1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "Config.h"
#include "Dimension.h"
#include "Query.h"
using namespace ml;
bool Dimension::isActive() const {
bool SetObsolete = rrdset_flag_check(RD->rrdset, RRDSET_FLAG_OBSOLETE);
bool DimObsolete = rrddim_flag_check(RD, RRDDIM_FLAG_OBSOLETE);
return !SetObsolete && !DimObsolete;
}
std::pair<CalculatedNumber *, size_t> Dimension::getCalculatedNumbers() {
size_t MinN = Cfg.MinTrainSamples;
size_t MaxN = Cfg.MaxTrainSamples;
// Figure out what our time window should be.
time_t BeforeT = now_realtime_sec() - 1;
time_t AfterT = BeforeT - (MaxN * updateEvery());
BeforeT -= (BeforeT % updateEvery());
AfterT -= (AfterT % updateEvery());
BeforeT = std::min(BeforeT, latestTime());
AfterT = std::max(AfterT, oldestTime());
if (AfterT >= BeforeT)
return { nullptr, 0 };
CalculatedNumber *CNs = new CalculatedNumber[MaxN * (Cfg.LagN + 1)]();
// Start the query.
unsigned Idx = 0;
unsigned CollectedValues = 0;
unsigned TotalValues = 0;
CalculatedNumber LastValue = std::numeric_limits<CalculatedNumber>::quiet_NaN();
Query Q = Query(getRD());
Q.init(AfterT, BeforeT);
while (!Q.isFinished()) {
if (Idx == MaxN)
break;
auto P = Q.nextMetric();
CalculatedNumber Value = P.second;
if (netdata_double_isnumber(Value)) {
CNs[Idx] = Value;
LastValue = CNs[Idx];
CollectedValues++;
} else
CNs[Idx] = LastValue;
Idx++;
}
TotalValues = Idx;
if (CollectedValues < MinN) {
delete[] CNs;
return { nullptr, 0 };
}
// Find first non-NaN value.
for (Idx = 0; std::isnan(CNs[Idx]); Idx++, TotalValues--) { }
// Overwrite NaN values.
if (Idx != 0)
memmove(CNs, &CNs[Idx], sizeof(CalculatedNumber) * TotalValues);
return { CNs, TotalValues };
}
MLResult Dimension::trainModel() {
auto P = getCalculatedNumbers();
CalculatedNumber *CNs = P.first;
unsigned N = P.second;
if (!CNs)
return MLResult::MissingData;
unsigned TargetNumSamples = Cfg.MaxTrainSamples * Cfg.RandomSamplingRatio;
double SamplingRatio = std::min(static_cast<double>(TargetNumSamples) / N, 1.0);
SamplesBuffer SB = SamplesBuffer(CNs, N, 1, Cfg.DiffN, Cfg.SmoothN, Cfg.LagN,
SamplingRatio, Cfg.RandomNums);
std::vector<DSample> Samples = SB.preprocess();
KMeans KM;
KM.train(Samples, Cfg.MaxKMeansIters);
{
std::lock_guard<std::mutex> Lock(Mutex);
Models[0] = KM;
}
Trained = true;
ConstantModel = true;
delete[] CNs;
return MLResult::Success;
}
bool Dimension::shouldTrain(const TimePoint &TP) const {
if (ConstantModel)
return false;
return (LastTrainedAt + Seconds(Cfg.TrainEvery * updateEvery())) < TP;
}
bool Dimension::predict(CalculatedNumber Value, bool Exists) {
if (!Exists) {
CNs.clear();
AnomalyBit = false;
return false;
}
unsigned N = Cfg.DiffN + Cfg.SmoothN + Cfg.LagN;
if (CNs.size() < N) {
CNs.push_back(Value);
AnomalyBit = false;
return false;
}
std::rotate(std::begin(CNs), std::begin(CNs) + 1, std::end(CNs));
if (CNs[N - 1] != Value)
ConstantModel = false;
CNs[N - 1] = Value;
if (!isTrained() || ConstantModel) {
AnomalyBit = false;
return false;
}
CalculatedNumber *TmpCNs = new CalculatedNumber[N * (Cfg.LagN + 1)]();
std::memcpy(TmpCNs, CNs.data(), N * sizeof(CalculatedNumber));
SamplesBuffer SB = SamplesBuffer(TmpCNs, N, 1,
Cfg.DiffN, Cfg.SmoothN, Cfg.LagN,
1.0, Cfg.RandomNums);
const DSample Sample = SB.preprocess().back();
delete[] TmpCNs;
std::unique_lock<std::mutex> Lock(Mutex, std::defer_lock);
if (!Lock.try_lock()) {
AnomalyBit = false;
return false;
}
for (const auto &KM : Models) {
double AnomalyScore = KM.anomalyScore(Sample);
if (AnomalyScore == std::numeric_limits<CalculatedNumber>::quiet_NaN()) {
AnomalyBit = false;
continue;
}
if (AnomalyScore < (100 * Cfg.DimensionAnomalyScoreThreshold)) {
AnomalyBit = false;
return false;
}
}
AnomalyBit = true;
return true;
}
std::array<KMeans, 1> Dimension::getModels() {
std::unique_lock<std::mutex> Lock(Mutex);
return Models;
}
|