diff options
Diffstat (limited to 'src/backend/storage/lmgr/predicate.c')
-rw-r--r-- | src/backend/storage/lmgr/predicate.c | 5209 |
1 files changed, 5209 insertions, 0 deletions
diff --git a/src/backend/storage/lmgr/predicate.c b/src/backend/storage/lmgr/predicate.c new file mode 100644 index 0000000..2d7ed83 --- /dev/null +++ b/src/backend/storage/lmgr/predicate.c @@ -0,0 +1,5209 @@ +/*------------------------------------------------------------------------- + * + * predicate.c + * POSTGRES predicate locking + * to support full serializable transaction isolation + * + * + * The approach taken is to implement Serializable Snapshot Isolation (SSI) + * as initially described in this paper: + * + * Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008. + * Serializable isolation for snapshot databases. + * In SIGMOD '08: Proceedings of the 2008 ACM SIGMOD + * international conference on Management of data, + * pages 729-738, New York, NY, USA. ACM. + * http://doi.acm.org/10.1145/1376616.1376690 + * + * and further elaborated in Cahill's doctoral thesis: + * + * Michael James Cahill. 2009. + * Serializable Isolation for Snapshot Databases. + * Sydney Digital Theses. + * University of Sydney, School of Information Technologies. + * http://hdl.handle.net/2123/5353 + * + * + * Predicate locks for Serializable Snapshot Isolation (SSI) are SIREAD + * locks, which are so different from normal locks that a distinct set of + * structures is required to handle them. They are needed to detect + * rw-conflicts when the read happens before the write. (When the write + * occurs first, the reading transaction can check for a conflict by + * examining the MVCC data.) + * + * (1) Besides tuples actually read, they must cover ranges of tuples + * which would have been read based on the predicate. This will + * require modelling the predicates through locks against database + * objects such as pages, index ranges, or entire tables. + * + * (2) They must be kept in RAM for quick access. Because of this, it + * isn't possible to always maintain tuple-level granularity -- when + * the space allocated to store these approaches exhaustion, a + * request for a lock may need to scan for situations where a single + * transaction holds many fine-grained locks which can be coalesced + * into a single coarser-grained lock. + * + * (3) They never block anything; they are more like flags than locks + * in that regard; although they refer to database objects and are + * used to identify rw-conflicts with normal write locks. + * + * (4) While they are associated with a transaction, they must survive + * a successful COMMIT of that transaction, and remain until all + * overlapping transactions complete. This even means that they + * must survive termination of the transaction's process. If a + * top level transaction is rolled back, however, it is immediately + * flagged so that it can be ignored, and its SIREAD locks can be + * released any time after that. + * + * (5) The only transactions which create SIREAD locks or check for + * conflicts with them are serializable transactions. + * + * (6) When a write lock for a top level transaction is found to cover + * an existing SIREAD lock for the same transaction, the SIREAD lock + * can be deleted. + * + * (7) A write from a serializable transaction must ensure that an xact + * record exists for the transaction, with the same lifespan (until + * all concurrent transaction complete or the transaction is rolled + * back) so that rw-dependencies to that transaction can be + * detected. + * + * We use an optimization for read-only transactions. Under certain + * circumstances, a read-only transaction's snapshot can be shown to + * never have conflicts with other transactions. This is referred to + * as a "safe" snapshot (and one known not to be is "unsafe"). + * However, it can't be determined whether a snapshot is safe until + * all concurrent read/write transactions complete. + * + * Once a read-only transaction is known to have a safe snapshot, it + * can release its predicate locks and exempt itself from further + * predicate lock tracking. READ ONLY DEFERRABLE transactions run only + * on safe snapshots, waiting as necessary for one to be available. + * + * + * Lightweight locks to manage access to the predicate locking shared + * memory objects must be taken in this order, and should be released in + * reverse order: + * + * SerializableFinishedListLock + * - Protects the list of transactions which have completed but which + * may yet matter because they overlap still-active transactions. + * + * SerializablePredicateListLock + * - Protects the linked list of locks held by a transaction. Note + * that the locks themselves are also covered by the partition + * locks of their respective lock targets; this lock only affects + * the linked list connecting the locks related to a transaction. + * - All transactions share this single lock (with no partitioning). + * - There is never a need for a process other than the one running + * an active transaction to walk the list of locks held by that + * transaction, except parallel query workers sharing the leader's + * transaction. In the parallel case, an extra per-sxact lock is + * taken; see below. + * - It is relatively infrequent that another process needs to + * modify the list for a transaction, but it does happen for such + * things as index page splits for pages with predicate locks and + * freeing of predicate locked pages by a vacuum process. When + * removing a lock in such cases, the lock itself contains the + * pointers needed to remove it from the list. When adding a + * lock in such cases, the lock can be added using the anchor in + * the transaction structure. Neither requires walking the list. + * - Cleaning up the list for a terminated transaction is sometimes + * not done on a retail basis, in which case no lock is required. + * - Due to the above, a process accessing its active transaction's + * list always uses a shared lock, regardless of whether it is + * walking or maintaining the list. This improves concurrency + * for the common access patterns. + * - A process which needs to alter the list of a transaction other + * than its own active transaction must acquire an exclusive + * lock. + * + * SERIALIZABLEXACT's member 'perXactPredicateListLock' + * - Protects the linked list of predicate locks held by a transaction. + * Only needed for parallel mode, where multiple backends share the + * same SERIALIZABLEXACT object. Not needed if + * SerializablePredicateListLock is held exclusively. + * + * PredicateLockHashPartitionLock(hashcode) + * - The same lock protects a target, all locks on that target, and + * the linked list of locks on the target. + * - When more than one is needed, acquire in ascending address order. + * - When all are needed (rare), acquire in ascending index order with + * PredicateLockHashPartitionLockByIndex(index). + * + * SerializableXactHashLock + * - Protects both PredXact and SerializableXidHash. + * + * + * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * + * IDENTIFICATION + * src/backend/storage/lmgr/predicate.c + * + *------------------------------------------------------------------------- + */ +/* + * INTERFACE ROUTINES + * + * housekeeping for setting up shared memory predicate lock structures + * InitPredicateLocks(void) + * PredicateLockShmemSize(void) + * + * predicate lock reporting + * GetPredicateLockStatusData(void) + * PageIsPredicateLocked(Relation relation, BlockNumber blkno) + * + * predicate lock maintenance + * GetSerializableTransactionSnapshot(Snapshot snapshot) + * SetSerializableTransactionSnapshot(Snapshot snapshot, + * VirtualTransactionId *sourcevxid) + * RegisterPredicateLockingXid(void) + * PredicateLockRelation(Relation relation, Snapshot snapshot) + * PredicateLockPage(Relation relation, BlockNumber blkno, + * Snapshot snapshot) + * PredicateLockTID(Relation relation, ItemPointer tid, Snapshot snapshot, + * TransactionId insert_xid) + * PredicateLockPageSplit(Relation relation, BlockNumber oldblkno, + * BlockNumber newblkno) + * PredicateLockPageCombine(Relation relation, BlockNumber oldblkno, + * BlockNumber newblkno) + * TransferPredicateLocksToHeapRelation(Relation relation) + * ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe) + * + * conflict detection (may also trigger rollback) + * CheckForSerializableConflictOut(Relation relation, TransactionId xid, + * Snapshot snapshot) + * CheckForSerializableConflictIn(Relation relation, ItemPointer tid, + * BlockNumber blkno) + * CheckTableForSerializableConflictIn(Relation relation) + * + * final rollback checking + * PreCommit_CheckForSerializationFailure(void) + * + * two-phase commit support + * AtPrepare_PredicateLocks(void); + * PostPrepare_PredicateLocks(TransactionId xid); + * PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit); + * predicatelock_twophase_recover(TransactionId xid, uint16 info, + * void *recdata, uint32 len); + */ + +#include "postgres.h" + +#include "access/parallel.h" +#include "access/slru.h" +#include "access/subtrans.h" +#include "access/transam.h" +#include "access/twophase.h" +#include "access/twophase_rmgr.h" +#include "access/xact.h" +#include "access/xlog.h" +#include "miscadmin.h" +#include "pgstat.h" +#include "storage/bufmgr.h" +#include "storage/predicate.h" +#include "storage/predicate_internals.h" +#include "storage/proc.h" +#include "storage/procarray.h" +#include "utils/rel.h" +#include "utils/snapmgr.h" + +/* Uncomment the next line to test the graceful degradation code. */ +/* #define TEST_SUMMARIZE_SERIAL */ + +/* + * Test the most selective fields first, for performance. + * + * a is covered by b if all of the following hold: + * 1) a.database = b.database + * 2) a.relation = b.relation + * 3) b.offset is invalid (b is page-granularity or higher) + * 4) either of the following: + * 4a) a.offset is valid (a is tuple-granularity) and a.page = b.page + * or 4b) a.offset is invalid and b.page is invalid (a is + * page-granularity and b is relation-granularity + */ +#define TargetTagIsCoveredBy(covered_target, covering_target) \ + ((GET_PREDICATELOCKTARGETTAG_RELATION(covered_target) == /* (2) */ \ + GET_PREDICATELOCKTARGETTAG_RELATION(covering_target)) \ + && (GET_PREDICATELOCKTARGETTAG_OFFSET(covering_target) == \ + InvalidOffsetNumber) /* (3) */ \ + && (((GET_PREDICATELOCKTARGETTAG_OFFSET(covered_target) != \ + InvalidOffsetNumber) /* (4a) */ \ + && (GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) == \ + GET_PREDICATELOCKTARGETTAG_PAGE(covered_target))) \ + || ((GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) == \ + InvalidBlockNumber) /* (4b) */ \ + && (GET_PREDICATELOCKTARGETTAG_PAGE(covered_target) \ + != InvalidBlockNumber))) \ + && (GET_PREDICATELOCKTARGETTAG_DB(covered_target) == /* (1) */ \ + GET_PREDICATELOCKTARGETTAG_DB(covering_target))) + +/* + * The predicate locking target and lock shared hash tables are partitioned to + * reduce contention. To determine which partition a given target belongs to, + * compute the tag's hash code with PredicateLockTargetTagHashCode(), then + * apply one of these macros. + * NB: NUM_PREDICATELOCK_PARTITIONS must be a power of 2! + */ +#define PredicateLockHashPartition(hashcode) \ + ((hashcode) % NUM_PREDICATELOCK_PARTITIONS) +#define PredicateLockHashPartitionLock(hashcode) \ + (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + \ + PredicateLockHashPartition(hashcode)].lock) +#define PredicateLockHashPartitionLockByIndex(i) \ + (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + (i)].lock) + +#define NPREDICATELOCKTARGETENTS() \ + mul_size(max_predicate_locks_per_xact, add_size(MaxBackends, max_prepared_xacts)) + +#define SxactIsOnFinishedList(sxact) (!SHMQueueIsDetached(&((sxact)->finishedLink))) + +/* + * Note that a sxact is marked "prepared" once it has passed + * PreCommit_CheckForSerializationFailure, even if it isn't using + * 2PC. This is the point at which it can no longer be aborted. + * + * The PREPARED flag remains set after commit, so SxactIsCommitted + * implies SxactIsPrepared. + */ +#define SxactIsCommitted(sxact) (((sxact)->flags & SXACT_FLAG_COMMITTED) != 0) +#define SxactIsPrepared(sxact) (((sxact)->flags & SXACT_FLAG_PREPARED) != 0) +#define SxactIsRolledBack(sxact) (((sxact)->flags & SXACT_FLAG_ROLLED_BACK) != 0) +#define SxactIsDoomed(sxact) (((sxact)->flags & SXACT_FLAG_DOOMED) != 0) +#define SxactIsReadOnly(sxact) (((sxact)->flags & SXACT_FLAG_READ_ONLY) != 0) +#define SxactHasSummaryConflictIn(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_IN) != 0) +#define SxactHasSummaryConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_OUT) != 0) +/* + * The following macro actually means that the specified transaction has a + * conflict out *to a transaction which committed ahead of it*. It's hard + * to get that into a name of a reasonable length. + */ +#define SxactHasConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_CONFLICT_OUT) != 0) +#define SxactIsDeferrableWaiting(sxact) (((sxact)->flags & SXACT_FLAG_DEFERRABLE_WAITING) != 0) +#define SxactIsROSafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_SAFE) != 0) +#define SxactIsROUnsafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_UNSAFE) != 0) +#define SxactIsPartiallyReleased(sxact) (((sxact)->flags & SXACT_FLAG_PARTIALLY_RELEASED) != 0) + +/* + * Compute the hash code associated with a PREDICATELOCKTARGETTAG. + * + * To avoid unnecessary recomputations of the hash code, we try to do this + * just once per function, and then pass it around as needed. Aside from + * passing the hashcode to hash_search_with_hash_value(), we can extract + * the lock partition number from the hashcode. + */ +#define PredicateLockTargetTagHashCode(predicatelocktargettag) \ + get_hash_value(PredicateLockTargetHash, predicatelocktargettag) + +/* + * Given a predicate lock tag, and the hash for its target, + * compute the lock hash. + * + * To make the hash code also depend on the transaction, we xor the sxid + * struct's address into the hash code, left-shifted so that the + * partition-number bits don't change. Since this is only a hash, we + * don't care if we lose high-order bits of the address; use an + * intermediate variable to suppress cast-pointer-to-int warnings. + */ +#define PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash) \ + ((targethash) ^ ((uint32) PointerGetDatum((predicatelocktag)->myXact)) \ + << LOG2_NUM_PREDICATELOCK_PARTITIONS) + + +/* + * The SLRU buffer area through which we access the old xids. + */ +static SlruCtlData SerialSlruCtlData; + +#define SerialSlruCtl (&SerialSlruCtlData) + +#define SERIAL_PAGESIZE BLCKSZ +#define SERIAL_ENTRYSIZE sizeof(SerCommitSeqNo) +#define SERIAL_ENTRIESPERPAGE (SERIAL_PAGESIZE / SERIAL_ENTRYSIZE) + +/* + * Set maximum pages based on the number needed to track all transactions. + */ +#define SERIAL_MAX_PAGE (MaxTransactionId / SERIAL_ENTRIESPERPAGE) + +#define SerialNextPage(page) (((page) >= SERIAL_MAX_PAGE) ? 0 : (page) + 1) + +#define SerialValue(slotno, xid) (*((SerCommitSeqNo *) \ + (SerialSlruCtl->shared->page_buffer[slotno] + \ + ((((uint32) (xid)) % SERIAL_ENTRIESPERPAGE) * SERIAL_ENTRYSIZE)))) + +#define SerialPage(xid) (((uint32) (xid)) / SERIAL_ENTRIESPERPAGE) + +typedef struct SerialControlData +{ + int headPage; /* newest initialized page */ + TransactionId headXid; /* newest valid Xid in the SLRU */ + TransactionId tailXid; /* oldest xmin we might be interested in */ +} SerialControlData; + +typedef struct SerialControlData *SerialControl; + +static SerialControl serialControl; + +/* + * When the oldest committed transaction on the "finished" list is moved to + * SLRU, its predicate locks will be moved to this "dummy" transaction, + * collapsing duplicate targets. When a duplicate is found, the later + * commitSeqNo is used. + */ +static SERIALIZABLEXACT *OldCommittedSxact; + + +/* + * These configuration variables are used to set the predicate lock table size + * and to control promotion of predicate locks to coarser granularity in an + * attempt to degrade performance (mostly as false positive serialization + * failure) gracefully in the face of memory pressure. + */ +int max_predicate_locks_per_xact; /* set by guc.c */ +int max_predicate_locks_per_relation; /* set by guc.c */ +int max_predicate_locks_per_page; /* set by guc.c */ + +/* + * This provides a list of objects in order to track transactions + * participating in predicate locking. Entries in the list are fixed size, + * and reside in shared memory. The memory address of an entry must remain + * fixed during its lifetime. The list will be protected from concurrent + * update externally; no provision is made in this code to manage that. The + * number of entries in the list, and the size allowed for each entry is + * fixed upon creation. + */ +static PredXactList PredXact; + +/* + * This provides a pool of RWConflict data elements to use in conflict lists + * between transactions. + */ +static RWConflictPoolHeader RWConflictPool; + +/* + * The predicate locking hash tables are in shared memory. + * Each backend keeps pointers to them. + */ +static HTAB *SerializableXidHash; +static HTAB *PredicateLockTargetHash; +static HTAB *PredicateLockHash; +static SHM_QUEUE *FinishedSerializableTransactions; + +/* + * Tag for a dummy entry in PredicateLockTargetHash. By temporarily removing + * this entry, you can ensure that there's enough scratch space available for + * inserting one entry in the hash table. This is an otherwise-invalid tag. + */ +static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0}; +static uint32 ScratchTargetTagHash; +static LWLock *ScratchPartitionLock; + +/* + * The local hash table used to determine when to combine multiple fine- + * grained locks into a single courser-grained lock. + */ +static HTAB *LocalPredicateLockHash = NULL; + +/* + * Keep a pointer to the currently-running serializable transaction (if any) + * for quick reference. Also, remember if we have written anything that could + * cause a rw-conflict. + */ +static SERIALIZABLEXACT *MySerializableXact = InvalidSerializableXact; +static bool MyXactDidWrite = false; + +/* + * The SXACT_FLAG_RO_UNSAFE optimization might lead us to release + * MySerializableXact early. If that happens in a parallel query, the leader + * needs to defer the destruction of the SERIALIZABLEXACT until end of + * transaction, because the workers still have a reference to it. In that + * case, the leader stores it here. + */ +static SERIALIZABLEXACT *SavedSerializableXact = InvalidSerializableXact; + +/* local functions */ + +static SERIALIZABLEXACT *CreatePredXact(void); +static void ReleasePredXact(SERIALIZABLEXACT *sxact); +static SERIALIZABLEXACT *FirstPredXact(void); +static SERIALIZABLEXACT *NextPredXact(SERIALIZABLEXACT *sxact); + +static bool RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer); +static void SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer); +static void SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, SERIALIZABLEXACT *activeXact); +static void ReleaseRWConflict(RWConflict conflict); +static void FlagSxactUnsafe(SERIALIZABLEXACT *sxact); + +static bool SerialPagePrecedesLogically(int page1, int page2); +static void SerialInit(void); +static void SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo); +static SerCommitSeqNo SerialGetMinConflictCommitSeqNo(TransactionId xid); +static void SerialSetActiveSerXmin(TransactionId xid); + +static uint32 predicatelock_hash(const void *key, Size keysize); +static void SummarizeOldestCommittedSxact(void); +static Snapshot GetSafeSnapshot(Snapshot snapshot); +static Snapshot GetSerializableTransactionSnapshotInt(Snapshot snapshot, + VirtualTransactionId *sourcevxid, + int sourcepid); +static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag); +static bool GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag, + PREDICATELOCKTARGETTAG *parent); +static bool CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag); +static void RemoveScratchTarget(bool lockheld); +static void RestoreScratchTarget(bool lockheld); +static void RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, + uint32 targettaghash); +static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag); +static int MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag); +static bool CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag); +static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag); +static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag, + uint32 targettaghash, + SERIALIZABLEXACT *sxact); +static void DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash); +static bool TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag, + PREDICATELOCKTARGETTAG newtargettag, + bool removeOld); +static void PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag); +static void DropAllPredicateLocksFromTable(Relation relation, + bool transfer); +static void SetNewSxactGlobalXmin(void); +static void ClearOldPredicateLocks(void); +static void ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial, + bool summarize); +static bool XidIsConcurrent(TransactionId xid); +static void CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag); +static void FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer); +static void OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader, + SERIALIZABLEXACT *writer); +static void CreateLocalPredicateLockHash(void); +static void ReleasePredicateLocksLocal(void); + + +/*------------------------------------------------------------------------*/ + +/* + * Does this relation participate in predicate locking? Temporary and system + * relations are exempt, as are materialized views. + */ +static inline bool +PredicateLockingNeededForRelation(Relation relation) +{ + return !(relation->rd_id < FirstBootstrapObjectId || + RelationUsesLocalBuffers(relation) || + relation->rd_rel->relkind == RELKIND_MATVIEW); +} + +/* + * When a public interface method is called for a read, this is the test to + * see if we should do a quick return. + * + * Note: this function has side-effects! If this transaction has been flagged + * as RO-safe since the last call, we release all predicate locks and reset + * MySerializableXact. That makes subsequent calls to return quickly. + * + * This is marked as 'inline' to eliminate the function call overhead in the + * common case that serialization is not needed. + */ +static inline bool +SerializationNeededForRead(Relation relation, Snapshot snapshot) +{ + /* Nothing to do if this is not a serializable transaction */ + if (MySerializableXact == InvalidSerializableXact) + return false; + + /* + * Don't acquire locks or conflict when scanning with a special snapshot. + * This excludes things like CLUSTER and REINDEX. They use the wholesale + * functions TransferPredicateLocksToHeapRelation() and + * CheckTableForSerializableConflictIn() to participate in serialization, + * but the scans involved don't need serialization. + */ + if (!IsMVCCSnapshot(snapshot)) + return false; + + /* + * Check if we have just become "RO-safe". If we have, immediately release + * all locks as they're not needed anymore. This also resets + * MySerializableXact, so that subsequent calls to this function can exit + * quickly. + * + * A transaction is flagged as RO_SAFE if all concurrent R/W transactions + * commit without having conflicts out to an earlier snapshot, thus + * ensuring that no conflicts are possible for this transaction. + */ + if (SxactIsROSafe(MySerializableXact)) + { + ReleasePredicateLocks(false, true); + return false; + } + + /* Check if the relation doesn't participate in predicate locking */ + if (!PredicateLockingNeededForRelation(relation)) + return false; + + return true; /* no excuse to skip predicate locking */ +} + +/* + * Like SerializationNeededForRead(), but called on writes. + * The logic is the same, but there is no snapshot and we can't be RO-safe. + */ +static inline bool +SerializationNeededForWrite(Relation relation) +{ + /* Nothing to do if this is not a serializable transaction */ + if (MySerializableXact == InvalidSerializableXact) + return false; + + /* Check if the relation doesn't participate in predicate locking */ + if (!PredicateLockingNeededForRelation(relation)) + return false; + + return true; /* no excuse to skip predicate locking */ +} + + +/*------------------------------------------------------------------------*/ + +/* + * These functions are a simple implementation of a list for this specific + * type of struct. If there is ever a generalized shared memory list, we + * should probably switch to that. + */ +static SERIALIZABLEXACT * +CreatePredXact(void) +{ + PredXactListElement ptle; + + ptle = (PredXactListElement) + SHMQueueNext(&PredXact->availableList, + &PredXact->availableList, + offsetof(PredXactListElementData, link)); + if (!ptle) + return NULL; + + SHMQueueDelete(&ptle->link); + SHMQueueInsertBefore(&PredXact->activeList, &ptle->link); + return &ptle->sxact; +} + +static void +ReleasePredXact(SERIALIZABLEXACT *sxact) +{ + PredXactListElement ptle; + + Assert(ShmemAddrIsValid(sxact)); + + ptle = (PredXactListElement) + (((char *) sxact) + - offsetof(PredXactListElementData, sxact) + + offsetof(PredXactListElementData, link)); + SHMQueueDelete(&ptle->link); + SHMQueueInsertBefore(&PredXact->availableList, &ptle->link); +} + +static SERIALIZABLEXACT * +FirstPredXact(void) +{ + PredXactListElement ptle; + + ptle = (PredXactListElement) + SHMQueueNext(&PredXact->activeList, + &PredXact->activeList, + offsetof(PredXactListElementData, link)); + if (!ptle) + return NULL; + + return &ptle->sxact; +} + +static SERIALIZABLEXACT * +NextPredXact(SERIALIZABLEXACT *sxact) +{ + PredXactListElement ptle; + + Assert(ShmemAddrIsValid(sxact)); + + ptle = (PredXactListElement) + (((char *) sxact) + - offsetof(PredXactListElementData, sxact) + + offsetof(PredXactListElementData, link)); + ptle = (PredXactListElement) + SHMQueueNext(&PredXact->activeList, + &ptle->link, + offsetof(PredXactListElementData, link)); + if (!ptle) + return NULL; + + return &ptle->sxact; +} + +/*------------------------------------------------------------------------*/ + +/* + * These functions manage primitive access to the RWConflict pool and lists. + */ +static bool +RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer) +{ + RWConflict conflict; + + Assert(reader != writer); + + /* Check the ends of the purported conflict first. */ + if (SxactIsDoomed(reader) + || SxactIsDoomed(writer) + || SHMQueueEmpty(&reader->outConflicts) + || SHMQueueEmpty(&writer->inConflicts)) + return false; + + /* A conflict is possible; walk the list to find out. */ + conflict = (RWConflict) + SHMQueueNext(&reader->outConflicts, + &reader->outConflicts, + offsetof(RWConflictData, outLink)); + while (conflict) + { + if (conflict->sxactIn == writer) + return true; + conflict = (RWConflict) + SHMQueueNext(&reader->outConflicts, + &conflict->outLink, + offsetof(RWConflictData, outLink)); + } + + /* No conflict found. */ + return false; +} + +static void +SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer) +{ + RWConflict conflict; + + Assert(reader != writer); + Assert(!RWConflictExists(reader, writer)); + + conflict = (RWConflict) + SHMQueueNext(&RWConflictPool->availableList, + &RWConflictPool->availableList, + offsetof(RWConflictData, outLink)); + if (!conflict) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("not enough elements in RWConflictPool to record a read/write conflict"), + errhint("You might need to run fewer transactions at a time or increase max_connections."))); + + SHMQueueDelete(&conflict->outLink); + + conflict->sxactOut = reader; + conflict->sxactIn = writer; + SHMQueueInsertBefore(&reader->outConflicts, &conflict->outLink); + SHMQueueInsertBefore(&writer->inConflicts, &conflict->inLink); +} + +static void +SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, + SERIALIZABLEXACT *activeXact) +{ + RWConflict conflict; + + Assert(roXact != activeXact); + Assert(SxactIsReadOnly(roXact)); + Assert(!SxactIsReadOnly(activeXact)); + + conflict = (RWConflict) + SHMQueueNext(&RWConflictPool->availableList, + &RWConflictPool->availableList, + offsetof(RWConflictData, outLink)); + if (!conflict) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("not enough elements in RWConflictPool to record a potential read/write conflict"), + errhint("You might need to run fewer transactions at a time or increase max_connections."))); + + SHMQueueDelete(&conflict->outLink); + + conflict->sxactOut = activeXact; + conflict->sxactIn = roXact; + SHMQueueInsertBefore(&activeXact->possibleUnsafeConflicts, + &conflict->outLink); + SHMQueueInsertBefore(&roXact->possibleUnsafeConflicts, + &conflict->inLink); +} + +static void +ReleaseRWConflict(RWConflict conflict) +{ + SHMQueueDelete(&conflict->inLink); + SHMQueueDelete(&conflict->outLink); + SHMQueueInsertBefore(&RWConflictPool->availableList, &conflict->outLink); +} + +static void +FlagSxactUnsafe(SERIALIZABLEXACT *sxact) +{ + RWConflict conflict, + nextConflict; + + Assert(SxactIsReadOnly(sxact)); + Assert(!SxactIsROSafe(sxact)); + + sxact->flags |= SXACT_FLAG_RO_UNSAFE; + + /* + * We know this isn't a safe snapshot, so we can stop looking for other + * potential conflicts. + */ + conflict = (RWConflict) + SHMQueueNext(&sxact->possibleUnsafeConflicts, + &sxact->possibleUnsafeConflicts, + offsetof(RWConflictData, inLink)); + while (conflict) + { + nextConflict = (RWConflict) + SHMQueueNext(&sxact->possibleUnsafeConflicts, + &conflict->inLink, + offsetof(RWConflictData, inLink)); + + Assert(!SxactIsReadOnly(conflict->sxactOut)); + Assert(sxact == conflict->sxactIn); + + ReleaseRWConflict(conflict); + + conflict = nextConflict; + } +} + +/*------------------------------------------------------------------------*/ + +/* + * Decide whether a Serial page number is "older" for truncation purposes. + * Analogous to CLOGPagePrecedes(). + */ +static bool +SerialPagePrecedesLogically(int page1, int page2) +{ + TransactionId xid1; + TransactionId xid2; + + xid1 = ((TransactionId) page1) * SERIAL_ENTRIESPERPAGE; + xid1 += FirstNormalTransactionId + 1; + xid2 = ((TransactionId) page2) * SERIAL_ENTRIESPERPAGE; + xid2 += FirstNormalTransactionId + 1; + + return (TransactionIdPrecedes(xid1, xid2) && + TransactionIdPrecedes(xid1, xid2 + SERIAL_ENTRIESPERPAGE - 1)); +} + +#ifdef USE_ASSERT_CHECKING +static void +SerialPagePrecedesLogicallyUnitTests(void) +{ + int per_page = SERIAL_ENTRIESPERPAGE, + offset = per_page / 2; + int newestPage, + oldestPage, + headPage, + targetPage; + TransactionId newestXact, + oldestXact; + + /* GetNewTransactionId() has assigned the last XID it can safely use. */ + newestPage = 2 * SLRU_PAGES_PER_SEGMENT - 1; /* nothing special */ + newestXact = newestPage * per_page + offset; + Assert(newestXact / per_page == newestPage); + oldestXact = newestXact + 1; + oldestXact -= 1U << 31; + oldestPage = oldestXact / per_page; + + /* + * In this scenario, the SLRU headPage pertains to the last ~1000 XIDs + * assigned. oldestXact finishes, ~2B XIDs having elapsed since it + * started. Further transactions cause us to summarize oldestXact to + * tailPage. Function must return false so SerialAdd() doesn't zero + * tailPage (which may contain entries for other old, recently-finished + * XIDs) and half the SLRU. Reaching this requires burning ~2B XIDs in + * single-user mode, a negligible possibility. + */ + headPage = newestPage; + targetPage = oldestPage; + Assert(!SerialPagePrecedesLogically(headPage, targetPage)); + + /* + * In this scenario, the SLRU headPage pertains to oldestXact. We're + * summarizing an XID near newestXact. (Assume few other XIDs used + * SERIALIZABLE, hence the minimal headPage advancement. Assume + * oldestXact was long-running and only recently reached the SLRU.) + * Function must return true to make SerialAdd() create targetPage. + * + * Today's implementation mishandles this case, but it doesn't matter + * enough to fix. Verify that the defect affects just one page by + * asserting correct treatment of its prior page. Reaching this case + * requires burning ~2B XIDs in single-user mode, a negligible + * possibility. Moreover, if it does happen, the consequence would be + * mild, namely a new transaction failing in SimpleLruReadPage(). + */ + headPage = oldestPage; + targetPage = newestPage; + Assert(SerialPagePrecedesLogically(headPage, targetPage - 1)); +#if 0 + Assert(SerialPagePrecedesLogically(headPage, targetPage)); +#endif +} +#endif + +/* + * Initialize for the tracking of old serializable committed xids. + */ +static void +SerialInit(void) +{ + bool found; + + /* + * Set up SLRU management of the pg_serial data. + */ + SerialSlruCtl->PagePrecedes = SerialPagePrecedesLogically; + SimpleLruInit(SerialSlruCtl, "Serial", + NUM_SERIAL_BUFFERS, 0, SerialSLRULock, "pg_serial", + LWTRANCHE_SERIAL_BUFFER); + /* Override default assumption that writes should be fsync'd */ + SerialSlruCtl->do_fsync = false; +#ifdef USE_ASSERT_CHECKING + SerialPagePrecedesLogicallyUnitTests(); +#endif + SlruPagePrecedesUnitTests(SerialSlruCtl, SERIAL_ENTRIESPERPAGE); + + /* + * Create or attach to the SerialControl structure. + */ + serialControl = (SerialControl) + ShmemInitStruct("SerialControlData", sizeof(SerialControlData), &found); + + Assert(found == IsUnderPostmaster); + if (!found) + { + /* + * Set control information to reflect empty SLRU. + */ + serialControl->headPage = -1; + serialControl->headXid = InvalidTransactionId; + serialControl->tailXid = InvalidTransactionId; + } +} + +/* + * Record a committed read write serializable xid and the minimum + * commitSeqNo of any transactions to which this xid had a rw-conflict out. + * An invalid commitSeqNo means that there were no conflicts out from xid. + */ +static void +SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo) +{ + TransactionId tailXid; + int targetPage; + int slotno; + int firstZeroPage; + bool isNewPage; + + Assert(TransactionIdIsValid(xid)); + + targetPage = SerialPage(xid); + + LWLockAcquire(SerialSLRULock, LW_EXCLUSIVE); + + /* + * If no serializable transactions are active, there shouldn't be anything + * to push out to the SLRU. Hitting this assert would mean there's + * something wrong with the earlier cleanup logic. + */ + tailXid = serialControl->tailXid; + Assert(TransactionIdIsValid(tailXid)); + + /* + * If the SLRU is currently unused, zero out the whole active region from + * tailXid to headXid before taking it into use. Otherwise zero out only + * any new pages that enter the tailXid-headXid range as we advance + * headXid. + */ + if (serialControl->headPage < 0) + { + firstZeroPage = SerialPage(tailXid); + isNewPage = true; + } + else + { + firstZeroPage = SerialNextPage(serialControl->headPage); + isNewPage = SerialPagePrecedesLogically(serialControl->headPage, + targetPage); + } + + if (!TransactionIdIsValid(serialControl->headXid) + || TransactionIdFollows(xid, serialControl->headXid)) + serialControl->headXid = xid; + if (isNewPage) + serialControl->headPage = targetPage; + + if (isNewPage) + { + /* Initialize intervening pages. */ + while (firstZeroPage != targetPage) + { + (void) SimpleLruZeroPage(SerialSlruCtl, firstZeroPage); + firstZeroPage = SerialNextPage(firstZeroPage); + } + slotno = SimpleLruZeroPage(SerialSlruCtl, targetPage); + } + else + slotno = SimpleLruReadPage(SerialSlruCtl, targetPage, true, xid); + + SerialValue(slotno, xid) = minConflictCommitSeqNo; + SerialSlruCtl->shared->page_dirty[slotno] = true; + + LWLockRelease(SerialSLRULock); +} + +/* + * Get the minimum commitSeqNo for any conflict out for the given xid. For + * a transaction which exists but has no conflict out, InvalidSerCommitSeqNo + * will be returned. + */ +static SerCommitSeqNo +SerialGetMinConflictCommitSeqNo(TransactionId xid) +{ + TransactionId headXid; + TransactionId tailXid; + SerCommitSeqNo val; + int slotno; + + Assert(TransactionIdIsValid(xid)); + + LWLockAcquire(SerialSLRULock, LW_SHARED); + headXid = serialControl->headXid; + tailXid = serialControl->tailXid; + LWLockRelease(SerialSLRULock); + + if (!TransactionIdIsValid(headXid)) + return 0; + + Assert(TransactionIdIsValid(tailXid)); + + if (TransactionIdPrecedes(xid, tailXid) + || TransactionIdFollows(xid, headXid)) + return 0; + + /* + * The following function must be called without holding SerialSLRULock, + * but will return with that lock held, which must then be released. + */ + slotno = SimpleLruReadPage_ReadOnly(SerialSlruCtl, + SerialPage(xid), xid); + val = SerialValue(slotno, xid); + LWLockRelease(SerialSLRULock); + return val; +} + +/* + * Call this whenever there is a new xmin for active serializable + * transactions. We don't need to keep information on transactions which + * precede that. InvalidTransactionId means none active, so everything in + * the SLRU can be discarded. + */ +static void +SerialSetActiveSerXmin(TransactionId xid) +{ + LWLockAcquire(SerialSLRULock, LW_EXCLUSIVE); + + /* + * When no sxacts are active, nothing overlaps, set the xid values to + * invalid to show that there are no valid entries. Don't clear headPage, + * though. A new xmin might still land on that page, and we don't want to + * repeatedly zero out the same page. + */ + if (!TransactionIdIsValid(xid)) + { + serialControl->tailXid = InvalidTransactionId; + serialControl->headXid = InvalidTransactionId; + LWLockRelease(SerialSLRULock); + return; + } + + /* + * When we're recovering prepared transactions, the global xmin might move + * backwards depending on the order they're recovered. Normally that's not + * OK, but during recovery no serializable transactions will commit, so + * the SLRU is empty and we can get away with it. + */ + if (RecoveryInProgress()) + { + Assert(serialControl->headPage < 0); + if (!TransactionIdIsValid(serialControl->tailXid) + || TransactionIdPrecedes(xid, serialControl->tailXid)) + { + serialControl->tailXid = xid; + } + LWLockRelease(SerialSLRULock); + return; + } + + Assert(!TransactionIdIsValid(serialControl->tailXid) + || TransactionIdFollows(xid, serialControl->tailXid)); + + serialControl->tailXid = xid; + + LWLockRelease(SerialSLRULock); +} + +/* + * Perform a checkpoint --- either during shutdown, or on-the-fly + * + * We don't have any data that needs to survive a restart, but this is a + * convenient place to truncate the SLRU. + */ +void +CheckPointPredicate(void) +{ + int tailPage; + + LWLockAcquire(SerialSLRULock, LW_EXCLUSIVE); + + /* Exit quickly if the SLRU is currently not in use. */ + if (serialControl->headPage < 0) + { + LWLockRelease(SerialSLRULock); + return; + } + + if (TransactionIdIsValid(serialControl->tailXid)) + { + /* We can truncate the SLRU up to the page containing tailXid */ + tailPage = SerialPage(serialControl->tailXid); + } + else + { + /*---------- + * The SLRU is no longer needed. Truncate to head before we set head + * invalid. + * + * XXX: It's possible that the SLRU is not needed again until XID + * wrap-around has happened, so that the segment containing headPage + * that we leave behind will appear to be new again. In that case it + * won't be removed until XID horizon advances enough to make it + * current again. + * + * XXX: This should happen in vac_truncate_clog(), not in checkpoints. + * Consider this scenario, starting from a system with no in-progress + * transactions and VACUUM FREEZE having maximized oldestXact: + * - Start a SERIALIZABLE transaction. + * - Start, finish, and summarize a SERIALIZABLE transaction, creating + * one SLRU page. + * - Consume XIDs to reach xidStopLimit. + * - Finish all transactions. Due to the long-running SERIALIZABLE + * transaction, earlier checkpoints did not touch headPage. The + * next checkpoint will change it, but that checkpoint happens after + * the end of the scenario. + * - VACUUM to advance XID limits. + * - Consume ~2M XIDs, crossing the former xidWrapLimit. + * - Start, finish, and summarize a SERIALIZABLE transaction. + * SerialAdd() declines to create the targetPage, because headPage + * is not regarded as in the past relative to that targetPage. The + * transaction instigating the summarize fails in + * SimpleLruReadPage(). + */ + tailPage = serialControl->headPage; + serialControl->headPage = -1; + } + + LWLockRelease(SerialSLRULock); + + /* Truncate away pages that are no longer required */ + SimpleLruTruncate(SerialSlruCtl, tailPage); + + /* + * Flush dirty SLRU pages to disk + * + * This is not actually necessary from a correctness point of view. We do + * it merely as a debugging aid. + * + * We're doing this after the truncation to avoid writing pages right + * before deleting the file in which they sit, which would be completely + * pointless. + */ + SimpleLruFlush(SerialSlruCtl, true); +} + +/*------------------------------------------------------------------------*/ + +/* + * InitPredicateLocks -- Initialize the predicate locking data structures. + * + * This is called from CreateSharedMemoryAndSemaphores(), which see for + * more comments. In the normal postmaster case, the shared hash tables + * are created here. Backends inherit the pointers + * to the shared tables via fork(). In the EXEC_BACKEND case, each + * backend re-executes this code to obtain pointers to the already existing + * shared hash tables. + */ +void +InitPredicateLocks(void) +{ + HASHCTL info; + long max_table_size; + Size requestSize; + bool found; + +#ifndef EXEC_BACKEND + Assert(!IsUnderPostmaster); +#endif + + /* + * Compute size of predicate lock target hashtable. Note these + * calculations must agree with PredicateLockShmemSize! + */ + max_table_size = NPREDICATELOCKTARGETENTS(); + + /* + * Allocate hash table for PREDICATELOCKTARGET structs. This stores + * per-predicate-lock-target information. + */ + MemSet(&info, 0, sizeof(info)); + info.keysize = sizeof(PREDICATELOCKTARGETTAG); + info.entrysize = sizeof(PREDICATELOCKTARGET); + info.num_partitions = NUM_PREDICATELOCK_PARTITIONS; + + PredicateLockTargetHash = ShmemInitHash("PREDICATELOCKTARGET hash", + max_table_size, + max_table_size, + &info, + HASH_ELEM | HASH_BLOBS | + HASH_PARTITION | HASH_FIXED_SIZE); + + /* + * Reserve a dummy entry in the hash table; we use it to make sure there's + * always one entry available when we need to split or combine a page, + * because running out of space there could mean aborting a + * non-serializable transaction. + */ + if (!IsUnderPostmaster) + { + (void) hash_search(PredicateLockTargetHash, &ScratchTargetTag, + HASH_ENTER, &found); + Assert(!found); + } + + /* Pre-calculate the hash and partition lock of the scratch entry */ + ScratchTargetTagHash = PredicateLockTargetTagHashCode(&ScratchTargetTag); + ScratchPartitionLock = PredicateLockHashPartitionLock(ScratchTargetTagHash); + + /* + * Allocate hash table for PREDICATELOCK structs. This stores per + * xact-lock-of-a-target information. + */ + MemSet(&info, 0, sizeof(info)); + info.keysize = sizeof(PREDICATELOCKTAG); + info.entrysize = sizeof(PREDICATELOCK); + info.hash = predicatelock_hash; + info.num_partitions = NUM_PREDICATELOCK_PARTITIONS; + + /* Assume an average of 2 xacts per target */ + max_table_size *= 2; + + PredicateLockHash = ShmemInitHash("PREDICATELOCK hash", + max_table_size, + max_table_size, + &info, + HASH_ELEM | HASH_FUNCTION | + HASH_PARTITION | HASH_FIXED_SIZE); + + /* + * Compute size for serializable transaction hashtable. Note these + * calculations must agree with PredicateLockShmemSize! + */ + max_table_size = (MaxBackends + max_prepared_xacts); + + /* + * Allocate a list to hold information on transactions participating in + * predicate locking. + * + * Assume an average of 10 predicate locking transactions per backend. + * This allows aggressive cleanup while detail is present before data must + * be summarized for storage in SLRU and the "dummy" transaction. + */ + max_table_size *= 10; + + PredXact = ShmemInitStruct("PredXactList", + PredXactListDataSize, + &found); + Assert(found == IsUnderPostmaster); + if (!found) + { + int i; + + SHMQueueInit(&PredXact->availableList); + SHMQueueInit(&PredXact->activeList); + PredXact->SxactGlobalXmin = InvalidTransactionId; + PredXact->SxactGlobalXminCount = 0; + PredXact->WritableSxactCount = 0; + PredXact->LastSxactCommitSeqNo = FirstNormalSerCommitSeqNo - 1; + PredXact->CanPartialClearThrough = 0; + PredXact->HavePartialClearedThrough = 0; + requestSize = mul_size((Size) max_table_size, + PredXactListElementDataSize); + PredXact->element = ShmemAlloc(requestSize); + /* Add all elements to available list, clean. */ + memset(PredXact->element, 0, requestSize); + for (i = 0; i < max_table_size; i++) + { + LWLockInitialize(&PredXact->element[i].sxact.perXactPredicateListLock, + LWTRANCHE_PER_XACT_PREDICATE_LIST); + SHMQueueInsertBefore(&(PredXact->availableList), + &(PredXact->element[i].link)); + } + PredXact->OldCommittedSxact = CreatePredXact(); + SetInvalidVirtualTransactionId(PredXact->OldCommittedSxact->vxid); + PredXact->OldCommittedSxact->prepareSeqNo = 0; + PredXact->OldCommittedSxact->commitSeqNo = 0; + PredXact->OldCommittedSxact->SeqNo.lastCommitBeforeSnapshot = 0; + SHMQueueInit(&PredXact->OldCommittedSxact->outConflicts); + SHMQueueInit(&PredXact->OldCommittedSxact->inConflicts); + SHMQueueInit(&PredXact->OldCommittedSxact->predicateLocks); + SHMQueueInit(&PredXact->OldCommittedSxact->finishedLink); + SHMQueueInit(&PredXact->OldCommittedSxact->possibleUnsafeConflicts); + PredXact->OldCommittedSxact->topXid = InvalidTransactionId; + PredXact->OldCommittedSxact->finishedBefore = InvalidTransactionId; + PredXact->OldCommittedSxact->xmin = InvalidTransactionId; + PredXact->OldCommittedSxact->flags = SXACT_FLAG_COMMITTED; + PredXact->OldCommittedSxact->pid = 0; + } + /* This never changes, so let's keep a local copy. */ + OldCommittedSxact = PredXact->OldCommittedSxact; + + /* + * Allocate hash table for SERIALIZABLEXID structs. This stores per-xid + * information for serializable transactions which have accessed data. + */ + MemSet(&info, 0, sizeof(info)); + info.keysize = sizeof(SERIALIZABLEXIDTAG); + info.entrysize = sizeof(SERIALIZABLEXID); + + SerializableXidHash = ShmemInitHash("SERIALIZABLEXID hash", + max_table_size, + max_table_size, + &info, + HASH_ELEM | HASH_BLOBS | + HASH_FIXED_SIZE); + + /* + * Allocate space for tracking rw-conflicts in lists attached to the + * transactions. + * + * Assume an average of 5 conflicts per transaction. Calculations suggest + * that this will prevent resource exhaustion in even the most pessimal + * loads up to max_connections = 200 with all 200 connections pounding the + * database with serializable transactions. Beyond that, there may be + * occasional transactions canceled when trying to flag conflicts. That's + * probably OK. + */ + max_table_size *= 5; + + RWConflictPool = ShmemInitStruct("RWConflictPool", + RWConflictPoolHeaderDataSize, + &found); + Assert(found == IsUnderPostmaster); + if (!found) + { + int i; + + SHMQueueInit(&RWConflictPool->availableList); + requestSize = mul_size((Size) max_table_size, + RWConflictDataSize); + RWConflictPool->element = ShmemAlloc(requestSize); + /* Add all elements to available list, clean. */ + memset(RWConflictPool->element, 0, requestSize); + for (i = 0; i < max_table_size; i++) + { + SHMQueueInsertBefore(&(RWConflictPool->availableList), + &(RWConflictPool->element[i].outLink)); + } + } + + /* + * Create or attach to the header for the list of finished serializable + * transactions. + */ + FinishedSerializableTransactions = (SHM_QUEUE *) + ShmemInitStruct("FinishedSerializableTransactions", + sizeof(SHM_QUEUE), + &found); + Assert(found == IsUnderPostmaster); + if (!found) + SHMQueueInit(FinishedSerializableTransactions); + + /* + * Initialize the SLRU storage for old committed serializable + * transactions. + */ + SerialInit(); +} + +/* + * Estimate shared-memory space used for predicate lock table + */ +Size +PredicateLockShmemSize(void) +{ + Size size = 0; + long max_table_size; + + /* predicate lock target hash table */ + max_table_size = NPREDICATELOCKTARGETENTS(); + size = add_size(size, hash_estimate_size(max_table_size, + sizeof(PREDICATELOCKTARGET))); + + /* predicate lock hash table */ + max_table_size *= 2; + size = add_size(size, hash_estimate_size(max_table_size, + sizeof(PREDICATELOCK))); + + /* + * Since NPREDICATELOCKTARGETENTS is only an estimate, add 10% safety + * margin. + */ + size = add_size(size, size / 10); + + /* transaction list */ + max_table_size = MaxBackends + max_prepared_xacts; + max_table_size *= 10; + size = add_size(size, PredXactListDataSize); + size = add_size(size, mul_size((Size) max_table_size, + PredXactListElementDataSize)); + + /* transaction xid table */ + size = add_size(size, hash_estimate_size(max_table_size, + sizeof(SERIALIZABLEXID))); + + /* rw-conflict pool */ + max_table_size *= 5; + size = add_size(size, RWConflictPoolHeaderDataSize); + size = add_size(size, mul_size((Size) max_table_size, + RWConflictDataSize)); + + /* Head for list of finished serializable transactions. */ + size = add_size(size, sizeof(SHM_QUEUE)); + + /* Shared memory structures for SLRU tracking of old committed xids. */ + size = add_size(size, sizeof(SerialControlData)); + size = add_size(size, SimpleLruShmemSize(NUM_SERIAL_BUFFERS, 0)); + + return size; +} + + +/* + * Compute the hash code associated with a PREDICATELOCKTAG. + * + * Because we want to use just one set of partition locks for both the + * PREDICATELOCKTARGET and PREDICATELOCK hash tables, we have to make sure + * that PREDICATELOCKs fall into the same partition number as their + * associated PREDICATELOCKTARGETs. dynahash.c expects the partition number + * to be the low-order bits of the hash code, and therefore a + * PREDICATELOCKTAG's hash code must have the same low-order bits as the + * associated PREDICATELOCKTARGETTAG's hash code. We achieve this with this + * specialized hash function. + */ +static uint32 +predicatelock_hash(const void *key, Size keysize) +{ + const PREDICATELOCKTAG *predicatelocktag = (const PREDICATELOCKTAG *) key; + uint32 targethash; + + Assert(keysize == sizeof(PREDICATELOCKTAG)); + + /* Look into the associated target object, and compute its hash code */ + targethash = PredicateLockTargetTagHashCode(&predicatelocktag->myTarget->tag); + + return PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash); +} + + +/* + * GetPredicateLockStatusData + * Return a table containing the internal state of the predicate + * lock manager for use in pg_lock_status. + * + * Like GetLockStatusData, this function tries to hold the partition LWLocks + * for as short a time as possible by returning two arrays that simply + * contain the PREDICATELOCKTARGETTAG and SERIALIZABLEXACT for each lock + * table entry. Multiple copies of the same PREDICATELOCKTARGETTAG and + * SERIALIZABLEXACT will likely appear. + */ +PredicateLockData * +GetPredicateLockStatusData(void) +{ + PredicateLockData *data; + int i; + int els, + el; + HASH_SEQ_STATUS seqstat; + PREDICATELOCK *predlock; + + data = (PredicateLockData *) palloc(sizeof(PredicateLockData)); + + /* + * To ensure consistency, take simultaneous locks on all partition locks + * in ascending order, then SerializableXactHashLock. + */ + for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++) + LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED); + LWLockAcquire(SerializableXactHashLock, LW_SHARED); + + /* Get number of locks and allocate appropriately-sized arrays. */ + els = hash_get_num_entries(PredicateLockHash); + data->nelements = els; + data->locktags = (PREDICATELOCKTARGETTAG *) + palloc(sizeof(PREDICATELOCKTARGETTAG) * els); + data->xacts = (SERIALIZABLEXACT *) + palloc(sizeof(SERIALIZABLEXACT) * els); + + + /* Scan through PredicateLockHash and copy contents */ + hash_seq_init(&seqstat, PredicateLockHash); + + el = 0; + + while ((predlock = (PREDICATELOCK *) hash_seq_search(&seqstat))) + { + data->locktags[el] = predlock->tag.myTarget->tag; + data->xacts[el] = *predlock->tag.myXact; + el++; + } + + Assert(el == els); + + /* Release locks in reverse order */ + LWLockRelease(SerializableXactHashLock); + for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--) + LWLockRelease(PredicateLockHashPartitionLockByIndex(i)); + + return data; +} + +/* + * Free up shared memory structures by pushing the oldest sxact (the one at + * the front of the SummarizeOldestCommittedSxact queue) into summary form. + * Each call will free exactly one SERIALIZABLEXACT structure and may also + * free one or more of these structures: SERIALIZABLEXID, PREDICATELOCK, + * PREDICATELOCKTARGET, RWConflictData. + */ +static void +SummarizeOldestCommittedSxact(void) +{ + SERIALIZABLEXACT *sxact; + + LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE); + + /* + * This function is only called if there are no sxact slots available. + * Some of them must belong to old, already-finished transactions, so + * there should be something in FinishedSerializableTransactions list that + * we can summarize. However, there's a race condition: while we were not + * holding any locks, a transaction might have ended and cleaned up all + * the finished sxact entries already, freeing up their sxact slots. In + * that case, we have nothing to do here. The caller will find one of the + * slots released by the other backend when it retries. + */ + if (SHMQueueEmpty(FinishedSerializableTransactions)) + { + LWLockRelease(SerializableFinishedListLock); + return; + } + + /* + * Grab the first sxact off the finished list -- this will be the earliest + * commit. Remove it from the list. + */ + sxact = (SERIALIZABLEXACT *) + SHMQueueNext(FinishedSerializableTransactions, + FinishedSerializableTransactions, + offsetof(SERIALIZABLEXACT, finishedLink)); + SHMQueueDelete(&(sxact->finishedLink)); + + /* Add to SLRU summary information. */ + if (TransactionIdIsValid(sxact->topXid) && !SxactIsReadOnly(sxact)) + SerialAdd(sxact->topXid, SxactHasConflictOut(sxact) + ? sxact->SeqNo.earliestOutConflictCommit : InvalidSerCommitSeqNo); + + /* Summarize and release the detail. */ + ReleaseOneSerializableXact(sxact, false, true); + + LWLockRelease(SerializableFinishedListLock); +} + +/* + * GetSafeSnapshot + * Obtain and register a snapshot for a READ ONLY DEFERRABLE + * transaction. Ensures that the snapshot is "safe", i.e. a + * read-only transaction running on it can execute serializably + * without further checks. This requires waiting for concurrent + * transactions to complete, and retrying with a new snapshot if + * one of them could possibly create a conflict. + * + * As with GetSerializableTransactionSnapshot (which this is a subroutine + * for), the passed-in Snapshot pointer should reference a static data + * area that can safely be passed to GetSnapshotData. + */ +static Snapshot +GetSafeSnapshot(Snapshot origSnapshot) +{ + Snapshot snapshot; + + Assert(XactReadOnly && XactDeferrable); + + while (true) + { + /* + * GetSerializableTransactionSnapshotInt is going to call + * GetSnapshotData, so we need to provide it the static snapshot area + * our caller passed to us. The pointer returned is actually the same + * one passed to it, but we avoid assuming that here. + */ + snapshot = GetSerializableTransactionSnapshotInt(origSnapshot, + NULL, InvalidPid); + + if (MySerializableXact == InvalidSerializableXact) + return snapshot; /* no concurrent r/w xacts; it's safe */ + + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + + /* + * Wait for concurrent transactions to finish. Stop early if one of + * them marked us as conflicted. + */ + MySerializableXact->flags |= SXACT_FLAG_DEFERRABLE_WAITING; + while (!(SHMQueueEmpty(&MySerializableXact->possibleUnsafeConflicts) || + SxactIsROUnsafe(MySerializableXact))) + { + LWLockRelease(SerializableXactHashLock); + ProcWaitForSignal(WAIT_EVENT_SAFE_SNAPSHOT); + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + } + MySerializableXact->flags &= ~SXACT_FLAG_DEFERRABLE_WAITING; + + if (!SxactIsROUnsafe(MySerializableXact)) + { + LWLockRelease(SerializableXactHashLock); + break; /* success */ + } + + LWLockRelease(SerializableXactHashLock); + + /* else, need to retry... */ + ereport(DEBUG2, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("deferrable snapshot was unsafe; trying a new one"))); + ReleasePredicateLocks(false, false); + } + + /* + * Now we have a safe snapshot, so we don't need to do any further checks. + */ + Assert(SxactIsROSafe(MySerializableXact)); + ReleasePredicateLocks(false, true); + + return snapshot; +} + +/* + * GetSafeSnapshotBlockingPids + * If the specified process is currently blocked in GetSafeSnapshot, + * write the process IDs of all processes that it is blocked by + * into the caller-supplied buffer output[]. The list is truncated at + * output_size, and the number of PIDs written into the buffer is + * returned. Returns zero if the given PID is not currently blocked + * in GetSafeSnapshot. + */ +int +GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size) +{ + int num_written = 0; + SERIALIZABLEXACT *sxact; + + LWLockAcquire(SerializableXactHashLock, LW_SHARED); + + /* Find blocked_pid's SERIALIZABLEXACT by linear search. */ + for (sxact = FirstPredXact(); sxact != NULL; sxact = NextPredXact(sxact)) + { + if (sxact->pid == blocked_pid) + break; + } + + /* Did we find it, and is it currently waiting in GetSafeSnapshot? */ + if (sxact != NULL && SxactIsDeferrableWaiting(sxact)) + { + RWConflict possibleUnsafeConflict; + + /* Traverse the list of possible unsafe conflicts collecting PIDs. */ + possibleUnsafeConflict = (RWConflict) + SHMQueueNext(&sxact->possibleUnsafeConflicts, + &sxact->possibleUnsafeConflicts, + offsetof(RWConflictData, inLink)); + + while (possibleUnsafeConflict != NULL && num_written < output_size) + { + output[num_written++] = possibleUnsafeConflict->sxactOut->pid; + possibleUnsafeConflict = (RWConflict) + SHMQueueNext(&sxact->possibleUnsafeConflicts, + &possibleUnsafeConflict->inLink, + offsetof(RWConflictData, inLink)); + } + } + + LWLockRelease(SerializableXactHashLock); + + return num_written; +} + +/* + * Acquire a snapshot that can be used for the current transaction. + * + * Make sure we have a SERIALIZABLEXACT reference in MySerializableXact. + * It should be current for this process and be contained in PredXact. + * + * The passed-in Snapshot pointer should reference a static data area that + * can safely be passed to GetSnapshotData. The return value is actually + * always this same pointer; no new snapshot data structure is allocated + * within this function. + */ +Snapshot +GetSerializableTransactionSnapshot(Snapshot snapshot) +{ + Assert(IsolationIsSerializable()); + + /* + * Can't use serializable mode while recovery is still active, as it is, + * for example, on a hot standby. We could get here despite the check in + * check_XactIsoLevel() if default_transaction_isolation is set to + * serializable, so phrase the hint accordingly. + */ + if (RecoveryInProgress()) + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot use serializable mode in a hot standby"), + errdetail("\"default_transaction_isolation\" is set to \"serializable\"."), + errhint("You can use \"SET default_transaction_isolation = 'repeatable read'\" to change the default."))); + + /* + * A special optimization is available for SERIALIZABLE READ ONLY + * DEFERRABLE transactions -- we can wait for a suitable snapshot and + * thereby avoid all SSI overhead once it's running. + */ + if (XactReadOnly && XactDeferrable) + return GetSafeSnapshot(snapshot); + + return GetSerializableTransactionSnapshotInt(snapshot, + NULL, InvalidPid); +} + +/* + * Import a snapshot to be used for the current transaction. + * + * This is nearly the same as GetSerializableTransactionSnapshot, except that + * we don't take a new snapshot, but rather use the data we're handed. + * + * The caller must have verified that the snapshot came from a serializable + * transaction; and if we're read-write, the source transaction must not be + * read-only. + */ +void +SetSerializableTransactionSnapshot(Snapshot snapshot, + VirtualTransactionId *sourcevxid, + int sourcepid) +{ + Assert(IsolationIsSerializable()); + + /* + * If this is called by parallel.c in a parallel worker, we don't want to + * create a SERIALIZABLEXACT just yet because the leader's + * SERIALIZABLEXACT will be installed with AttachSerializableXact(). We + * also don't want to reject SERIALIZABLE READ ONLY DEFERRABLE in this + * case, because the leader has already determined that the snapshot it + * has passed us is safe. So there is nothing for us to do. + */ + if (IsParallelWorker()) + return; + + /* + * We do not allow SERIALIZABLE READ ONLY DEFERRABLE transactions to + * import snapshots, since there's no way to wait for a safe snapshot when + * we're using the snap we're told to. (XXX instead of throwing an error, + * we could just ignore the XactDeferrable flag?) + */ + if (XactReadOnly && XactDeferrable) + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("a snapshot-importing transaction must not be READ ONLY DEFERRABLE"))); + + (void) GetSerializableTransactionSnapshotInt(snapshot, sourcevxid, + sourcepid); +} + +/* + * Guts of GetSerializableTransactionSnapshot + * + * If sourcevxid is valid, this is actually an import operation and we should + * skip calling GetSnapshotData, because the snapshot contents are already + * loaded up. HOWEVER: to avoid race conditions, we must check that the + * source xact is still running after we acquire SerializableXactHashLock. + * We do that by calling ProcArrayInstallImportedXmin. + */ +static Snapshot +GetSerializableTransactionSnapshotInt(Snapshot snapshot, + VirtualTransactionId *sourcevxid, + int sourcepid) +{ + PGPROC *proc; + VirtualTransactionId vxid; + SERIALIZABLEXACT *sxact, + *othersxact; + + /* We only do this for serializable transactions. Once. */ + Assert(MySerializableXact == InvalidSerializableXact); + + Assert(!RecoveryInProgress()); + + /* + * Since all parts of a serializable transaction must use the same + * snapshot, it is too late to establish one after a parallel operation + * has begun. + */ + if (IsInParallelMode()) + elog(ERROR, "cannot establish serializable snapshot during a parallel operation"); + + proc = MyProc; + Assert(proc != NULL); + GET_VXID_FROM_PGPROC(vxid, *proc); + + /* + * First we get the sxact structure, which may involve looping and access + * to the "finished" list to free a structure for use. + * + * We must hold SerializableXactHashLock when taking/checking the snapshot + * to avoid race conditions, for much the same reasons that + * GetSnapshotData takes the ProcArrayLock. Since we might have to + * release SerializableXactHashLock to call SummarizeOldestCommittedSxact, + * this means we have to create the sxact first, which is a bit annoying + * (in particular, an elog(ERROR) in procarray.c would cause us to leak + * the sxact). Consider refactoring to avoid this. + */ +#ifdef TEST_SUMMARIZE_SERIAL + SummarizeOldestCommittedSxact(); +#endif + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + do + { + sxact = CreatePredXact(); + /* If null, push out committed sxact to SLRU summary & retry. */ + if (!sxact) + { + LWLockRelease(SerializableXactHashLock); + SummarizeOldestCommittedSxact(); + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + } + } while (!sxact); + + /* Get the snapshot, or check that it's safe to use */ + if (!sourcevxid) + snapshot = GetSnapshotData(snapshot); + else if (!ProcArrayInstallImportedXmin(snapshot->xmin, sourcevxid)) + { + ReleasePredXact(sxact); + LWLockRelease(SerializableXactHashLock); + ereport(ERROR, + (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), + errmsg("could not import the requested snapshot"), + errdetail("The source process with PID %d is not running anymore.", + sourcepid))); + } + + /* + * If there are no serializable transactions which are not read-only, we + * can "opt out" of predicate locking and conflict checking for a + * read-only transaction. + * + * The reason this is safe is that a read-only transaction can only become + * part of a dangerous structure if it overlaps a writable transaction + * which in turn overlaps a writable transaction which committed before + * the read-only transaction started. A new writable transaction can + * overlap this one, but it can't meet the other condition of overlapping + * a transaction which committed before this one started. + */ + if (XactReadOnly && PredXact->WritableSxactCount == 0) + { + ReleasePredXact(sxact); + LWLockRelease(SerializableXactHashLock); + return snapshot; + } + + /* Maintain serializable global xmin info. */ + if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)) + { + Assert(PredXact->SxactGlobalXminCount == 0); + PredXact->SxactGlobalXmin = snapshot->xmin; + PredXact->SxactGlobalXminCount = 1; + SerialSetActiveSerXmin(snapshot->xmin); + } + else if (TransactionIdEquals(snapshot->xmin, PredXact->SxactGlobalXmin)) + { + Assert(PredXact->SxactGlobalXminCount > 0); + PredXact->SxactGlobalXminCount++; + } + else + { + Assert(TransactionIdFollows(snapshot->xmin, PredXact->SxactGlobalXmin)); + } + + /* Initialize the structure. */ + sxact->vxid = vxid; + sxact->SeqNo.lastCommitBeforeSnapshot = PredXact->LastSxactCommitSeqNo; + sxact->prepareSeqNo = InvalidSerCommitSeqNo; + sxact->commitSeqNo = InvalidSerCommitSeqNo; + SHMQueueInit(&(sxact->outConflicts)); + SHMQueueInit(&(sxact->inConflicts)); + SHMQueueInit(&(sxact->possibleUnsafeConflicts)); + sxact->topXid = GetTopTransactionIdIfAny(); + sxact->finishedBefore = InvalidTransactionId; + sxact->xmin = snapshot->xmin; + sxact->pid = MyProcPid; + SHMQueueInit(&(sxact->predicateLocks)); + SHMQueueElemInit(&(sxact->finishedLink)); + sxact->flags = 0; + if (XactReadOnly) + { + sxact->flags |= SXACT_FLAG_READ_ONLY; + + /* + * Register all concurrent r/w transactions as possible conflicts; if + * all of them commit without any outgoing conflicts to earlier + * transactions then this snapshot can be deemed safe (and we can run + * without tracking predicate locks). + */ + for (othersxact = FirstPredXact(); + othersxact != NULL; + othersxact = NextPredXact(othersxact)) + { + if (!SxactIsCommitted(othersxact) + && !SxactIsDoomed(othersxact) + && !SxactIsReadOnly(othersxact)) + { + SetPossibleUnsafeConflict(sxact, othersxact); + } + } + } + else + { + ++(PredXact->WritableSxactCount); + Assert(PredXact->WritableSxactCount <= + (MaxBackends + max_prepared_xacts)); + } + + MySerializableXact = sxact; + MyXactDidWrite = false; /* haven't written anything yet */ + + LWLockRelease(SerializableXactHashLock); + + CreateLocalPredicateLockHash(); + + return snapshot; +} + +static void +CreateLocalPredicateLockHash(void) +{ + HASHCTL hash_ctl; + + /* Initialize the backend-local hash table of parent locks */ + Assert(LocalPredicateLockHash == NULL); + MemSet(&hash_ctl, 0, sizeof(hash_ctl)); + hash_ctl.keysize = sizeof(PREDICATELOCKTARGETTAG); + hash_ctl.entrysize = sizeof(LOCALPREDICATELOCK); + LocalPredicateLockHash = hash_create("Local predicate lock", + max_predicate_locks_per_xact, + &hash_ctl, + HASH_ELEM | HASH_BLOBS); +} + +/* + * Register the top level XID in SerializableXidHash. + * Also store it for easy reference in MySerializableXact. + */ +void +RegisterPredicateLockingXid(TransactionId xid) +{ + SERIALIZABLEXIDTAG sxidtag; + SERIALIZABLEXID *sxid; + bool found; + + /* + * If we're not tracking predicate lock data for this transaction, we + * should ignore the request and return quickly. + */ + if (MySerializableXact == InvalidSerializableXact) + return; + + /* We should have a valid XID and be at the top level. */ + Assert(TransactionIdIsValid(xid)); + + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + + /* This should only be done once per transaction. */ + Assert(MySerializableXact->topXid == InvalidTransactionId); + + MySerializableXact->topXid = xid; + + sxidtag.xid = xid; + sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash, + &sxidtag, + HASH_ENTER, &found); + Assert(!found); + + /* Initialize the structure. */ + sxid->myXact = MySerializableXact; + LWLockRelease(SerializableXactHashLock); +} + + +/* + * Check whether there are any predicate locks held by any transaction + * for the page at the given block number. + * + * Note that the transaction may be completed but not yet subject to + * cleanup due to overlapping serializable transactions. This must + * return valid information regardless of transaction isolation level. + * + * Also note that this doesn't check for a conflicting relation lock, + * just a lock specifically on the given page. + * + * One use is to support proper behavior during GiST index vacuum. + */ +bool +PageIsPredicateLocked(Relation relation, BlockNumber blkno) +{ + PREDICATELOCKTARGETTAG targettag; + uint32 targettaghash; + LWLock *partitionLock; + PREDICATELOCKTARGET *target; + + SET_PREDICATELOCKTARGETTAG_PAGE(targettag, + relation->rd_node.dbNode, + relation->rd_id, + blkno); + + targettaghash = PredicateLockTargetTagHashCode(&targettag); + partitionLock = PredicateLockHashPartitionLock(targettaghash); + LWLockAcquire(partitionLock, LW_SHARED); + target = (PREDICATELOCKTARGET *) + hash_search_with_hash_value(PredicateLockTargetHash, + &targettag, targettaghash, + HASH_FIND, NULL); + LWLockRelease(partitionLock); + + return (target != NULL); +} + + +/* + * Check whether a particular lock is held by this transaction. + * + * Important note: this function may return false even if the lock is + * being held, because it uses the local lock table which is not + * updated if another transaction modifies our lock list (e.g. to + * split an index page). It can also return true when a coarser + * granularity lock that covers this target is being held. Be careful + * to only use this function in circumstances where such errors are + * acceptable! + */ +static bool +PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag) +{ + LOCALPREDICATELOCK *lock; + + /* check local hash table */ + lock = (LOCALPREDICATELOCK *) hash_search(LocalPredicateLockHash, + targettag, + HASH_FIND, NULL); + + if (!lock) + return false; + + /* + * Found entry in the table, but still need to check whether it's actually + * held -- it could just be a parent of some held lock. + */ + return lock->held; +} + +/* + * Return the parent lock tag in the lock hierarchy: the next coarser + * lock that covers the provided tag. + * + * Returns true and sets *parent to the parent tag if one exists, + * returns false if none exists. + */ +static bool +GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag, + PREDICATELOCKTARGETTAG *parent) +{ + switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag)) + { + case PREDLOCKTAG_RELATION: + /* relation locks have no parent lock */ + return false; + + case PREDLOCKTAG_PAGE: + /* parent lock is relation lock */ + SET_PREDICATELOCKTARGETTAG_RELATION(*parent, + GET_PREDICATELOCKTARGETTAG_DB(*tag), + GET_PREDICATELOCKTARGETTAG_RELATION(*tag)); + + return true; + + case PREDLOCKTAG_TUPLE: + /* parent lock is page lock */ + SET_PREDICATELOCKTARGETTAG_PAGE(*parent, + GET_PREDICATELOCKTARGETTAG_DB(*tag), + GET_PREDICATELOCKTARGETTAG_RELATION(*tag), + GET_PREDICATELOCKTARGETTAG_PAGE(*tag)); + return true; + } + + /* not reachable */ + Assert(false); + return false; +} + +/* + * Check whether the lock we are considering is already covered by a + * coarser lock for our transaction. + * + * Like PredicateLockExists, this function might return a false + * negative, but it will never return a false positive. + */ +static bool +CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag) +{ + PREDICATELOCKTARGETTAG targettag, + parenttag; + + targettag = *newtargettag; + + /* check parents iteratively until no more */ + while (GetParentPredicateLockTag(&targettag, &parenttag)) + { + targettag = parenttag; + if (PredicateLockExists(&targettag)) + return true; + } + + /* no more parents to check; lock is not covered */ + return false; +} + +/* + * Remove the dummy entry from the predicate lock target hash, to free up some + * scratch space. The caller must be holding SerializablePredicateListLock, + * and must restore the entry with RestoreScratchTarget() before releasing the + * lock. + * + * If lockheld is true, the caller is already holding the partition lock + * of the partition containing the scratch entry. + */ +static void +RemoveScratchTarget(bool lockheld) +{ + bool found; + + Assert(LWLockHeldByMe(SerializablePredicateListLock)); + + if (!lockheld) + LWLockAcquire(ScratchPartitionLock, LW_EXCLUSIVE); + hash_search_with_hash_value(PredicateLockTargetHash, + &ScratchTargetTag, + ScratchTargetTagHash, + HASH_REMOVE, &found); + Assert(found); + if (!lockheld) + LWLockRelease(ScratchPartitionLock); +} + +/* + * Re-insert the dummy entry in predicate lock target hash. + */ +static void +RestoreScratchTarget(bool lockheld) +{ + bool found; + + Assert(LWLockHeldByMe(SerializablePredicateListLock)); + + if (!lockheld) + LWLockAcquire(ScratchPartitionLock, LW_EXCLUSIVE); + hash_search_with_hash_value(PredicateLockTargetHash, + &ScratchTargetTag, + ScratchTargetTagHash, + HASH_ENTER, &found); + Assert(!found); + if (!lockheld) + LWLockRelease(ScratchPartitionLock); +} + +/* + * Check whether the list of related predicate locks is empty for a + * predicate lock target, and remove the target if it is. + */ +static void +RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash) +{ + PREDICATELOCKTARGET *rmtarget PG_USED_FOR_ASSERTS_ONLY; + + Assert(LWLockHeldByMe(SerializablePredicateListLock)); + + /* Can't remove it until no locks at this target. */ + if (!SHMQueueEmpty(&target->predicateLocks)) + return; + + /* Actually remove the target. */ + rmtarget = hash_search_with_hash_value(PredicateLockTargetHash, + &target->tag, + targettaghash, + HASH_REMOVE, NULL); + Assert(rmtarget == target); +} + +/* + * Delete child target locks owned by this process. + * This implementation is assuming that the usage of each target tag field + * is uniform. No need to make this hard if we don't have to. + * + * We acquire an LWLock in the case of parallel mode, because worker + * backends have access to the leader's SERIALIZABLEXACT. Otherwise, + * we aren't acquiring LWLocks for the predicate lock or lock + * target structures associated with this transaction unless we're going + * to modify them, because no other process is permitted to modify our + * locks. + */ +static void +DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag) +{ + SERIALIZABLEXACT *sxact; + PREDICATELOCK *predlock; + + LWLockAcquire(SerializablePredicateListLock, LW_SHARED); + sxact = MySerializableXact; + if (IsInParallelMode()) + LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE); + predlock = (PREDICATELOCK *) + SHMQueueNext(&(sxact->predicateLocks), + &(sxact->predicateLocks), + offsetof(PREDICATELOCK, xactLink)); + while (predlock) + { + SHM_QUEUE *predlocksxactlink; + PREDICATELOCK *nextpredlock; + PREDICATELOCKTAG oldlocktag; + PREDICATELOCKTARGET *oldtarget; + PREDICATELOCKTARGETTAG oldtargettag; + + predlocksxactlink = &(predlock->xactLink); + nextpredlock = (PREDICATELOCK *) + SHMQueueNext(&(sxact->predicateLocks), + predlocksxactlink, + offsetof(PREDICATELOCK, xactLink)); + + oldlocktag = predlock->tag; + Assert(oldlocktag.myXact == sxact); + oldtarget = oldlocktag.myTarget; + oldtargettag = oldtarget->tag; + + if (TargetTagIsCoveredBy(oldtargettag, *newtargettag)) + { + uint32 oldtargettaghash; + LWLock *partitionLock; + PREDICATELOCK *rmpredlock PG_USED_FOR_ASSERTS_ONLY; + + oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag); + partitionLock = PredicateLockHashPartitionLock(oldtargettaghash); + + LWLockAcquire(partitionLock, LW_EXCLUSIVE); + + SHMQueueDelete(predlocksxactlink); + SHMQueueDelete(&(predlock->targetLink)); + rmpredlock = hash_search_with_hash_value + (PredicateLockHash, + &oldlocktag, + PredicateLockHashCodeFromTargetHashCode(&oldlocktag, + oldtargettaghash), + HASH_REMOVE, NULL); + Assert(rmpredlock == predlock); + + RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash); + + LWLockRelease(partitionLock); + + DecrementParentLocks(&oldtargettag); + } + + predlock = nextpredlock; + } + if (IsInParallelMode()) + LWLockRelease(&sxact->perXactPredicateListLock); + LWLockRelease(SerializablePredicateListLock); +} + +/* + * Returns the promotion limit for a given predicate lock target. This is the + * max number of descendant locks allowed before promoting to the specified + * tag. Note that the limit includes non-direct descendants (e.g., both tuples + * and pages for a relation lock). + * + * Currently the default limit is 2 for a page lock, and half of the value of + * max_pred_locks_per_transaction - 1 for a relation lock, to match behavior + * of earlier releases when upgrading. + * + * TODO SSI: We should probably add additional GUCs to allow a maximum ratio + * of page and tuple locks based on the pages in a relation, and the maximum + * ratio of tuple locks to tuples in a page. This would provide more + * generally "balanced" allocation of locks to where they are most useful, + * while still allowing the absolute numbers to prevent one relation from + * tying up all predicate lock resources. + */ +static int +MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag) +{ + switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag)) + { + case PREDLOCKTAG_RELATION: + return max_predicate_locks_per_relation < 0 + ? (max_predicate_locks_per_xact + / (-max_predicate_locks_per_relation)) - 1 + : max_predicate_locks_per_relation; + + case PREDLOCKTAG_PAGE: + return max_predicate_locks_per_page; + + case PREDLOCKTAG_TUPLE: + + /* + * not reachable: nothing is finer-granularity than a tuple, so we + * should never try to promote to it. + */ + Assert(false); + return 0; + } + + /* not reachable */ + Assert(false); + return 0; +} + +/* + * For all ancestors of a newly-acquired predicate lock, increment + * their child count in the parent hash table. If any of them have + * more descendants than their promotion threshold, acquire the + * coarsest such lock. + * + * Returns true if a parent lock was acquired and false otherwise. + */ +static bool +CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag) +{ + PREDICATELOCKTARGETTAG targettag, + nexttag, + promotiontag; + LOCALPREDICATELOCK *parentlock; + bool found, + promote; + + promote = false; + + targettag = *reqtag; + + /* check parents iteratively */ + while (GetParentPredicateLockTag(&targettag, &nexttag)) + { + targettag = nexttag; + parentlock = (LOCALPREDICATELOCK *) hash_search(LocalPredicateLockHash, + &targettag, + HASH_ENTER, + &found); + if (!found) + { + parentlock->held = false; + parentlock->childLocks = 1; + } + else + parentlock->childLocks++; + + if (parentlock->childLocks > + MaxPredicateChildLocks(&targettag)) + { + /* + * We should promote to this parent lock. Continue to check its + * ancestors, however, both to get their child counts right and to + * check whether we should just go ahead and promote to one of + * them. + */ + promotiontag = targettag; + promote = true; + } + } + + if (promote) + { + /* acquire coarsest ancestor eligible for promotion */ + PredicateLockAcquire(&promotiontag); + return true; + } + else + return false; +} + +/* + * When releasing a lock, decrement the child count on all ancestor + * locks. + * + * This is called only when releasing a lock via + * DeleteChildTargetLocks (i.e. when a lock becomes redundant because + * we've acquired its parent, possibly due to promotion) or when a new + * MVCC write lock makes the predicate lock unnecessary. There's no + * point in calling it when locks are released at transaction end, as + * this information is no longer needed. + */ +static void +DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag) +{ + PREDICATELOCKTARGETTAG parenttag, + nexttag; + + parenttag = *targettag; + + while (GetParentPredicateLockTag(&parenttag, &nexttag)) + { + uint32 targettaghash; + LOCALPREDICATELOCK *parentlock, + *rmlock PG_USED_FOR_ASSERTS_ONLY; + + parenttag = nexttag; + targettaghash = PredicateLockTargetTagHashCode(&parenttag); + parentlock = (LOCALPREDICATELOCK *) + hash_search_with_hash_value(LocalPredicateLockHash, + &parenttag, targettaghash, + HASH_FIND, NULL); + + /* + * There's a small chance the parent lock doesn't exist in the lock + * table. This can happen if we prematurely removed it because an + * index split caused the child refcount to be off. + */ + if (parentlock == NULL) + continue; + + parentlock->childLocks--; + + /* + * Under similar circumstances the parent lock's refcount might be + * zero. This only happens if we're holding that lock (otherwise we + * would have removed the entry). + */ + if (parentlock->childLocks < 0) + { + Assert(parentlock->held); + parentlock->childLocks = 0; + } + + if ((parentlock->childLocks == 0) && (!parentlock->held)) + { + rmlock = (LOCALPREDICATELOCK *) + hash_search_with_hash_value(LocalPredicateLockHash, + &parenttag, targettaghash, + HASH_REMOVE, NULL); + Assert(rmlock == parentlock); + } + } +} + +/* + * Indicate that a predicate lock on the given target is held by the + * specified transaction. Has no effect if the lock is already held. + * + * This updates the lock table and the sxact's lock list, and creates + * the lock target if necessary, but does *not* do anything related to + * granularity promotion or the local lock table. See + * PredicateLockAcquire for that. + */ +static void +CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag, + uint32 targettaghash, + SERIALIZABLEXACT *sxact) +{ + PREDICATELOCKTARGET *target; + PREDICATELOCKTAG locktag; + PREDICATELOCK *lock; + LWLock *partitionLock; + bool found; + + partitionLock = PredicateLockHashPartitionLock(targettaghash); + + LWLockAcquire(SerializablePredicateListLock, LW_SHARED); + if (IsInParallelMode()) + LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE); + LWLockAcquire(partitionLock, LW_EXCLUSIVE); + + /* Make sure that the target is represented. */ + target = (PREDICATELOCKTARGET *) + hash_search_with_hash_value(PredicateLockTargetHash, + targettag, targettaghash, + HASH_ENTER_NULL, &found); + if (!target) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("out of shared memory"), + errhint("You might need to increase max_pred_locks_per_transaction."))); + if (!found) + SHMQueueInit(&(target->predicateLocks)); + + /* We've got the sxact and target, make sure they're joined. */ + locktag.myTarget = target; + locktag.myXact = sxact; + lock = (PREDICATELOCK *) + hash_search_with_hash_value(PredicateLockHash, &locktag, + PredicateLockHashCodeFromTargetHashCode(&locktag, targettaghash), + HASH_ENTER_NULL, &found); + if (!lock) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("out of shared memory"), + errhint("You might need to increase max_pred_locks_per_transaction."))); + + if (!found) + { + SHMQueueInsertBefore(&(target->predicateLocks), &(lock->targetLink)); + SHMQueueInsertBefore(&(sxact->predicateLocks), + &(lock->xactLink)); + lock->commitSeqNo = InvalidSerCommitSeqNo; + } + + LWLockRelease(partitionLock); + if (IsInParallelMode()) + LWLockRelease(&sxact->perXactPredicateListLock); + LWLockRelease(SerializablePredicateListLock); +} + +/* + * Acquire a predicate lock on the specified target for the current + * connection if not already held. This updates the local lock table + * and uses it to implement granularity promotion. It will consolidate + * multiple locks into a coarser lock if warranted, and will release + * any finer-grained locks covered by the new one. + */ +static void +PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag) +{ + uint32 targettaghash; + bool found; + LOCALPREDICATELOCK *locallock; + + /* Do we have the lock already, or a covering lock? */ + if (PredicateLockExists(targettag)) + return; + + if (CoarserLockCovers(targettag)) + return; + + /* the same hash and LW lock apply to the lock target and the local lock. */ + targettaghash = PredicateLockTargetTagHashCode(targettag); + + /* Acquire lock in local table */ + locallock = (LOCALPREDICATELOCK *) + hash_search_with_hash_value(LocalPredicateLockHash, + targettag, targettaghash, + HASH_ENTER, &found); + locallock->held = true; + if (!found) + locallock->childLocks = 0; + + /* Actually create the lock */ + CreatePredicateLock(targettag, targettaghash, MySerializableXact); + + /* + * Lock has been acquired. Check whether it should be promoted to a + * coarser granularity, or whether there are finer-granularity locks to + * clean up. + */ + if (CheckAndPromotePredicateLockRequest(targettag)) + { + /* + * Lock request was promoted to a coarser-granularity lock, and that + * lock was acquired. It will delete this lock and any of its + * children, so we're done. + */ + } + else + { + /* Clean up any finer-granularity locks */ + if (GET_PREDICATELOCKTARGETTAG_TYPE(*targettag) != PREDLOCKTAG_TUPLE) + DeleteChildTargetLocks(targettag); + } +} + + +/* + * PredicateLockRelation + * + * Gets a predicate lock at the relation level. + * Skip if not in full serializable transaction isolation level. + * Skip if this is a temporary table. + * Clear any finer-grained predicate locks this session has on the relation. + */ +void +PredicateLockRelation(Relation relation, Snapshot snapshot) +{ + PREDICATELOCKTARGETTAG tag; + + if (!SerializationNeededForRead(relation, snapshot)) + return; + + SET_PREDICATELOCKTARGETTAG_RELATION(tag, + relation->rd_node.dbNode, + relation->rd_id); + PredicateLockAcquire(&tag); +} + +/* + * PredicateLockPage + * + * Gets a predicate lock at the page level. + * Skip if not in full serializable transaction isolation level. + * Skip if this is a temporary table. + * Skip if a coarser predicate lock already covers this page. + * Clear any finer-grained predicate locks this session has on the relation. + */ +void +PredicateLockPage(Relation relation, BlockNumber blkno, Snapshot snapshot) +{ + PREDICATELOCKTARGETTAG tag; + + if (!SerializationNeededForRead(relation, snapshot)) + return; + + SET_PREDICATELOCKTARGETTAG_PAGE(tag, + relation->rd_node.dbNode, + relation->rd_id, + blkno); + PredicateLockAcquire(&tag); +} + +/* + * PredicateLockTID + * + * Gets a predicate lock at the tuple level. + * Skip if not in full serializable transaction isolation level. + * Skip if this is a temporary table. + */ +void +PredicateLockTID(Relation relation, ItemPointer tid, Snapshot snapshot, + TransactionId tuple_xid) +{ + PREDICATELOCKTARGETTAG tag; + + if (!SerializationNeededForRead(relation, snapshot)) + return; + + /* + * Return if this xact wrote it. + */ + if (relation->rd_index == NULL) + { + /* If we wrote it; we already have a write lock. */ + if (TransactionIdIsCurrentTransactionId(tuple_xid)) + return; + } + + /* + * Do quick-but-not-definitive test for a relation lock first. This will + * never cause a return when the relation is *not* locked, but will + * occasionally let the check continue when there really *is* a relation + * level lock. + */ + SET_PREDICATELOCKTARGETTAG_RELATION(tag, + relation->rd_node.dbNode, + relation->rd_id); + if (PredicateLockExists(&tag)) + return; + + SET_PREDICATELOCKTARGETTAG_TUPLE(tag, + relation->rd_node.dbNode, + relation->rd_id, + ItemPointerGetBlockNumber(tid), + ItemPointerGetOffsetNumber(tid)); + PredicateLockAcquire(&tag); +} + + +/* + * DeleteLockTarget + * + * Remove a predicate lock target along with any locks held for it. + * + * Caller must hold SerializablePredicateListLock and the + * appropriate hash partition lock for the target. + */ +static void +DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash) +{ + PREDICATELOCK *predlock; + SHM_QUEUE *predlocktargetlink; + PREDICATELOCK *nextpredlock; + bool found; + + Assert(LWLockHeldByMeInMode(SerializablePredicateListLock, + LW_EXCLUSIVE)); + Assert(LWLockHeldByMe(PredicateLockHashPartitionLock(targettaghash))); + + predlock = (PREDICATELOCK *) + SHMQueueNext(&(target->predicateLocks), + &(target->predicateLocks), + offsetof(PREDICATELOCK, targetLink)); + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + while (predlock) + { + predlocktargetlink = &(predlock->targetLink); + nextpredlock = (PREDICATELOCK *) + SHMQueueNext(&(target->predicateLocks), + predlocktargetlink, + offsetof(PREDICATELOCK, targetLink)); + + SHMQueueDelete(&(predlock->xactLink)); + SHMQueueDelete(&(predlock->targetLink)); + + hash_search_with_hash_value + (PredicateLockHash, + &predlock->tag, + PredicateLockHashCodeFromTargetHashCode(&predlock->tag, + targettaghash), + HASH_REMOVE, &found); + Assert(found); + + predlock = nextpredlock; + } + LWLockRelease(SerializableXactHashLock); + + /* Remove the target itself, if possible. */ + RemoveTargetIfNoLongerUsed(target, targettaghash); +} + + +/* + * TransferPredicateLocksToNewTarget + * + * Move or copy all the predicate locks for a lock target, for use by + * index page splits/combines and other things that create or replace + * lock targets. If 'removeOld' is true, the old locks and the target + * will be removed. + * + * Returns true on success, or false if we ran out of shared memory to + * allocate the new target or locks. Guaranteed to always succeed if + * removeOld is set (by using the scratch entry in PredicateLockTargetHash + * for scratch space). + * + * Warning: the "removeOld" option should be used only with care, + * because this function does not (indeed, can not) update other + * backends' LocalPredicateLockHash. If we are only adding new + * entries, this is not a problem: the local lock table is used only + * as a hint, so missing entries for locks that are held are + * OK. Having entries for locks that are no longer held, as can happen + * when using "removeOld", is not in general OK. We can only use it + * safely when replacing a lock with a coarser-granularity lock that + * covers it, or if we are absolutely certain that no one will need to + * refer to that lock in the future. + * + * Caller must hold SerializablePredicateListLock exclusively. + */ +static bool +TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag, + PREDICATELOCKTARGETTAG newtargettag, + bool removeOld) +{ + uint32 oldtargettaghash; + LWLock *oldpartitionLock; + PREDICATELOCKTARGET *oldtarget; + uint32 newtargettaghash; + LWLock *newpartitionLock; + bool found; + bool outOfShmem = false; + + Assert(LWLockHeldByMeInMode(SerializablePredicateListLock, + LW_EXCLUSIVE)); + + oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag); + newtargettaghash = PredicateLockTargetTagHashCode(&newtargettag); + oldpartitionLock = PredicateLockHashPartitionLock(oldtargettaghash); + newpartitionLock = PredicateLockHashPartitionLock(newtargettaghash); + + if (removeOld) + { + /* + * Remove the dummy entry to give us scratch space, so we know we'll + * be able to create the new lock target. + */ + RemoveScratchTarget(false); + } + + /* + * We must get the partition locks in ascending sequence to avoid + * deadlocks. If old and new partitions are the same, we must request the + * lock only once. + */ + if (oldpartitionLock < newpartitionLock) + { + LWLockAcquire(oldpartitionLock, + (removeOld ? LW_EXCLUSIVE : LW_SHARED)); + LWLockAcquire(newpartitionLock, LW_EXCLUSIVE); + } + else if (oldpartitionLock > newpartitionLock) + { + LWLockAcquire(newpartitionLock, LW_EXCLUSIVE); + LWLockAcquire(oldpartitionLock, + (removeOld ? LW_EXCLUSIVE : LW_SHARED)); + } + else + LWLockAcquire(newpartitionLock, LW_EXCLUSIVE); + + /* + * Look for the old target. If not found, that's OK; no predicate locks + * are affected, so we can just clean up and return. If it does exist, + * walk its list of predicate locks and move or copy them to the new + * target. + */ + oldtarget = hash_search_with_hash_value(PredicateLockTargetHash, + &oldtargettag, + oldtargettaghash, + HASH_FIND, NULL); + + if (oldtarget) + { + PREDICATELOCKTARGET *newtarget; + PREDICATELOCK *oldpredlock; + PREDICATELOCKTAG newpredlocktag; + + newtarget = hash_search_with_hash_value(PredicateLockTargetHash, + &newtargettag, + newtargettaghash, + HASH_ENTER_NULL, &found); + + if (!newtarget) + { + /* Failed to allocate due to insufficient shmem */ + outOfShmem = true; + goto exit; + } + + /* If we created a new entry, initialize it */ + if (!found) + SHMQueueInit(&(newtarget->predicateLocks)); + + newpredlocktag.myTarget = newtarget; + + /* + * Loop through all the locks on the old target, replacing them with + * locks on the new target. + */ + oldpredlock = (PREDICATELOCK *) + SHMQueueNext(&(oldtarget->predicateLocks), + &(oldtarget->predicateLocks), + offsetof(PREDICATELOCK, targetLink)); + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + while (oldpredlock) + { + SHM_QUEUE *predlocktargetlink; + PREDICATELOCK *nextpredlock; + PREDICATELOCK *newpredlock; + SerCommitSeqNo oldCommitSeqNo = oldpredlock->commitSeqNo; + + predlocktargetlink = &(oldpredlock->targetLink); + nextpredlock = (PREDICATELOCK *) + SHMQueueNext(&(oldtarget->predicateLocks), + predlocktargetlink, + offsetof(PREDICATELOCK, targetLink)); + newpredlocktag.myXact = oldpredlock->tag.myXact; + + if (removeOld) + { + SHMQueueDelete(&(oldpredlock->xactLink)); + SHMQueueDelete(&(oldpredlock->targetLink)); + + hash_search_with_hash_value + (PredicateLockHash, + &oldpredlock->tag, + PredicateLockHashCodeFromTargetHashCode(&oldpredlock->tag, + oldtargettaghash), + HASH_REMOVE, &found); + Assert(found); + } + + newpredlock = (PREDICATELOCK *) + hash_search_with_hash_value(PredicateLockHash, + &newpredlocktag, + PredicateLockHashCodeFromTargetHashCode(&newpredlocktag, + newtargettaghash), + HASH_ENTER_NULL, + &found); + if (!newpredlock) + { + /* Out of shared memory. Undo what we've done so far. */ + LWLockRelease(SerializableXactHashLock); + DeleteLockTarget(newtarget, newtargettaghash); + outOfShmem = true; + goto exit; + } + if (!found) + { + SHMQueueInsertBefore(&(newtarget->predicateLocks), + &(newpredlock->targetLink)); + SHMQueueInsertBefore(&(newpredlocktag.myXact->predicateLocks), + &(newpredlock->xactLink)); + newpredlock->commitSeqNo = oldCommitSeqNo; + } + else + { + if (newpredlock->commitSeqNo < oldCommitSeqNo) + newpredlock->commitSeqNo = oldCommitSeqNo; + } + + Assert(newpredlock->commitSeqNo != 0); + Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo) + || (newpredlock->tag.myXact == OldCommittedSxact)); + + oldpredlock = nextpredlock; + } + LWLockRelease(SerializableXactHashLock); + + if (removeOld) + { + Assert(SHMQueueEmpty(&oldtarget->predicateLocks)); + RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash); + } + } + + +exit: + /* Release partition locks in reverse order of acquisition. */ + if (oldpartitionLock < newpartitionLock) + { + LWLockRelease(newpartitionLock); + LWLockRelease(oldpartitionLock); + } + else if (oldpartitionLock > newpartitionLock) + { + LWLockRelease(oldpartitionLock); + LWLockRelease(newpartitionLock); + } + else + LWLockRelease(newpartitionLock); + + if (removeOld) + { + /* We shouldn't run out of memory if we're moving locks */ + Assert(!outOfShmem); + + /* Put the scratch entry back */ + RestoreScratchTarget(false); + } + + return !outOfShmem; +} + +/* + * Drop all predicate locks of any granularity from the specified relation, + * which can be a heap relation or an index relation. If 'transfer' is true, + * acquire a relation lock on the heap for any transactions with any lock(s) + * on the specified relation. + * + * This requires grabbing a lot of LW locks and scanning the entire lock + * target table for matches. That makes this more expensive than most + * predicate lock management functions, but it will only be called for DDL + * type commands that are expensive anyway, and there are fast returns when + * no serializable transactions are active or the relation is temporary. + * + * We don't use the TransferPredicateLocksToNewTarget function because it + * acquires its own locks on the partitions of the two targets involved, + * and we'll already be holding all partition locks. + * + * We can't throw an error from here, because the call could be from a + * transaction which is not serializable. + * + * NOTE: This is currently only called with transfer set to true, but that may + * change. If we decide to clean up the locks from a table on commit of a + * transaction which executed DROP TABLE, the false condition will be useful. + */ +static void +DropAllPredicateLocksFromTable(Relation relation, bool transfer) +{ + HASH_SEQ_STATUS seqstat; + PREDICATELOCKTARGET *oldtarget; + PREDICATELOCKTARGET *heaptarget; + Oid dbId; + Oid relId; + Oid heapId; + int i; + bool isIndex; + bool found; + uint32 heaptargettaghash; + + /* + * Bail out quickly if there are no serializable transactions running. + * It's safe to check this without taking locks because the caller is + * holding an ACCESS EXCLUSIVE lock on the relation. No new locks which + * would matter here can be acquired while that is held. + */ + if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)) + return; + + if (!PredicateLockingNeededForRelation(relation)) + return; + + dbId = relation->rd_node.dbNode; + relId = relation->rd_id; + if (relation->rd_index == NULL) + { + isIndex = false; + heapId = relId; + } + else + { + isIndex = true; + heapId = relation->rd_index->indrelid; + } + Assert(heapId != InvalidOid); + Assert(transfer || !isIndex); /* index OID only makes sense with + * transfer */ + + /* Retrieve first time needed, then keep. */ + heaptargettaghash = 0; + heaptarget = NULL; + + /* Acquire locks on all lock partitions */ + LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE); + for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++) + LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_EXCLUSIVE); + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + + /* + * Remove the dummy entry to give us scratch space, so we know we'll be + * able to create the new lock target. + */ + if (transfer) + RemoveScratchTarget(true); + + /* Scan through target map */ + hash_seq_init(&seqstat, PredicateLockTargetHash); + + while ((oldtarget = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat))) + { + PREDICATELOCK *oldpredlock; + + /* + * Check whether this is a target which needs attention. + */ + if (GET_PREDICATELOCKTARGETTAG_RELATION(oldtarget->tag) != relId) + continue; /* wrong relation id */ + if (GET_PREDICATELOCKTARGETTAG_DB(oldtarget->tag) != dbId) + continue; /* wrong database id */ + if (transfer && !isIndex + && GET_PREDICATELOCKTARGETTAG_TYPE(oldtarget->tag) == PREDLOCKTAG_RELATION) + continue; /* already the right lock */ + + /* + * If we made it here, we have work to do. We make sure the heap + * relation lock exists, then we walk the list of predicate locks for + * the old target we found, moving all locks to the heap relation lock + * -- unless they already hold that. + */ + + /* + * First make sure we have the heap relation target. We only need to + * do this once. + */ + if (transfer && heaptarget == NULL) + { + PREDICATELOCKTARGETTAG heaptargettag; + + SET_PREDICATELOCKTARGETTAG_RELATION(heaptargettag, dbId, heapId); + heaptargettaghash = PredicateLockTargetTagHashCode(&heaptargettag); + heaptarget = hash_search_with_hash_value(PredicateLockTargetHash, + &heaptargettag, + heaptargettaghash, + HASH_ENTER, &found); + if (!found) + SHMQueueInit(&heaptarget->predicateLocks); + } + + /* + * Loop through all the locks on the old target, replacing them with + * locks on the new target. + */ + oldpredlock = (PREDICATELOCK *) + SHMQueueNext(&(oldtarget->predicateLocks), + &(oldtarget->predicateLocks), + offsetof(PREDICATELOCK, targetLink)); + while (oldpredlock) + { + PREDICATELOCK *nextpredlock; + PREDICATELOCK *newpredlock; + SerCommitSeqNo oldCommitSeqNo; + SERIALIZABLEXACT *oldXact; + + nextpredlock = (PREDICATELOCK *) + SHMQueueNext(&(oldtarget->predicateLocks), + &(oldpredlock->targetLink), + offsetof(PREDICATELOCK, targetLink)); + + /* + * Remove the old lock first. This avoids the chance of running + * out of lock structure entries for the hash table. + */ + oldCommitSeqNo = oldpredlock->commitSeqNo; + oldXact = oldpredlock->tag.myXact; + + SHMQueueDelete(&(oldpredlock->xactLink)); + + /* + * No need for retail delete from oldtarget list, we're removing + * the whole target anyway. + */ + hash_search(PredicateLockHash, + &oldpredlock->tag, + HASH_REMOVE, &found); + Assert(found); + + if (transfer) + { + PREDICATELOCKTAG newpredlocktag; + + newpredlocktag.myTarget = heaptarget; + newpredlocktag.myXact = oldXact; + newpredlock = (PREDICATELOCK *) + hash_search_with_hash_value(PredicateLockHash, + &newpredlocktag, + PredicateLockHashCodeFromTargetHashCode(&newpredlocktag, + heaptargettaghash), + HASH_ENTER, + &found); + if (!found) + { + SHMQueueInsertBefore(&(heaptarget->predicateLocks), + &(newpredlock->targetLink)); + SHMQueueInsertBefore(&(newpredlocktag.myXact->predicateLocks), + &(newpredlock->xactLink)); + newpredlock->commitSeqNo = oldCommitSeqNo; + } + else + { + if (newpredlock->commitSeqNo < oldCommitSeqNo) + newpredlock->commitSeqNo = oldCommitSeqNo; + } + + Assert(newpredlock->commitSeqNo != 0); + Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo) + || (newpredlock->tag.myXact == OldCommittedSxact)); + } + + oldpredlock = nextpredlock; + } + + hash_search(PredicateLockTargetHash, &oldtarget->tag, HASH_REMOVE, + &found); + Assert(found); + } + + /* Put the scratch entry back */ + if (transfer) + RestoreScratchTarget(true); + + /* Release locks in reverse order */ + LWLockRelease(SerializableXactHashLock); + for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--) + LWLockRelease(PredicateLockHashPartitionLockByIndex(i)); + LWLockRelease(SerializablePredicateListLock); +} + +/* + * TransferPredicateLocksToHeapRelation + * For all transactions, transfer all predicate locks for the given + * relation to a single relation lock on the heap. + */ +void +TransferPredicateLocksToHeapRelation(Relation relation) +{ + DropAllPredicateLocksFromTable(relation, true); +} + + +/* + * PredicateLockPageSplit + * + * Copies any predicate locks for the old page to the new page. + * Skip if this is a temporary table or toast table. + * + * NOTE: A page split (or overflow) affects all serializable transactions, + * even if it occurs in the context of another transaction isolation level. + * + * NOTE: This currently leaves the local copy of the locks without + * information on the new lock which is in shared memory. This could cause + * problems if enough page splits occur on locked pages without the processes + * which hold the locks getting in and noticing. + */ +void +PredicateLockPageSplit(Relation relation, BlockNumber oldblkno, + BlockNumber newblkno) +{ + PREDICATELOCKTARGETTAG oldtargettag; + PREDICATELOCKTARGETTAG newtargettag; + bool success; + + /* + * Bail out quickly if there are no serializable transactions running. + * + * It's safe to do this check without taking any additional locks. Even if + * a serializable transaction starts concurrently, we know it can't take + * any SIREAD locks on the page being split because the caller is holding + * the associated buffer page lock. Memory reordering isn't an issue; the + * memory barrier in the LWLock acquisition guarantees that this read + * occurs while the buffer page lock is held. + */ + if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)) + return; + + if (!PredicateLockingNeededForRelation(relation)) + return; + + Assert(oldblkno != newblkno); + Assert(BlockNumberIsValid(oldblkno)); + Assert(BlockNumberIsValid(newblkno)); + + SET_PREDICATELOCKTARGETTAG_PAGE(oldtargettag, + relation->rd_node.dbNode, + relation->rd_id, + oldblkno); + SET_PREDICATELOCKTARGETTAG_PAGE(newtargettag, + relation->rd_node.dbNode, + relation->rd_id, + newblkno); + + LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE); + + /* + * Try copying the locks over to the new page's tag, creating it if + * necessary. + */ + success = TransferPredicateLocksToNewTarget(oldtargettag, + newtargettag, + false); + + if (!success) + { + /* + * No more predicate lock entries are available. Failure isn't an + * option here, so promote the page lock to a relation lock. + */ + + /* Get the parent relation lock's lock tag */ + success = GetParentPredicateLockTag(&oldtargettag, + &newtargettag); + Assert(success); + + /* + * Move the locks to the parent. This shouldn't fail. + * + * Note that here we are removing locks held by other backends, + * leading to a possible inconsistency in their local lock hash table. + * This is OK because we're replacing it with a lock that covers the + * old one. + */ + success = TransferPredicateLocksToNewTarget(oldtargettag, + newtargettag, + true); + Assert(success); + } + + LWLockRelease(SerializablePredicateListLock); +} + +/* + * PredicateLockPageCombine + * + * Combines predicate locks for two existing pages. + * Skip if this is a temporary table or toast table. + * + * NOTE: A page combine affects all serializable transactions, even if it + * occurs in the context of another transaction isolation level. + */ +void +PredicateLockPageCombine(Relation relation, BlockNumber oldblkno, + BlockNumber newblkno) +{ + /* + * Page combines differ from page splits in that we ought to be able to + * remove the locks on the old page after transferring them to the new + * page, instead of duplicating them. However, because we can't edit other + * backends' local lock tables, removing the old lock would leave them + * with an entry in their LocalPredicateLockHash for a lock they're not + * holding, which isn't acceptable. So we wind up having to do the same + * work as a page split, acquiring a lock on the new page and keeping the + * old page locked too. That can lead to some false positives, but should + * be rare in practice. + */ + PredicateLockPageSplit(relation, oldblkno, newblkno); +} + +/* + * Walk the list of in-progress serializable transactions and find the new + * xmin. + */ +static void +SetNewSxactGlobalXmin(void) +{ + SERIALIZABLEXACT *sxact; + + Assert(LWLockHeldByMe(SerializableXactHashLock)); + + PredXact->SxactGlobalXmin = InvalidTransactionId; + PredXact->SxactGlobalXminCount = 0; + + for (sxact = FirstPredXact(); sxact != NULL; sxact = NextPredXact(sxact)) + { + if (!SxactIsRolledBack(sxact) + && !SxactIsCommitted(sxact) + && sxact != OldCommittedSxact) + { + Assert(sxact->xmin != InvalidTransactionId); + if (!TransactionIdIsValid(PredXact->SxactGlobalXmin) + || TransactionIdPrecedes(sxact->xmin, + PredXact->SxactGlobalXmin)) + { + PredXact->SxactGlobalXmin = sxact->xmin; + PredXact->SxactGlobalXminCount = 1; + } + else if (TransactionIdEquals(sxact->xmin, + PredXact->SxactGlobalXmin)) + PredXact->SxactGlobalXminCount++; + } + } + + SerialSetActiveSerXmin(PredXact->SxactGlobalXmin); +} + +/* + * ReleasePredicateLocks + * + * Releases predicate locks based on completion of the current transaction, + * whether committed or rolled back. It can also be called for a read only + * transaction when it becomes impossible for the transaction to become + * part of a dangerous structure. + * + * We do nothing unless this is a serializable transaction. + * + * This method must ensure that shared memory hash tables are cleaned + * up in some relatively timely fashion. + * + * If this transaction is committing and is holding any predicate locks, + * it must be added to a list of completed serializable transactions still + * holding locks. + * + * If isReadOnlySafe is true, then predicate locks are being released before + * the end of the transaction because MySerializableXact has been determined + * to be RO_SAFE. In non-parallel mode we can release it completely, but it + * in parallel mode we partially release the SERIALIZABLEXACT and keep it + * around until the end of the transaction, allowing each backend to clear its + * MySerializableXact variable and benefit from the optimization in its own + * time. + */ +void +ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe) +{ + bool needToClear; + RWConflict conflict, + nextConflict, + possibleUnsafeConflict; + SERIALIZABLEXACT *roXact; + + /* + * We can't trust XactReadOnly here, because a transaction which started + * as READ WRITE can show as READ ONLY later, e.g., within + * subtransactions. We want to flag a transaction as READ ONLY if it + * commits without writing so that de facto READ ONLY transactions get the + * benefit of some RO optimizations, so we will use this local variable to + * get some cleanup logic right which is based on whether the transaction + * was declared READ ONLY at the top level. + */ + bool topLevelIsDeclaredReadOnly; + + /* We can't be both committing and releasing early due to RO_SAFE. */ + Assert(!(isCommit && isReadOnlySafe)); + + /* Are we at the end of a transaction, that is, a commit or abort? */ + if (!isReadOnlySafe) + { + /* + * Parallel workers mustn't release predicate locks at the end of + * their transaction. The leader will do that at the end of its + * transaction. + */ + if (IsParallelWorker()) + { + ReleasePredicateLocksLocal(); + return; + } + + /* + * By the time the leader in a parallel query reaches end of + * transaction, it has waited for all workers to exit. + */ + Assert(!ParallelContextActive()); + + /* + * If the leader in a parallel query earlier stashed a partially + * released SERIALIZABLEXACT for final clean-up at end of transaction + * (because workers might still have been accessing it), then it's + * time to restore it. + */ + if (SavedSerializableXact != InvalidSerializableXact) + { + Assert(MySerializableXact == InvalidSerializableXact); + MySerializableXact = SavedSerializableXact; + SavedSerializableXact = InvalidSerializableXact; + Assert(SxactIsPartiallyReleased(MySerializableXact)); + } + } + + if (MySerializableXact == InvalidSerializableXact) + { + Assert(LocalPredicateLockHash == NULL); + return; + } + + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + + /* + * If the transaction is committing, but it has been partially released + * already, then treat this as a roll back. It was marked as rolled back. + */ + if (isCommit && SxactIsPartiallyReleased(MySerializableXact)) + isCommit = false; + + /* + * If we're called in the middle of a transaction because we discovered + * that the SXACT_FLAG_RO_SAFE flag was set, then we'll partially release + * it (that is, release the predicate locks and conflicts, but not the + * SERIALIZABLEXACT itself) if we're the first backend to have noticed. + */ + if (isReadOnlySafe && IsInParallelMode()) + { + /* + * The leader needs to stash a pointer to it, so that it can + * completely release it at end-of-transaction. + */ + if (!IsParallelWorker()) + SavedSerializableXact = MySerializableXact; + + /* + * The first backend to reach this condition will partially release + * the SERIALIZABLEXACT. All others will just clear their + * backend-local state so that they stop doing SSI checks for the rest + * of the transaction. + */ + if (SxactIsPartiallyReleased(MySerializableXact)) + { + LWLockRelease(SerializableXactHashLock); + ReleasePredicateLocksLocal(); + return; + } + else + { + MySerializableXact->flags |= SXACT_FLAG_PARTIALLY_RELEASED; + /* ... and proceed to perform the partial release below. */ + } + } + Assert(!isCommit || SxactIsPrepared(MySerializableXact)); + Assert(!isCommit || !SxactIsDoomed(MySerializableXact)); + Assert(!SxactIsCommitted(MySerializableXact)); + Assert(SxactIsPartiallyReleased(MySerializableXact) + || !SxactIsRolledBack(MySerializableXact)); + + /* may not be serializable during COMMIT/ROLLBACK PREPARED */ + Assert(MySerializableXact->pid == 0 || IsolationIsSerializable()); + + /* We'd better not already be on the cleanup list. */ + Assert(!SxactIsOnFinishedList(MySerializableXact)); + + topLevelIsDeclaredReadOnly = SxactIsReadOnly(MySerializableXact); + + /* + * We don't hold XidGenLock lock here, assuming that TransactionId is + * atomic! + * + * If this value is changing, we don't care that much whether we get the + * old or new value -- it is just used to determine how far + * SxactGlobalXmin must advance before this transaction can be fully + * cleaned up. The worst that could happen is we wait for one more + * transaction to complete before freeing some RAM; correctness of visible + * behavior is not affected. + */ + MySerializableXact->finishedBefore = XidFromFullTransactionId(ShmemVariableCache->nextFullXid); + + /* + * If it's not a commit it's either a rollback or a read-only transaction + * flagged SXACT_FLAG_RO_SAFE, and we can clear our locks immediately. + */ + if (isCommit) + { + MySerializableXact->flags |= SXACT_FLAG_COMMITTED; + MySerializableXact->commitSeqNo = ++(PredXact->LastSxactCommitSeqNo); + /* Recognize implicit read-only transaction (commit without write). */ + if (!MyXactDidWrite) + MySerializableXact->flags |= SXACT_FLAG_READ_ONLY; + } + else + { + /* + * The DOOMED flag indicates that we intend to roll back this + * transaction and so it should not cause serialization failures for + * other transactions that conflict with it. Note that this flag might + * already be set, if another backend marked this transaction for + * abort. + * + * The ROLLED_BACK flag further indicates that ReleasePredicateLocks + * has been called, and so the SerializableXact is eligible for + * cleanup. This means it should not be considered when calculating + * SxactGlobalXmin. + */ + MySerializableXact->flags |= SXACT_FLAG_DOOMED; + MySerializableXact->flags |= SXACT_FLAG_ROLLED_BACK; + + /* + * If the transaction was previously prepared, but is now failing due + * to a ROLLBACK PREPARED or (hopefully very rare) error after the + * prepare, clear the prepared flag. This simplifies conflict + * checking. + */ + MySerializableXact->flags &= ~SXACT_FLAG_PREPARED; + } + + if (!topLevelIsDeclaredReadOnly) + { + Assert(PredXact->WritableSxactCount > 0); + if (--(PredXact->WritableSxactCount) == 0) + { + /* + * Release predicate locks and rw-conflicts in for all committed + * transactions. There are no longer any transactions which might + * conflict with the locks and no chance for new transactions to + * overlap. Similarly, existing conflicts in can't cause pivots, + * and any conflicts in which could have completed a dangerous + * structure would already have caused a rollback, so any + * remaining ones must be benign. + */ + PredXact->CanPartialClearThrough = PredXact->LastSxactCommitSeqNo; + } + } + else + { + /* + * Read-only transactions: clear the list of transactions that might + * make us unsafe. Note that we use 'inLink' for the iteration as + * opposed to 'outLink' for the r/w xacts. + */ + possibleUnsafeConflict = (RWConflict) + SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts, + &MySerializableXact->possibleUnsafeConflicts, + offsetof(RWConflictData, inLink)); + while (possibleUnsafeConflict) + { + nextConflict = (RWConflict) + SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts, + &possibleUnsafeConflict->inLink, + offsetof(RWConflictData, inLink)); + + Assert(!SxactIsReadOnly(possibleUnsafeConflict->sxactOut)); + Assert(MySerializableXact == possibleUnsafeConflict->sxactIn); + + ReleaseRWConflict(possibleUnsafeConflict); + + possibleUnsafeConflict = nextConflict; + } + } + + /* Check for conflict out to old committed transactions. */ + if (isCommit + && !SxactIsReadOnly(MySerializableXact) + && SxactHasSummaryConflictOut(MySerializableXact)) + { + /* + * we don't know which old committed transaction we conflicted with, + * so be conservative and use FirstNormalSerCommitSeqNo here + */ + MySerializableXact->SeqNo.earliestOutConflictCommit = + FirstNormalSerCommitSeqNo; + MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT; + } + + /* + * Release all outConflicts to committed transactions. If we're rolling + * back clear them all. Set SXACT_FLAG_CONFLICT_OUT if any point to + * previously committed transactions. + */ + conflict = (RWConflict) + SHMQueueNext(&MySerializableXact->outConflicts, + &MySerializableXact->outConflicts, + offsetof(RWConflictData, outLink)); + while (conflict) + { + nextConflict = (RWConflict) + SHMQueueNext(&MySerializableXact->outConflicts, + &conflict->outLink, + offsetof(RWConflictData, outLink)); + + if (isCommit + && !SxactIsReadOnly(MySerializableXact) + && SxactIsCommitted(conflict->sxactIn)) + { + if ((MySerializableXact->flags & SXACT_FLAG_CONFLICT_OUT) == 0 + || conflict->sxactIn->prepareSeqNo < MySerializableXact->SeqNo.earliestOutConflictCommit) + MySerializableXact->SeqNo.earliestOutConflictCommit = conflict->sxactIn->prepareSeqNo; + MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT; + } + + if (!isCommit + || SxactIsCommitted(conflict->sxactIn) + || (conflict->sxactIn->SeqNo.lastCommitBeforeSnapshot >= PredXact->LastSxactCommitSeqNo)) + ReleaseRWConflict(conflict); + + conflict = nextConflict; + } + + /* + * Release all inConflicts from committed and read-only transactions. If + * we're rolling back, clear them all. + */ + conflict = (RWConflict) + SHMQueueNext(&MySerializableXact->inConflicts, + &MySerializableXact->inConflicts, + offsetof(RWConflictData, inLink)); + while (conflict) + { + nextConflict = (RWConflict) + SHMQueueNext(&MySerializableXact->inConflicts, + &conflict->inLink, + offsetof(RWConflictData, inLink)); + + if (!isCommit + || SxactIsCommitted(conflict->sxactOut) + || SxactIsReadOnly(conflict->sxactOut)) + ReleaseRWConflict(conflict); + + conflict = nextConflict; + } + + if (!topLevelIsDeclaredReadOnly) + { + /* + * Remove ourselves from the list of possible conflicts for concurrent + * READ ONLY transactions, flagging them as unsafe if we have a + * conflict out. If any are waiting DEFERRABLE transactions, wake them + * up if they are known safe or known unsafe. + */ + possibleUnsafeConflict = (RWConflict) + SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts, + &MySerializableXact->possibleUnsafeConflicts, + offsetof(RWConflictData, outLink)); + while (possibleUnsafeConflict) + { + nextConflict = (RWConflict) + SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts, + &possibleUnsafeConflict->outLink, + offsetof(RWConflictData, outLink)); + + roXact = possibleUnsafeConflict->sxactIn; + Assert(MySerializableXact == possibleUnsafeConflict->sxactOut); + Assert(SxactIsReadOnly(roXact)); + + /* Mark conflicted if necessary. */ + if (isCommit + && MyXactDidWrite + && SxactHasConflictOut(MySerializableXact) + && (MySerializableXact->SeqNo.earliestOutConflictCommit + <= roXact->SeqNo.lastCommitBeforeSnapshot)) + { + /* + * This releases possibleUnsafeConflict (as well as all other + * possible conflicts for roXact) + */ + FlagSxactUnsafe(roXact); + } + else + { + ReleaseRWConflict(possibleUnsafeConflict); + + /* + * If we were the last possible conflict, flag it safe. The + * transaction can now safely release its predicate locks (but + * that transaction's backend has to do that itself). + */ + if (SHMQueueEmpty(&roXact->possibleUnsafeConflicts)) + roXact->flags |= SXACT_FLAG_RO_SAFE; + } + + /* + * Wake up the process for a waiting DEFERRABLE transaction if we + * now know it's either safe or conflicted. + */ + if (SxactIsDeferrableWaiting(roXact) && + (SxactIsROUnsafe(roXact) || SxactIsROSafe(roXact))) + ProcSendSignal(roXact->pid); + + possibleUnsafeConflict = nextConflict; + } + } + + /* + * Check whether it's time to clean up old transactions. This can only be + * done when the last serializable transaction with the oldest xmin among + * serializable transactions completes. We then find the "new oldest" + * xmin and purge any transactions which finished before this transaction + * was launched. + */ + needToClear = false; + if (TransactionIdEquals(MySerializableXact->xmin, PredXact->SxactGlobalXmin)) + { + Assert(PredXact->SxactGlobalXminCount > 0); + if (--(PredXact->SxactGlobalXminCount) == 0) + { + SetNewSxactGlobalXmin(); + needToClear = true; + } + } + + LWLockRelease(SerializableXactHashLock); + + LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE); + + /* Add this to the list of transactions to check for later cleanup. */ + if (isCommit) + SHMQueueInsertBefore(FinishedSerializableTransactions, + &MySerializableXact->finishedLink); + + /* + * If we're releasing a RO_SAFE transaction in parallel mode, we'll only + * partially release it. That's necessary because other backends may have + * a reference to it. The leader will release the SERIALIZABLEXACT itself + * at the end of the transaction after workers have stopped running. + */ + if (!isCommit) + ReleaseOneSerializableXact(MySerializableXact, + isReadOnlySafe && IsInParallelMode(), + false); + + LWLockRelease(SerializableFinishedListLock); + + if (needToClear) + ClearOldPredicateLocks(); + + ReleasePredicateLocksLocal(); +} + +static void +ReleasePredicateLocksLocal(void) +{ + MySerializableXact = InvalidSerializableXact; + MyXactDidWrite = false; + + /* Delete per-transaction lock table */ + if (LocalPredicateLockHash != NULL) + { + hash_destroy(LocalPredicateLockHash); + LocalPredicateLockHash = NULL; + } +} + +/* + * Clear old predicate locks, belonging to committed transactions that are no + * longer interesting to any in-progress transaction. + */ +static void +ClearOldPredicateLocks(void) +{ + SERIALIZABLEXACT *finishedSxact; + PREDICATELOCK *predlock; + + /* + * Loop through finished transactions. They are in commit order, so we can + * stop as soon as we find one that's still interesting. + */ + LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE); + finishedSxact = (SERIALIZABLEXACT *) + SHMQueueNext(FinishedSerializableTransactions, + FinishedSerializableTransactions, + offsetof(SERIALIZABLEXACT, finishedLink)); + LWLockAcquire(SerializableXactHashLock, LW_SHARED); + while (finishedSxact) + { + SERIALIZABLEXACT *nextSxact; + + nextSxact = (SERIALIZABLEXACT *) + SHMQueueNext(FinishedSerializableTransactions, + &(finishedSxact->finishedLink), + offsetof(SERIALIZABLEXACT, finishedLink)); + if (!TransactionIdIsValid(PredXact->SxactGlobalXmin) + || TransactionIdPrecedesOrEquals(finishedSxact->finishedBefore, + PredXact->SxactGlobalXmin)) + { + /* + * This transaction committed before any in-progress transaction + * took its snapshot. It's no longer interesting. + */ + LWLockRelease(SerializableXactHashLock); + SHMQueueDelete(&(finishedSxact->finishedLink)); + ReleaseOneSerializableXact(finishedSxact, false, false); + LWLockAcquire(SerializableXactHashLock, LW_SHARED); + } + else if (finishedSxact->commitSeqNo > PredXact->HavePartialClearedThrough + && finishedSxact->commitSeqNo <= PredXact->CanPartialClearThrough) + { + /* + * Any active transactions that took their snapshot before this + * transaction committed are read-only, so we can clear part of + * its state. + */ + LWLockRelease(SerializableXactHashLock); + + if (SxactIsReadOnly(finishedSxact)) + { + /* A read-only transaction can be removed entirely */ + SHMQueueDelete(&(finishedSxact->finishedLink)); + ReleaseOneSerializableXact(finishedSxact, false, false); + } + else + { + /* + * A read-write transaction can only be partially cleared. We + * need to keep the SERIALIZABLEXACT but can release the + * SIREAD locks and conflicts in. + */ + ReleaseOneSerializableXact(finishedSxact, true, false); + } + + PredXact->HavePartialClearedThrough = finishedSxact->commitSeqNo; + LWLockAcquire(SerializableXactHashLock, LW_SHARED); + } + else + { + /* Still interesting. */ + break; + } + finishedSxact = nextSxact; + } + LWLockRelease(SerializableXactHashLock); + + /* + * Loop through predicate locks on dummy transaction for summarized data. + */ + LWLockAcquire(SerializablePredicateListLock, LW_SHARED); + predlock = (PREDICATELOCK *) + SHMQueueNext(&OldCommittedSxact->predicateLocks, + &OldCommittedSxact->predicateLocks, + offsetof(PREDICATELOCK, xactLink)); + while (predlock) + { + PREDICATELOCK *nextpredlock; + bool canDoPartialCleanup; + + nextpredlock = (PREDICATELOCK *) + SHMQueueNext(&OldCommittedSxact->predicateLocks, + &predlock->xactLink, + offsetof(PREDICATELOCK, xactLink)); + + LWLockAcquire(SerializableXactHashLock, LW_SHARED); + Assert(predlock->commitSeqNo != 0); + Assert(predlock->commitSeqNo != InvalidSerCommitSeqNo); + canDoPartialCleanup = (predlock->commitSeqNo <= PredXact->CanPartialClearThrough); + LWLockRelease(SerializableXactHashLock); + + /* + * If this lock originally belonged to an old enough transaction, we + * can release it. + */ + if (canDoPartialCleanup) + { + PREDICATELOCKTAG tag; + PREDICATELOCKTARGET *target; + PREDICATELOCKTARGETTAG targettag; + uint32 targettaghash; + LWLock *partitionLock; + + tag = predlock->tag; + target = tag.myTarget; + targettag = target->tag; + targettaghash = PredicateLockTargetTagHashCode(&targettag); + partitionLock = PredicateLockHashPartitionLock(targettaghash); + + LWLockAcquire(partitionLock, LW_EXCLUSIVE); + + SHMQueueDelete(&(predlock->targetLink)); + SHMQueueDelete(&(predlock->xactLink)); + + hash_search_with_hash_value(PredicateLockHash, &tag, + PredicateLockHashCodeFromTargetHashCode(&tag, + targettaghash), + HASH_REMOVE, NULL); + RemoveTargetIfNoLongerUsed(target, targettaghash); + + LWLockRelease(partitionLock); + } + + predlock = nextpredlock; + } + + LWLockRelease(SerializablePredicateListLock); + LWLockRelease(SerializableFinishedListLock); +} + +/* + * This is the normal way to delete anything from any of the predicate + * locking hash tables. Given a transaction which we know can be deleted: + * delete all predicate locks held by that transaction and any predicate + * lock targets which are now unreferenced by a lock; delete all conflicts + * for the transaction; delete all xid values for the transaction; then + * delete the transaction. + * + * When the partial flag is set, we can release all predicate locks and + * in-conflict information -- we've established that there are no longer + * any overlapping read write transactions for which this transaction could + * matter -- but keep the transaction entry itself and any outConflicts. + * + * When the summarize flag is set, we've run short of room for sxact data + * and must summarize to the SLRU. Predicate locks are transferred to a + * dummy "old" transaction, with duplicate locks on a single target + * collapsing to a single lock with the "latest" commitSeqNo from among + * the conflicting locks.. + */ +static void +ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial, + bool summarize) +{ + PREDICATELOCK *predlock; + SERIALIZABLEXIDTAG sxidtag; + RWConflict conflict, + nextConflict; + + Assert(sxact != NULL); + Assert(SxactIsRolledBack(sxact) || SxactIsCommitted(sxact)); + Assert(partial || !SxactIsOnFinishedList(sxact)); + Assert(LWLockHeldByMe(SerializableFinishedListLock)); + + /* + * First release all the predicate locks held by this xact (or transfer + * them to OldCommittedSxact if summarize is true) + */ + LWLockAcquire(SerializablePredicateListLock, LW_SHARED); + if (IsInParallelMode()) + LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE); + predlock = (PREDICATELOCK *) + SHMQueueNext(&(sxact->predicateLocks), + &(sxact->predicateLocks), + offsetof(PREDICATELOCK, xactLink)); + while (predlock) + { + PREDICATELOCK *nextpredlock; + PREDICATELOCKTAG tag; + SHM_QUEUE *targetLink; + PREDICATELOCKTARGET *target; + PREDICATELOCKTARGETTAG targettag; + uint32 targettaghash; + LWLock *partitionLock; + + nextpredlock = (PREDICATELOCK *) + SHMQueueNext(&(sxact->predicateLocks), + &(predlock->xactLink), + offsetof(PREDICATELOCK, xactLink)); + + tag = predlock->tag; + targetLink = &(predlock->targetLink); + target = tag.myTarget; + targettag = target->tag; + targettaghash = PredicateLockTargetTagHashCode(&targettag); + partitionLock = PredicateLockHashPartitionLock(targettaghash); + + LWLockAcquire(partitionLock, LW_EXCLUSIVE); + + SHMQueueDelete(targetLink); + + hash_search_with_hash_value(PredicateLockHash, &tag, + PredicateLockHashCodeFromTargetHashCode(&tag, + targettaghash), + HASH_REMOVE, NULL); + if (summarize) + { + bool found; + + /* Fold into dummy transaction list. */ + tag.myXact = OldCommittedSxact; + predlock = hash_search_with_hash_value(PredicateLockHash, &tag, + PredicateLockHashCodeFromTargetHashCode(&tag, + targettaghash), + HASH_ENTER_NULL, &found); + if (!predlock) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("out of shared memory"), + errhint("You might need to increase max_pred_locks_per_transaction."))); + if (found) + { + Assert(predlock->commitSeqNo != 0); + Assert(predlock->commitSeqNo != InvalidSerCommitSeqNo); + if (predlock->commitSeqNo < sxact->commitSeqNo) + predlock->commitSeqNo = sxact->commitSeqNo; + } + else + { + SHMQueueInsertBefore(&(target->predicateLocks), + &(predlock->targetLink)); + SHMQueueInsertBefore(&(OldCommittedSxact->predicateLocks), + &(predlock->xactLink)); + predlock->commitSeqNo = sxact->commitSeqNo; + } + } + else + RemoveTargetIfNoLongerUsed(target, targettaghash); + + LWLockRelease(partitionLock); + + predlock = nextpredlock; + } + + /* + * Rather than retail removal, just re-init the head after we've run + * through the list. + */ + SHMQueueInit(&sxact->predicateLocks); + + if (IsInParallelMode()) + LWLockRelease(&sxact->perXactPredicateListLock); + LWLockRelease(SerializablePredicateListLock); + + sxidtag.xid = sxact->topXid; + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + + /* Release all outConflicts (unless 'partial' is true) */ + if (!partial) + { + conflict = (RWConflict) + SHMQueueNext(&sxact->outConflicts, + &sxact->outConflicts, + offsetof(RWConflictData, outLink)); + while (conflict) + { + nextConflict = (RWConflict) + SHMQueueNext(&sxact->outConflicts, + &conflict->outLink, + offsetof(RWConflictData, outLink)); + if (summarize) + conflict->sxactIn->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN; + ReleaseRWConflict(conflict); + conflict = nextConflict; + } + } + + /* Release all inConflicts. */ + conflict = (RWConflict) + SHMQueueNext(&sxact->inConflicts, + &sxact->inConflicts, + offsetof(RWConflictData, inLink)); + while (conflict) + { + nextConflict = (RWConflict) + SHMQueueNext(&sxact->inConflicts, + &conflict->inLink, + offsetof(RWConflictData, inLink)); + if (summarize) + conflict->sxactOut->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT; + ReleaseRWConflict(conflict); + conflict = nextConflict; + } + + /* Finally, get rid of the xid and the record of the transaction itself. */ + if (!partial) + { + if (sxidtag.xid != InvalidTransactionId) + hash_search(SerializableXidHash, &sxidtag, HASH_REMOVE, NULL); + ReleasePredXact(sxact); + } + + LWLockRelease(SerializableXactHashLock); +} + +/* + * Tests whether the given top level transaction is concurrent with + * (overlaps) our current transaction. + * + * We need to identify the top level transaction for SSI, anyway, so pass + * that to this function to save the overhead of checking the snapshot's + * subxip array. + */ +static bool +XidIsConcurrent(TransactionId xid) +{ + Snapshot snap; + uint32 i; + + Assert(TransactionIdIsValid(xid)); + Assert(!TransactionIdEquals(xid, GetTopTransactionIdIfAny())); + + snap = GetTransactionSnapshot(); + + if (TransactionIdPrecedes(xid, snap->xmin)) + return false; + + if (TransactionIdFollowsOrEquals(xid, snap->xmax)) + return true; + + for (i = 0; i < snap->xcnt; i++) + { + if (xid == snap->xip[i]) + return true; + } + + return false; +} + +bool +CheckForSerializableConflictOutNeeded(Relation relation, Snapshot snapshot) +{ + if (!SerializationNeededForRead(relation, snapshot)) + return false; + + /* Check if someone else has already decided that we need to die */ + if (SxactIsDoomed(MySerializableXact)) + { + ereport(ERROR, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("could not serialize access due to read/write dependencies among transactions"), + errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."), + errhint("The transaction might succeed if retried."))); + } + + return true; +} + +/* + * CheckForSerializableConflictOut + * A table AM is reading a tuple that has been modified. If it determines + * that the tuple version it is reading is not visible to us, it should + * pass in the top level xid of the transaction that created it. + * Otherwise, if it determines that it is visible to us but it has been + * deleted or there is a newer version available due to an update, it + * should pass in the top level xid of the modifying transaction. + * + * This function will check for overlap with our own transaction. If the given + * xid is also serializable and the transactions overlap (i.e., they cannot see + * each other's writes), then we have a conflict out. + */ +void +CheckForSerializableConflictOut(Relation relation, TransactionId xid, Snapshot snapshot) +{ + SERIALIZABLEXIDTAG sxidtag; + SERIALIZABLEXID *sxid; + SERIALIZABLEXACT *sxact; + + if (!SerializationNeededForRead(relation, snapshot)) + return; + + /* Check if someone else has already decided that we need to die */ + if (SxactIsDoomed(MySerializableXact)) + { + ereport(ERROR, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("could not serialize access due to read/write dependencies among transactions"), + errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."), + errhint("The transaction might succeed if retried."))); + } + Assert(TransactionIdIsValid(xid)); + + if (TransactionIdEquals(xid, GetTopTransactionIdIfAny())) + return; + + /* + * Find sxact or summarized info for the top level xid. + */ + sxidtag.xid = xid; + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + sxid = (SERIALIZABLEXID *) + hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL); + if (!sxid) + { + /* + * Transaction not found in "normal" SSI structures. Check whether it + * got pushed out to SLRU storage for "old committed" transactions. + */ + SerCommitSeqNo conflictCommitSeqNo; + + conflictCommitSeqNo = SerialGetMinConflictCommitSeqNo(xid); + if (conflictCommitSeqNo != 0) + { + if (conflictCommitSeqNo != InvalidSerCommitSeqNo + && (!SxactIsReadOnly(MySerializableXact) + || conflictCommitSeqNo + <= MySerializableXact->SeqNo.lastCommitBeforeSnapshot)) + ereport(ERROR, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("could not serialize access due to read/write dependencies among transactions"), + errdetail_internal("Reason code: Canceled on conflict out to old pivot %u.", xid), + errhint("The transaction might succeed if retried."))); + + if (SxactHasSummaryConflictIn(MySerializableXact) + || !SHMQueueEmpty(&MySerializableXact->inConflicts)) + ereport(ERROR, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("could not serialize access due to read/write dependencies among transactions"), + errdetail_internal("Reason code: Canceled on identification as a pivot, with conflict out to old committed transaction %u.", xid), + errhint("The transaction might succeed if retried."))); + + MySerializableXact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT; + } + + /* It's not serializable or otherwise not important. */ + LWLockRelease(SerializableXactHashLock); + return; + } + sxact = sxid->myXact; + Assert(TransactionIdEquals(sxact->topXid, xid)); + if (sxact == MySerializableXact || SxactIsDoomed(sxact)) + { + /* Can't conflict with ourself or a transaction that will roll back. */ + LWLockRelease(SerializableXactHashLock); + return; + } + + /* + * We have a conflict out to a transaction which has a conflict out to a + * summarized transaction. That summarized transaction must have + * committed first, and we can't tell when it committed in relation to our + * snapshot acquisition, so something needs to be canceled. + */ + if (SxactHasSummaryConflictOut(sxact)) + { + if (!SxactIsPrepared(sxact)) + { + sxact->flags |= SXACT_FLAG_DOOMED; + LWLockRelease(SerializableXactHashLock); + return; + } + else + { + LWLockRelease(SerializableXactHashLock); + ereport(ERROR, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("could not serialize access due to read/write dependencies among transactions"), + errdetail_internal("Reason code: Canceled on conflict out to old pivot."), + errhint("The transaction might succeed if retried."))); + } + } + + /* + * If this is a read-only transaction and the writing transaction has + * committed, and it doesn't have a rw-conflict to a transaction which + * committed before it, no conflict. + */ + if (SxactIsReadOnly(MySerializableXact) + && SxactIsCommitted(sxact) + && !SxactHasSummaryConflictOut(sxact) + && (!SxactHasConflictOut(sxact) + || MySerializableXact->SeqNo.lastCommitBeforeSnapshot < sxact->SeqNo.earliestOutConflictCommit)) + { + /* Read-only transaction will appear to run first. No conflict. */ + LWLockRelease(SerializableXactHashLock); + return; + } + + if (!XidIsConcurrent(xid)) + { + /* This write was already in our snapshot; no conflict. */ + LWLockRelease(SerializableXactHashLock); + return; + } + + if (RWConflictExists(MySerializableXact, sxact)) + { + /* We don't want duplicate conflict records in the list. */ + LWLockRelease(SerializableXactHashLock); + return; + } + + /* + * Flag the conflict. But first, if this conflict creates a dangerous + * structure, ereport an error. + */ + FlagRWConflict(MySerializableXact, sxact); + LWLockRelease(SerializableXactHashLock); +} + +/* + * Check a particular target for rw-dependency conflict in. A subroutine of + * CheckForSerializableConflictIn(). + */ +static void +CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag) +{ + uint32 targettaghash; + LWLock *partitionLock; + PREDICATELOCKTARGET *target; + PREDICATELOCK *predlock; + PREDICATELOCK *mypredlock = NULL; + PREDICATELOCKTAG mypredlocktag; + + Assert(MySerializableXact != InvalidSerializableXact); + + /* + * The same hash and LW lock apply to the lock target and the lock itself. + */ + targettaghash = PredicateLockTargetTagHashCode(targettag); + partitionLock = PredicateLockHashPartitionLock(targettaghash); + LWLockAcquire(partitionLock, LW_SHARED); + target = (PREDICATELOCKTARGET *) + hash_search_with_hash_value(PredicateLockTargetHash, + targettag, targettaghash, + HASH_FIND, NULL); + if (!target) + { + /* Nothing has this target locked; we're done here. */ + LWLockRelease(partitionLock); + return; + } + + /* + * Each lock for an overlapping transaction represents a conflict: a + * rw-dependency in to this transaction. + */ + predlock = (PREDICATELOCK *) + SHMQueueNext(&(target->predicateLocks), + &(target->predicateLocks), + offsetof(PREDICATELOCK, targetLink)); + LWLockAcquire(SerializableXactHashLock, LW_SHARED); + while (predlock) + { + SHM_QUEUE *predlocktargetlink; + PREDICATELOCK *nextpredlock; + SERIALIZABLEXACT *sxact; + + predlocktargetlink = &(predlock->targetLink); + nextpredlock = (PREDICATELOCK *) + SHMQueueNext(&(target->predicateLocks), + predlocktargetlink, + offsetof(PREDICATELOCK, targetLink)); + + sxact = predlock->tag.myXact; + if (sxact == MySerializableXact) + { + /* + * If we're getting a write lock on a tuple, we don't need a + * predicate (SIREAD) lock on the same tuple. We can safely remove + * our SIREAD lock, but we'll defer doing so until after the loop + * because that requires upgrading to an exclusive partition lock. + * + * We can't use this optimization within a subtransaction because + * the subtransaction could roll back, and we would be left + * without any lock at the top level. + */ + if (!IsSubTransaction() + && GET_PREDICATELOCKTARGETTAG_OFFSET(*targettag)) + { + mypredlock = predlock; + mypredlocktag = predlock->tag; + } + } + else if (!SxactIsDoomed(sxact) + && (!SxactIsCommitted(sxact) + || TransactionIdPrecedes(GetTransactionSnapshot()->xmin, + sxact->finishedBefore)) + && !RWConflictExists(sxact, MySerializableXact)) + { + LWLockRelease(SerializableXactHashLock); + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + + /* + * Re-check after getting exclusive lock because the other + * transaction may have flagged a conflict. + */ + if (!SxactIsDoomed(sxact) + && (!SxactIsCommitted(sxact) + || TransactionIdPrecedes(GetTransactionSnapshot()->xmin, + sxact->finishedBefore)) + && !RWConflictExists(sxact, MySerializableXact)) + { + FlagRWConflict(sxact, MySerializableXact); + } + + LWLockRelease(SerializableXactHashLock); + LWLockAcquire(SerializableXactHashLock, LW_SHARED); + } + + predlock = nextpredlock; + } + LWLockRelease(SerializableXactHashLock); + LWLockRelease(partitionLock); + + /* + * If we found one of our own SIREAD locks to remove, remove it now. + * + * At this point our transaction already has a RowExclusiveLock on the + * relation, so we are OK to drop the predicate lock on the tuple, if + * found, without fearing that another write against the tuple will occur + * before the MVCC information makes it to the buffer. + */ + if (mypredlock != NULL) + { + uint32 predlockhashcode; + PREDICATELOCK *rmpredlock; + + LWLockAcquire(SerializablePredicateListLock, LW_SHARED); + if (IsInParallelMode()) + LWLockAcquire(&MySerializableXact->perXactPredicateListLock, LW_EXCLUSIVE); + LWLockAcquire(partitionLock, LW_EXCLUSIVE); + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + + /* + * Remove the predicate lock from shared memory, if it wasn't removed + * while the locks were released. One way that could happen is from + * autovacuum cleaning up an index. + */ + predlockhashcode = PredicateLockHashCodeFromTargetHashCode + (&mypredlocktag, targettaghash); + rmpredlock = (PREDICATELOCK *) + hash_search_with_hash_value(PredicateLockHash, + &mypredlocktag, + predlockhashcode, + HASH_FIND, NULL); + if (rmpredlock != NULL) + { + Assert(rmpredlock == mypredlock); + + SHMQueueDelete(&(mypredlock->targetLink)); + SHMQueueDelete(&(mypredlock->xactLink)); + + rmpredlock = (PREDICATELOCK *) + hash_search_with_hash_value(PredicateLockHash, + &mypredlocktag, + predlockhashcode, + HASH_REMOVE, NULL); + Assert(rmpredlock == mypredlock); + + RemoveTargetIfNoLongerUsed(target, targettaghash); + } + + LWLockRelease(SerializableXactHashLock); + LWLockRelease(partitionLock); + if (IsInParallelMode()) + LWLockRelease(&MySerializableXact->perXactPredicateListLock); + LWLockRelease(SerializablePredicateListLock); + + if (rmpredlock != NULL) + { + /* + * Remove entry in local lock table if it exists. It's OK if it + * doesn't exist; that means the lock was transferred to a new + * target by a different backend. + */ + hash_search_with_hash_value(LocalPredicateLockHash, + targettag, targettaghash, + HASH_REMOVE, NULL); + + DecrementParentLocks(targettag); + } + } +} + +/* + * CheckForSerializableConflictIn + * We are writing the given tuple. If that indicates a rw-conflict + * in from another serializable transaction, take appropriate action. + * + * Skip checking for any granularity for which a parameter is missing. + * + * A tuple update or delete is in conflict if we have a predicate lock + * against the relation or page in which the tuple exists, or against the + * tuple itself. + */ +void +CheckForSerializableConflictIn(Relation relation, ItemPointer tid, BlockNumber blkno) +{ + PREDICATELOCKTARGETTAG targettag; + + if (!SerializationNeededForWrite(relation)) + return; + + /* Check if someone else has already decided that we need to die */ + if (SxactIsDoomed(MySerializableXact)) + ereport(ERROR, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("could not serialize access due to read/write dependencies among transactions"), + errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict in checking."), + errhint("The transaction might succeed if retried."))); + + /* + * We're doing a write which might cause rw-conflicts now or later. + * Memorize that fact. + */ + MyXactDidWrite = true; + + /* + * It is important that we check for locks from the finest granularity to + * the coarsest granularity, so that granularity promotion doesn't cause + * us to miss a lock. The new (coarser) lock will be acquired before the + * old (finer) locks are released. + * + * It is not possible to take and hold a lock across the checks for all + * granularities because each target could be in a separate partition. + */ + if (tid != NULL) + { + SET_PREDICATELOCKTARGETTAG_TUPLE(targettag, + relation->rd_node.dbNode, + relation->rd_id, + ItemPointerGetBlockNumber(tid), + ItemPointerGetOffsetNumber(tid)); + CheckTargetForConflictsIn(&targettag); + } + + if (blkno != InvalidBlockNumber) + { + SET_PREDICATELOCKTARGETTAG_PAGE(targettag, + relation->rd_node.dbNode, + relation->rd_id, + blkno); + CheckTargetForConflictsIn(&targettag); + } + + SET_PREDICATELOCKTARGETTAG_RELATION(targettag, + relation->rd_node.dbNode, + relation->rd_id); + CheckTargetForConflictsIn(&targettag); +} + +/* + * CheckTableForSerializableConflictIn + * The entire table is going through a DDL-style logical mass delete + * like TRUNCATE or DROP TABLE. If that causes a rw-conflict in from + * another serializable transaction, take appropriate action. + * + * While these operations do not operate entirely within the bounds of + * snapshot isolation, they can occur inside a serializable transaction, and + * will logically occur after any reads which saw rows which were destroyed + * by these operations, so we do what we can to serialize properly under + * SSI. + * + * The relation passed in must be a heap relation. Any predicate lock of any + * granularity on the heap will cause a rw-conflict in to this transaction. + * Predicate locks on indexes do not matter because they only exist to guard + * against conflicting inserts into the index, and this is a mass *delete*. + * When a table is truncated or dropped, the index will also be truncated + * or dropped, and we'll deal with locks on the index when that happens. + * + * Dropping or truncating a table also needs to drop any existing predicate + * locks on heap tuples or pages, because they're about to go away. This + * should be done before altering the predicate locks because the transaction + * could be rolled back because of a conflict, in which case the lock changes + * are not needed. (At the moment, we don't actually bother to drop the + * existing locks on a dropped or truncated table at the moment. That might + * lead to some false positives, but it doesn't seem worth the trouble.) + */ +void +CheckTableForSerializableConflictIn(Relation relation) +{ + HASH_SEQ_STATUS seqstat; + PREDICATELOCKTARGET *target; + Oid dbId; + Oid heapId; + int i; + + /* + * Bail out quickly if there are no serializable transactions running. + * It's safe to check this without taking locks because the caller is + * holding an ACCESS EXCLUSIVE lock on the relation. No new locks which + * would matter here can be acquired while that is held. + */ + if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)) + return; + + if (!SerializationNeededForWrite(relation)) + return; + + /* + * We're doing a write which might cause rw-conflicts now or later. + * Memorize that fact. + */ + MyXactDidWrite = true; + + Assert(relation->rd_index == NULL); /* not an index relation */ + + dbId = relation->rd_node.dbNode; + heapId = relation->rd_id; + + LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE); + for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++) + LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED); + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + + /* Scan through target list */ + hash_seq_init(&seqstat, PredicateLockTargetHash); + + while ((target = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat))) + { + PREDICATELOCK *predlock; + + /* + * Check whether this is a target which needs attention. + */ + if (GET_PREDICATELOCKTARGETTAG_RELATION(target->tag) != heapId) + continue; /* wrong relation id */ + if (GET_PREDICATELOCKTARGETTAG_DB(target->tag) != dbId) + continue; /* wrong database id */ + + /* + * Loop through locks for this target and flag conflicts. + */ + predlock = (PREDICATELOCK *) + SHMQueueNext(&(target->predicateLocks), + &(target->predicateLocks), + offsetof(PREDICATELOCK, targetLink)); + while (predlock) + { + PREDICATELOCK *nextpredlock; + + nextpredlock = (PREDICATELOCK *) + SHMQueueNext(&(target->predicateLocks), + &(predlock->targetLink), + offsetof(PREDICATELOCK, targetLink)); + + if (predlock->tag.myXact != MySerializableXact + && !RWConflictExists(predlock->tag.myXact, MySerializableXact)) + { + FlagRWConflict(predlock->tag.myXact, MySerializableXact); + } + + predlock = nextpredlock; + } + } + + /* Release locks in reverse order */ + LWLockRelease(SerializableXactHashLock); + for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--) + LWLockRelease(PredicateLockHashPartitionLockByIndex(i)); + LWLockRelease(SerializablePredicateListLock); +} + + +/* + * Flag a rw-dependency between two serializable transactions. + * + * The caller is responsible for ensuring that we have a LW lock on + * the transaction hash table. + */ +static void +FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer) +{ + Assert(reader != writer); + + /* First, see if this conflict causes failure. */ + OnConflict_CheckForSerializationFailure(reader, writer); + + /* Actually do the conflict flagging. */ + if (reader == OldCommittedSxact) + writer->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN; + else if (writer == OldCommittedSxact) + reader->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT; + else + SetRWConflict(reader, writer); +} + +/*---------------------------------------------------------------------------- + * We are about to add a RW-edge to the dependency graph - check that we don't + * introduce a dangerous structure by doing so, and abort one of the + * transactions if so. + * + * A serialization failure can only occur if there is a dangerous structure + * in the dependency graph: + * + * Tin ------> Tpivot ------> Tout + * rw rw + * + * Furthermore, Tout must commit first. + * + * One more optimization is that if Tin is declared READ ONLY (or commits + * without writing), we can only have a problem if Tout committed before Tin + * acquired its snapshot. + *---------------------------------------------------------------------------- + */ +static void +OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader, + SERIALIZABLEXACT *writer) +{ + bool failure; + RWConflict conflict; + + Assert(LWLockHeldByMe(SerializableXactHashLock)); + + failure = false; + + /*------------------------------------------------------------------------ + * Check for already-committed writer with rw-conflict out flagged + * (conflict-flag on W means that T2 committed before W): + * + * R ------> W ------> T2 + * rw rw + * + * That is a dangerous structure, so we must abort. (Since the writer + * has already committed, we must be the reader) + *------------------------------------------------------------------------ + */ + if (SxactIsCommitted(writer) + && (SxactHasConflictOut(writer) || SxactHasSummaryConflictOut(writer))) + failure = true; + + /*------------------------------------------------------------------------ + * Check whether the writer has become a pivot with an out-conflict + * committed transaction (T2), and T2 committed first: + * + * R ------> W ------> T2 + * rw rw + * + * Because T2 must've committed first, there is no anomaly if: + * - the reader committed before T2 + * - the writer committed before T2 + * - the reader is a READ ONLY transaction and the reader was concurrent + * with T2 (= reader acquired its snapshot before T2 committed) + * + * We also handle the case that T2 is prepared but not yet committed + * here. In that case T2 has already checked for conflicts, so if it + * commits first, making the above conflict real, it's too late for it + * to abort. + *------------------------------------------------------------------------ + */ + if (!failure) + { + if (SxactHasSummaryConflictOut(writer)) + { + failure = true; + conflict = NULL; + } + else + conflict = (RWConflict) + SHMQueueNext(&writer->outConflicts, + &writer->outConflicts, + offsetof(RWConflictData, outLink)); + while (conflict) + { + SERIALIZABLEXACT *t2 = conflict->sxactIn; + + if (SxactIsPrepared(t2) + && (!SxactIsCommitted(reader) + || t2->prepareSeqNo <= reader->commitSeqNo) + && (!SxactIsCommitted(writer) + || t2->prepareSeqNo <= writer->commitSeqNo) + && (!SxactIsReadOnly(reader) + || t2->prepareSeqNo <= reader->SeqNo.lastCommitBeforeSnapshot)) + { + failure = true; + break; + } + conflict = (RWConflict) + SHMQueueNext(&writer->outConflicts, + &conflict->outLink, + offsetof(RWConflictData, outLink)); + } + } + + /*------------------------------------------------------------------------ + * Check whether the reader has become a pivot with a writer + * that's committed (or prepared): + * + * T0 ------> R ------> W + * rw rw + * + * Because W must've committed first for an anomaly to occur, there is no + * anomaly if: + * - T0 committed before the writer + * - T0 is READ ONLY, and overlaps the writer + *------------------------------------------------------------------------ + */ + if (!failure && SxactIsPrepared(writer) && !SxactIsReadOnly(reader)) + { + if (SxactHasSummaryConflictIn(reader)) + { + failure = true; + conflict = NULL; + } + else + conflict = (RWConflict) + SHMQueueNext(&reader->inConflicts, + &reader->inConflicts, + offsetof(RWConflictData, inLink)); + while (conflict) + { + SERIALIZABLEXACT *t0 = conflict->sxactOut; + + if (!SxactIsDoomed(t0) + && (!SxactIsCommitted(t0) + || t0->commitSeqNo >= writer->prepareSeqNo) + && (!SxactIsReadOnly(t0) + || t0->SeqNo.lastCommitBeforeSnapshot >= writer->prepareSeqNo)) + { + failure = true; + break; + } + conflict = (RWConflict) + SHMQueueNext(&reader->inConflicts, + &conflict->inLink, + offsetof(RWConflictData, inLink)); + } + } + + if (failure) + { + /* + * We have to kill a transaction to avoid a possible anomaly from + * occurring. If the writer is us, we can just ereport() to cause a + * transaction abort. Otherwise we flag the writer for termination, + * causing it to abort when it tries to commit. However, if the writer + * is a prepared transaction, already prepared, we can't abort it + * anymore, so we have to kill the reader instead. + */ + if (MySerializableXact == writer) + { + LWLockRelease(SerializableXactHashLock); + ereport(ERROR, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("could not serialize access due to read/write dependencies among transactions"), + errdetail_internal("Reason code: Canceled on identification as a pivot, during write."), + errhint("The transaction might succeed if retried."))); + } + else if (SxactIsPrepared(writer)) + { + LWLockRelease(SerializableXactHashLock); + + /* if we're not the writer, we have to be the reader */ + Assert(MySerializableXact == reader); + ereport(ERROR, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("could not serialize access due to read/write dependencies among transactions"), + errdetail_internal("Reason code: Canceled on conflict out to pivot %u, during read.", writer->topXid), + errhint("The transaction might succeed if retried."))); + } + writer->flags |= SXACT_FLAG_DOOMED; + } +} + +/* + * PreCommit_CheckForSerializationFailure + * Check for dangerous structures in a serializable transaction + * at commit. + * + * We're checking for a dangerous structure as each conflict is recorded. + * The only way we could have a problem at commit is if this is the "out" + * side of a pivot, and neither the "in" side nor the pivot has yet + * committed. + * + * If a dangerous structure is found, the pivot (the near conflict) is + * marked for death, because rolling back another transaction might mean + * that we fail without ever making progress. This transaction is + * committing writes, so letting it commit ensures progress. If we + * canceled the far conflict, it might immediately fail again on retry. + */ +void +PreCommit_CheckForSerializationFailure(void) +{ + RWConflict nearConflict; + + if (MySerializableXact == InvalidSerializableXact) + return; + + Assert(IsolationIsSerializable()); + + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + + /* Check if someone else has already decided that we need to die */ + if (SxactIsDoomed(MySerializableXact)) + { + Assert(!SxactIsPartiallyReleased(MySerializableXact)); + LWLockRelease(SerializableXactHashLock); + ereport(ERROR, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("could not serialize access due to read/write dependencies among transactions"), + errdetail_internal("Reason code: Canceled on identification as a pivot, during commit attempt."), + errhint("The transaction might succeed if retried."))); + } + + nearConflict = (RWConflict) + SHMQueueNext(&MySerializableXact->inConflicts, + &MySerializableXact->inConflicts, + offsetof(RWConflictData, inLink)); + while (nearConflict) + { + if (!SxactIsCommitted(nearConflict->sxactOut) + && !SxactIsDoomed(nearConflict->sxactOut)) + { + RWConflict farConflict; + + farConflict = (RWConflict) + SHMQueueNext(&nearConflict->sxactOut->inConflicts, + &nearConflict->sxactOut->inConflicts, + offsetof(RWConflictData, inLink)); + while (farConflict) + { + if (farConflict->sxactOut == MySerializableXact + || (!SxactIsCommitted(farConflict->sxactOut) + && !SxactIsReadOnly(farConflict->sxactOut) + && !SxactIsDoomed(farConflict->sxactOut))) + { + /* + * Normally, we kill the pivot transaction to make sure we + * make progress if the failing transaction is retried. + * However, we can't kill it if it's already prepared, so + * in that case we commit suicide instead. + */ + if (SxactIsPrepared(nearConflict->sxactOut)) + { + LWLockRelease(SerializableXactHashLock); + ereport(ERROR, + (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), + errmsg("could not serialize access due to read/write dependencies among transactions"), + errdetail_internal("Reason code: Canceled on commit attempt with conflict in from prepared pivot."), + errhint("The transaction might succeed if retried."))); + } + nearConflict->sxactOut->flags |= SXACT_FLAG_DOOMED; + break; + } + farConflict = (RWConflict) + SHMQueueNext(&nearConflict->sxactOut->inConflicts, + &farConflict->inLink, + offsetof(RWConflictData, inLink)); + } + } + + nearConflict = (RWConflict) + SHMQueueNext(&MySerializableXact->inConflicts, + &nearConflict->inLink, + offsetof(RWConflictData, inLink)); + } + + MySerializableXact->prepareSeqNo = ++(PredXact->LastSxactCommitSeqNo); + MySerializableXact->flags |= SXACT_FLAG_PREPARED; + + LWLockRelease(SerializableXactHashLock); +} + +/*------------------------------------------------------------------------*/ + +/* + * Two-phase commit support + */ + +/* + * AtPrepare_Locks + * Do the preparatory work for a PREPARE: make 2PC state file + * records for all predicate locks currently held. + */ +void +AtPrepare_PredicateLocks(void) +{ + PREDICATELOCK *predlock; + SERIALIZABLEXACT *sxact; + TwoPhasePredicateRecord record; + TwoPhasePredicateXactRecord *xactRecord; + TwoPhasePredicateLockRecord *lockRecord; + + sxact = MySerializableXact; + xactRecord = &(record.data.xactRecord); + lockRecord = &(record.data.lockRecord); + + if (MySerializableXact == InvalidSerializableXact) + return; + + /* Generate an xact record for our SERIALIZABLEXACT */ + record.type = TWOPHASEPREDICATERECORD_XACT; + xactRecord->xmin = MySerializableXact->xmin; + xactRecord->flags = MySerializableXact->flags; + + /* + * Note that we don't include the list of conflicts in our out in the + * statefile, because new conflicts can be added even after the + * transaction prepares. We'll just make a conservative assumption during + * recovery instead. + */ + + RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0, + &record, sizeof(record)); + + /* + * Generate a lock record for each lock. + * + * To do this, we need to walk the predicate lock list in our sxact rather + * than using the local predicate lock table because the latter is not + * guaranteed to be accurate. + */ + LWLockAcquire(SerializablePredicateListLock, LW_SHARED); + + /* + * No need to take sxact->perXactPredicateListLock in parallel mode + * because there cannot be any parallel workers running while we are + * preparing a transaction. + */ + Assert(!IsParallelWorker() && !ParallelContextActive()); + + predlock = (PREDICATELOCK *) + SHMQueueNext(&(sxact->predicateLocks), + &(sxact->predicateLocks), + offsetof(PREDICATELOCK, xactLink)); + + while (predlock != NULL) + { + record.type = TWOPHASEPREDICATERECORD_LOCK; + lockRecord->target = predlock->tag.myTarget->tag; + + RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0, + &record, sizeof(record)); + + predlock = (PREDICATELOCK *) + SHMQueueNext(&(sxact->predicateLocks), + &(predlock->xactLink), + offsetof(PREDICATELOCK, xactLink)); + } + + LWLockRelease(SerializablePredicateListLock); +} + +/* + * PostPrepare_Locks + * Clean up after successful PREPARE. Unlike the non-predicate + * lock manager, we do not need to transfer locks to a dummy + * PGPROC because our SERIALIZABLEXACT will stay around + * anyway. We only need to clean up our local state. + */ +void +PostPrepare_PredicateLocks(TransactionId xid) +{ + if (MySerializableXact == InvalidSerializableXact) + return; + + Assert(SxactIsPrepared(MySerializableXact)); + + MySerializableXact->pid = 0; + + hash_destroy(LocalPredicateLockHash); + LocalPredicateLockHash = NULL; + + MySerializableXact = InvalidSerializableXact; + MyXactDidWrite = false; +} + +/* + * PredicateLockTwoPhaseFinish + * Release a prepared transaction's predicate locks once it + * commits or aborts. + */ +void +PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit) +{ + SERIALIZABLEXID *sxid; + SERIALIZABLEXIDTAG sxidtag; + + sxidtag.xid = xid; + + LWLockAcquire(SerializableXactHashLock, LW_SHARED); + sxid = (SERIALIZABLEXID *) + hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL); + LWLockRelease(SerializableXactHashLock); + + /* xid will not be found if it wasn't a serializable transaction */ + if (sxid == NULL) + return; + + /* Release its locks */ + MySerializableXact = sxid->myXact; + MyXactDidWrite = true; /* conservatively assume that we wrote + * something */ + ReleasePredicateLocks(isCommit, false); +} + +/* + * Re-acquire a predicate lock belonging to a transaction that was prepared. + */ +void +predicatelock_twophase_recover(TransactionId xid, uint16 info, + void *recdata, uint32 len) +{ + TwoPhasePredicateRecord *record; + + Assert(len == sizeof(TwoPhasePredicateRecord)); + + record = (TwoPhasePredicateRecord *) recdata; + + Assert((record->type == TWOPHASEPREDICATERECORD_XACT) || + (record->type == TWOPHASEPREDICATERECORD_LOCK)); + + if (record->type == TWOPHASEPREDICATERECORD_XACT) + { + /* Per-transaction record. Set up a SERIALIZABLEXACT. */ + TwoPhasePredicateXactRecord *xactRecord; + SERIALIZABLEXACT *sxact; + SERIALIZABLEXID *sxid; + SERIALIZABLEXIDTAG sxidtag; + bool found; + + xactRecord = (TwoPhasePredicateXactRecord *) &record->data.xactRecord; + + LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE); + sxact = CreatePredXact(); + if (!sxact) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("out of shared memory"))); + + /* vxid for a prepared xact is InvalidBackendId/xid; no pid */ + sxact->vxid.backendId = InvalidBackendId; + sxact->vxid.localTransactionId = (LocalTransactionId) xid; + sxact->pid = 0; + + /* a prepared xact hasn't committed yet */ + sxact->prepareSeqNo = RecoverySerCommitSeqNo; + sxact->commitSeqNo = InvalidSerCommitSeqNo; + sxact->finishedBefore = InvalidTransactionId; + + sxact->SeqNo.lastCommitBeforeSnapshot = RecoverySerCommitSeqNo; + + /* + * Don't need to track this; no transactions running at the time the + * recovered xact started are still active, except possibly other + * prepared xacts and we don't care whether those are RO_SAFE or not. + */ + SHMQueueInit(&(sxact->possibleUnsafeConflicts)); + + SHMQueueInit(&(sxact->predicateLocks)); + SHMQueueElemInit(&(sxact->finishedLink)); + + sxact->topXid = xid; + sxact->xmin = xactRecord->xmin; + sxact->flags = xactRecord->flags; + Assert(SxactIsPrepared(sxact)); + if (!SxactIsReadOnly(sxact)) + { + ++(PredXact->WritableSxactCount); + Assert(PredXact->WritableSxactCount <= + (MaxBackends + max_prepared_xacts)); + } + + /* + * We don't know whether the transaction had any conflicts or not, so + * we'll conservatively assume that it had both a conflict in and a + * conflict out, and represent that with the summary conflict flags. + */ + SHMQueueInit(&(sxact->outConflicts)); + SHMQueueInit(&(sxact->inConflicts)); + sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN; + sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT; + + /* Register the transaction's xid */ + sxidtag.xid = xid; + sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash, + &sxidtag, + HASH_ENTER, &found); + Assert(sxid != NULL); + Assert(!found); + sxid->myXact = (SERIALIZABLEXACT *) sxact; + + /* + * Update global xmin. Note that this is a special case compared to + * registering a normal transaction, because the global xmin might go + * backwards. That's OK, because until recovery is over we're not + * going to complete any transactions or create any non-prepared + * transactions, so there's no danger of throwing away. + */ + if ((!TransactionIdIsValid(PredXact->SxactGlobalXmin)) || + (TransactionIdFollows(PredXact->SxactGlobalXmin, sxact->xmin))) + { + PredXact->SxactGlobalXmin = sxact->xmin; + PredXact->SxactGlobalXminCount = 1; + SerialSetActiveSerXmin(sxact->xmin); + } + else if (TransactionIdEquals(sxact->xmin, PredXact->SxactGlobalXmin)) + { + Assert(PredXact->SxactGlobalXminCount > 0); + PredXact->SxactGlobalXminCount++; + } + + LWLockRelease(SerializableXactHashLock); + } + else if (record->type == TWOPHASEPREDICATERECORD_LOCK) + { + /* Lock record. Recreate the PREDICATELOCK */ + TwoPhasePredicateLockRecord *lockRecord; + SERIALIZABLEXID *sxid; + SERIALIZABLEXACT *sxact; + SERIALIZABLEXIDTAG sxidtag; + uint32 targettaghash; + + lockRecord = (TwoPhasePredicateLockRecord *) &record->data.lockRecord; + targettaghash = PredicateLockTargetTagHashCode(&lockRecord->target); + + LWLockAcquire(SerializableXactHashLock, LW_SHARED); + sxidtag.xid = xid; + sxid = (SERIALIZABLEXID *) + hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL); + LWLockRelease(SerializableXactHashLock); + + Assert(sxid != NULL); + sxact = sxid->myXact; + Assert(sxact != InvalidSerializableXact); + + CreatePredicateLock(&lockRecord->target, targettaghash, sxact); + } +} + +/* + * Prepare to share the current SERIALIZABLEXACT with parallel workers. + * Return a handle object that can be used by AttachSerializableXact() in a + * parallel worker. + */ +SerializableXactHandle +ShareSerializableXact(void) +{ + return MySerializableXact; +} + +/* + * Allow parallel workers to import the leader's SERIALIZABLEXACT. + */ +void +AttachSerializableXact(SerializableXactHandle handle) +{ + + Assert(MySerializableXact == InvalidSerializableXact); + + MySerializableXact = (SERIALIZABLEXACT *) handle; + if (MySerializableXact != InvalidSerializableXact) + CreateLocalPredicateLockHash(); +} |