method_to_string(WEIGHTS_METHOD method) { + for(int i = 0; weights_methods[i].name ;i++) + if(weights_methods[i].value == method) + return weights_methods[i].name; + + return "unknown"; +} + +// ---------------------------------------------------------------------------- +// The results per dimension are aggregated into a dictionary + +typedef enum { + RESULT_IS_BASE_HIGH_RATIO = (1 << 0), + RESULT_IS_PERCENTAGE_OF_TIME = (1 << 1), +} RESULT_FLAGS; + +struct register_result { + RESULT_FLAGS flags; + RRDCONTEXT_ACQUIRED *rca; + RRDINSTANCE_ACQUIRED *ria; + RRDMETRIC_ACQUIRED *rma; + NETDATA_DOUBLE value; +}; + +static DICTIONARY *register_result_init() { + DICTIONARY *results = dictionary_create(DICT_OPTION_SINGLE_THREADED); + return results; +} + +static void register_result_destroy(DICTIONARY *results) { + dictionary_destroy(results); +} + +static void register_result(DICTIONARY *results, + RRDCONTEXT_ACQUIRED *rca, + RRDINSTANCE_ACQUIRED *ria, + RRDMETRIC_ACQUIRED *rma, + NETDATA_DOUBLE value, + RESULT_FLAGS flags, + WEIGHTS_STATS *stats, + bool register_zero) { + + if(!netdata_double_isnumber(value)) return; + + // make it positive + NETDATA_DOUBLE v = fabsndd(value); + + // no need to store zero scored values + if(unlikely(fpclassify(v) == FP_ZERO && !register_zero)) + return; + + // keep track of the max of the baseline / highlight ratio + if(flags & RESULT_IS_BASE_HIGH_RATIO && v > stats->max_base_high_ratio) + stats->max_base_high_ratio = v; + + struct register_result t = { + .flags = flags, + .rca = rca, + .ria = ria, + .rma = rma, + .value = v + }; + + // we can use the pointer address or RMA as a unique key for each metric + char buf[20 + 1]; + ssize_t len = snprintfz(buf, 20, "%p", rma); + dictionary_set_advanced(results, buf, len + 1, &t, sizeof(struct register_result), NULL); +} + +// ---------------------------------------------------------------------------- +// Generation of JSON output for the results + +static void results_header_to_json(DICTIONARY *results __maybe_unused, BUFFER *wb, + time_t after, time_t before, + time_t baseline_after, time_t baseline_before, + size_t points, WEIGHTS_METHOD method, + RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts, + size_t examined_dimensions __maybe_unused, usec_t duration, + WEIGHTS_STATS *stats) { + + buffer_sprintf(wb, "{\n" + "\t\"after\": %lld,\n" + "\t\"before\": %lld,\n" + "\t\"duration\": %lld,\n" + "\t\"points\": %zu,\n", + (long long)after, + (long long)before, + (long long)(before - after), + points + ); + + if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) + buffer_sprintf(wb, "" + "\t\"baseline_after\": %lld,\n" + "\t\"baseline_before\": %lld,\n" + "\t\"baseline_duration\": %lld,\n" + "\t\"baseline_points\": %zu,\n", + (long long)baseline_after, + (long long)baseline_before, + (long long)(baseline_before - baseline_after), + points << shifts + ); + + buffer_sprintf(wb, "" + "\t\"statistics\": {\n" + "\t\t\"query_time_ms\": %f,\n" + "\t\t\"db_queries\": %zu,\n" + "\t\t\"query_result_points\": %zu,\n" + "\t\t\"binary_searches\": %zu,\n" + "\t\t\"db_points_read\": %zu,\n" + "\t\t\"db_points_per_tier\": [ ", + (double)duration / (double)USEC_PER_MS, + stats->db_queries, + stats->result_points, + stats->binary_searches, + stats->db_points + ); + + for(size_t tier = 0; tier < storage_tiers ;tier++) + buffer_sprintf(wb, "%s%zu", tier?", ":"", stats->db_points_per_tier[tier]); + + buffer_sprintf(wb, " ]\n" + "\t},\n" + "\t\"group\": \"%s\",\n" + "\t\"method\": \"%s\",\n" + "\t\"options\": \"", + web_client_api_request_v1_data_group_to_string(group), + weights_method_to_string(method) + ); + + web_client_api_request_v1_data_options_to_buffer(wb, options); +} + +static size_t registered_results_to_json_charts(DICTIONARY *results, BUFFER *wb, + time_t after, time_t before, + time_t baseline_after, time_t baseline_before, + size_t points, WEIGHTS_METHOD method, + RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts, + size_t examined_dimensions, usec_t duration, + WEIGHTS_STATS *stats) { + + results_header_to_json(results, wb, after, before, baseline_after, baseline_before, + points, method, group, options, shifts, examined_dimensions, duration, stats); + + buffer_strcat(wb, "\",\n\t\"correlated_charts\": {\n"); + + size_t charts = 0, chart_dims = 0, total_dimensions = 0; + struct register_result *t; + RRDINSTANCE_ACQUIRED *last_ria = NULL; // never access this - we use it only for comparison + dfe_start_read(results, t) { + if(t->ria != last_ria) { + last_ria = t->ria; + + if(charts) buffer_strcat(wb, "\n\t\t\t}\n\t\t},\n"); + buffer_strcat(wb, "\t\t\""); + buffer_strcat(wb, rrdinstance_acquired_id(t->ria)); + buffer_strcat(wb, "\": {\n"); + buffer_strcat(wb, "\t\t\t\"context\": \""); + buffer_strcat(wb, rrdcontext_acquired_id(t->rca)); + buffer_strcat(wb, "\",\n\t\t\t\"dimensions\": {\n"); + charts++; + chart_dims = 0; + } + if (chart_dims) buffer_sprintf(wb, ",\n"); + buffer_sprintf(wb, "\t\t\t\t\"%s\": " NETDATA_DOUBLE_FORMAT, rrdmetric_acquired_name(t->rma), t->value); + chart_dims++; + total_dimensions++; + } + dfe_done(t); + + // close dimensions and chart + if (total_dimensions) + buffer_strcat(wb, "\n\t\t\t}\n\t\t}\n"); + + // close correlated_charts + buffer_sprintf(wb, "\t},\n" + "\t\"correlated_dimensions\": %zu,\n" + "\t\"total_dimensions_count\": %zu\n" + "}\n", + total_dimensions, + examined_dimensions + ); + + return total_dimensions; +} + +static size_t registered_results_to_json_contexts(DICTIONARY *results, BUFFER *wb, + time_t after, time_t before, + time_t baseline_after, time_t baseline_before, + size_t points, WEIGHTS_METHOD method, + RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts, + size_t examined_dimensions, usec_t duration, + WEIGHTS_STATS *stats) { + + results_header_to_json(results, wb, after, before, baseline_after, baseline_before, + points, method, group, options, shifts, examined_dimensions, duration, stats); + + buffer_strcat(wb, "\",\n\t\"contexts\": {\n"); + + size_t contexts = 0, charts = 0, total_dimensions = 0, context_dims = 0, chart_dims = 0; + NETDATA_DOUBLE contexts_total_weight = 0.0, charts_total_weight = 0.0; + struct register_result *t; + RRDCONTEXT_ACQUIRED *last_rca = NULL; + RRDINSTANCE_ACQUIRED *last_ria = NULL; + dfe_start_read(results, t) { + + if(t->rca != last_rca) { + last_rca = t->rca; + + if(contexts) + buffer_sprintf(wb, "\n" + "\t\t\t\t\t},\n" + "\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n" + "\t\t\t\t}\n\t\t\t},\n" + "\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n\t\t},\n" + , charts_total_weight / (double)chart_dims + , contexts_total_weight / (double)context_dims); + + buffer_strcat(wb, "\t\t\""); + buffer_strcat(wb, rrdcontext_acquired_id(t->rca)); + buffer_strcat(wb, "\": {\n\t\t\t\"charts\":{\n"); + + contexts++; + charts = 0; + context_dims = 0; + contexts_total_weight = 0.0; + + last_ria = NULL; + } + + if(t->ria != last_ria) { + last_ria = t->ria; + + if(charts) + buffer_sprintf(wb, "\n" + "\t\t\t\t\t},\n" + "\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n" + "\t\t\t\t},\n" + , charts_total_weight / (double)chart_dims); + + buffer_strcat(wb, "\t\t\t\t\""); + buffer_strcat(wb, rrdinstance_acquired_id(t->ria)); + buffer_strcat(wb, "\": {\n"); + buffer_strcat(wb, "\t\t\t\t\t\"dimensions\": {\n"); + + charts++; + chart_dims = 0; + charts_total_weight = 0.0; + } + + if (chart_dims) buffer_sprintf(wb, ",\n"); + buffer_sprintf(wb, "\t\t\t\t\t\t\"%s\": " NETDATA_DOUBLE_FORMAT, rrdmetric_acquired_name(t->rma), t->value); + charts_total_weight += t->value; + contexts_total_weight += t->value; + chart_dims++; + context_dims++; + total_dimensions++; + } + dfe_done(t); + + // close dimensions and chart + if (total_dimensions) + buffer_sprintf(wb, "\n" + "\t\t\t\t\t},\n" + "\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n" + "\t\t\t\t}\n" + "\t\t\t},\n" + "\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n" + "\t\t}\n" + , charts_total_weight / (double)chart_dims + , contexts_total_weight / (double)context_dims); + + // close correlated_charts + buffer_sprintf(wb, "\t},\n" + "\t\"weighted_dimensions\": %zu,\n" + "\t\"total_dimensions_count\": %zu\n" + "}\n", + total_dimensions, + examined_dimensions + ); + + return total_dimensions; +} + +// ---------------------------------------------------------------------------- +// KS2 algorithm functions + +typedef long int DIFFS_NUMBERS; +#define DOUBLE_TO_INT_MULTIPLIER 100000 + +static inline int binary_search_bigger_than(const DIFFS_NUMBERS arr[], int left, int size, DIFFS_NUMBERS K) { + // binary search to find the index the smallest index + // of the first value in the array that is greater than K + + int right = size; + while(left < right) { + int middle = (int)(((unsigned int)(left + right)) >> 1); + + if(arr[middle] > K) + right = middle; + + else + left = middle + 1; + } + + return left; +} + +int compare_diffs(const void *left, const void *right) { + DIFFS_NUMBERS lt = *(DIFFS_NUMBERS *)left; + DIFFS_NUMBERS rt = *(DIFFS_NUMBERS *)right; + + // https://stackoverflow.com/a/3886497/1114110 + return (lt > rt) - (lt < rt); +} + +static size_t calculate_pairs_diff(DIFFS_NUMBERS *diffs, NETDATA_DOUBLE *arr, size_t size) { + NETDATA_DOUBLE *last = &arr[size - 1]; + size_t added = 0; + + while(last > arr) { + NETDATA_DOUBLE second = *last--; + NETDATA_DOUBLE first = *last; + *diffs++ = (DIFFS_NUMBERS)((first - second) * (NETDATA_DOUBLE)DOUBLE_TO_INT_MULTIPLIER); + added++; + } + + return added; +} + +static double ks_2samp( + DIFFS_NUMBERS baseline_diffs[], int base_size, + DIFFS_NUMBERS highlight_diffs[], int high_size, + uint32_t base_shifts) { + + qsort(baseline_diffs, base_size, sizeof(DIFFS_NUMBERS), compare_diffs); + qsort(highlight_diffs, high_size, sizeof(DIFFS_NUMBERS), compare_diffs); + + // Now we should be calculating this: + // + // For each number in the diffs arrays, we should find the index of the + // number bigger than them in both arrays and calculate the % of this index + // vs the total array size. Once we have the 2 percentages, we should find + // the min and max across the delta of all of them. + // + // It should look like this: + // + // base_pcent = binary_search_bigger_than(...) / base_size; + // high_pcent = binary_search_bigger_than(...) / high_size; + // delta = base_pcent - high_pcent; + // if(delta < min) min = delta; + // if(delta > max) max = delta; + // + // This would require a lot of multiplications and divisions. + // + // To speed it up, we do the binary search to find the index of each number + // but, then we divide the base index by the power of two number (shifts) it + // is bigger than high index. So the 2 indexes are now comparable. + // We also keep track of the original indexes with min and max, to properly + // calculate their percentages once the loops finish. + + + // initialize min and max using the first number of baseline_diffs + DIFFS_NUMBERS K = baseline_diffs[0]; + int base_idx = binary_search_bigger_than(baseline_diffs, 1, base_size, K); + int high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K); + int delta = base_idx - (high_idx << base_shifts); + int min = delta, max = delta; + int base_min_idx = base_idx; + int base_max_idx = base_idx; + int high_min_idx = high_idx; + int high_max_idx = high_idx; + + // do the baseline_diffs starting from 1 (we did position 0 above) + for(int i = 1; i < base_size; i++) { + K = baseline_diffs[i]; + base_idx = binary_search_bigger_than(baseline_diffs, i + 1, base_size, K); // starting from i, since data1 is sorted + high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K); + + delta = base_idx - (high_idx << base_shifts); + if(delta < min) { + min = delta; + base_min_idx = base_idx; + high_min_idx = high_idx; + } + else if(delta > max) { + max = delta; + base_max_idx = base_idx; + high_max_idx = high_idx; + } + } + + // do the highlight_diffs starting from 0 + for(int i = 0; i < high_size; i++) { + K = highlight_diffs[i]; + base_idx = binary_search_bigger_than(baseline_diffs, 0, base_size, K); + high_idx = binary_search_bigger_than(highlight_diffs, i + 1, high_size, K); // starting from i, since data2 is sorted + + delta = base_idx - (high_idx << base_shifts); + if(delta < min) { + min = delta; + base_min_idx = base_idx; + high_min_idx = high_idx; + } + else if(delta > max) { + max = delta; + base_max_idx = base_idx; + high_max_idx = high_idx; + } + } + + // now we have the min, max and their indexes + // properly calculate min and max as dmin and dmax + double dbase_size = (double)base_size; + double dhigh_size = (double)high_size; + double dmin = ((double)base_min_idx / dbase_size) - ((double)high_min_idx / dhigh_size); + double dmax = ((double)base_max_idx / dbase_size) - ((double)high_max_idx / dhigh_size); + + dmin = -dmin; + if(islessequal(dmin, 0.0)) dmin = 0.0; + else if(isgreaterequal(dmin, 1.0)) dmin = 1.0; + + double d; + if(isgreaterequal(dmin, dmax)) d = dmin; + else d = dmax; + + double en = round(dbase_size * dhigh_size / (dbase_size + dhigh_size)); + + // under these conditions, KSfbar() crashes + if(unlikely(isnan(en) || isinf(en) || en == 0.0 || isnan(d) || isinf(d))) + return NAN; + + return KSfbar((int)en, d); +} + +static double kstwo( + NETDATA_DOUBLE baseline[], int baseline_points, + NETDATA_DOUBLE highlight[], int highlight_points, + uint32_t base_shifts) { + + // -1 in size, since the calculate_pairs_diffs() returns one less point + DIFFS_NUMBERS baseline_diffs[baseline_points - 1]; + DIFFS_NUMBERS highlight_diffs[highlight_points - 1]; + + int base_size = (int)calculate_pairs_diff(baseline_diffs, baseline, baseline_points); + int high_size = (int)calculate_pairs_diff(highlight_diffs, highlight, highlight_points); + + if(unlikely(!base_size || !high_size)) + return NAN; + + if(unlikely(base_size != baseline_points - 1 || high_size != highlight_points - 1)) { + error("Metric correlations: internal error - calculate_pairs_diff() returns the wrong number of entries"); + return NAN; + } + + return ks_2samp(baseline_diffs, base_size, highlight_diffs, high_size, base_shifts); +} + +NETDATA_DOUBLE *rrd2rrdr_ks2( + ONEWAYALLOC *owa, RRDHOST *host, + RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma, + time_t after, time_t before, size_t points, RRDR_OPTIONS options, + RRDR_GROUPING group_method, const char *group_options, size_t tier, + WEIGHTS_STATS *stats, + size_t *entries + ) { + + NETDATA_DOUBLE *ret = NULL; + + QUERY_TARGET_REQUEST qtr = { + .host = host, + .rca = rca, + .ria = ria, + .rma = rma, + .after = after, + .before = before, + .points = points, + .options = options, + .group_method = group_method, + .group_options = group_options, + .tier = tier, + .query_source = QUERY_SOURCE_API_WEIGHTS, + }; + + RRDR *r = rrd2rrdr(owa, query_target_create(&qtr)); + if(!r) + goto cleanup; + + stats->db_queries++; + stats->result_points += r->internal.result_points_generated; + stats->db_points += r->internal.db_points_read; + for(size_t tr = 0; tr < storage_tiers ; tr++) + stats->db_points_per_tier[tr] += r->internal.tier_points_read[tr]; + + if(r->d != 1) { + error("WEIGHTS: on query '%s' expected 1 dimension in RRDR but got %zu", r->internal.qt->id, r->d); + goto cleanup; + } + + if(unlikely(r->od[0] & RRDR_DIMENSION_HIDDEN)) + goto cleanup; + + if(unlikely(!(r->od[0] & RRDR_DIMENSION_NONZERO))) + goto cleanup; + + if(rrdr_rows(r) < 2) + goto cleanup; + + *entries = rrdr_rows(r); + ret = onewayalloc_mallocz(owa, sizeof(NETDATA_DOUBLE) * rrdr_rows(r)); + + // copy the points of the dimension to a contiguous array + // there is no need to check for empty values, since empty values are already zero + // https://github.com/netdata/netdata/blob/6e3144683a73a2024d51425b20ecfd569034c858/web/api/queries/average/average.c#L41-L43 + memcpy(ret, r->v, rrdr_rows(r) * sizeof(NETDATA_DOUBLE)); + +cleanup: + rrdr_free(owa, r); + return ret; +} + +static void rrdset_metric_correlations_ks2( + RRDHOST *host, + RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma, + DICTIONARY *results, + time_t baseline_after, time_t baseline_before, + time_t after, time_t before, + size_t points, RRDR_OPTIONS options, + RRDR_GROUPING group_method, const char *group_options, size_t tier, + uint32_t shifts, + WEIGHTS_STATS *stats, bool register_zero + ) { + + options |= RRDR_OPTION_NATURAL_POINTS; + + ONEWAYALLOC *owa = onewayalloc_create(16 * 1024); + + size_t high_points = 0; + NETDATA_DOUBLE *highlight = rrd2rrdr_ks2( + owa, host, rca, ria, rma, after, before, points, + options, group_method, group_options, tier, stats, &high_points); + + if(!highlight) + goto cleanup; + + size_t base_points = 0; + NETDATA_DOUBLE *baseline = rrd2rrdr_ks2( + owa, host, rca, ria, rma, baseline_after, baseline_before, high_points << shifts, + options, group_method, group_options, tier, stats, &base_points); + + if(!baseline) + goto cleanup; + + stats->binary_searches += 2 * (base_points - 1) + 2 * (high_points - 1); + + double prob = kstwo(baseline, (int)base_points, highlight, (int)high_points, shifts); + if(!isnan(prob) && !isinf(prob)) { + + // these conditions should never happen, but still let's check + if(unlikely(prob < 0.0)) { + error("Metric correlations: kstwo() returned a negative number: %f", prob); + prob = -prob; + } + if(unlikely(prob > 1.0)) { + error("Metric correlations: kstwo() returned a number above 1.0: %f", prob); + prob = 1.0; + } + + // to spread the results evenly, 0.0 needs to be the less correlated and 1.0 the most correlated + // so, we flip the result of kstwo() + register_result(results, rca, ria, rma, 1.0 - prob, RESULT_IS_BASE_HIGH_RATIO, stats, register_zero); + } + +cleanup: + onewayalloc_destroy(owa); +} + +// ---------------------------------------------------------------------------- +// VOLUME algorithm functions + +static void merge_query_value_to_stats(QUERY_VALUE *qv, WEIGHTS_STATS *stats) { + stats->db_queries++; + stats->result_points += qv->result_points; + stats->db_points += qv->points_read; + for(size_t tier = 0; tier < storage_tiers ; tier++) + stats->db_points_per_tier[tier] += qv->storage_points_per_tier[tier]; +} + +static void rrdset_metric_correlations_volume( + RRDHOST *host, + RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma, + DICTIONARY *results, + time_t baseline_after, time_t baseline_before, + time_t after, time_t before, + RRDR_OPTIONS options, RRDR_GROUPING group_method, const char *group_options, + size_t tier, + WEIGHTS_STATS *stats, bool register_zero) { + + options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ABSOLUTE | RRDR_OPTION_NATURAL_POINTS; + + QUERY_VALUE baseline_average = rrdmetric2value(host, rca, ria, rma, baseline_after, baseline_before, options, group_method, group_options, tier, 0, QUERY_SOURCE_API_WEIGHTS); + merge_query_value_to_stats(&baseline_average, stats); + + if(!netdata_double_isnumber(baseline_average.value)) { + // this means no data for the baseline window, but we may have data for the highlighted one - assume zero + baseline_average.value = 0.0; + } + + QUERY_VALUE highlight_average = rrdmetric2value(host, rca, ria, rma, after, before, options, group_method, group_options, tier, 0, QUERY_SOURCE_API_WEIGHTS); + merge_query_value_to_stats(&highlight_average, stats); + + if(!netdata_double_isnumber(highlight_average.value)) + return; + + if(baseline_average.value == highlight_average.value) { + // they are the same - let's move on + return; + } + + char highlight_countif_options[50 + 1]; + snprintfz(highlight_countif_options, 50, "%s" NETDATA_DOUBLE_FORMAT, highlight_average.value < baseline_average.value ? "<" : ">", baseline_average.value); + QUERY_VALUE highlight_countif = rrdmetric2value(host, rca, ria, rma, after, before, options, RRDR_GROUPING_COUNTIF, highlight_countif_options, tier, 0, QUERY_SOURCE_API_WEIGHTS); + merge_query_value_to_stats(&highlight_countif, stats); + + if(!netdata_double_isnumber(highlight_countif.value)) { + info("WEIGHTS: highlighted countif query failed, but highlighted average worked - strange..."); + return; + } + + // this represents the percentage of time + // the highlighted window was above/below the baseline window + // (above or below depending on their averages) + highlight_countif.value = highlight_countif.value / 100.0; // countif returns 0 - 100.0 + + RESULT_FLAGS flags; + NETDATA_DOUBLE pcent = NAN; + if(isgreater(baseline_average.value, 0.0) || isless(baseline_average.value, 0.0)) { + flags = RESULT_IS_BASE_HIGH_RATIO; + pcent = (highlight_average.value - baseline_average.value) / baseline_average.value * highlight_countif.value; + } + else { + flags = RESULT_IS_PERCENTAGE_OF_TIME; + pcent = highlight_countif.value; + } + + register_result(results, rca, ria, rma, pcent, flags, stats, register_zero); +} + +// ---------------------------------------------------------------------------- +// ANOMALY RATE algorithm functions + +static void rrdset_weights_anomaly_rate( + RRDHOST *host, + RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma, + DICTIONARY *results, + time_t after, time_t before, + RRDR_OPTIONS options, RRDR_GROUPING group_method, const char *group_options, + size_t tier, + WEIGHTS_STATS *stats, bool register_zero) { + + options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ANOMALY_BIT | RRDR_OPTION_NATURAL_POINTS; + + QUERY_VALUE qv = rrdmetric2value(host, rca, ria, rma, after, before, options, group_method, group_options, tier, 0, QUERY_SOURCE_API_WEIGHTS); + merge_query_value_to_stats(&qv, stats); + + if(netdata_double_isnumber(qv.value)) + register_result(results, rca, ria, rma, qv.value, 0, stats, register_zero); +} + +// ---------------------------------------------------------------------------- + +int compare_netdata_doubles(const void *left, const void *right) { + NETDATA_DOUBLE lt = *(NETDATA_DOUBLE *)left; + NETDATA_DOUBLE rt = *(NETDATA_DOUBLE *)right; + + // https://stackoverflow.com/a/3886497/1114110 + return (lt > rt) - (lt < rt); +} + +static inline int binary_search_bigger_than_netdata_double(const NETDATA_DOUBLE arr[], int left, int size, NETDATA_DOUBLE K) { + // binary search to find the index the smallest index + // of the first value in the array that is greater than K + + int right = size; + while(left < right) { + int middle = (int)(((unsigned int)(left + right)) >> 1); + + if(arr[middle] > K) + right = middle; + + else + left = middle + 1; + } + + return left; +} + +// ---------------------------------------------------------------------------- +// spread the results evenly according to their value + +static size_t spread_results_evenly(DICTIONARY *results, WEIGHTS_STATS *stats) { + struct register_result *t; + + // count the dimensions + size_t dimensions = dictionary_entries(results); + if(!dimensions) return 0; + + if(stats->max_base_high_ratio == 0.0) + stats->max_base_high_ratio = 1.0; + + // create an array of the right size and copy all the values in it + NETDATA_DOUBLE slots[dimensions]; + dimensions = 0; + dfe_start_read(results, t) { + if(t->flags & (RESULT_IS_PERCENTAGE_OF_TIME)) + t->value = t->value * stats->max_base_high_ratio; + + slots[dimensions++] = t->value; + } + dfe_done(t); + + // sort the array with the values of all dimensions + qsort(slots, dimensions, sizeof(NETDATA_DOUBLE), compare_netdata_doubles); + + // skip the duplicates in the sorted array + NETDATA_DOUBLE last_value = NAN; + size_t unique_values = 0; + for(size_t i = 0; i < dimensions ;i++) { + if(likely(slots[i] != last_value)) + slots[unique_values++] = last_value = slots[i]; + } + + // this cannot happen, but coverity thinks otherwise... + if(!unique_values) + unique_values = dimensions; + + // calculate the weight of each slot, using the number of unique values + NETDATA_DOUBLE slot_weight = 1.0 / (NETDATA_DOUBLE)unique_values; + + dfe_start_read(results, t) { + int slot = binary_search_bigger_than_netdata_double(slots, 0, (int)unique_values, t->value); + NETDATA_DOUBLE v = slot * slot_weight; + if(unlikely(v > 1.0)) v = 1.0; + v = 1.0 - v; + t->value = v; + } + dfe_done(t); + + return dimensions; +} + +// ---------------------------------------------------------------------------- +// The main function + +int web_api_v1_weights( + RRDHOST *host, BUFFER *wb, WEIGHTS_METHOD method, WEIGHTS_FORMAT format, + RRDR_GROUPING group, const char *group_options, + time_t baseline_after, time_t baseline_before, + time_t after, time_t before, + size_t points, RRDR_OPTIONS options, SIMPLE_PATTERN *contexts, size_t tier, size_t timeout) { + + WEIGHTS_STATS stats = {}; + + DICTIONARY *results = register_result_init(); + DICTIONARY *metrics = NULL; + char *error = NULL; + int resp = HTTP_RESP_OK; + + // if the user didn't give a timeout + // assume 60 seconds + if(!timeout) + timeout = 60 * MSEC_PER_SEC; + + // if the timeout is less than 1 second + // make it at least 1 second + if(timeout < (long)(1 * MSEC_PER_SEC)) + timeout = 1 * MSEC_PER_SEC; + + usec_t timeout_usec = timeout * USEC_PER_MS; + usec_t started_usec = now_realtime_usec(); + + if(!rrdr_relative_window_to_absolute(&after, &before)) + buffer_no_cacheable(wb); + + if (before <= after) { + resp = HTTP_RESP_BAD_REQUEST; + error = "Invalid selected time-range."; + goto cleanup; + } + + uint32_t shifts = 0; + if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) { + if(!points) points = 500; + + if(baseline_before <= API_RELATIVE_TIME_MAX) + baseline_before += after; + + rrdr_relative_window_to_absolute(&baseline_after, &baseline_before); + + if (baseline_before <= baseline_after) { + resp = HTTP_RESP_BAD_REQUEST; + error = "Invalid baseline time-range."; + goto cleanup; + } + + // baseline should be a power of two multiple of highlight + long long base_delta = baseline_before - baseline_after; + long long high_delta = before - after; + uint32_t multiplier = (uint32_t)round((double)base_delta / (double)high_delta); + + // check if the multiplier is a power of two + // https://stackoverflow.com/a/600306/1114110 + if((multiplier & (multiplier - 1)) != 0) { + // it is not power of two + // let's find the closest power of two + // https://stackoverflow.com/a/466242/1114110 + multiplier--; + multiplier |= multiplier >> 1; + multiplier |= multiplier >> 2; + multiplier |= multiplier >> 4; + multiplier |= multiplier >> 8; + multiplier |= multiplier >> 16; + multiplier++; + } + + // convert the multiplier to the number of shifts + // we need to do, to divide baseline numbers to match + // the highlight ones + while(multiplier > 1) { + shifts++; + multiplier = multiplier >> 1; + } + + // if the baseline size will not comply to MAX_POINTS + // lower the window of the baseline + while(shifts && (points << shifts) > MAX_POINTS) + shifts--; + + // if the baseline size still does not comply to MAX_POINTS + // lower the resolution of the highlight and the baseline + while((points << shifts) > MAX_POINTS) + points = points >> 1; + + if(points < 15) { + resp = HTTP_RESP_BAD_REQUEST; + error = "Too few points available, at least 15 are needed."; + goto cleanup; + } + + // adjust the baseline to be multiplier times bigger than the highlight + baseline_after = baseline_before - (high_delta << shifts); + } + + size_t examined_dimensions = 0; + + bool register_zero = true; + if(options & RRDR_OPTION_NONZERO) { + register_zero = false; + options &= ~RRDR_OPTION_NONZERO; + } + + metrics = rrdcontext_all_metrics_to_dict(host, contexts); + struct metric_entry *me; + + // for every metric_entry in the dictionary + dfe_start_read(metrics, me) { + usec_t now_usec = now_realtime_usec(); + if(now_usec - started_usec > timeout_usec) { + error = "timed out"; + resp = HTTP_RESP_GATEWAY_TIMEOUT; + goto cleanup; + } + + examined_dimensions++; + + switch(method) { + case WEIGHTS_METHOD_ANOMALY_RATE: + options |= RRDR_OPTION_ANOMALY_BIT; + rrdset_weights_anomaly_rate( + host, + me->rca, me->ria, me->rma, + results, + after, before, + options, group, group_options, tier, + &stats, register_zero + ); + break; + + case WEIGHTS_METHOD_MC_VOLUME: + rrdset_metric_correlations_volume( + host, + me->rca, me->ria, me->rma, + results, + baseline_after, baseline_before, + after, before, + options, group, group_options, tier, + &stats, register_zero + ); + break; + + default: + case WEIGHTS_METHOD_MC_KS2: + rrdset_metric_correlations_ks2( + host, + me->rca, me->ria, me->rma, + results, + baseline_after, baseline_before, + after, before, points, + options, group, group_options, tier, shifts, + &stats, register_zero + ); + break; + } + } + dfe_done(me); + + if(!register_zero) + options |= RRDR_OPTION_NONZERO; + + if(!(options & RRDR_OPTION_RETURN_RAW)) + spread_results_evenly(results, &stats); + + usec_t ended_usec = now_realtime_usec(); + + // generate the json output we need + buffer_flush(wb); + + size_t added_dimensions = 0; + switch(format) { + case WEIGHTS_FORMAT_CHARTS: + added_dimensions = + registered_results_to_json_charts( + results, wb, + after, before, + baseline_after, baseline_before, + points, method, group, options, shifts, + examined_dimensions, + ended_usec - started_usec, &stats); + break; + + default: + case WEIGHTS_FORMAT_CONTEXTS: + added_dimensions = + registered_results_to_json_contexts( + results, wb, + after, before, + baseline_after, baseline_before, + points, method, group, options, shifts, + examined_dimensions, + ended_usec - started_usec, &stats); + break; + } + + if(!added_dimensions) { + error = "no results produced."; + resp = HTTP_RESP_NOT_FOUND; + } + +cleanup: + if(metrics) dictionary_destroy(metrics); + if(results) register_result_destroy(results); + + if(error) { + buffer_flush(wb); + buffer_sprintf(wb, "{\"error\": \"%s\" }", error); + } + + return resp; +} + +// ---------------------------------------------------------------------------- +// unittest + +/* + +Unit tests against the output of this: + +https://github.com/scipy/scipy/blob/4cf21e753cf937d1c6c2d2a0e372fbc1dbbeea81/scipy/stats/_stats_py.py#L7275-L7449 + +import matplotlib.pyplot as plt +import pandas as pd +import numpy as np +import scipy as sp +from scipy import stats + +data1 = np.array([ 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 ]) +data2 = np.array([365, -123, 0]) +data1 = np.sort(data1) +data2 = np.sort(data2) +n1 = data1.shape[0] +n2 = data2.shape[0] +data_all = np.concatenate([data1, data2]) +cdf1 = np.searchsorted(data1, data_all, side='right') / n1 +cdf2 = np.searchsorted(data2, data_all, side='right') / n2 +print(data_all) +print("\ndata1", data1, cdf1) +print("\ndata2", data2, cdf2) +cddiffs = cdf1 - cdf2 +print("\ncddiffs", cddiffs) +minS = np.clip(-np.min(cddiffs), 0, 1) +maxS = np.max(cddiffs) +print("\nmin", minS) +print("max", maxS) +m, n = sorted([float(n1), float(n2)], reverse=True) +en = m * n / (m + n) +d = max(minS, maxS) +prob = stats.distributions.kstwo.sf(d, np.round(en)) +print("\nprob", prob) + +*/ + +static int double_expect(double v, const char *str, const char *descr) { + char buf[100 + 1]; + snprintfz(buf, 100, "%0.6f", v); + int ret = strcmp(buf, str) ? 1 : 0; + + fprintf(stderr, "%s %s, expected %s, got %s\n", ret?"FAILED":"OK", descr, str, buf); + return ret; +} + +static int mc_unittest1(void) { + int bs = 3, hs = 3; + DIFFS_NUMBERS base[3] = { 1, 2, 3 }; + DIFFS_NUMBERS high[3] = { 3, 4, 6 }; + + double prob = ks_2samp(base, bs, high, hs, 0); + return double_expect(prob, "0.222222", "3x3"); +} + +static int mc_unittest2(void) { + int bs = 6, hs = 3; + DIFFS_NUMBERS base[6] = { 1, 2, 3, 10, 10, 15 }; + DIFFS_NUMBERS high[3] = { 3, 4, 6 }; + + double prob = ks_2samp(base, bs, high, hs, 1); + return double_expect(prob, "0.500000", "6x3"); +} + +static int mc_unittest3(void) { + int bs = 12, hs = 3; + DIFFS_NUMBERS base[12] = { 1, 2, 3, 10, 10, 15, 111, 19999, 8, 55, -1, -73 }; + DIFFS_NUMBERS high[3] = { 3, 4, 6 }; + + double prob = ks_2samp(base, bs, high, hs, 2); + return double_expect(prob, "0.347222", "12x3"); +} + +static int mc_unittest4(void) { + int bs = 12, hs = 3; + DIFFS_NUMBERS base[12] = { 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 }; + DIFFS_NUMBERS high[3] = { 365, -123, 0 }; + + double prob = ks_2samp(base, bs, high, hs, 2); + return double_expect(prob, "0.777778", "12x3"); +} + +int mc_unittest(void) { + int errors = 0; + + errors += mc_unittest1(); + errors += mc_unittest2(); + errors += mc_unittest3(); + errors += mc_unittest4(); + + return errors; +} + |