summaryrefslogtreecommitdiffstats
path: root/src/backend/executor/nodeModifyTable.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/executor/nodeModifyTable.c')
-rw-r--r--src/backend/executor/nodeModifyTable.c2918
1 files changed, 2918 insertions, 0 deletions
diff --git a/src/backend/executor/nodeModifyTable.c b/src/backend/executor/nodeModifyTable.c
new file mode 100644
index 0000000..c5d1c92
--- /dev/null
+++ b/src/backend/executor/nodeModifyTable.c
@@ -0,0 +1,2918 @@
+/*-------------------------------------------------------------------------
+ *
+ * nodeModifyTable.c
+ * routines to handle ModifyTable nodes.
+ *
+ * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/executor/nodeModifyTable.c
+ *
+ *-------------------------------------------------------------------------
+ */
+/* INTERFACE ROUTINES
+ * ExecInitModifyTable - initialize the ModifyTable node
+ * ExecModifyTable - retrieve the next tuple from the node
+ * ExecEndModifyTable - shut down the ModifyTable node
+ * ExecReScanModifyTable - rescan the ModifyTable node
+ *
+ * NOTES
+ * Each ModifyTable node contains a list of one or more subplans,
+ * much like an Append node. There is one subplan per result relation.
+ * The key reason for this is that in an inherited UPDATE command, each
+ * result relation could have a different schema (more or different
+ * columns) requiring a different plan tree to produce it. In an
+ * inherited DELETE, all the subplans should produce the same output
+ * rowtype, but we might still find that different plans are appropriate
+ * for different child relations.
+ *
+ * If the query specifies RETURNING, then the ModifyTable returns a
+ * RETURNING tuple after completing each row insert, update, or delete.
+ * It must be called again to continue the operation. Without RETURNING,
+ * we just loop within the node until all the work is done, then
+ * return NULL. This avoids useless call/return overhead.
+ */
+
+#include "postgres.h"
+
+#include "access/heapam.h"
+#include "access/htup_details.h"
+#include "access/tableam.h"
+#include "access/xact.h"
+#include "catalog/catalog.h"
+#include "commands/trigger.h"
+#include "executor/execPartition.h"
+#include "executor/executor.h"
+#include "executor/nodeModifyTable.h"
+#include "foreign/fdwapi.h"
+#include "miscadmin.h"
+#include "nodes/nodeFuncs.h"
+#include "rewrite/rewriteHandler.h"
+#include "storage/bufmgr.h"
+#include "storage/lmgr.h"
+#include "utils/builtins.h"
+#include "utils/datum.h"
+#include "utils/memutils.h"
+#include "utils/rel.h"
+
+
+static bool ExecOnConflictUpdate(ModifyTableState *mtstate,
+ ResultRelInfo *resultRelInfo,
+ ItemPointer conflictTid,
+ TupleTableSlot *planSlot,
+ TupleTableSlot *excludedSlot,
+ EState *estate,
+ bool canSetTag,
+ TupleTableSlot **returning);
+static TupleTableSlot *ExecPrepareTupleRouting(ModifyTableState *mtstate,
+ EState *estate,
+ PartitionTupleRouting *proute,
+ ResultRelInfo *targetRelInfo,
+ TupleTableSlot *slot);
+static ResultRelInfo *getTargetResultRelInfo(ModifyTableState *node);
+static void ExecSetupChildParentMapForSubplan(ModifyTableState *mtstate);
+static TupleConversionMap *tupconv_map_for_subplan(ModifyTableState *node,
+ int whichplan);
+
+/*
+ * Verify that the tuples to be produced by INSERT or UPDATE match the
+ * target relation's rowtype
+ *
+ * We do this to guard against stale plans. If plan invalidation is
+ * functioning properly then we should never get a failure here, but better
+ * safe than sorry. Note that this is called after we have obtained lock
+ * on the target rel, so the rowtype can't change underneath us.
+ *
+ * The plan output is represented by its targetlist, because that makes
+ * handling the dropped-column case easier.
+ */
+static void
+ExecCheckPlanOutput(Relation resultRel, List *targetList)
+{
+ TupleDesc resultDesc = RelationGetDescr(resultRel);
+ int attno = 0;
+ ListCell *lc;
+
+ foreach(lc, targetList)
+ {
+ TargetEntry *tle = (TargetEntry *) lfirst(lc);
+ Form_pg_attribute attr;
+
+ if (tle->resjunk)
+ continue; /* ignore junk tlist items */
+
+ if (attno >= resultDesc->natts)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("table row type and query-specified row type do not match"),
+ errdetail("Query has too many columns.")));
+ attr = TupleDescAttr(resultDesc, attno);
+ attno++;
+
+ if (!attr->attisdropped)
+ {
+ /* Normal case: demand type match */
+ if (exprType((Node *) tle->expr) != attr->atttypid)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("table row type and query-specified row type do not match"),
+ errdetail("Table has type %s at ordinal position %d, but query expects %s.",
+ format_type_be(attr->atttypid),
+ attno,
+ format_type_be(exprType((Node *) tle->expr)))));
+ }
+ else
+ {
+ /*
+ * For a dropped column, we can't check atttypid (it's likely 0).
+ * In any case the planner has most likely inserted an INT4 null.
+ * What we insist on is just *some* NULL constant.
+ */
+ if (!IsA(tle->expr, Const) ||
+ !((Const *) tle->expr)->constisnull)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("table row type and query-specified row type do not match"),
+ errdetail("Query provides a value for a dropped column at ordinal position %d.",
+ attno)));
+ }
+ }
+ if (attno != resultDesc->natts)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("table row type and query-specified row type do not match"),
+ errdetail("Query has too few columns.")));
+}
+
+/*
+ * ExecProcessReturning --- evaluate a RETURNING list
+ *
+ * projectReturning: the projection to evaluate
+ * resultRelOid: result relation's OID
+ * tupleSlot: slot holding tuple actually inserted/updated/deleted
+ * planSlot: slot holding tuple returned by top subplan node
+ *
+ * In cross-partition UPDATE cases, projectReturning and planSlot are as
+ * for the source partition, and tupleSlot must conform to that. But
+ * resultRelOid is for the destination partition.
+ *
+ * Note: If tupleSlot is NULL, the FDW should have already provided econtext's
+ * scan tuple.
+ *
+ * Returns a slot holding the result tuple
+ */
+static TupleTableSlot *
+ExecProcessReturning(ProjectionInfo *projectReturning,
+ Oid resultRelOid,
+ TupleTableSlot *tupleSlot,
+ TupleTableSlot *planSlot)
+{
+ ExprContext *econtext = projectReturning->pi_exprContext;
+
+ /* Make tuple and any needed join variables available to ExecProject */
+ if (tupleSlot)
+ econtext->ecxt_scantuple = tupleSlot;
+ else
+ Assert(econtext->ecxt_scantuple);
+ econtext->ecxt_outertuple = planSlot;
+
+ /*
+ * RETURNING expressions might reference the tableoid column, so be sure
+ * we expose the desired OID, ie that of the real target relation.
+ */
+ econtext->ecxt_scantuple->tts_tableOid = resultRelOid;
+
+ /* Compute the RETURNING expressions */
+ return ExecProject(projectReturning);
+}
+
+/*
+ * ExecCheckTupleVisible -- verify tuple is visible
+ *
+ * It would not be consistent with guarantees of the higher isolation levels to
+ * proceed with avoiding insertion (taking speculative insertion's alternative
+ * path) on the basis of another tuple that is not visible to MVCC snapshot.
+ * Check for the need to raise a serialization failure, and do so as necessary.
+ */
+static void
+ExecCheckTupleVisible(EState *estate,
+ Relation rel,
+ TupleTableSlot *slot)
+{
+ if (!IsolationUsesXactSnapshot())
+ return;
+
+ if (!table_tuple_satisfies_snapshot(rel, slot, estate->es_snapshot))
+ {
+ Datum xminDatum;
+ TransactionId xmin;
+ bool isnull;
+
+ xminDatum = slot_getsysattr(slot, MinTransactionIdAttributeNumber, &isnull);
+ Assert(!isnull);
+ xmin = DatumGetTransactionId(xminDatum);
+
+ /*
+ * We should not raise a serialization failure if the conflict is
+ * against a tuple inserted by our own transaction, even if it's not
+ * visible to our snapshot. (This would happen, for example, if
+ * conflicting keys are proposed for insertion in a single command.)
+ */
+ if (!TransactionIdIsCurrentTransactionId(xmin))
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to concurrent update")));
+ }
+}
+
+/*
+ * ExecCheckTIDVisible -- convenience variant of ExecCheckTupleVisible()
+ */
+static void
+ExecCheckTIDVisible(EState *estate,
+ ResultRelInfo *relinfo,
+ ItemPointer tid,
+ TupleTableSlot *tempSlot)
+{
+ Relation rel = relinfo->ri_RelationDesc;
+
+ /* Redundantly check isolation level */
+ if (!IsolationUsesXactSnapshot())
+ return;
+
+ if (!table_tuple_fetch_row_version(rel, tid, SnapshotAny, tempSlot))
+ elog(ERROR, "failed to fetch conflicting tuple for ON CONFLICT");
+ ExecCheckTupleVisible(estate, rel, tempSlot);
+ ExecClearTuple(tempSlot);
+}
+
+/*
+ * Compute stored generated columns for a tuple
+ */
+void
+ExecComputeStoredGenerated(EState *estate, TupleTableSlot *slot, CmdType cmdtype)
+{
+ ResultRelInfo *resultRelInfo = estate->es_result_relation_info;
+ Relation rel = resultRelInfo->ri_RelationDesc;
+ TupleDesc tupdesc = RelationGetDescr(rel);
+ int natts = tupdesc->natts;
+ MemoryContext oldContext;
+ Datum *values;
+ bool *nulls;
+
+ Assert(tupdesc->constr && tupdesc->constr->has_generated_stored);
+
+ /*
+ * If first time through for this result relation, build expression
+ * nodetrees for rel's stored generation expressions. Keep them in the
+ * per-query memory context so they'll survive throughout the query.
+ */
+ if (resultRelInfo->ri_GeneratedExprs == NULL)
+ {
+ oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
+
+ resultRelInfo->ri_GeneratedExprs =
+ (ExprState **) palloc(natts * sizeof(ExprState *));
+ resultRelInfo->ri_NumGeneratedNeeded = 0;
+
+ for (int i = 0; i < natts; i++)
+ {
+ if (TupleDescAttr(tupdesc, i)->attgenerated == ATTRIBUTE_GENERATED_STORED)
+ {
+ Expr *expr;
+
+ /*
+ * If it's an update and the current column was not marked as
+ * being updated, then we can skip the computation. But if
+ * there is a BEFORE ROW UPDATE trigger, we cannot skip
+ * because the trigger might affect additional columns.
+ */
+ if (cmdtype == CMD_UPDATE &&
+ !(rel->trigdesc && rel->trigdesc->trig_update_before_row) &&
+ !bms_is_member(i + 1 - FirstLowInvalidHeapAttributeNumber,
+ ExecGetExtraUpdatedCols(resultRelInfo, estate)))
+ {
+ resultRelInfo->ri_GeneratedExprs[i] = NULL;
+ continue;
+ }
+
+ expr = (Expr *) build_column_default(rel, i + 1);
+ if (expr == NULL)
+ elog(ERROR, "no generation expression found for column number %d of table \"%s\"",
+ i + 1, RelationGetRelationName(rel));
+
+ resultRelInfo->ri_GeneratedExprs[i] = ExecPrepareExpr(expr, estate);
+ resultRelInfo->ri_NumGeneratedNeeded++;
+ }
+ }
+
+ MemoryContextSwitchTo(oldContext);
+ }
+
+ /*
+ * If no generated columns have been affected by this change, then skip
+ * the rest.
+ */
+ if (resultRelInfo->ri_NumGeneratedNeeded == 0)
+ return;
+
+ oldContext = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
+
+ values = palloc(sizeof(*values) * natts);
+ nulls = palloc(sizeof(*nulls) * natts);
+
+ slot_getallattrs(slot);
+ memcpy(nulls, slot->tts_isnull, sizeof(*nulls) * natts);
+
+ for (int i = 0; i < natts; i++)
+ {
+ Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
+
+ if (attr->attgenerated == ATTRIBUTE_GENERATED_STORED &&
+ resultRelInfo->ri_GeneratedExprs[i])
+ {
+ ExprContext *econtext;
+ Datum val;
+ bool isnull;
+
+ econtext = GetPerTupleExprContext(estate);
+ econtext->ecxt_scantuple = slot;
+
+ val = ExecEvalExpr(resultRelInfo->ri_GeneratedExprs[i], econtext, &isnull);
+
+ /*
+ * We must make a copy of val as we have no guarantees about where
+ * memory for a pass-by-reference Datum is located.
+ */
+ if (!isnull)
+ val = datumCopy(val, attr->attbyval, attr->attlen);
+
+ values[i] = val;
+ nulls[i] = isnull;
+ }
+ else
+ {
+ if (!nulls[i])
+ values[i] = datumCopy(slot->tts_values[i], attr->attbyval, attr->attlen);
+ }
+ }
+
+ ExecClearTuple(slot);
+ memcpy(slot->tts_values, values, sizeof(*values) * natts);
+ memcpy(slot->tts_isnull, nulls, sizeof(*nulls) * natts);
+ ExecStoreVirtualTuple(slot);
+ ExecMaterializeSlot(slot);
+
+ MemoryContextSwitchTo(oldContext);
+}
+
+/* ----------------------------------------------------------------
+ * ExecInsert
+ *
+ * For INSERT, we have to insert the tuple into the target relation
+ * and insert appropriate tuples into the index relations.
+ *
+ * slot contains the new tuple value to be stored.
+ * planSlot is the output of the ModifyTable's subplan; we use it
+ * to access "junk" columns that are not going to be stored.
+ * In a cross-partition UPDATE, srcSlot is the slot that held the
+ * updated tuple for the source relation; otherwise it's NULL.
+ *
+ * returningRelInfo is the resultRelInfo for the source relation of a
+ * cross-partition UPDATE; otherwise it's the current result relation.
+ * We use it to process RETURNING lists, for reasons explained below.
+ *
+ * Returns RETURNING result if any, otherwise NULL.
+ * ----------------------------------------------------------------
+ */
+static TupleTableSlot *
+ExecInsert(ModifyTableState *mtstate,
+ TupleTableSlot *slot,
+ TupleTableSlot *planSlot,
+ TupleTableSlot *srcSlot,
+ ResultRelInfo *returningRelInfo,
+ EState *estate,
+ bool canSetTag)
+{
+ ResultRelInfo *resultRelInfo;
+ Relation resultRelationDesc;
+ List *recheckIndexes = NIL;
+ TupleTableSlot *result = NULL;
+ TransitionCaptureState *ar_insert_trig_tcs;
+ ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
+ OnConflictAction onconflict = node->onConflictAction;
+
+ ExecMaterializeSlot(slot);
+
+ /*
+ * get information on the (current) result relation
+ */
+ resultRelInfo = estate->es_result_relation_info;
+ resultRelationDesc = resultRelInfo->ri_RelationDesc;
+
+ /*
+ * BEFORE ROW INSERT Triggers.
+ *
+ * Note: We fire BEFORE ROW TRIGGERS for every attempted insertion in an
+ * INSERT ... ON CONFLICT statement. We cannot check for constraint
+ * violations before firing these triggers, because they can change the
+ * values to insert. Also, they can run arbitrary user-defined code with
+ * side-effects that we can't cancel by just not inserting the tuple.
+ */
+ if (resultRelInfo->ri_TrigDesc &&
+ resultRelInfo->ri_TrigDesc->trig_insert_before_row)
+ {
+ if (!ExecBRInsertTriggers(estate, resultRelInfo, slot))
+ return NULL; /* "do nothing" */
+ }
+
+ /* INSTEAD OF ROW INSERT Triggers */
+ if (resultRelInfo->ri_TrigDesc &&
+ resultRelInfo->ri_TrigDesc->trig_insert_instead_row)
+ {
+ if (!ExecIRInsertTriggers(estate, resultRelInfo, slot))
+ return NULL; /* "do nothing" */
+ }
+ else if (resultRelInfo->ri_FdwRoutine)
+ {
+ /*
+ * GENERATED expressions might reference the tableoid column, so
+ * (re-)initialize tts_tableOid before evaluating them.
+ */
+ slot->tts_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
+
+ /*
+ * Compute stored generated columns
+ */
+ if (resultRelationDesc->rd_att->constr &&
+ resultRelationDesc->rd_att->constr->has_generated_stored)
+ ExecComputeStoredGenerated(estate, slot, CMD_INSERT);
+
+ /*
+ * insert into foreign table: let the FDW do it
+ */
+ slot = resultRelInfo->ri_FdwRoutine->ExecForeignInsert(estate,
+ resultRelInfo,
+ slot,
+ planSlot);
+
+ if (slot == NULL) /* "do nothing" */
+ return NULL;
+
+ /*
+ * AFTER ROW Triggers or RETURNING expressions might reference the
+ * tableoid column, so (re-)initialize tts_tableOid before evaluating
+ * them. (This covers the case where the FDW replaced the slot.)
+ */
+ slot->tts_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
+ }
+ else
+ {
+ WCOKind wco_kind;
+
+ /*
+ * Constraints and GENERATED expressions might reference the tableoid
+ * column, so (re-)initialize tts_tableOid before evaluating them.
+ */
+ slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
+
+ /*
+ * Compute stored generated columns
+ */
+ if (resultRelationDesc->rd_att->constr &&
+ resultRelationDesc->rd_att->constr->has_generated_stored)
+ ExecComputeStoredGenerated(estate, slot, CMD_INSERT);
+
+ /*
+ * Check any RLS WITH CHECK policies.
+ *
+ * Normally we should check INSERT policies. But if the insert is the
+ * result of a partition key update that moved the tuple to a new
+ * partition, we should instead check UPDATE policies, because we are
+ * executing policies defined on the target table, and not those
+ * defined on the child partitions.
+ */
+ wco_kind = (mtstate->operation == CMD_UPDATE) ?
+ WCO_RLS_UPDATE_CHECK : WCO_RLS_INSERT_CHECK;
+
+ /*
+ * ExecWithCheckOptions() will skip any WCOs which are not of the kind
+ * we are looking for at this point.
+ */
+ if (resultRelInfo->ri_WithCheckOptions != NIL)
+ ExecWithCheckOptions(wco_kind, resultRelInfo, slot, estate);
+
+ /*
+ * Check the constraints of the tuple.
+ */
+ if (resultRelationDesc->rd_att->constr)
+ ExecConstraints(resultRelInfo, slot, estate);
+
+ /*
+ * Also check the tuple against the partition constraint, if there is
+ * one; except that if we got here via tuple-routing, we don't need to
+ * if there's no BR trigger defined on the partition.
+ */
+ if (resultRelInfo->ri_PartitionCheck &&
+ (resultRelInfo->ri_RootResultRelInfo == NULL ||
+ (resultRelInfo->ri_TrigDesc &&
+ resultRelInfo->ri_TrigDesc->trig_insert_before_row)))
+ ExecPartitionCheck(resultRelInfo, slot, estate, true);
+
+ if (onconflict != ONCONFLICT_NONE && resultRelInfo->ri_NumIndices > 0)
+ {
+ /* Perform a speculative insertion. */
+ uint32 specToken;
+ ItemPointerData conflictTid;
+ bool specConflict;
+ List *arbiterIndexes;
+
+ arbiterIndexes = resultRelInfo->ri_onConflictArbiterIndexes;
+
+ /*
+ * Do a non-conclusive check for conflicts first.
+ *
+ * We're not holding any locks yet, so this doesn't guarantee that
+ * the later insert won't conflict. But it avoids leaving behind
+ * a lot of canceled speculative insertions, if you run a lot of
+ * INSERT ON CONFLICT statements that do conflict.
+ *
+ * We loop back here if we find a conflict below, either during
+ * the pre-check, or when we re-check after inserting the tuple
+ * speculatively.
+ */
+ vlock:
+ specConflict = false;
+ if (!ExecCheckIndexConstraints(slot, estate, &conflictTid,
+ arbiterIndexes))
+ {
+ /* committed conflict tuple found */
+ if (onconflict == ONCONFLICT_UPDATE)
+ {
+ /*
+ * In case of ON CONFLICT DO UPDATE, execute the UPDATE
+ * part. Be prepared to retry if the UPDATE fails because
+ * of another concurrent UPDATE/DELETE to the conflict
+ * tuple.
+ */
+ TupleTableSlot *returning = NULL;
+
+ if (ExecOnConflictUpdate(mtstate, resultRelInfo,
+ &conflictTid, planSlot, slot,
+ estate, canSetTag, &returning))
+ {
+ InstrCountTuples2(&mtstate->ps, 1);
+ return returning;
+ }
+ else
+ goto vlock;
+ }
+ else
+ {
+ /*
+ * In case of ON CONFLICT DO NOTHING, do nothing. However,
+ * verify that the tuple is visible to the executor's MVCC
+ * snapshot at higher isolation levels.
+ *
+ * Using ExecGetReturningSlot() to store the tuple for the
+ * recheck isn't that pretty, but we can't trivially use
+ * the input slot, because it might not be of a compatible
+ * type. As there's no conflicting usage of
+ * ExecGetReturningSlot() in the DO NOTHING case...
+ */
+ Assert(onconflict == ONCONFLICT_NOTHING);
+ ExecCheckTIDVisible(estate, resultRelInfo, &conflictTid,
+ ExecGetReturningSlot(estate, resultRelInfo));
+ InstrCountTuples2(&mtstate->ps, 1);
+ return NULL;
+ }
+ }
+
+ /*
+ * Before we start insertion proper, acquire our "speculative
+ * insertion lock". Others can use that to wait for us to decide
+ * if we're going to go ahead with the insertion, instead of
+ * waiting for the whole transaction to complete.
+ */
+ specToken = SpeculativeInsertionLockAcquire(GetCurrentTransactionId());
+
+ /* insert the tuple, with the speculative token */
+ table_tuple_insert_speculative(resultRelationDesc, slot,
+ estate->es_output_cid,
+ 0,
+ NULL,
+ specToken);
+
+ /* insert index entries for tuple */
+ recheckIndexes = ExecInsertIndexTuples(slot, estate, true,
+ &specConflict,
+ arbiterIndexes);
+
+ /* adjust the tuple's state accordingly */
+ table_tuple_complete_speculative(resultRelationDesc, slot,
+ specToken, !specConflict);
+
+ /*
+ * Wake up anyone waiting for our decision. They will re-check
+ * the tuple, see that it's no longer speculative, and wait on our
+ * XID as if this was a regularly inserted tuple all along. Or if
+ * we killed the tuple, they will see it's dead, and proceed as if
+ * the tuple never existed.
+ */
+ SpeculativeInsertionLockRelease(GetCurrentTransactionId());
+
+ /*
+ * If there was a conflict, start from the beginning. We'll do
+ * the pre-check again, which will now find the conflicting tuple
+ * (unless it aborts before we get there).
+ */
+ if (specConflict)
+ {
+ list_free(recheckIndexes);
+ goto vlock;
+ }
+
+ /* Since there was no insertion conflict, we're done */
+ }
+ else
+ {
+ /* insert the tuple normally */
+ table_tuple_insert(resultRelationDesc, slot,
+ estate->es_output_cid,
+ 0, NULL);
+
+ /* insert index entries for tuple */
+ if (resultRelInfo->ri_NumIndices > 0)
+ recheckIndexes = ExecInsertIndexTuples(slot, estate, false, NULL,
+ NIL);
+ }
+ }
+
+ if (canSetTag)
+ {
+ (estate->es_processed)++;
+ setLastTid(&slot->tts_tid);
+ }
+
+ /*
+ * If this insert is the result of a partition key update that moved the
+ * tuple to a new partition, put this row into the transition NEW TABLE,
+ * if there is one. We need to do this separately for DELETE and INSERT
+ * because they happen on different tables.
+ */
+ ar_insert_trig_tcs = mtstate->mt_transition_capture;
+ if (mtstate->operation == CMD_UPDATE && mtstate->mt_transition_capture
+ && mtstate->mt_transition_capture->tcs_update_new_table)
+ {
+ ExecARUpdateTriggers(estate, resultRelInfo, NULL,
+ NULL,
+ slot,
+ NULL,
+ mtstate->mt_transition_capture);
+
+ /*
+ * We've already captured the NEW TABLE row, so make sure any AR
+ * INSERT trigger fired below doesn't capture it again.
+ */
+ ar_insert_trig_tcs = NULL;
+ }
+
+ /* AFTER ROW INSERT Triggers */
+ ExecARInsertTriggers(estate, resultRelInfo, slot, recheckIndexes,
+ ar_insert_trig_tcs);
+
+ list_free(recheckIndexes);
+
+ /*
+ * Check any WITH CHECK OPTION constraints from parent views. We are
+ * required to do this after testing all constraints and uniqueness
+ * violations per the SQL spec, so we do it after actually inserting the
+ * record into the heap and all indexes.
+ *
+ * ExecWithCheckOptions will elog(ERROR) if a violation is found, so the
+ * tuple will never be seen, if it violates the WITH CHECK OPTION.
+ *
+ * ExecWithCheckOptions() will skip any WCOs which are not of the kind we
+ * are looking for at this point.
+ */
+ if (resultRelInfo->ri_WithCheckOptions != NIL)
+ ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate);
+
+ /* Process RETURNING if present */
+ if (returningRelInfo->ri_projectReturning)
+ {
+ /*
+ * In a cross-partition UPDATE with RETURNING, we have to use the
+ * source partition's RETURNING list, because that matches the output
+ * of the planSlot, while the destination partition might have
+ * different resjunk columns. This means we have to map the
+ * destination tuple back to the source's format so we can apply that
+ * RETURNING list. This is expensive, but it should be an uncommon
+ * corner case, so we won't spend much effort on making it fast.
+ *
+ * We assume that we can use srcSlot to hold the re-converted tuple.
+ * Note that in the common case where the child partitions both match
+ * the root's format, previous optimizations will have resulted in
+ * slot and srcSlot being identical, cueing us that there's nothing to
+ * do here.
+ */
+ if (returningRelInfo != resultRelInfo && slot != srcSlot)
+ {
+ Relation srcRelationDesc = returningRelInfo->ri_RelationDesc;
+ AttrMap *map;
+
+ map = build_attrmap_by_name_if_req(RelationGetDescr(resultRelationDesc),
+ RelationGetDescr(srcRelationDesc));
+ if (map)
+ {
+ TupleTableSlot *origSlot = slot;
+
+ slot = execute_attr_map_slot(map, slot, srcSlot);
+ slot->tts_tid = origSlot->tts_tid;
+ slot->tts_tableOid = origSlot->tts_tableOid;
+ free_attrmap(map);
+ }
+ }
+
+ result = ExecProcessReturning(returningRelInfo->ri_projectReturning,
+ RelationGetRelid(resultRelationDesc),
+ slot, planSlot);
+ }
+
+ return result;
+}
+
+/* ----------------------------------------------------------------
+ * ExecDelete
+ *
+ * DELETE is like UPDATE, except that we delete the tuple and no
+ * index modifications are needed.
+ *
+ * When deleting from a table, tupleid identifies the tuple to
+ * delete and oldtuple is NULL. When deleting from a view,
+ * oldtuple is passed to the INSTEAD OF triggers and identifies
+ * what to delete, and tupleid is invalid. When deleting from a
+ * foreign table, tupleid is invalid; the FDW has to figure out
+ * which row to delete using data from the planSlot. oldtuple is
+ * passed to foreign table triggers; it is NULL when the foreign
+ * table has no relevant triggers. We use tupleDeleted to indicate
+ * whether the tuple is actually deleted, callers can use it to
+ * decide whether to continue the operation. When this DELETE is a
+ * part of an UPDATE of partition-key, then the slot returned by
+ * EvalPlanQual() is passed back using output parameter epqslot.
+ *
+ * Returns RETURNING result if any, otherwise NULL.
+ * ----------------------------------------------------------------
+ */
+static TupleTableSlot *
+ExecDelete(ModifyTableState *mtstate,
+ ItemPointer tupleid,
+ HeapTuple oldtuple,
+ TupleTableSlot *planSlot,
+ EPQState *epqstate,
+ EState *estate,
+ bool processReturning,
+ bool canSetTag,
+ bool changingPart,
+ bool *tupleDeleted,
+ TupleTableSlot **epqreturnslot)
+{
+ ResultRelInfo *resultRelInfo;
+ Relation resultRelationDesc;
+ TM_Result result;
+ TM_FailureData tmfd;
+ TupleTableSlot *slot = NULL;
+ TransitionCaptureState *ar_delete_trig_tcs;
+
+ if (tupleDeleted)
+ *tupleDeleted = false;
+
+ /*
+ * get information on the (current) result relation
+ */
+ resultRelInfo = estate->es_result_relation_info;
+ resultRelationDesc = resultRelInfo->ri_RelationDesc;
+
+ /* BEFORE ROW DELETE Triggers */
+ if (resultRelInfo->ri_TrigDesc &&
+ resultRelInfo->ri_TrigDesc->trig_delete_before_row)
+ {
+ bool dodelete;
+
+ dodelete = ExecBRDeleteTriggers(estate, epqstate, resultRelInfo,
+ tupleid, oldtuple, epqreturnslot);
+
+ if (!dodelete) /* "do nothing" */
+ return NULL;
+ }
+
+ /* INSTEAD OF ROW DELETE Triggers */
+ if (resultRelInfo->ri_TrigDesc &&
+ resultRelInfo->ri_TrigDesc->trig_delete_instead_row)
+ {
+ bool dodelete;
+
+ Assert(oldtuple != NULL);
+ dodelete = ExecIRDeleteTriggers(estate, resultRelInfo, oldtuple);
+
+ if (!dodelete) /* "do nothing" */
+ return NULL;
+ }
+ else if (resultRelInfo->ri_FdwRoutine)
+ {
+ /*
+ * delete from foreign table: let the FDW do it
+ *
+ * We offer the returning slot as a place to store RETURNING data,
+ * although the FDW can return some other slot if it wants.
+ */
+ slot = ExecGetReturningSlot(estate, resultRelInfo);
+ slot = resultRelInfo->ri_FdwRoutine->ExecForeignDelete(estate,
+ resultRelInfo,
+ slot,
+ planSlot);
+
+ if (slot == NULL) /* "do nothing" */
+ return NULL;
+
+ /*
+ * RETURNING expressions might reference the tableoid column, so
+ * (re)initialize tts_tableOid before evaluating them.
+ */
+ if (TTS_EMPTY(slot))
+ ExecStoreAllNullTuple(slot);
+
+ slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
+ }
+ else
+ {
+ /*
+ * delete the tuple
+ *
+ * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check
+ * that the row to be deleted is visible to that snapshot, and throw a
+ * can't-serialize error if not. This is a special-case behavior
+ * needed for referential integrity updates in transaction-snapshot
+ * mode transactions.
+ */
+ldelete:;
+ result = table_tuple_delete(resultRelationDesc, tupleid,
+ estate->es_output_cid,
+ estate->es_snapshot,
+ estate->es_crosscheck_snapshot,
+ true /* wait for commit */ ,
+ &tmfd,
+ changingPart);
+
+ switch (result)
+ {
+ case TM_SelfModified:
+
+ /*
+ * The target tuple was already updated or deleted by the
+ * current command, or by a later command in the current
+ * transaction. The former case is possible in a join DELETE
+ * where multiple tuples join to the same target tuple. This
+ * is somewhat questionable, but Postgres has always allowed
+ * it: we just ignore additional deletion attempts.
+ *
+ * The latter case arises if the tuple is modified by a
+ * command in a BEFORE trigger, or perhaps by a command in a
+ * volatile function used in the query. In such situations we
+ * should not ignore the deletion, but it is equally unsafe to
+ * proceed. We don't want to discard the original DELETE
+ * while keeping the triggered actions based on its deletion;
+ * and it would be no better to allow the original DELETE
+ * while discarding updates that it triggered. The row update
+ * carries some information that might be important according
+ * to business rules; so throwing an error is the only safe
+ * course.
+ *
+ * If a trigger actually intends this type of interaction, it
+ * can re-execute the DELETE and then return NULL to cancel
+ * the outer delete.
+ */
+ if (tmfd.cmax != estate->es_output_cid)
+ ereport(ERROR,
+ (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
+ errmsg("tuple to be deleted was already modified by an operation triggered by the current command"),
+ errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
+
+ /* Else, already deleted by self; nothing to do */
+ return NULL;
+
+ case TM_Ok:
+ break;
+
+ case TM_Updated:
+ {
+ TupleTableSlot *inputslot;
+ TupleTableSlot *epqslot;
+
+ if (IsolationUsesXactSnapshot())
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to concurrent update")));
+
+ /*
+ * Already know that we're going to need to do EPQ, so
+ * fetch tuple directly into the right slot.
+ */
+ EvalPlanQualBegin(epqstate);
+ inputslot = EvalPlanQualSlot(epqstate, resultRelationDesc,
+ resultRelInfo->ri_RangeTableIndex);
+
+ result = table_tuple_lock(resultRelationDesc, tupleid,
+ estate->es_snapshot,
+ inputslot, estate->es_output_cid,
+ LockTupleExclusive, LockWaitBlock,
+ TUPLE_LOCK_FLAG_FIND_LAST_VERSION,
+ &tmfd);
+
+ switch (result)
+ {
+ case TM_Ok:
+ Assert(tmfd.traversed);
+ epqslot = EvalPlanQual(epqstate,
+ resultRelationDesc,
+ resultRelInfo->ri_RangeTableIndex,
+ inputslot);
+ if (TupIsNull(epqslot))
+ /* Tuple not passing quals anymore, exiting... */
+ return NULL;
+
+ /*
+ * If requested, skip delete and pass back the
+ * updated row.
+ */
+ if (epqreturnslot)
+ {
+ *epqreturnslot = epqslot;
+ return NULL;
+ }
+ else
+ goto ldelete;
+
+ case TM_SelfModified:
+
+ /*
+ * This can be reached when following an update
+ * chain from a tuple updated by another session,
+ * reaching a tuple that was already updated in
+ * this transaction. If previously updated by this
+ * command, ignore the delete, otherwise error
+ * out.
+ *
+ * See also TM_SelfModified response to
+ * table_tuple_delete() above.
+ */
+ if (tmfd.cmax != estate->es_output_cid)
+ ereport(ERROR,
+ (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
+ errmsg("tuple to be deleted was already modified by an operation triggered by the current command"),
+ errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
+ return NULL;
+
+ case TM_Deleted:
+ /* tuple already deleted; nothing to do */
+ return NULL;
+
+ default:
+
+ /*
+ * TM_Invisible should be impossible because we're
+ * waiting for updated row versions, and would
+ * already have errored out if the first version
+ * is invisible.
+ *
+ * TM_Updated should be impossible, because we're
+ * locking the latest version via
+ * TUPLE_LOCK_FLAG_FIND_LAST_VERSION.
+ */
+ elog(ERROR, "unexpected table_tuple_lock status: %u",
+ result);
+ return NULL;
+ }
+
+ Assert(false);
+ break;
+ }
+
+ case TM_Deleted:
+ if (IsolationUsesXactSnapshot())
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to concurrent delete")));
+ /* tuple already deleted; nothing to do */
+ return NULL;
+
+ default:
+ elog(ERROR, "unrecognized table_tuple_delete status: %u",
+ result);
+ return NULL;
+ }
+
+ /*
+ * Note: Normally one would think that we have to delete index tuples
+ * associated with the heap tuple now...
+ *
+ * ... but in POSTGRES, we have no need to do this because VACUUM will
+ * take care of it later. We can't delete index tuples immediately
+ * anyway, since the tuple is still visible to other transactions.
+ */
+ }
+
+ if (canSetTag)
+ (estate->es_processed)++;
+
+ /* Tell caller that the delete actually happened. */
+ if (tupleDeleted)
+ *tupleDeleted = true;
+
+ /*
+ * If this delete is the result of a partition key update that moved the
+ * tuple to a new partition, put this row into the transition OLD TABLE,
+ * if there is one. We need to do this separately for DELETE and INSERT
+ * because they happen on different tables.
+ */
+ ar_delete_trig_tcs = mtstate->mt_transition_capture;
+ if (mtstate->operation == CMD_UPDATE && mtstate->mt_transition_capture
+ && mtstate->mt_transition_capture->tcs_update_old_table)
+ {
+ ExecARUpdateTriggers(estate, resultRelInfo,
+ tupleid,
+ oldtuple,
+ NULL,
+ NULL,
+ mtstate->mt_transition_capture);
+
+ /*
+ * We've already captured the NEW TABLE row, so make sure any AR
+ * DELETE trigger fired below doesn't capture it again.
+ */
+ ar_delete_trig_tcs = NULL;
+ }
+
+ /* AFTER ROW DELETE Triggers */
+ ExecARDeleteTriggers(estate, resultRelInfo, tupleid, oldtuple,
+ ar_delete_trig_tcs);
+
+ /* Process RETURNING if present and if requested */
+ if (processReturning && resultRelInfo->ri_projectReturning)
+ {
+ /*
+ * We have to put the target tuple into a slot, which means first we
+ * gotta fetch it. We can use the trigger tuple slot.
+ */
+ TupleTableSlot *rslot;
+
+ if (resultRelInfo->ri_FdwRoutine)
+ {
+ /* FDW must have provided a slot containing the deleted row */
+ Assert(!TupIsNull(slot));
+ }
+ else
+ {
+ slot = ExecGetReturningSlot(estate, resultRelInfo);
+ if (oldtuple != NULL)
+ {
+ ExecForceStoreHeapTuple(oldtuple, slot, false);
+ }
+ else
+ {
+ if (!table_tuple_fetch_row_version(resultRelationDesc, tupleid,
+ SnapshotAny, slot))
+ elog(ERROR, "failed to fetch deleted tuple for DELETE RETURNING");
+ }
+ }
+
+ rslot = ExecProcessReturning(resultRelInfo->ri_projectReturning,
+ RelationGetRelid(resultRelationDesc),
+ slot, planSlot);
+
+ /*
+ * Before releasing the target tuple again, make sure rslot has a
+ * local copy of any pass-by-reference values.
+ */
+ ExecMaterializeSlot(rslot);
+
+ ExecClearTuple(slot);
+
+ return rslot;
+ }
+
+ return NULL;
+}
+
+/* ----------------------------------------------------------------
+ * ExecUpdate
+ *
+ * note: we can't run UPDATE queries with transactions
+ * off because UPDATEs are actually INSERTs and our
+ * scan will mistakenly loop forever, updating the tuple
+ * it just inserted.. This should be fixed but until it
+ * is, we don't want to get stuck in an infinite loop
+ * which corrupts your database..
+ *
+ * When updating a table, tupleid identifies the tuple to
+ * update and oldtuple is NULL. When updating a view, oldtuple
+ * is passed to the INSTEAD OF triggers and identifies what to
+ * update, and tupleid is invalid. When updating a foreign table,
+ * tupleid is invalid; the FDW has to figure out which row to
+ * update using data from the planSlot. oldtuple is passed to
+ * foreign table triggers; it is NULL when the foreign table has
+ * no relevant triggers.
+ *
+ * Returns RETURNING result if any, otherwise NULL.
+ * ----------------------------------------------------------------
+ */
+static TupleTableSlot *
+ExecUpdate(ModifyTableState *mtstate,
+ ItemPointer tupleid,
+ HeapTuple oldtuple,
+ TupleTableSlot *slot,
+ TupleTableSlot *planSlot,
+ EPQState *epqstate,
+ EState *estate,
+ bool canSetTag)
+{
+ ResultRelInfo *resultRelInfo;
+ Relation resultRelationDesc;
+ TM_Result result;
+ TM_FailureData tmfd;
+ List *recheckIndexes = NIL;
+ TupleConversionMap *saved_tcs_map = NULL;
+
+ /*
+ * abort the operation if not running transactions
+ */
+ if (IsBootstrapProcessingMode())
+ elog(ERROR, "cannot UPDATE during bootstrap");
+
+ ExecMaterializeSlot(slot);
+
+ /*
+ * get information on the (current) result relation
+ */
+ resultRelInfo = estate->es_result_relation_info;
+ resultRelationDesc = resultRelInfo->ri_RelationDesc;
+
+ /* BEFORE ROW UPDATE Triggers */
+ if (resultRelInfo->ri_TrigDesc &&
+ resultRelInfo->ri_TrigDesc->trig_update_before_row)
+ {
+ if (!ExecBRUpdateTriggers(estate, epqstate, resultRelInfo,
+ tupleid, oldtuple, slot))
+ return NULL; /* "do nothing" */
+ }
+
+ /* INSTEAD OF ROW UPDATE Triggers */
+ if (resultRelInfo->ri_TrigDesc &&
+ resultRelInfo->ri_TrigDesc->trig_update_instead_row)
+ {
+ if (!ExecIRUpdateTriggers(estate, resultRelInfo,
+ oldtuple, slot))
+ return NULL; /* "do nothing" */
+ }
+ else if (resultRelInfo->ri_FdwRoutine)
+ {
+ /*
+ * GENERATED expressions might reference the tableoid column, so
+ * (re-)initialize tts_tableOid before evaluating them.
+ */
+ slot->tts_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
+
+ /*
+ * Compute stored generated columns
+ */
+ if (resultRelationDesc->rd_att->constr &&
+ resultRelationDesc->rd_att->constr->has_generated_stored)
+ ExecComputeStoredGenerated(estate, slot, CMD_UPDATE);
+
+ /*
+ * update in foreign table: let the FDW do it
+ */
+ slot = resultRelInfo->ri_FdwRoutine->ExecForeignUpdate(estate,
+ resultRelInfo,
+ slot,
+ planSlot);
+
+ if (slot == NULL) /* "do nothing" */
+ return NULL;
+
+ /*
+ * AFTER ROW Triggers or RETURNING expressions might reference the
+ * tableoid column, so (re-)initialize tts_tableOid before evaluating
+ * them. (This covers the case where the FDW replaced the slot.)
+ */
+ slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
+ }
+ else
+ {
+ LockTupleMode lockmode;
+ bool partition_constraint_failed;
+ bool update_indexes;
+
+ /*
+ * Constraints and GENERATED expressions might reference the tableoid
+ * column, so (re-)initialize tts_tableOid before evaluating them.
+ */
+ slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
+
+ /*
+ * Compute stored generated columns
+ */
+ if (resultRelationDesc->rd_att->constr &&
+ resultRelationDesc->rd_att->constr->has_generated_stored)
+ ExecComputeStoredGenerated(estate, slot, CMD_UPDATE);
+
+ /*
+ * Check any RLS UPDATE WITH CHECK policies
+ *
+ * If we generate a new candidate tuple after EvalPlanQual testing, we
+ * must loop back here and recheck any RLS policies and constraints.
+ * (We don't need to redo triggers, however. If there are any BEFORE
+ * triggers then trigger.c will have done table_tuple_lock to lock the
+ * correct tuple, so there's no need to do them again.)
+ */
+lreplace:;
+
+ /* ensure slot is independent, consider e.g. EPQ */
+ ExecMaterializeSlot(slot);
+
+ /*
+ * If partition constraint fails, this row might get moved to another
+ * partition, in which case we should check the RLS CHECK policy just
+ * before inserting into the new partition, rather than doing it here.
+ * This is because a trigger on that partition might again change the
+ * row. So skip the WCO checks if the partition constraint fails.
+ */
+ partition_constraint_failed =
+ resultRelInfo->ri_PartitionCheck &&
+ !ExecPartitionCheck(resultRelInfo, slot, estate, false);
+
+ if (!partition_constraint_failed &&
+ resultRelInfo->ri_WithCheckOptions != NIL)
+ {
+ /*
+ * ExecWithCheckOptions() will skip any WCOs which are not of the
+ * kind we are looking for at this point.
+ */
+ ExecWithCheckOptions(WCO_RLS_UPDATE_CHECK,
+ resultRelInfo, slot, estate);
+ }
+
+ /*
+ * If a partition check failed, try to move the row into the right
+ * partition.
+ */
+ if (partition_constraint_failed)
+ {
+ bool tuple_deleted;
+ TupleTableSlot *ret_slot;
+ TupleTableSlot *orig_slot = slot;
+ TupleTableSlot *epqslot = NULL;
+ PartitionTupleRouting *proute = mtstate->mt_partition_tuple_routing;
+ int map_index;
+ TupleConversionMap *tupconv_map;
+
+ /*
+ * Disallow an INSERT ON CONFLICT DO UPDATE that causes the
+ * original row to migrate to a different partition. Maybe this
+ * can be implemented some day, but it seems a fringe feature with
+ * little redeeming value.
+ */
+ if (((ModifyTable *) mtstate->ps.plan)->onConflictAction == ONCONFLICT_UPDATE)
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("invalid ON UPDATE specification"),
+ errdetail("The result tuple would appear in a different partition than the original tuple.")));
+
+ /*
+ * When an UPDATE is run on a leaf partition, we will not have
+ * partition tuple routing set up. In that case, fail with
+ * partition constraint violation error.
+ */
+ if (proute == NULL)
+ ExecPartitionCheckEmitError(resultRelInfo, slot, estate);
+
+ /*
+ * Row movement, part 1. Delete the tuple, but skip RETURNING
+ * processing. We want to return rows from INSERT.
+ */
+ ExecDelete(mtstate, tupleid, oldtuple, planSlot, epqstate,
+ estate, false, false /* canSetTag */ ,
+ true /* changingPart */ , &tuple_deleted, &epqslot);
+
+ /*
+ * For some reason if DELETE didn't happen (e.g. trigger prevented
+ * it, or it was already deleted by self, or it was concurrently
+ * deleted by another transaction), then we should skip the insert
+ * as well; otherwise, an UPDATE could cause an increase in the
+ * total number of rows across all partitions, which is clearly
+ * wrong.
+ *
+ * For a normal UPDATE, the case where the tuple has been the
+ * subject of a concurrent UPDATE or DELETE would be handled by
+ * the EvalPlanQual machinery, but for an UPDATE that we've
+ * translated into a DELETE from this partition and an INSERT into
+ * some other partition, that's not available, because CTID chains
+ * can't span relation boundaries. We mimic the semantics to a
+ * limited extent by skipping the INSERT if the DELETE fails to
+ * find a tuple. This ensures that two concurrent attempts to
+ * UPDATE the same tuple at the same time can't turn one tuple
+ * into two, and that an UPDATE of a just-deleted tuple can't
+ * resurrect it.
+ */
+ if (!tuple_deleted)
+ {
+ /*
+ * epqslot will be typically NULL. But when ExecDelete()
+ * finds that another transaction has concurrently updated the
+ * same row, it re-fetches the row, skips the delete, and
+ * epqslot is set to the re-fetched tuple slot. In that case,
+ * we need to do all the checks again.
+ */
+ if (TupIsNull(epqslot))
+ return NULL;
+ else
+ {
+ slot = ExecFilterJunk(resultRelInfo->ri_junkFilter, epqslot);
+ goto lreplace;
+ }
+ }
+
+ /*
+ * Updates set the transition capture map only when a new subplan
+ * is chosen. But for inserts, it is set for each row. So after
+ * INSERT, we need to revert back to the map created for UPDATE;
+ * otherwise the next UPDATE will incorrectly use the one created
+ * for INSERT. So first save the one created for UPDATE.
+ */
+ if (mtstate->mt_transition_capture)
+ saved_tcs_map = mtstate->mt_transition_capture->tcs_map;
+
+ /*
+ * resultRelInfo is one of the per-subplan resultRelInfos. So we
+ * should convert the tuple into root's tuple descriptor, since
+ * ExecInsert() starts the search from root. The tuple conversion
+ * map list is in the order of mtstate->resultRelInfo[], so to
+ * retrieve the one for this resultRel, we need to know the
+ * position of the resultRel in mtstate->resultRelInfo[].
+ */
+ map_index = resultRelInfo - mtstate->resultRelInfo;
+ Assert(map_index >= 0 && map_index < mtstate->mt_nplans);
+ tupconv_map = tupconv_map_for_subplan(mtstate, map_index);
+ if (tupconv_map != NULL)
+ slot = execute_attr_map_slot(tupconv_map->attrMap,
+ slot,
+ mtstate->mt_root_tuple_slot);
+
+ /*
+ * Prepare for tuple routing, making it look like we're inserting
+ * into the root.
+ */
+ Assert(mtstate->rootResultRelInfo != NULL);
+ slot = ExecPrepareTupleRouting(mtstate, estate, proute,
+ mtstate->rootResultRelInfo, slot);
+
+ ret_slot = ExecInsert(mtstate, slot, planSlot,
+ orig_slot, resultRelInfo,
+ estate, canSetTag);
+
+ /* Revert ExecPrepareTupleRouting's node change. */
+ estate->es_result_relation_info = resultRelInfo;
+ if (mtstate->mt_transition_capture)
+ {
+ mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;
+ mtstate->mt_transition_capture->tcs_map = saved_tcs_map;
+ }
+
+ return ret_slot;
+ }
+
+ /*
+ * Check the constraints of the tuple. We've already checked the
+ * partition constraint above; however, we must still ensure the tuple
+ * passes all other constraints, so we will call ExecConstraints() and
+ * have it validate all remaining checks.
+ */
+ if (resultRelationDesc->rd_att->constr)
+ ExecConstraints(resultRelInfo, slot, estate);
+
+ /*
+ * replace the heap tuple
+ *
+ * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check
+ * that the row to be updated is visible to that snapshot, and throw a
+ * can't-serialize error if not. This is a special-case behavior
+ * needed for referential integrity updates in transaction-snapshot
+ * mode transactions.
+ */
+ result = table_tuple_update(resultRelationDesc, tupleid, slot,
+ estate->es_output_cid,
+ estate->es_snapshot,
+ estate->es_crosscheck_snapshot,
+ true /* wait for commit */ ,
+ &tmfd, &lockmode, &update_indexes);
+
+ switch (result)
+ {
+ case TM_SelfModified:
+
+ /*
+ * The target tuple was already updated or deleted by the
+ * current command, or by a later command in the current
+ * transaction. The former case is possible in a join UPDATE
+ * where multiple tuples join to the same target tuple. This
+ * is pretty questionable, but Postgres has always allowed it:
+ * we just execute the first update action and ignore
+ * additional update attempts.
+ *
+ * The latter case arises if the tuple is modified by a
+ * command in a BEFORE trigger, or perhaps by a command in a
+ * volatile function used in the query. In such situations we
+ * should not ignore the update, but it is equally unsafe to
+ * proceed. We don't want to discard the original UPDATE
+ * while keeping the triggered actions based on it; and we
+ * have no principled way to merge this update with the
+ * previous ones. So throwing an error is the only safe
+ * course.
+ *
+ * If a trigger actually intends this type of interaction, it
+ * can re-execute the UPDATE (assuming it can figure out how)
+ * and then return NULL to cancel the outer update.
+ */
+ if (tmfd.cmax != estate->es_output_cid)
+ ereport(ERROR,
+ (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
+ errmsg("tuple to be updated was already modified by an operation triggered by the current command"),
+ errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
+
+ /* Else, already updated by self; nothing to do */
+ return NULL;
+
+ case TM_Ok:
+ break;
+
+ case TM_Updated:
+ {
+ TupleTableSlot *inputslot;
+ TupleTableSlot *epqslot;
+
+ if (IsolationUsesXactSnapshot())
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to concurrent update")));
+
+ /*
+ * Already know that we're going to need to do EPQ, so
+ * fetch tuple directly into the right slot.
+ */
+ inputslot = EvalPlanQualSlot(epqstate, resultRelationDesc,
+ resultRelInfo->ri_RangeTableIndex);
+
+ result = table_tuple_lock(resultRelationDesc, tupleid,
+ estate->es_snapshot,
+ inputslot, estate->es_output_cid,
+ lockmode, LockWaitBlock,
+ TUPLE_LOCK_FLAG_FIND_LAST_VERSION,
+ &tmfd);
+
+ switch (result)
+ {
+ case TM_Ok:
+ Assert(tmfd.traversed);
+
+ epqslot = EvalPlanQual(epqstate,
+ resultRelationDesc,
+ resultRelInfo->ri_RangeTableIndex,
+ inputslot);
+ if (TupIsNull(epqslot))
+ /* Tuple not passing quals anymore, exiting... */
+ return NULL;
+
+ slot = ExecFilterJunk(resultRelInfo->ri_junkFilter, epqslot);
+ goto lreplace;
+
+ case TM_Deleted:
+ /* tuple already deleted; nothing to do */
+ return NULL;
+
+ case TM_SelfModified:
+
+ /*
+ * This can be reached when following an update
+ * chain from a tuple updated by another session,
+ * reaching a tuple that was already updated in
+ * this transaction. If previously modified by
+ * this command, ignore the redundant update,
+ * otherwise error out.
+ *
+ * See also TM_SelfModified response to
+ * table_tuple_update() above.
+ */
+ if (tmfd.cmax != estate->es_output_cid)
+ ereport(ERROR,
+ (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
+ errmsg("tuple to be updated was already modified by an operation triggered by the current command"),
+ errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
+ return NULL;
+
+ default:
+ /* see table_tuple_lock call in ExecDelete() */
+ elog(ERROR, "unexpected table_tuple_lock status: %u",
+ result);
+ return NULL;
+ }
+ }
+
+ break;
+
+ case TM_Deleted:
+ if (IsolationUsesXactSnapshot())
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to concurrent delete")));
+ /* tuple already deleted; nothing to do */
+ return NULL;
+
+ default:
+ elog(ERROR, "unrecognized table_tuple_update status: %u",
+ result);
+ return NULL;
+ }
+
+ /* insert index entries for tuple if necessary */
+ if (resultRelInfo->ri_NumIndices > 0 && update_indexes)
+ recheckIndexes = ExecInsertIndexTuples(slot, estate, false, NULL, NIL);
+ }
+
+ if (canSetTag)
+ (estate->es_processed)++;
+
+ /* AFTER ROW UPDATE Triggers */
+ ExecARUpdateTriggers(estate, resultRelInfo, tupleid, oldtuple, slot,
+ recheckIndexes,
+ mtstate->operation == CMD_INSERT ?
+ mtstate->mt_oc_transition_capture :
+ mtstate->mt_transition_capture);
+
+ list_free(recheckIndexes);
+
+ /*
+ * Check any WITH CHECK OPTION constraints from parent views. We are
+ * required to do this after testing all constraints and uniqueness
+ * violations per the SQL spec, so we do it after actually updating the
+ * record in the heap and all indexes.
+ *
+ * ExecWithCheckOptions() will skip any WCOs which are not of the kind we
+ * are looking for at this point.
+ */
+ if (resultRelInfo->ri_WithCheckOptions != NIL)
+ ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate);
+
+ /* Process RETURNING if present */
+ if (resultRelInfo->ri_projectReturning)
+ return ExecProcessReturning(resultRelInfo->ri_projectReturning,
+ RelationGetRelid(resultRelationDesc),
+ slot, planSlot);
+
+ return NULL;
+}
+
+/*
+ * ExecOnConflictUpdate --- execute UPDATE of INSERT ON CONFLICT DO UPDATE
+ *
+ * Try to lock tuple for update as part of speculative insertion. If
+ * a qual originating from ON CONFLICT DO UPDATE is satisfied, update
+ * (but still lock row, even though it may not satisfy estate's
+ * snapshot).
+ *
+ * Returns true if we're done (with or without an update), or false if
+ * the caller must retry the INSERT from scratch.
+ */
+static bool
+ExecOnConflictUpdate(ModifyTableState *mtstate,
+ ResultRelInfo *resultRelInfo,
+ ItemPointer conflictTid,
+ TupleTableSlot *planSlot,
+ TupleTableSlot *excludedSlot,
+ EState *estate,
+ bool canSetTag,
+ TupleTableSlot **returning)
+{
+ ExprContext *econtext = mtstate->ps.ps_ExprContext;
+ Relation relation = resultRelInfo->ri_RelationDesc;
+ ExprState *onConflictSetWhere = resultRelInfo->ri_onConflict->oc_WhereClause;
+ TupleTableSlot *existing = resultRelInfo->ri_onConflict->oc_Existing;
+ TM_FailureData tmfd;
+ LockTupleMode lockmode;
+ TM_Result test;
+ Datum xminDatum;
+ TransactionId xmin;
+ bool isnull;
+
+ /* Determine lock mode to use */
+ lockmode = ExecUpdateLockMode(estate, resultRelInfo);
+
+ /*
+ * Lock tuple for update. Don't follow updates when tuple cannot be
+ * locked without doing so. A row locking conflict here means our
+ * previous conclusion that the tuple is conclusively committed is not
+ * true anymore.
+ */
+ test = table_tuple_lock(relation, conflictTid,
+ estate->es_snapshot,
+ existing, estate->es_output_cid,
+ lockmode, LockWaitBlock, 0,
+ &tmfd);
+ switch (test)
+ {
+ case TM_Ok:
+ /* success! */
+ break;
+
+ case TM_Invisible:
+
+ /*
+ * This can occur when a just inserted tuple is updated again in
+ * the same command. E.g. because multiple rows with the same
+ * conflicting key values are inserted.
+ *
+ * This is somewhat similar to the ExecUpdate() TM_SelfModified
+ * case. We do not want to proceed because it would lead to the
+ * same row being updated a second time in some unspecified order,
+ * and in contrast to plain UPDATEs there's no historical behavior
+ * to break.
+ *
+ * It is the user's responsibility to prevent this situation from
+ * occurring. These problems are why SQL-2003 similarly specifies
+ * that for SQL MERGE, an exception must be raised in the event of
+ * an attempt to update the same row twice.
+ */
+ xminDatum = slot_getsysattr(existing,
+ MinTransactionIdAttributeNumber,
+ &isnull);
+ Assert(!isnull);
+ xmin = DatumGetTransactionId(xminDatum);
+
+ if (TransactionIdIsCurrentTransactionId(xmin))
+ ereport(ERROR,
+ (errcode(ERRCODE_CARDINALITY_VIOLATION),
+ errmsg("ON CONFLICT DO UPDATE command cannot affect row a second time"),
+ errhint("Ensure that no rows proposed for insertion within the same command have duplicate constrained values.")));
+
+ /* This shouldn't happen */
+ elog(ERROR, "attempted to lock invisible tuple");
+ break;
+
+ case TM_SelfModified:
+
+ /*
+ * This state should never be reached. As a dirty snapshot is used
+ * to find conflicting tuples, speculative insertion wouldn't have
+ * seen this row to conflict with.
+ */
+ elog(ERROR, "unexpected self-updated tuple");
+ break;
+
+ case TM_Updated:
+ if (IsolationUsesXactSnapshot())
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to concurrent update")));
+
+ /*
+ * As long as we don't support an UPDATE of INSERT ON CONFLICT for
+ * a partitioned table we shouldn't reach to a case where tuple to
+ * be lock is moved to another partition due to concurrent update
+ * of the partition key.
+ */
+ Assert(!ItemPointerIndicatesMovedPartitions(&tmfd.ctid));
+
+ /*
+ * Tell caller to try again from the very start.
+ *
+ * It does not make sense to use the usual EvalPlanQual() style
+ * loop here, as the new version of the row might not conflict
+ * anymore, or the conflicting tuple has actually been deleted.
+ */
+ ExecClearTuple(existing);
+ return false;
+
+ case TM_Deleted:
+ if (IsolationUsesXactSnapshot())
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to concurrent delete")));
+
+ /* see TM_Updated case */
+ Assert(!ItemPointerIndicatesMovedPartitions(&tmfd.ctid));
+ ExecClearTuple(existing);
+ return false;
+
+ default:
+ elog(ERROR, "unrecognized table_tuple_lock status: %u", test);
+ }
+
+ /* Success, the tuple is locked. */
+
+ /*
+ * Verify that the tuple is visible to our MVCC snapshot if the current
+ * isolation level mandates that.
+ *
+ * It's not sufficient to rely on the check within ExecUpdate() as e.g.
+ * CONFLICT ... WHERE clause may prevent us from reaching that.
+ *
+ * This means we only ever continue when a new command in the current
+ * transaction could see the row, even though in READ COMMITTED mode the
+ * tuple will not be visible according to the current statement's
+ * snapshot. This is in line with the way UPDATE deals with newer tuple
+ * versions.
+ */
+ ExecCheckTupleVisible(estate, relation, existing);
+
+ /*
+ * Make tuple and any needed join variables available to ExecQual and
+ * ExecProject. The EXCLUDED tuple is installed in ecxt_innertuple, while
+ * the target's existing tuple is installed in the scantuple. EXCLUDED
+ * has been made to reference INNER_VAR in setrefs.c, but there is no
+ * other redirection.
+ */
+ econtext->ecxt_scantuple = existing;
+ econtext->ecxt_innertuple = excludedSlot;
+ econtext->ecxt_outertuple = NULL;
+
+ if (!ExecQual(onConflictSetWhere, econtext))
+ {
+ ExecClearTuple(existing); /* see return below */
+ InstrCountFiltered1(&mtstate->ps, 1);
+ return true; /* done with the tuple */
+ }
+
+ if (resultRelInfo->ri_WithCheckOptions != NIL)
+ {
+ /*
+ * Check target's existing tuple against UPDATE-applicable USING
+ * security barrier quals (if any), enforced here as RLS checks/WCOs.
+ *
+ * The rewriter creates UPDATE RLS checks/WCOs for UPDATE security
+ * quals, and stores them as WCOs of "kind" WCO_RLS_CONFLICT_CHECK,
+ * but that's almost the extent of its special handling for ON
+ * CONFLICT DO UPDATE.
+ *
+ * The rewriter will also have associated UPDATE applicable straight
+ * RLS checks/WCOs for the benefit of the ExecUpdate() call that
+ * follows. INSERTs and UPDATEs naturally have mutually exclusive WCO
+ * kinds, so there is no danger of spurious over-enforcement in the
+ * INSERT or UPDATE path.
+ */
+ ExecWithCheckOptions(WCO_RLS_CONFLICT_CHECK, resultRelInfo,
+ existing,
+ mtstate->ps.state);
+ }
+
+ /* Project the new tuple version */
+ ExecProject(resultRelInfo->ri_onConflict->oc_ProjInfo);
+
+ /*
+ * Note that it is possible that the target tuple has been modified in
+ * this session, after the above table_tuple_lock. We choose to not error
+ * out in that case, in line with ExecUpdate's treatment of similar cases.
+ * This can happen if an UPDATE is triggered from within ExecQual(),
+ * ExecWithCheckOptions() or ExecProject() above, e.g. by selecting from a
+ * wCTE in the ON CONFLICT's SET.
+ */
+
+ /* Execute UPDATE with projection */
+ *returning = ExecUpdate(mtstate, conflictTid, NULL,
+ resultRelInfo->ri_onConflict->oc_ProjSlot,
+ planSlot,
+ &mtstate->mt_epqstate, mtstate->ps.state,
+ canSetTag);
+
+ /*
+ * Clear out existing tuple, as there might not be another conflict among
+ * the next input rows. Don't want to hold resources till the end of the
+ * query.
+ */
+ ExecClearTuple(existing);
+ return true;
+}
+
+
+/*
+ * Process BEFORE EACH STATEMENT triggers
+ */
+static void
+fireBSTriggers(ModifyTableState *node)
+{
+ ModifyTable *plan = (ModifyTable *) node->ps.plan;
+ ResultRelInfo *resultRelInfo = node->resultRelInfo;
+
+ /*
+ * If the node modifies a partitioned table, we must fire its triggers.
+ * Note that in that case, node->resultRelInfo points to the first leaf
+ * partition, not the root table.
+ */
+ if (node->rootResultRelInfo != NULL)
+ resultRelInfo = node->rootResultRelInfo;
+
+ switch (node->operation)
+ {
+ case CMD_INSERT:
+ ExecBSInsertTriggers(node->ps.state, resultRelInfo);
+ if (plan->onConflictAction == ONCONFLICT_UPDATE)
+ ExecBSUpdateTriggers(node->ps.state,
+ resultRelInfo);
+ break;
+ case CMD_UPDATE:
+ ExecBSUpdateTriggers(node->ps.state, resultRelInfo);
+ break;
+ case CMD_DELETE:
+ ExecBSDeleteTriggers(node->ps.state, resultRelInfo);
+ break;
+ default:
+ elog(ERROR, "unknown operation");
+ break;
+ }
+}
+
+/*
+ * Return the target rel ResultRelInfo.
+ *
+ * This relation is the same as :
+ * - the relation for which we will fire AFTER STATEMENT triggers.
+ * - the relation into whose tuple format all captured transition tuples must
+ * be converted.
+ * - the root partitioned table.
+ */
+static ResultRelInfo *
+getTargetResultRelInfo(ModifyTableState *node)
+{
+ /*
+ * Note that if the node modifies a partitioned table, node->resultRelInfo
+ * points to the first leaf partition, not the root table.
+ */
+ if (node->rootResultRelInfo != NULL)
+ return node->rootResultRelInfo;
+ else
+ return node->resultRelInfo;
+}
+
+/*
+ * Process AFTER EACH STATEMENT triggers
+ */
+static void
+fireASTriggers(ModifyTableState *node)
+{
+ ModifyTable *plan = (ModifyTable *) node->ps.plan;
+ ResultRelInfo *resultRelInfo = getTargetResultRelInfo(node);
+
+ switch (node->operation)
+ {
+ case CMD_INSERT:
+ if (plan->onConflictAction == ONCONFLICT_UPDATE)
+ ExecASUpdateTriggers(node->ps.state,
+ resultRelInfo,
+ node->mt_oc_transition_capture);
+ ExecASInsertTriggers(node->ps.state, resultRelInfo,
+ node->mt_transition_capture);
+ break;
+ case CMD_UPDATE:
+ ExecASUpdateTriggers(node->ps.state, resultRelInfo,
+ node->mt_transition_capture);
+ break;
+ case CMD_DELETE:
+ ExecASDeleteTriggers(node->ps.state, resultRelInfo,
+ node->mt_transition_capture);
+ break;
+ default:
+ elog(ERROR, "unknown operation");
+ break;
+ }
+}
+
+/*
+ * Set up the state needed for collecting transition tuples for AFTER
+ * triggers.
+ */
+static void
+ExecSetupTransitionCaptureState(ModifyTableState *mtstate, EState *estate)
+{
+ ModifyTable *plan = (ModifyTable *) mtstate->ps.plan;
+ ResultRelInfo *targetRelInfo = getTargetResultRelInfo(mtstate);
+
+ /* Check for transition tables on the directly targeted relation. */
+ mtstate->mt_transition_capture =
+ MakeTransitionCaptureState(targetRelInfo->ri_TrigDesc,
+ RelationGetRelid(targetRelInfo->ri_RelationDesc),
+ mtstate->operation);
+ if (plan->operation == CMD_INSERT &&
+ plan->onConflictAction == ONCONFLICT_UPDATE)
+ mtstate->mt_oc_transition_capture =
+ MakeTransitionCaptureState(targetRelInfo->ri_TrigDesc,
+ RelationGetRelid(targetRelInfo->ri_RelationDesc),
+ CMD_UPDATE);
+
+ /*
+ * If we found that we need to collect transition tuples then we may also
+ * need tuple conversion maps for any children that have TupleDescs that
+ * aren't compatible with the tuplestores. (We can share these maps
+ * between the regular and ON CONFLICT cases.)
+ */
+ if (mtstate->mt_transition_capture != NULL ||
+ mtstate->mt_oc_transition_capture != NULL)
+ {
+ ExecSetupChildParentMapForSubplan(mtstate);
+
+ /*
+ * Install the conversion map for the first plan for UPDATE and DELETE
+ * operations. It will be advanced each time we switch to the next
+ * plan. (INSERT operations set it every time, so we need not update
+ * mtstate->mt_oc_transition_capture here.)
+ */
+ if (mtstate->mt_transition_capture && mtstate->operation != CMD_INSERT)
+ mtstate->mt_transition_capture->tcs_map =
+ tupconv_map_for_subplan(mtstate, 0);
+ }
+}
+
+/*
+ * ExecPrepareTupleRouting --- prepare for routing one tuple
+ *
+ * Determine the partition in which the tuple in slot is to be inserted,
+ * and modify mtstate and estate to prepare for it.
+ *
+ * Caller must revert the estate changes after executing the insertion!
+ * In mtstate, transition capture changes may also need to be reverted.
+ *
+ * Returns a slot holding the tuple of the partition rowtype.
+ */
+static TupleTableSlot *
+ExecPrepareTupleRouting(ModifyTableState *mtstate,
+ EState *estate,
+ PartitionTupleRouting *proute,
+ ResultRelInfo *targetRelInfo,
+ TupleTableSlot *slot)
+{
+ ResultRelInfo *partrel;
+ PartitionRoutingInfo *partrouteinfo;
+ TupleConversionMap *map;
+
+ /*
+ * Lookup the target partition's ResultRelInfo. If ExecFindPartition does
+ * not find a valid partition for the tuple in 'slot' then an error is
+ * raised. An error may also be raised if the found partition is not a
+ * valid target for INSERTs. This is required since a partitioned table
+ * UPDATE to another partition becomes a DELETE+INSERT.
+ */
+ partrel = ExecFindPartition(mtstate, targetRelInfo, proute, slot, estate);
+ partrouteinfo = partrel->ri_PartitionInfo;
+ Assert(partrouteinfo != NULL);
+
+ /*
+ * Make it look like we are inserting into the partition.
+ */
+ estate->es_result_relation_info = partrel;
+
+ /*
+ * If we're capturing transition tuples, we might need to convert from the
+ * partition rowtype to root partitioned table's rowtype.
+ */
+ if (mtstate->mt_transition_capture != NULL)
+ {
+ if (partrel->ri_TrigDesc &&
+ partrel->ri_TrigDesc->trig_insert_before_row)
+ {
+ /*
+ * If there are any BEFORE triggers on the partition, we'll have
+ * to be ready to convert their result back to tuplestore format.
+ */
+ mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;
+ mtstate->mt_transition_capture->tcs_map =
+ partrouteinfo->pi_PartitionToRootMap;
+ }
+ else
+ {
+ /*
+ * Otherwise, just remember the original unconverted tuple, to
+ * avoid a needless round trip conversion.
+ */
+ mtstate->mt_transition_capture->tcs_original_insert_tuple = slot;
+ mtstate->mt_transition_capture->tcs_map = NULL;
+ }
+ }
+ if (mtstate->mt_oc_transition_capture != NULL)
+ {
+ mtstate->mt_oc_transition_capture->tcs_map =
+ partrouteinfo->pi_PartitionToRootMap;
+ }
+
+ /*
+ * Convert the tuple, if necessary.
+ */
+ map = partrouteinfo->pi_RootToPartitionMap;
+ if (map != NULL)
+ {
+ TupleTableSlot *new_slot = partrouteinfo->pi_PartitionTupleSlot;
+
+ slot = execute_attr_map_slot(map->attrMap, slot, new_slot);
+ }
+
+ return slot;
+}
+
+/*
+ * Initialize the child-to-root tuple conversion map array for UPDATE subplans.
+ *
+ * This map array is required to convert the tuple from the subplan result rel
+ * to the target table descriptor. This requirement arises for two independent
+ * scenarios:
+ * 1. For update-tuple-routing.
+ * 2. For capturing tuples in transition tables.
+ */
+static void
+ExecSetupChildParentMapForSubplan(ModifyTableState *mtstate)
+{
+ ResultRelInfo *targetRelInfo = getTargetResultRelInfo(mtstate);
+ ResultRelInfo *resultRelInfos = mtstate->resultRelInfo;
+ TupleDesc outdesc;
+ int numResultRelInfos = mtstate->mt_nplans;
+ int i;
+
+ /*
+ * Build array of conversion maps from each child's TupleDesc to the one
+ * used in the target relation. The map pointers may be NULL when no
+ * conversion is necessary, which is hopefully a common case.
+ */
+
+ /* Get tuple descriptor of the target rel. */
+ outdesc = RelationGetDescr(targetRelInfo->ri_RelationDesc);
+
+ mtstate->mt_per_subplan_tupconv_maps = (TupleConversionMap **)
+ palloc(sizeof(TupleConversionMap *) * numResultRelInfos);
+
+ for (i = 0; i < numResultRelInfos; ++i)
+ {
+ mtstate->mt_per_subplan_tupconv_maps[i] =
+ convert_tuples_by_name(RelationGetDescr(resultRelInfos[i].ri_RelationDesc),
+ outdesc);
+ }
+}
+
+/*
+ * For a given subplan index, get the tuple conversion map.
+ */
+static TupleConversionMap *
+tupconv_map_for_subplan(ModifyTableState *mtstate, int whichplan)
+{
+ /* If nobody else set the per-subplan array of maps, do so ourselves. */
+ if (mtstate->mt_per_subplan_tupconv_maps == NULL)
+ ExecSetupChildParentMapForSubplan(mtstate);
+
+ Assert(whichplan >= 0 && whichplan < mtstate->mt_nplans);
+ return mtstate->mt_per_subplan_tupconv_maps[whichplan];
+}
+
+/* ----------------------------------------------------------------
+ * ExecModifyTable
+ *
+ * Perform table modifications as required, and return RETURNING results
+ * if needed.
+ * ----------------------------------------------------------------
+ */
+static TupleTableSlot *
+ExecModifyTable(PlanState *pstate)
+{
+ ModifyTableState *node = castNode(ModifyTableState, pstate);
+ PartitionTupleRouting *proute = node->mt_partition_tuple_routing;
+ EState *estate = node->ps.state;
+ CmdType operation = node->operation;
+ ResultRelInfo *saved_resultRelInfo;
+ ResultRelInfo *resultRelInfo;
+ PlanState *subplanstate;
+ JunkFilter *junkfilter;
+ TupleTableSlot *slot;
+ TupleTableSlot *planSlot;
+ ItemPointer tupleid;
+ ItemPointerData tuple_ctid;
+ HeapTupleData oldtupdata;
+ HeapTuple oldtuple;
+
+ CHECK_FOR_INTERRUPTS();
+
+ /*
+ * This should NOT get called during EvalPlanQual; we should have passed a
+ * subplan tree to EvalPlanQual, instead. Use a runtime test not just
+ * Assert because this condition is easy to miss in testing. (Note:
+ * although ModifyTable should not get executed within an EvalPlanQual
+ * operation, we do have to allow it to be initialized and shut down in
+ * case it is within a CTE subplan. Hence this test must be here, not in
+ * ExecInitModifyTable.)
+ */
+ if (estate->es_epq_active != NULL)
+ elog(ERROR, "ModifyTable should not be called during EvalPlanQual");
+
+ /*
+ * If we've already completed processing, don't try to do more. We need
+ * this test because ExecPostprocessPlan might call us an extra time, and
+ * our subplan's nodes aren't necessarily robust against being called
+ * extra times.
+ */
+ if (node->mt_done)
+ return NULL;
+
+ /*
+ * On first call, fire BEFORE STATEMENT triggers before proceeding.
+ */
+ if (node->fireBSTriggers)
+ {
+ fireBSTriggers(node);
+ node->fireBSTriggers = false;
+ }
+
+ /* Preload local variables */
+ resultRelInfo = node->resultRelInfo + node->mt_whichplan;
+ subplanstate = node->mt_plans[node->mt_whichplan];
+ junkfilter = resultRelInfo->ri_junkFilter;
+
+ /*
+ * es_result_relation_info must point to the currently active result
+ * relation while we are within this ModifyTable node. Even though
+ * ModifyTable nodes can't be nested statically, they can be nested
+ * dynamically (since our subplan could include a reference to a modifying
+ * CTE). So we have to save and restore the caller's value.
+ */
+ saved_resultRelInfo = estate->es_result_relation_info;
+
+ estate->es_result_relation_info = resultRelInfo;
+
+ /*
+ * Fetch rows from subplan(s), and execute the required table modification
+ * for each row.
+ */
+ for (;;)
+ {
+ /*
+ * Reset the per-output-tuple exprcontext. This is needed because
+ * triggers expect to use that context as workspace. It's a bit ugly
+ * to do this below the top level of the plan, however. We might need
+ * to rethink this later.
+ */
+ ResetPerTupleExprContext(estate);
+
+ /*
+ * Reset per-tuple memory context used for processing on conflict and
+ * returning clauses, to free any expression evaluation storage
+ * allocated in the previous cycle.
+ */
+ if (pstate->ps_ExprContext)
+ ResetExprContext(pstate->ps_ExprContext);
+
+ planSlot = ExecProcNode(subplanstate);
+
+ if (TupIsNull(planSlot))
+ {
+ /* advance to next subplan if any */
+ node->mt_whichplan++;
+ if (node->mt_whichplan < node->mt_nplans)
+ {
+ resultRelInfo++;
+ subplanstate = node->mt_plans[node->mt_whichplan];
+ junkfilter = resultRelInfo->ri_junkFilter;
+ estate->es_result_relation_info = resultRelInfo;
+ EvalPlanQualSetPlan(&node->mt_epqstate, subplanstate->plan,
+ node->mt_arowmarks[node->mt_whichplan]);
+ /* Prepare to convert transition tuples from this child. */
+ if (node->mt_transition_capture != NULL)
+ {
+ node->mt_transition_capture->tcs_map =
+ tupconv_map_for_subplan(node, node->mt_whichplan);
+ }
+ if (node->mt_oc_transition_capture != NULL)
+ {
+ node->mt_oc_transition_capture->tcs_map =
+ tupconv_map_for_subplan(node, node->mt_whichplan);
+ }
+ continue;
+ }
+ else
+ break;
+ }
+
+ /*
+ * Ensure input tuple is the right format for the target relation.
+ */
+ if (node->mt_scans[node->mt_whichplan]->tts_ops != planSlot->tts_ops)
+ {
+ ExecCopySlot(node->mt_scans[node->mt_whichplan], planSlot);
+ planSlot = node->mt_scans[node->mt_whichplan];
+ }
+
+ /*
+ * If resultRelInfo->ri_usesFdwDirectModify is true, all we need to do
+ * here is compute the RETURNING expressions.
+ */
+ if (resultRelInfo->ri_usesFdwDirectModify)
+ {
+ Assert(resultRelInfo->ri_projectReturning);
+
+ /*
+ * A scan slot containing the data that was actually inserted,
+ * updated or deleted has already been made available to
+ * ExecProcessReturning by IterateDirectModify, so no need to
+ * provide it here.
+ */
+ slot = ExecProcessReturning(resultRelInfo->ri_projectReturning,
+ RelationGetRelid(resultRelInfo->ri_RelationDesc),
+ NULL, planSlot);
+
+ estate->es_result_relation_info = saved_resultRelInfo;
+ return slot;
+ }
+
+ EvalPlanQualSetSlot(&node->mt_epqstate, planSlot);
+ slot = planSlot;
+
+ tupleid = NULL;
+ oldtuple = NULL;
+ if (junkfilter != NULL)
+ {
+ /*
+ * extract the 'ctid' or 'wholerow' junk attribute.
+ */
+ if (operation == CMD_UPDATE || operation == CMD_DELETE)
+ {
+ char relkind;
+ Datum datum;
+ bool isNull;
+
+ relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind;
+ if (relkind == RELKIND_RELATION || relkind == RELKIND_MATVIEW)
+ {
+ datum = ExecGetJunkAttribute(slot,
+ junkfilter->jf_junkAttNo,
+ &isNull);
+ /* shouldn't ever get a null result... */
+ if (isNull)
+ elog(ERROR, "ctid is NULL");
+
+ tupleid = (ItemPointer) DatumGetPointer(datum);
+ tuple_ctid = *tupleid; /* be sure we don't free ctid!! */
+ tupleid = &tuple_ctid;
+ }
+
+ /*
+ * Use the wholerow attribute, when available, to reconstruct
+ * the old relation tuple.
+ *
+ * Foreign table updates have a wholerow attribute when the
+ * relation has a row-level trigger. Note that the wholerow
+ * attribute does not carry system columns. Foreign table
+ * triggers miss seeing those, except that we know enough here
+ * to set t_tableOid. Quite separately from this, the FDW may
+ * fetch its own junk attrs to identify the row.
+ *
+ * Other relevant relkinds, currently limited to views, always
+ * have a wholerow attribute.
+ */
+ else if (AttributeNumberIsValid(junkfilter->jf_junkAttNo))
+ {
+ datum = ExecGetJunkAttribute(slot,
+ junkfilter->jf_junkAttNo,
+ &isNull);
+ /* shouldn't ever get a null result... */
+ if (isNull)
+ elog(ERROR, "wholerow is NULL");
+
+ oldtupdata.t_data = DatumGetHeapTupleHeader(datum);
+ oldtupdata.t_len =
+ HeapTupleHeaderGetDatumLength(oldtupdata.t_data);
+ ItemPointerSetInvalid(&(oldtupdata.t_self));
+ /* Historically, view triggers see invalid t_tableOid. */
+ oldtupdata.t_tableOid =
+ (relkind == RELKIND_VIEW) ? InvalidOid :
+ RelationGetRelid(resultRelInfo->ri_RelationDesc);
+
+ oldtuple = &oldtupdata;
+ }
+ else
+ Assert(relkind == RELKIND_FOREIGN_TABLE);
+ }
+
+ /*
+ * apply the junkfilter if needed.
+ */
+ if (operation != CMD_DELETE)
+ slot = ExecFilterJunk(junkfilter, slot);
+ }
+
+ switch (operation)
+ {
+ case CMD_INSERT:
+ /* Prepare for tuple routing if needed. */
+ if (proute)
+ slot = ExecPrepareTupleRouting(node, estate, proute,
+ resultRelInfo, slot);
+ slot = ExecInsert(node, slot, planSlot,
+ NULL, estate->es_result_relation_info,
+ estate, node->canSetTag);
+ /* Revert ExecPrepareTupleRouting's state change. */
+ if (proute)
+ estate->es_result_relation_info = resultRelInfo;
+ break;
+ case CMD_UPDATE:
+ slot = ExecUpdate(node, tupleid, oldtuple, slot, planSlot,
+ &node->mt_epqstate, estate, node->canSetTag);
+ break;
+ case CMD_DELETE:
+ slot = ExecDelete(node, tupleid, oldtuple, planSlot,
+ &node->mt_epqstate, estate,
+ true, node->canSetTag,
+ false /* changingPart */ , NULL, NULL);
+ break;
+ default:
+ elog(ERROR, "unknown operation");
+ break;
+ }
+
+ /*
+ * If we got a RETURNING result, return it to caller. We'll continue
+ * the work on next call.
+ */
+ if (slot)
+ {
+ estate->es_result_relation_info = saved_resultRelInfo;
+ return slot;
+ }
+ }
+
+ /* Restore es_result_relation_info before exiting */
+ estate->es_result_relation_info = saved_resultRelInfo;
+
+ /*
+ * We're done, but fire AFTER STATEMENT triggers before exiting.
+ */
+ fireASTriggers(node);
+
+ node->mt_done = true;
+
+ return NULL;
+}
+
+/* ----------------------------------------------------------------
+ * ExecInitModifyTable
+ * ----------------------------------------------------------------
+ */
+ModifyTableState *
+ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags)
+{
+ ModifyTableState *mtstate;
+ CmdType operation = node->operation;
+ int nplans = list_length(node->plans);
+ ResultRelInfo *saved_resultRelInfo;
+ ResultRelInfo *resultRelInfo;
+ Plan *subplan;
+ ListCell *l;
+ int i;
+ Relation rel;
+ bool update_tuple_routing_needed = node->partColsUpdated;
+
+ /* check for unsupported flags */
+ Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
+
+ /*
+ * create state structure
+ */
+ mtstate = makeNode(ModifyTableState);
+ mtstate->ps.plan = (Plan *) node;
+ mtstate->ps.state = estate;
+ mtstate->ps.ExecProcNode = ExecModifyTable;
+
+ mtstate->operation = operation;
+ mtstate->canSetTag = node->canSetTag;
+ mtstate->mt_done = false;
+
+ mtstate->mt_plans = (PlanState **) palloc0(sizeof(PlanState *) * nplans);
+ mtstate->resultRelInfo = estate->es_result_relations + node->resultRelIndex;
+ mtstate->mt_scans = (TupleTableSlot **) palloc0(sizeof(TupleTableSlot *) * nplans);
+
+ /* If modifying a partitioned table, initialize the root table info */
+ if (node->rootResultRelIndex >= 0)
+ mtstate->rootResultRelInfo = estate->es_root_result_relations +
+ node->rootResultRelIndex;
+
+ mtstate->mt_arowmarks = (List **) palloc0(sizeof(List *) * nplans);
+ mtstate->mt_nplans = nplans;
+
+ /* set up epqstate with dummy subplan data for the moment */
+ EvalPlanQualInit(&mtstate->mt_epqstate, estate, NULL, NIL, node->epqParam);
+ mtstate->fireBSTriggers = true;
+
+ /*
+ * call ExecInitNode on each of the plans to be executed and save the
+ * results into the array "mt_plans". This is also a convenient place to
+ * verify that the proposed target relations are valid and open their
+ * indexes for insertion of new index entries. Note we *must* set
+ * estate->es_result_relation_info correctly while we initialize each
+ * sub-plan; external modules such as FDWs may depend on that (see
+ * contrib/postgres_fdw/postgres_fdw.c: postgresBeginDirectModify() as one
+ * example).
+ */
+ saved_resultRelInfo = estate->es_result_relation_info;
+
+ resultRelInfo = mtstate->resultRelInfo;
+ i = 0;
+ foreach(l, node->plans)
+ {
+ subplan = (Plan *) lfirst(l);
+
+ /* Initialize the usesFdwDirectModify flag */
+ resultRelInfo->ri_usesFdwDirectModify = bms_is_member(i,
+ node->fdwDirectModifyPlans);
+
+ /*
+ * Verify result relation is a valid target for the current operation
+ */
+ CheckValidResultRel(resultRelInfo, operation);
+
+ /*
+ * If there are indices on the result relation, open them and save
+ * descriptors in the result relation info, so that we can add new
+ * index entries for the tuples we add/update. We need not do this
+ * for a DELETE, however, since deletion doesn't affect indexes. Also,
+ * inside an EvalPlanQual operation, the indexes might be open
+ * already, since we share the resultrel state with the original
+ * query.
+ */
+ if (resultRelInfo->ri_RelationDesc->rd_rel->relhasindex &&
+ operation != CMD_DELETE &&
+ resultRelInfo->ri_IndexRelationDescs == NULL)
+ ExecOpenIndices(resultRelInfo,
+ node->onConflictAction != ONCONFLICT_NONE);
+
+ /*
+ * If this is an UPDATE and a BEFORE UPDATE trigger is present, the
+ * trigger itself might modify the partition-key values. So arrange
+ * for tuple routing.
+ */
+ if (resultRelInfo->ri_TrigDesc &&
+ resultRelInfo->ri_TrigDesc->trig_update_before_row &&
+ operation == CMD_UPDATE)
+ update_tuple_routing_needed = true;
+
+ /* Now init the plan for this result rel */
+ estate->es_result_relation_info = resultRelInfo;
+ mtstate->mt_plans[i] = ExecInitNode(subplan, estate, eflags);
+ mtstate->mt_scans[i] =
+ ExecInitExtraTupleSlot(mtstate->ps.state, ExecGetResultType(mtstate->mt_plans[i]),
+ table_slot_callbacks(resultRelInfo->ri_RelationDesc));
+
+ /* Also let FDWs init themselves for foreign-table result rels */
+ if (!resultRelInfo->ri_usesFdwDirectModify &&
+ resultRelInfo->ri_FdwRoutine != NULL &&
+ resultRelInfo->ri_FdwRoutine->BeginForeignModify != NULL)
+ {
+ List *fdw_private = (List *) list_nth(node->fdwPrivLists, i);
+
+ resultRelInfo->ri_FdwRoutine->BeginForeignModify(mtstate,
+ resultRelInfo,
+ fdw_private,
+ i,
+ eflags);
+ }
+
+ resultRelInfo++;
+ i++;
+ }
+
+ estate->es_result_relation_info = saved_resultRelInfo;
+
+ /* Get the target relation */
+ rel = (getTargetResultRelInfo(mtstate))->ri_RelationDesc;
+
+ /*
+ * If it's not a partitioned table after all, UPDATE tuple routing should
+ * not be attempted.
+ */
+ if (rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
+ update_tuple_routing_needed = false;
+
+ /*
+ * Build state for tuple routing if it's an INSERT or if it's an UPDATE of
+ * partition key.
+ */
+ if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
+ (operation == CMD_INSERT || update_tuple_routing_needed))
+ mtstate->mt_partition_tuple_routing =
+ ExecSetupPartitionTupleRouting(estate, mtstate, rel);
+
+ /*
+ * Build state for collecting transition tuples. This requires having a
+ * valid trigger query context, so skip it in explain-only mode.
+ */
+ if (!(eflags & EXEC_FLAG_EXPLAIN_ONLY))
+ ExecSetupTransitionCaptureState(mtstate, estate);
+
+ /*
+ * Construct mapping from each of the per-subplan partition attnos to the
+ * root attno. This is required when during update row movement the tuple
+ * descriptor of a source partition does not match the root partitioned
+ * table descriptor. In such a case we need to convert tuples to the root
+ * tuple descriptor, because the search for destination partition starts
+ * from the root. We'll also need a slot to store these converted tuples.
+ * We can skip this setup if it's not a partition key update.
+ */
+ if (update_tuple_routing_needed)
+ {
+ ExecSetupChildParentMapForSubplan(mtstate);
+ mtstate->mt_root_tuple_slot = table_slot_create(rel, NULL);
+ }
+
+ /*
+ * Initialize any WITH CHECK OPTION constraints if needed.
+ */
+ resultRelInfo = mtstate->resultRelInfo;
+ i = 0;
+ foreach(l, node->withCheckOptionLists)
+ {
+ List *wcoList = (List *) lfirst(l);
+ List *wcoExprs = NIL;
+ ListCell *ll;
+
+ foreach(ll, wcoList)
+ {
+ WithCheckOption *wco = (WithCheckOption *) lfirst(ll);
+ ExprState *wcoExpr = ExecInitQual((List *) wco->qual,
+ &mtstate->ps);
+
+ wcoExprs = lappend(wcoExprs, wcoExpr);
+ }
+
+ resultRelInfo->ri_WithCheckOptions = wcoList;
+ resultRelInfo->ri_WithCheckOptionExprs = wcoExprs;
+ resultRelInfo++;
+ i++;
+ }
+
+ /*
+ * Initialize RETURNING projections if needed.
+ */
+ if (node->returningLists)
+ {
+ TupleTableSlot *slot;
+ ExprContext *econtext;
+
+ /*
+ * Initialize result tuple slot and assign its rowtype using the first
+ * RETURNING list. We assume the rest will look the same.
+ */
+ mtstate->ps.plan->targetlist = (List *) linitial(node->returningLists);
+
+ /* Set up a slot for the output of the RETURNING projection(s) */
+ ExecInitResultTupleSlotTL(&mtstate->ps, &TTSOpsVirtual);
+ slot = mtstate->ps.ps_ResultTupleSlot;
+
+ /* Need an econtext too */
+ if (mtstate->ps.ps_ExprContext == NULL)
+ ExecAssignExprContext(estate, &mtstate->ps);
+ econtext = mtstate->ps.ps_ExprContext;
+
+ /*
+ * Build a projection for each result rel.
+ */
+ resultRelInfo = mtstate->resultRelInfo;
+ foreach(l, node->returningLists)
+ {
+ List *rlist = (List *) lfirst(l);
+
+ resultRelInfo->ri_returningList = rlist;
+ resultRelInfo->ri_projectReturning =
+ ExecBuildProjectionInfo(rlist, econtext, slot, &mtstate->ps,
+ resultRelInfo->ri_RelationDesc->rd_att);
+ resultRelInfo++;
+ }
+ }
+ else
+ {
+ /*
+ * We still must construct a dummy result tuple type, because InitPlan
+ * expects one (maybe should change that?).
+ */
+ mtstate->ps.plan->targetlist = NIL;
+ ExecInitResultTypeTL(&mtstate->ps);
+
+ mtstate->ps.ps_ExprContext = NULL;
+ }
+
+ /* Set the list of arbiter indexes if needed for ON CONFLICT */
+ resultRelInfo = mtstate->resultRelInfo;
+ if (node->onConflictAction != ONCONFLICT_NONE)
+ resultRelInfo->ri_onConflictArbiterIndexes = node->arbiterIndexes;
+
+ /*
+ * If needed, Initialize target list, projection and qual for ON CONFLICT
+ * DO UPDATE.
+ */
+ if (node->onConflictAction == ONCONFLICT_UPDATE)
+ {
+ OnConflictSetState *onconfl = makeNode(OnConflictSetState);
+ ExprContext *econtext;
+ TupleDesc relationDesc;
+
+ /* insert may only have one plan, inheritance is not expanded */
+ Assert(nplans == 1);
+
+ /* already exists if created by RETURNING processing above */
+ if (mtstate->ps.ps_ExprContext == NULL)
+ ExecAssignExprContext(estate, &mtstate->ps);
+
+ econtext = mtstate->ps.ps_ExprContext;
+ relationDesc = resultRelInfo->ri_RelationDesc->rd_att;
+
+ /* create state for DO UPDATE SET operation */
+ resultRelInfo->ri_onConflict = onconfl;
+
+ /* initialize slot for the existing tuple */
+ onconfl->oc_Existing =
+ table_slot_create(resultRelInfo->ri_RelationDesc,
+ &mtstate->ps.state->es_tupleTable);
+
+ /*
+ * Create the tuple slot for the UPDATE SET projection. We want a slot
+ * of the table's type here, because the slot will be used to insert
+ * into the table, and for RETURNING processing - which may access
+ * system attributes.
+ */
+ onconfl->oc_ProjSlot =
+ table_slot_create(resultRelInfo->ri_RelationDesc,
+ &mtstate->ps.state->es_tupleTable);
+
+ /*
+ * The onConflictSet tlist should already have been adjusted to emit
+ * the table's exact column list. It could also contain resjunk
+ * columns, which should be evaluated but not included in the
+ * projection result.
+ */
+ ExecCheckPlanOutput(resultRelInfo->ri_RelationDesc,
+ node->onConflictSet);
+
+ /* build UPDATE SET projection state */
+ onconfl->oc_ProjInfo =
+ ExecBuildProjectionInfoExt(node->onConflictSet, econtext,
+ onconfl->oc_ProjSlot, false,
+ &mtstate->ps,
+ relationDesc);
+
+ /* initialize state to evaluate the WHERE clause, if any */
+ if (node->onConflictWhere)
+ {
+ ExprState *qualexpr;
+
+ qualexpr = ExecInitQual((List *) node->onConflictWhere,
+ &mtstate->ps);
+ onconfl->oc_WhereClause = qualexpr;
+ }
+ }
+
+ /*
+ * If we have any secondary relations in an UPDATE or DELETE, they need to
+ * be treated like non-locked relations in SELECT FOR UPDATE, ie, the
+ * EvalPlanQual mechanism needs to be told about them. Locate the
+ * relevant ExecRowMarks.
+ */
+ foreach(l, node->rowMarks)
+ {
+ PlanRowMark *rc = lfirst_node(PlanRowMark, l);
+ ExecRowMark *erm;
+
+ /* ignore "parent" rowmarks; they are irrelevant at runtime */
+ if (rc->isParent)
+ continue;
+
+ /* find ExecRowMark (same for all subplans) */
+ erm = ExecFindRowMark(estate, rc->rti, false);
+
+ /* build ExecAuxRowMark for each subplan */
+ for (i = 0; i < nplans; i++)
+ {
+ ExecAuxRowMark *aerm;
+
+ subplan = mtstate->mt_plans[i]->plan;
+ aerm = ExecBuildAuxRowMark(erm, subplan->targetlist);
+ mtstate->mt_arowmarks[i] = lappend(mtstate->mt_arowmarks[i], aerm);
+ }
+ }
+
+ /* select first subplan */
+ mtstate->mt_whichplan = 0;
+ subplan = (Plan *) linitial(node->plans);
+ EvalPlanQualSetPlan(&mtstate->mt_epqstate, subplan,
+ mtstate->mt_arowmarks[0]);
+
+ /*
+ * Initialize the junk filter(s) if needed. INSERT queries need a filter
+ * if there are any junk attrs in the tlist. UPDATE and DELETE always
+ * need a filter, since there's always at least one junk attribute present
+ * --- no need to look first. Typically, this will be a 'ctid' or
+ * 'wholerow' attribute, but in the case of a foreign data wrapper it
+ * might be a set of junk attributes sufficient to identify the remote
+ * row.
+ *
+ * If there are multiple result relations, each one needs its own junk
+ * filter. Note multiple rels are only possible for UPDATE/DELETE, so we
+ * can't be fooled by some needing a filter and some not.
+ *
+ * This section of code is also a convenient place to verify that the
+ * output of an INSERT or UPDATE matches the target table(s).
+ */
+ {
+ bool junk_filter_needed = false;
+
+ switch (operation)
+ {
+ case CMD_INSERT:
+ foreach(l, subplan->targetlist)
+ {
+ TargetEntry *tle = (TargetEntry *) lfirst(l);
+
+ if (tle->resjunk)
+ {
+ junk_filter_needed = true;
+ break;
+ }
+ }
+ break;
+ case CMD_UPDATE:
+ case CMD_DELETE:
+ junk_filter_needed = true;
+ break;
+ default:
+ elog(ERROR, "unknown operation");
+ break;
+ }
+
+ if (junk_filter_needed)
+ {
+ resultRelInfo = mtstate->resultRelInfo;
+ for (i = 0; i < nplans; i++)
+ {
+ JunkFilter *j;
+ TupleTableSlot *junkresslot;
+
+ subplan = mtstate->mt_plans[i]->plan;
+
+ junkresslot =
+ ExecInitExtraTupleSlot(estate, NULL,
+ table_slot_callbacks(resultRelInfo->ri_RelationDesc));
+
+ /*
+ * For an INSERT or UPDATE, the result tuple must always match
+ * the target table's descriptor. For a DELETE, it won't
+ * (indeed, there's probably no non-junk output columns).
+ */
+ if (operation == CMD_INSERT || operation == CMD_UPDATE)
+ {
+ ExecCheckPlanOutput(resultRelInfo->ri_RelationDesc,
+ subplan->targetlist);
+ j = ExecInitJunkFilterInsertion(subplan->targetlist,
+ RelationGetDescr(resultRelInfo->ri_RelationDesc),
+ junkresslot);
+ }
+ else
+ j = ExecInitJunkFilter(subplan->targetlist,
+ junkresslot);
+
+ if (operation == CMD_UPDATE || operation == CMD_DELETE)
+ {
+ /* For UPDATE/DELETE, find the appropriate junk attr now */
+ char relkind;
+
+ relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind;
+ if (relkind == RELKIND_RELATION ||
+ relkind == RELKIND_MATVIEW ||
+ relkind == RELKIND_PARTITIONED_TABLE)
+ {
+ j->jf_junkAttNo = ExecFindJunkAttribute(j, "ctid");
+ if (!AttributeNumberIsValid(j->jf_junkAttNo))
+ elog(ERROR, "could not find junk ctid column");
+ }
+ else if (relkind == RELKIND_FOREIGN_TABLE)
+ {
+ /*
+ * When there is a row-level trigger, there should be
+ * a wholerow attribute.
+ */
+ j->jf_junkAttNo = ExecFindJunkAttribute(j, "wholerow");
+ }
+ else
+ {
+ j->jf_junkAttNo = ExecFindJunkAttribute(j, "wholerow");
+ if (!AttributeNumberIsValid(j->jf_junkAttNo))
+ elog(ERROR, "could not find junk wholerow column");
+ }
+ }
+
+ resultRelInfo->ri_junkFilter = j;
+ resultRelInfo++;
+ }
+ }
+ else
+ {
+ if (operation == CMD_INSERT)
+ ExecCheckPlanOutput(mtstate->resultRelInfo->ri_RelationDesc,
+ subplan->targetlist);
+ }
+ }
+
+ /*
+ * Lastly, if this is not the primary (canSetTag) ModifyTable node, add it
+ * to estate->es_auxmodifytables so that it will be run to completion by
+ * ExecPostprocessPlan. (It'd actually work fine to add the primary
+ * ModifyTable node too, but there's no need.) Note the use of lcons not
+ * lappend: we need later-initialized ModifyTable nodes to be shut down
+ * before earlier ones. This ensures that we don't throw away RETURNING
+ * rows that need to be seen by a later CTE subplan.
+ */
+ if (!mtstate->canSetTag)
+ estate->es_auxmodifytables = lcons(mtstate,
+ estate->es_auxmodifytables);
+
+ return mtstate;
+}
+
+/* ----------------------------------------------------------------
+ * ExecEndModifyTable
+ *
+ * Shuts down the plan.
+ *
+ * Returns nothing of interest.
+ * ----------------------------------------------------------------
+ */
+void
+ExecEndModifyTable(ModifyTableState *node)
+{
+ int i;
+
+ /*
+ * Allow any FDWs to shut down
+ */
+ for (i = 0; i < node->mt_nplans; i++)
+ {
+ ResultRelInfo *resultRelInfo = node->resultRelInfo + i;
+
+ if (!resultRelInfo->ri_usesFdwDirectModify &&
+ resultRelInfo->ri_FdwRoutine != NULL &&
+ resultRelInfo->ri_FdwRoutine->EndForeignModify != NULL)
+ resultRelInfo->ri_FdwRoutine->EndForeignModify(node->ps.state,
+ resultRelInfo);
+ }
+
+ /*
+ * Close all the partitioned tables, leaf partitions, and their indices
+ * and release the slot used for tuple routing, if set.
+ */
+ if (node->mt_partition_tuple_routing)
+ {
+ ExecCleanupTupleRouting(node, node->mt_partition_tuple_routing);
+
+ if (node->mt_root_tuple_slot)
+ ExecDropSingleTupleTableSlot(node->mt_root_tuple_slot);
+ }
+
+ /*
+ * Free the exprcontext
+ */
+ ExecFreeExprContext(&node->ps);
+
+ /*
+ * clean out the tuple table
+ */
+ if (node->ps.ps_ResultTupleSlot)
+ ExecClearTuple(node->ps.ps_ResultTupleSlot);
+
+ /*
+ * Terminate EPQ execution if active
+ */
+ EvalPlanQualEnd(&node->mt_epqstate);
+
+ /*
+ * shut down subplans
+ */
+ for (i = 0; i < node->mt_nplans; i++)
+ ExecEndNode(node->mt_plans[i]);
+}
+
+void
+ExecReScanModifyTable(ModifyTableState *node)
+{
+ /*
+ * Currently, we don't need to support rescan on ModifyTable nodes. The
+ * semantics of that would be a bit debatable anyway.
+ */
+ elog(ERROR, "ExecReScanModifyTable is not implemented");
+}