summaryrefslogtreecommitdiffstats
path: root/src/backend/storage/lmgr/predicate.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/storage/lmgr/predicate.c')
-rw-r--r--src/backend/storage/lmgr/predicate.c5209
1 files changed, 5209 insertions, 0 deletions
diff --git a/src/backend/storage/lmgr/predicate.c b/src/backend/storage/lmgr/predicate.c
new file mode 100644
index 0000000..2d7ed83
--- /dev/null
+++ b/src/backend/storage/lmgr/predicate.c
@@ -0,0 +1,5209 @@
+/*-------------------------------------------------------------------------
+ *
+ * predicate.c
+ * POSTGRES predicate locking
+ * to support full serializable transaction isolation
+ *
+ *
+ * The approach taken is to implement Serializable Snapshot Isolation (SSI)
+ * as initially described in this paper:
+ *
+ * Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008.
+ * Serializable isolation for snapshot databases.
+ * In SIGMOD '08: Proceedings of the 2008 ACM SIGMOD
+ * international conference on Management of data,
+ * pages 729-738, New York, NY, USA. ACM.
+ * http://doi.acm.org/10.1145/1376616.1376690
+ *
+ * and further elaborated in Cahill's doctoral thesis:
+ *
+ * Michael James Cahill. 2009.
+ * Serializable Isolation for Snapshot Databases.
+ * Sydney Digital Theses.
+ * University of Sydney, School of Information Technologies.
+ * http://hdl.handle.net/2123/5353
+ *
+ *
+ * Predicate locks for Serializable Snapshot Isolation (SSI) are SIREAD
+ * locks, which are so different from normal locks that a distinct set of
+ * structures is required to handle them. They are needed to detect
+ * rw-conflicts when the read happens before the write. (When the write
+ * occurs first, the reading transaction can check for a conflict by
+ * examining the MVCC data.)
+ *
+ * (1) Besides tuples actually read, they must cover ranges of tuples
+ * which would have been read based on the predicate. This will
+ * require modelling the predicates through locks against database
+ * objects such as pages, index ranges, or entire tables.
+ *
+ * (2) They must be kept in RAM for quick access. Because of this, it
+ * isn't possible to always maintain tuple-level granularity -- when
+ * the space allocated to store these approaches exhaustion, a
+ * request for a lock may need to scan for situations where a single
+ * transaction holds many fine-grained locks which can be coalesced
+ * into a single coarser-grained lock.
+ *
+ * (3) They never block anything; they are more like flags than locks
+ * in that regard; although they refer to database objects and are
+ * used to identify rw-conflicts with normal write locks.
+ *
+ * (4) While they are associated with a transaction, they must survive
+ * a successful COMMIT of that transaction, and remain until all
+ * overlapping transactions complete. This even means that they
+ * must survive termination of the transaction's process. If a
+ * top level transaction is rolled back, however, it is immediately
+ * flagged so that it can be ignored, and its SIREAD locks can be
+ * released any time after that.
+ *
+ * (5) The only transactions which create SIREAD locks or check for
+ * conflicts with them are serializable transactions.
+ *
+ * (6) When a write lock for a top level transaction is found to cover
+ * an existing SIREAD lock for the same transaction, the SIREAD lock
+ * can be deleted.
+ *
+ * (7) A write from a serializable transaction must ensure that an xact
+ * record exists for the transaction, with the same lifespan (until
+ * all concurrent transaction complete or the transaction is rolled
+ * back) so that rw-dependencies to that transaction can be
+ * detected.
+ *
+ * We use an optimization for read-only transactions. Under certain
+ * circumstances, a read-only transaction's snapshot can be shown to
+ * never have conflicts with other transactions. This is referred to
+ * as a "safe" snapshot (and one known not to be is "unsafe").
+ * However, it can't be determined whether a snapshot is safe until
+ * all concurrent read/write transactions complete.
+ *
+ * Once a read-only transaction is known to have a safe snapshot, it
+ * can release its predicate locks and exempt itself from further
+ * predicate lock tracking. READ ONLY DEFERRABLE transactions run only
+ * on safe snapshots, waiting as necessary for one to be available.
+ *
+ *
+ * Lightweight locks to manage access to the predicate locking shared
+ * memory objects must be taken in this order, and should be released in
+ * reverse order:
+ *
+ * SerializableFinishedListLock
+ * - Protects the list of transactions which have completed but which
+ * may yet matter because they overlap still-active transactions.
+ *
+ * SerializablePredicateListLock
+ * - Protects the linked list of locks held by a transaction. Note
+ * that the locks themselves are also covered by the partition
+ * locks of their respective lock targets; this lock only affects
+ * the linked list connecting the locks related to a transaction.
+ * - All transactions share this single lock (with no partitioning).
+ * - There is never a need for a process other than the one running
+ * an active transaction to walk the list of locks held by that
+ * transaction, except parallel query workers sharing the leader's
+ * transaction. In the parallel case, an extra per-sxact lock is
+ * taken; see below.
+ * - It is relatively infrequent that another process needs to
+ * modify the list for a transaction, but it does happen for such
+ * things as index page splits for pages with predicate locks and
+ * freeing of predicate locked pages by a vacuum process. When
+ * removing a lock in such cases, the lock itself contains the
+ * pointers needed to remove it from the list. When adding a
+ * lock in such cases, the lock can be added using the anchor in
+ * the transaction structure. Neither requires walking the list.
+ * - Cleaning up the list for a terminated transaction is sometimes
+ * not done on a retail basis, in which case no lock is required.
+ * - Due to the above, a process accessing its active transaction's
+ * list always uses a shared lock, regardless of whether it is
+ * walking or maintaining the list. This improves concurrency
+ * for the common access patterns.
+ * - A process which needs to alter the list of a transaction other
+ * than its own active transaction must acquire an exclusive
+ * lock.
+ *
+ * SERIALIZABLEXACT's member 'perXactPredicateListLock'
+ * - Protects the linked list of predicate locks held by a transaction.
+ * Only needed for parallel mode, where multiple backends share the
+ * same SERIALIZABLEXACT object. Not needed if
+ * SerializablePredicateListLock is held exclusively.
+ *
+ * PredicateLockHashPartitionLock(hashcode)
+ * - The same lock protects a target, all locks on that target, and
+ * the linked list of locks on the target.
+ * - When more than one is needed, acquire in ascending address order.
+ * - When all are needed (rare), acquire in ascending index order with
+ * PredicateLockHashPartitionLockByIndex(index).
+ *
+ * SerializableXactHashLock
+ * - Protects both PredXact and SerializableXidHash.
+ *
+ *
+ * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/storage/lmgr/predicate.c
+ *
+ *-------------------------------------------------------------------------
+ */
+/*
+ * INTERFACE ROUTINES
+ *
+ * housekeeping for setting up shared memory predicate lock structures
+ * InitPredicateLocks(void)
+ * PredicateLockShmemSize(void)
+ *
+ * predicate lock reporting
+ * GetPredicateLockStatusData(void)
+ * PageIsPredicateLocked(Relation relation, BlockNumber blkno)
+ *
+ * predicate lock maintenance
+ * GetSerializableTransactionSnapshot(Snapshot snapshot)
+ * SetSerializableTransactionSnapshot(Snapshot snapshot,
+ * VirtualTransactionId *sourcevxid)
+ * RegisterPredicateLockingXid(void)
+ * PredicateLockRelation(Relation relation, Snapshot snapshot)
+ * PredicateLockPage(Relation relation, BlockNumber blkno,
+ * Snapshot snapshot)
+ * PredicateLockTID(Relation relation, ItemPointer tid, Snapshot snapshot,
+ * TransactionId insert_xid)
+ * PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
+ * BlockNumber newblkno)
+ * PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
+ * BlockNumber newblkno)
+ * TransferPredicateLocksToHeapRelation(Relation relation)
+ * ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
+ *
+ * conflict detection (may also trigger rollback)
+ * CheckForSerializableConflictOut(Relation relation, TransactionId xid,
+ * Snapshot snapshot)
+ * CheckForSerializableConflictIn(Relation relation, ItemPointer tid,
+ * BlockNumber blkno)
+ * CheckTableForSerializableConflictIn(Relation relation)
+ *
+ * final rollback checking
+ * PreCommit_CheckForSerializationFailure(void)
+ *
+ * two-phase commit support
+ * AtPrepare_PredicateLocks(void);
+ * PostPrepare_PredicateLocks(TransactionId xid);
+ * PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit);
+ * predicatelock_twophase_recover(TransactionId xid, uint16 info,
+ * void *recdata, uint32 len);
+ */
+
+#include "postgres.h"
+
+#include "access/parallel.h"
+#include "access/slru.h"
+#include "access/subtrans.h"
+#include "access/transam.h"
+#include "access/twophase.h"
+#include "access/twophase_rmgr.h"
+#include "access/xact.h"
+#include "access/xlog.h"
+#include "miscadmin.h"
+#include "pgstat.h"
+#include "storage/bufmgr.h"
+#include "storage/predicate.h"
+#include "storage/predicate_internals.h"
+#include "storage/proc.h"
+#include "storage/procarray.h"
+#include "utils/rel.h"
+#include "utils/snapmgr.h"
+
+/* Uncomment the next line to test the graceful degradation code. */
+/* #define TEST_SUMMARIZE_SERIAL */
+
+/*
+ * Test the most selective fields first, for performance.
+ *
+ * a is covered by b if all of the following hold:
+ * 1) a.database = b.database
+ * 2) a.relation = b.relation
+ * 3) b.offset is invalid (b is page-granularity or higher)
+ * 4) either of the following:
+ * 4a) a.offset is valid (a is tuple-granularity) and a.page = b.page
+ * or 4b) a.offset is invalid and b.page is invalid (a is
+ * page-granularity and b is relation-granularity
+ */
+#define TargetTagIsCoveredBy(covered_target, covering_target) \
+ ((GET_PREDICATELOCKTARGETTAG_RELATION(covered_target) == /* (2) */ \
+ GET_PREDICATELOCKTARGETTAG_RELATION(covering_target)) \
+ && (GET_PREDICATELOCKTARGETTAG_OFFSET(covering_target) == \
+ InvalidOffsetNumber) /* (3) */ \
+ && (((GET_PREDICATELOCKTARGETTAG_OFFSET(covered_target) != \
+ InvalidOffsetNumber) /* (4a) */ \
+ && (GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) == \
+ GET_PREDICATELOCKTARGETTAG_PAGE(covered_target))) \
+ || ((GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) == \
+ InvalidBlockNumber) /* (4b) */ \
+ && (GET_PREDICATELOCKTARGETTAG_PAGE(covered_target) \
+ != InvalidBlockNumber))) \
+ && (GET_PREDICATELOCKTARGETTAG_DB(covered_target) == /* (1) */ \
+ GET_PREDICATELOCKTARGETTAG_DB(covering_target)))
+
+/*
+ * The predicate locking target and lock shared hash tables are partitioned to
+ * reduce contention. To determine which partition a given target belongs to,
+ * compute the tag's hash code with PredicateLockTargetTagHashCode(), then
+ * apply one of these macros.
+ * NB: NUM_PREDICATELOCK_PARTITIONS must be a power of 2!
+ */
+#define PredicateLockHashPartition(hashcode) \
+ ((hashcode) % NUM_PREDICATELOCK_PARTITIONS)
+#define PredicateLockHashPartitionLock(hashcode) \
+ (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + \
+ PredicateLockHashPartition(hashcode)].lock)
+#define PredicateLockHashPartitionLockByIndex(i) \
+ (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + (i)].lock)
+
+#define NPREDICATELOCKTARGETENTS() \
+ mul_size(max_predicate_locks_per_xact, add_size(MaxBackends, max_prepared_xacts))
+
+#define SxactIsOnFinishedList(sxact) (!SHMQueueIsDetached(&((sxact)->finishedLink)))
+
+/*
+ * Note that a sxact is marked "prepared" once it has passed
+ * PreCommit_CheckForSerializationFailure, even if it isn't using
+ * 2PC. This is the point at which it can no longer be aborted.
+ *
+ * The PREPARED flag remains set after commit, so SxactIsCommitted
+ * implies SxactIsPrepared.
+ */
+#define SxactIsCommitted(sxact) (((sxact)->flags & SXACT_FLAG_COMMITTED) != 0)
+#define SxactIsPrepared(sxact) (((sxact)->flags & SXACT_FLAG_PREPARED) != 0)
+#define SxactIsRolledBack(sxact) (((sxact)->flags & SXACT_FLAG_ROLLED_BACK) != 0)
+#define SxactIsDoomed(sxact) (((sxact)->flags & SXACT_FLAG_DOOMED) != 0)
+#define SxactIsReadOnly(sxact) (((sxact)->flags & SXACT_FLAG_READ_ONLY) != 0)
+#define SxactHasSummaryConflictIn(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_IN) != 0)
+#define SxactHasSummaryConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_OUT) != 0)
+/*
+ * The following macro actually means that the specified transaction has a
+ * conflict out *to a transaction which committed ahead of it*. It's hard
+ * to get that into a name of a reasonable length.
+ */
+#define SxactHasConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_CONFLICT_OUT) != 0)
+#define SxactIsDeferrableWaiting(sxact) (((sxact)->flags & SXACT_FLAG_DEFERRABLE_WAITING) != 0)
+#define SxactIsROSafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_SAFE) != 0)
+#define SxactIsROUnsafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_UNSAFE) != 0)
+#define SxactIsPartiallyReleased(sxact) (((sxact)->flags & SXACT_FLAG_PARTIALLY_RELEASED) != 0)
+
+/*
+ * Compute the hash code associated with a PREDICATELOCKTARGETTAG.
+ *
+ * To avoid unnecessary recomputations of the hash code, we try to do this
+ * just once per function, and then pass it around as needed. Aside from
+ * passing the hashcode to hash_search_with_hash_value(), we can extract
+ * the lock partition number from the hashcode.
+ */
+#define PredicateLockTargetTagHashCode(predicatelocktargettag) \
+ get_hash_value(PredicateLockTargetHash, predicatelocktargettag)
+
+/*
+ * Given a predicate lock tag, and the hash for its target,
+ * compute the lock hash.
+ *
+ * To make the hash code also depend on the transaction, we xor the sxid
+ * struct's address into the hash code, left-shifted so that the
+ * partition-number bits don't change. Since this is only a hash, we
+ * don't care if we lose high-order bits of the address; use an
+ * intermediate variable to suppress cast-pointer-to-int warnings.
+ */
+#define PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash) \
+ ((targethash) ^ ((uint32) PointerGetDatum((predicatelocktag)->myXact)) \
+ << LOG2_NUM_PREDICATELOCK_PARTITIONS)
+
+
+/*
+ * The SLRU buffer area through which we access the old xids.
+ */
+static SlruCtlData SerialSlruCtlData;
+
+#define SerialSlruCtl (&SerialSlruCtlData)
+
+#define SERIAL_PAGESIZE BLCKSZ
+#define SERIAL_ENTRYSIZE sizeof(SerCommitSeqNo)
+#define SERIAL_ENTRIESPERPAGE (SERIAL_PAGESIZE / SERIAL_ENTRYSIZE)
+
+/*
+ * Set maximum pages based on the number needed to track all transactions.
+ */
+#define SERIAL_MAX_PAGE (MaxTransactionId / SERIAL_ENTRIESPERPAGE)
+
+#define SerialNextPage(page) (((page) >= SERIAL_MAX_PAGE) ? 0 : (page) + 1)
+
+#define SerialValue(slotno, xid) (*((SerCommitSeqNo *) \
+ (SerialSlruCtl->shared->page_buffer[slotno] + \
+ ((((uint32) (xid)) % SERIAL_ENTRIESPERPAGE) * SERIAL_ENTRYSIZE))))
+
+#define SerialPage(xid) (((uint32) (xid)) / SERIAL_ENTRIESPERPAGE)
+
+typedef struct SerialControlData
+{
+ int headPage; /* newest initialized page */
+ TransactionId headXid; /* newest valid Xid in the SLRU */
+ TransactionId tailXid; /* oldest xmin we might be interested in */
+} SerialControlData;
+
+typedef struct SerialControlData *SerialControl;
+
+static SerialControl serialControl;
+
+/*
+ * When the oldest committed transaction on the "finished" list is moved to
+ * SLRU, its predicate locks will be moved to this "dummy" transaction,
+ * collapsing duplicate targets. When a duplicate is found, the later
+ * commitSeqNo is used.
+ */
+static SERIALIZABLEXACT *OldCommittedSxact;
+
+
+/*
+ * These configuration variables are used to set the predicate lock table size
+ * and to control promotion of predicate locks to coarser granularity in an
+ * attempt to degrade performance (mostly as false positive serialization
+ * failure) gracefully in the face of memory pressure.
+ */
+int max_predicate_locks_per_xact; /* set by guc.c */
+int max_predicate_locks_per_relation; /* set by guc.c */
+int max_predicate_locks_per_page; /* set by guc.c */
+
+/*
+ * This provides a list of objects in order to track transactions
+ * participating in predicate locking. Entries in the list are fixed size,
+ * and reside in shared memory. The memory address of an entry must remain
+ * fixed during its lifetime. The list will be protected from concurrent
+ * update externally; no provision is made in this code to manage that. The
+ * number of entries in the list, and the size allowed for each entry is
+ * fixed upon creation.
+ */
+static PredXactList PredXact;
+
+/*
+ * This provides a pool of RWConflict data elements to use in conflict lists
+ * between transactions.
+ */
+static RWConflictPoolHeader RWConflictPool;
+
+/*
+ * The predicate locking hash tables are in shared memory.
+ * Each backend keeps pointers to them.
+ */
+static HTAB *SerializableXidHash;
+static HTAB *PredicateLockTargetHash;
+static HTAB *PredicateLockHash;
+static SHM_QUEUE *FinishedSerializableTransactions;
+
+/*
+ * Tag for a dummy entry in PredicateLockTargetHash. By temporarily removing
+ * this entry, you can ensure that there's enough scratch space available for
+ * inserting one entry in the hash table. This is an otherwise-invalid tag.
+ */
+static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0};
+static uint32 ScratchTargetTagHash;
+static LWLock *ScratchPartitionLock;
+
+/*
+ * The local hash table used to determine when to combine multiple fine-
+ * grained locks into a single courser-grained lock.
+ */
+static HTAB *LocalPredicateLockHash = NULL;
+
+/*
+ * Keep a pointer to the currently-running serializable transaction (if any)
+ * for quick reference. Also, remember if we have written anything that could
+ * cause a rw-conflict.
+ */
+static SERIALIZABLEXACT *MySerializableXact = InvalidSerializableXact;
+static bool MyXactDidWrite = false;
+
+/*
+ * The SXACT_FLAG_RO_UNSAFE optimization might lead us to release
+ * MySerializableXact early. If that happens in a parallel query, the leader
+ * needs to defer the destruction of the SERIALIZABLEXACT until end of
+ * transaction, because the workers still have a reference to it. In that
+ * case, the leader stores it here.
+ */
+static SERIALIZABLEXACT *SavedSerializableXact = InvalidSerializableXact;
+
+/* local functions */
+
+static SERIALIZABLEXACT *CreatePredXact(void);
+static void ReleasePredXact(SERIALIZABLEXACT *sxact);
+static SERIALIZABLEXACT *FirstPredXact(void);
+static SERIALIZABLEXACT *NextPredXact(SERIALIZABLEXACT *sxact);
+
+static bool RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer);
+static void SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
+static void SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, SERIALIZABLEXACT *activeXact);
+static void ReleaseRWConflict(RWConflict conflict);
+static void FlagSxactUnsafe(SERIALIZABLEXACT *sxact);
+
+static bool SerialPagePrecedesLogically(int page1, int page2);
+static void SerialInit(void);
+static void SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo);
+static SerCommitSeqNo SerialGetMinConflictCommitSeqNo(TransactionId xid);
+static void SerialSetActiveSerXmin(TransactionId xid);
+
+static uint32 predicatelock_hash(const void *key, Size keysize);
+static void SummarizeOldestCommittedSxact(void);
+static Snapshot GetSafeSnapshot(Snapshot snapshot);
+static Snapshot GetSerializableTransactionSnapshotInt(Snapshot snapshot,
+ VirtualTransactionId *sourcevxid,
+ int sourcepid);
+static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag);
+static bool GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag,
+ PREDICATELOCKTARGETTAG *parent);
+static bool CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag);
+static void RemoveScratchTarget(bool lockheld);
+static void RestoreScratchTarget(bool lockheld);
+static void RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target,
+ uint32 targettaghash);
+static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag);
+static int MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag);
+static bool CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag);
+static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag);
+static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
+ uint32 targettaghash,
+ SERIALIZABLEXACT *sxact);
+static void DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash);
+static bool TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag,
+ PREDICATELOCKTARGETTAG newtargettag,
+ bool removeOld);
+static void PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag);
+static void DropAllPredicateLocksFromTable(Relation relation,
+ bool transfer);
+static void SetNewSxactGlobalXmin(void);
+static void ClearOldPredicateLocks(void);
+static void ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
+ bool summarize);
+static bool XidIsConcurrent(TransactionId xid);
+static void CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag);
+static void FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
+static void OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
+ SERIALIZABLEXACT *writer);
+static void CreateLocalPredicateLockHash(void);
+static void ReleasePredicateLocksLocal(void);
+
+
+/*------------------------------------------------------------------------*/
+
+/*
+ * Does this relation participate in predicate locking? Temporary and system
+ * relations are exempt, as are materialized views.
+ */
+static inline bool
+PredicateLockingNeededForRelation(Relation relation)
+{
+ return !(relation->rd_id < FirstBootstrapObjectId ||
+ RelationUsesLocalBuffers(relation) ||
+ relation->rd_rel->relkind == RELKIND_MATVIEW);
+}
+
+/*
+ * When a public interface method is called for a read, this is the test to
+ * see if we should do a quick return.
+ *
+ * Note: this function has side-effects! If this transaction has been flagged
+ * as RO-safe since the last call, we release all predicate locks and reset
+ * MySerializableXact. That makes subsequent calls to return quickly.
+ *
+ * This is marked as 'inline' to eliminate the function call overhead in the
+ * common case that serialization is not needed.
+ */
+static inline bool
+SerializationNeededForRead(Relation relation, Snapshot snapshot)
+{
+ /* Nothing to do if this is not a serializable transaction */
+ if (MySerializableXact == InvalidSerializableXact)
+ return false;
+
+ /*
+ * Don't acquire locks or conflict when scanning with a special snapshot.
+ * This excludes things like CLUSTER and REINDEX. They use the wholesale
+ * functions TransferPredicateLocksToHeapRelation() and
+ * CheckTableForSerializableConflictIn() to participate in serialization,
+ * but the scans involved don't need serialization.
+ */
+ if (!IsMVCCSnapshot(snapshot))
+ return false;
+
+ /*
+ * Check if we have just become "RO-safe". If we have, immediately release
+ * all locks as they're not needed anymore. This also resets
+ * MySerializableXact, so that subsequent calls to this function can exit
+ * quickly.
+ *
+ * A transaction is flagged as RO_SAFE if all concurrent R/W transactions
+ * commit without having conflicts out to an earlier snapshot, thus
+ * ensuring that no conflicts are possible for this transaction.
+ */
+ if (SxactIsROSafe(MySerializableXact))
+ {
+ ReleasePredicateLocks(false, true);
+ return false;
+ }
+
+ /* Check if the relation doesn't participate in predicate locking */
+ if (!PredicateLockingNeededForRelation(relation))
+ return false;
+
+ return true; /* no excuse to skip predicate locking */
+}
+
+/*
+ * Like SerializationNeededForRead(), but called on writes.
+ * The logic is the same, but there is no snapshot and we can't be RO-safe.
+ */
+static inline bool
+SerializationNeededForWrite(Relation relation)
+{
+ /* Nothing to do if this is not a serializable transaction */
+ if (MySerializableXact == InvalidSerializableXact)
+ return false;
+
+ /* Check if the relation doesn't participate in predicate locking */
+ if (!PredicateLockingNeededForRelation(relation))
+ return false;
+
+ return true; /* no excuse to skip predicate locking */
+}
+
+
+/*------------------------------------------------------------------------*/
+
+/*
+ * These functions are a simple implementation of a list for this specific
+ * type of struct. If there is ever a generalized shared memory list, we
+ * should probably switch to that.
+ */
+static SERIALIZABLEXACT *
+CreatePredXact(void)
+{
+ PredXactListElement ptle;
+
+ ptle = (PredXactListElement)
+ SHMQueueNext(&PredXact->availableList,
+ &PredXact->availableList,
+ offsetof(PredXactListElementData, link));
+ if (!ptle)
+ return NULL;
+
+ SHMQueueDelete(&ptle->link);
+ SHMQueueInsertBefore(&PredXact->activeList, &ptle->link);
+ return &ptle->sxact;
+}
+
+static void
+ReleasePredXact(SERIALIZABLEXACT *sxact)
+{
+ PredXactListElement ptle;
+
+ Assert(ShmemAddrIsValid(sxact));
+
+ ptle = (PredXactListElement)
+ (((char *) sxact)
+ - offsetof(PredXactListElementData, sxact)
+ + offsetof(PredXactListElementData, link));
+ SHMQueueDelete(&ptle->link);
+ SHMQueueInsertBefore(&PredXact->availableList, &ptle->link);
+}
+
+static SERIALIZABLEXACT *
+FirstPredXact(void)
+{
+ PredXactListElement ptle;
+
+ ptle = (PredXactListElement)
+ SHMQueueNext(&PredXact->activeList,
+ &PredXact->activeList,
+ offsetof(PredXactListElementData, link));
+ if (!ptle)
+ return NULL;
+
+ return &ptle->sxact;
+}
+
+static SERIALIZABLEXACT *
+NextPredXact(SERIALIZABLEXACT *sxact)
+{
+ PredXactListElement ptle;
+
+ Assert(ShmemAddrIsValid(sxact));
+
+ ptle = (PredXactListElement)
+ (((char *) sxact)
+ - offsetof(PredXactListElementData, sxact)
+ + offsetof(PredXactListElementData, link));
+ ptle = (PredXactListElement)
+ SHMQueueNext(&PredXact->activeList,
+ &ptle->link,
+ offsetof(PredXactListElementData, link));
+ if (!ptle)
+ return NULL;
+
+ return &ptle->sxact;
+}
+
+/*------------------------------------------------------------------------*/
+
+/*
+ * These functions manage primitive access to the RWConflict pool and lists.
+ */
+static bool
+RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer)
+{
+ RWConflict conflict;
+
+ Assert(reader != writer);
+
+ /* Check the ends of the purported conflict first. */
+ if (SxactIsDoomed(reader)
+ || SxactIsDoomed(writer)
+ || SHMQueueEmpty(&reader->outConflicts)
+ || SHMQueueEmpty(&writer->inConflicts))
+ return false;
+
+ /* A conflict is possible; walk the list to find out. */
+ conflict = (RWConflict)
+ SHMQueueNext(&reader->outConflicts,
+ &reader->outConflicts,
+ offsetof(RWConflictData, outLink));
+ while (conflict)
+ {
+ if (conflict->sxactIn == writer)
+ return true;
+ conflict = (RWConflict)
+ SHMQueueNext(&reader->outConflicts,
+ &conflict->outLink,
+ offsetof(RWConflictData, outLink));
+ }
+
+ /* No conflict found. */
+ return false;
+}
+
+static void
+SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
+{
+ RWConflict conflict;
+
+ Assert(reader != writer);
+ Assert(!RWConflictExists(reader, writer));
+
+ conflict = (RWConflict)
+ SHMQueueNext(&RWConflictPool->availableList,
+ &RWConflictPool->availableList,
+ offsetof(RWConflictData, outLink));
+ if (!conflict)
+ ereport(ERROR,
+ (errcode(ERRCODE_OUT_OF_MEMORY),
+ errmsg("not enough elements in RWConflictPool to record a read/write conflict"),
+ errhint("You might need to run fewer transactions at a time or increase max_connections.")));
+
+ SHMQueueDelete(&conflict->outLink);
+
+ conflict->sxactOut = reader;
+ conflict->sxactIn = writer;
+ SHMQueueInsertBefore(&reader->outConflicts, &conflict->outLink);
+ SHMQueueInsertBefore(&writer->inConflicts, &conflict->inLink);
+}
+
+static void
+SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact,
+ SERIALIZABLEXACT *activeXact)
+{
+ RWConflict conflict;
+
+ Assert(roXact != activeXact);
+ Assert(SxactIsReadOnly(roXact));
+ Assert(!SxactIsReadOnly(activeXact));
+
+ conflict = (RWConflict)
+ SHMQueueNext(&RWConflictPool->availableList,
+ &RWConflictPool->availableList,
+ offsetof(RWConflictData, outLink));
+ if (!conflict)
+ ereport(ERROR,
+ (errcode(ERRCODE_OUT_OF_MEMORY),
+ errmsg("not enough elements in RWConflictPool to record a potential read/write conflict"),
+ errhint("You might need to run fewer transactions at a time or increase max_connections.")));
+
+ SHMQueueDelete(&conflict->outLink);
+
+ conflict->sxactOut = activeXact;
+ conflict->sxactIn = roXact;
+ SHMQueueInsertBefore(&activeXact->possibleUnsafeConflicts,
+ &conflict->outLink);
+ SHMQueueInsertBefore(&roXact->possibleUnsafeConflicts,
+ &conflict->inLink);
+}
+
+static void
+ReleaseRWConflict(RWConflict conflict)
+{
+ SHMQueueDelete(&conflict->inLink);
+ SHMQueueDelete(&conflict->outLink);
+ SHMQueueInsertBefore(&RWConflictPool->availableList, &conflict->outLink);
+}
+
+static void
+FlagSxactUnsafe(SERIALIZABLEXACT *sxact)
+{
+ RWConflict conflict,
+ nextConflict;
+
+ Assert(SxactIsReadOnly(sxact));
+ Assert(!SxactIsROSafe(sxact));
+
+ sxact->flags |= SXACT_FLAG_RO_UNSAFE;
+
+ /*
+ * We know this isn't a safe snapshot, so we can stop looking for other
+ * potential conflicts.
+ */
+ conflict = (RWConflict)
+ SHMQueueNext(&sxact->possibleUnsafeConflicts,
+ &sxact->possibleUnsafeConflicts,
+ offsetof(RWConflictData, inLink));
+ while (conflict)
+ {
+ nextConflict = (RWConflict)
+ SHMQueueNext(&sxact->possibleUnsafeConflicts,
+ &conflict->inLink,
+ offsetof(RWConflictData, inLink));
+
+ Assert(!SxactIsReadOnly(conflict->sxactOut));
+ Assert(sxact == conflict->sxactIn);
+
+ ReleaseRWConflict(conflict);
+
+ conflict = nextConflict;
+ }
+}
+
+/*------------------------------------------------------------------------*/
+
+/*
+ * Decide whether a Serial page number is "older" for truncation purposes.
+ * Analogous to CLOGPagePrecedes().
+ */
+static bool
+SerialPagePrecedesLogically(int page1, int page2)
+{
+ TransactionId xid1;
+ TransactionId xid2;
+
+ xid1 = ((TransactionId) page1) * SERIAL_ENTRIESPERPAGE;
+ xid1 += FirstNormalTransactionId + 1;
+ xid2 = ((TransactionId) page2) * SERIAL_ENTRIESPERPAGE;
+ xid2 += FirstNormalTransactionId + 1;
+
+ return (TransactionIdPrecedes(xid1, xid2) &&
+ TransactionIdPrecedes(xid1, xid2 + SERIAL_ENTRIESPERPAGE - 1));
+}
+
+#ifdef USE_ASSERT_CHECKING
+static void
+SerialPagePrecedesLogicallyUnitTests(void)
+{
+ int per_page = SERIAL_ENTRIESPERPAGE,
+ offset = per_page / 2;
+ int newestPage,
+ oldestPage,
+ headPage,
+ targetPage;
+ TransactionId newestXact,
+ oldestXact;
+
+ /* GetNewTransactionId() has assigned the last XID it can safely use. */
+ newestPage = 2 * SLRU_PAGES_PER_SEGMENT - 1; /* nothing special */
+ newestXact = newestPage * per_page + offset;
+ Assert(newestXact / per_page == newestPage);
+ oldestXact = newestXact + 1;
+ oldestXact -= 1U << 31;
+ oldestPage = oldestXact / per_page;
+
+ /*
+ * In this scenario, the SLRU headPage pertains to the last ~1000 XIDs
+ * assigned. oldestXact finishes, ~2B XIDs having elapsed since it
+ * started. Further transactions cause us to summarize oldestXact to
+ * tailPage. Function must return false so SerialAdd() doesn't zero
+ * tailPage (which may contain entries for other old, recently-finished
+ * XIDs) and half the SLRU. Reaching this requires burning ~2B XIDs in
+ * single-user mode, a negligible possibility.
+ */
+ headPage = newestPage;
+ targetPage = oldestPage;
+ Assert(!SerialPagePrecedesLogically(headPage, targetPage));
+
+ /*
+ * In this scenario, the SLRU headPage pertains to oldestXact. We're
+ * summarizing an XID near newestXact. (Assume few other XIDs used
+ * SERIALIZABLE, hence the minimal headPage advancement. Assume
+ * oldestXact was long-running and only recently reached the SLRU.)
+ * Function must return true to make SerialAdd() create targetPage.
+ *
+ * Today's implementation mishandles this case, but it doesn't matter
+ * enough to fix. Verify that the defect affects just one page by
+ * asserting correct treatment of its prior page. Reaching this case
+ * requires burning ~2B XIDs in single-user mode, a negligible
+ * possibility. Moreover, if it does happen, the consequence would be
+ * mild, namely a new transaction failing in SimpleLruReadPage().
+ */
+ headPage = oldestPage;
+ targetPage = newestPage;
+ Assert(SerialPagePrecedesLogically(headPage, targetPage - 1));
+#if 0
+ Assert(SerialPagePrecedesLogically(headPage, targetPage));
+#endif
+}
+#endif
+
+/*
+ * Initialize for the tracking of old serializable committed xids.
+ */
+static void
+SerialInit(void)
+{
+ bool found;
+
+ /*
+ * Set up SLRU management of the pg_serial data.
+ */
+ SerialSlruCtl->PagePrecedes = SerialPagePrecedesLogically;
+ SimpleLruInit(SerialSlruCtl, "Serial",
+ NUM_SERIAL_BUFFERS, 0, SerialSLRULock, "pg_serial",
+ LWTRANCHE_SERIAL_BUFFER);
+ /* Override default assumption that writes should be fsync'd */
+ SerialSlruCtl->do_fsync = false;
+#ifdef USE_ASSERT_CHECKING
+ SerialPagePrecedesLogicallyUnitTests();
+#endif
+ SlruPagePrecedesUnitTests(SerialSlruCtl, SERIAL_ENTRIESPERPAGE);
+
+ /*
+ * Create or attach to the SerialControl structure.
+ */
+ serialControl = (SerialControl)
+ ShmemInitStruct("SerialControlData", sizeof(SerialControlData), &found);
+
+ Assert(found == IsUnderPostmaster);
+ if (!found)
+ {
+ /*
+ * Set control information to reflect empty SLRU.
+ */
+ serialControl->headPage = -1;
+ serialControl->headXid = InvalidTransactionId;
+ serialControl->tailXid = InvalidTransactionId;
+ }
+}
+
+/*
+ * Record a committed read write serializable xid and the minimum
+ * commitSeqNo of any transactions to which this xid had a rw-conflict out.
+ * An invalid commitSeqNo means that there were no conflicts out from xid.
+ */
+static void
+SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
+{
+ TransactionId tailXid;
+ int targetPage;
+ int slotno;
+ int firstZeroPage;
+ bool isNewPage;
+
+ Assert(TransactionIdIsValid(xid));
+
+ targetPage = SerialPage(xid);
+
+ LWLockAcquire(SerialSLRULock, LW_EXCLUSIVE);
+
+ /*
+ * If no serializable transactions are active, there shouldn't be anything
+ * to push out to the SLRU. Hitting this assert would mean there's
+ * something wrong with the earlier cleanup logic.
+ */
+ tailXid = serialControl->tailXid;
+ Assert(TransactionIdIsValid(tailXid));
+
+ /*
+ * If the SLRU is currently unused, zero out the whole active region from
+ * tailXid to headXid before taking it into use. Otherwise zero out only
+ * any new pages that enter the tailXid-headXid range as we advance
+ * headXid.
+ */
+ if (serialControl->headPage < 0)
+ {
+ firstZeroPage = SerialPage(tailXid);
+ isNewPage = true;
+ }
+ else
+ {
+ firstZeroPage = SerialNextPage(serialControl->headPage);
+ isNewPage = SerialPagePrecedesLogically(serialControl->headPage,
+ targetPage);
+ }
+
+ if (!TransactionIdIsValid(serialControl->headXid)
+ || TransactionIdFollows(xid, serialControl->headXid))
+ serialControl->headXid = xid;
+ if (isNewPage)
+ serialControl->headPage = targetPage;
+
+ if (isNewPage)
+ {
+ /* Initialize intervening pages. */
+ while (firstZeroPage != targetPage)
+ {
+ (void) SimpleLruZeroPage(SerialSlruCtl, firstZeroPage);
+ firstZeroPage = SerialNextPage(firstZeroPage);
+ }
+ slotno = SimpleLruZeroPage(SerialSlruCtl, targetPage);
+ }
+ else
+ slotno = SimpleLruReadPage(SerialSlruCtl, targetPage, true, xid);
+
+ SerialValue(slotno, xid) = minConflictCommitSeqNo;
+ SerialSlruCtl->shared->page_dirty[slotno] = true;
+
+ LWLockRelease(SerialSLRULock);
+}
+
+/*
+ * Get the minimum commitSeqNo for any conflict out for the given xid. For
+ * a transaction which exists but has no conflict out, InvalidSerCommitSeqNo
+ * will be returned.
+ */
+static SerCommitSeqNo
+SerialGetMinConflictCommitSeqNo(TransactionId xid)
+{
+ TransactionId headXid;
+ TransactionId tailXid;
+ SerCommitSeqNo val;
+ int slotno;
+
+ Assert(TransactionIdIsValid(xid));
+
+ LWLockAcquire(SerialSLRULock, LW_SHARED);
+ headXid = serialControl->headXid;
+ tailXid = serialControl->tailXid;
+ LWLockRelease(SerialSLRULock);
+
+ if (!TransactionIdIsValid(headXid))
+ return 0;
+
+ Assert(TransactionIdIsValid(tailXid));
+
+ if (TransactionIdPrecedes(xid, tailXid)
+ || TransactionIdFollows(xid, headXid))
+ return 0;
+
+ /*
+ * The following function must be called without holding SerialSLRULock,
+ * but will return with that lock held, which must then be released.
+ */
+ slotno = SimpleLruReadPage_ReadOnly(SerialSlruCtl,
+ SerialPage(xid), xid);
+ val = SerialValue(slotno, xid);
+ LWLockRelease(SerialSLRULock);
+ return val;
+}
+
+/*
+ * Call this whenever there is a new xmin for active serializable
+ * transactions. We don't need to keep information on transactions which
+ * precede that. InvalidTransactionId means none active, so everything in
+ * the SLRU can be discarded.
+ */
+static void
+SerialSetActiveSerXmin(TransactionId xid)
+{
+ LWLockAcquire(SerialSLRULock, LW_EXCLUSIVE);
+
+ /*
+ * When no sxacts are active, nothing overlaps, set the xid values to
+ * invalid to show that there are no valid entries. Don't clear headPage,
+ * though. A new xmin might still land on that page, and we don't want to
+ * repeatedly zero out the same page.
+ */
+ if (!TransactionIdIsValid(xid))
+ {
+ serialControl->tailXid = InvalidTransactionId;
+ serialControl->headXid = InvalidTransactionId;
+ LWLockRelease(SerialSLRULock);
+ return;
+ }
+
+ /*
+ * When we're recovering prepared transactions, the global xmin might move
+ * backwards depending on the order they're recovered. Normally that's not
+ * OK, but during recovery no serializable transactions will commit, so
+ * the SLRU is empty and we can get away with it.
+ */
+ if (RecoveryInProgress())
+ {
+ Assert(serialControl->headPage < 0);
+ if (!TransactionIdIsValid(serialControl->tailXid)
+ || TransactionIdPrecedes(xid, serialControl->tailXid))
+ {
+ serialControl->tailXid = xid;
+ }
+ LWLockRelease(SerialSLRULock);
+ return;
+ }
+
+ Assert(!TransactionIdIsValid(serialControl->tailXid)
+ || TransactionIdFollows(xid, serialControl->tailXid));
+
+ serialControl->tailXid = xid;
+
+ LWLockRelease(SerialSLRULock);
+}
+
+/*
+ * Perform a checkpoint --- either during shutdown, or on-the-fly
+ *
+ * We don't have any data that needs to survive a restart, but this is a
+ * convenient place to truncate the SLRU.
+ */
+void
+CheckPointPredicate(void)
+{
+ int tailPage;
+
+ LWLockAcquire(SerialSLRULock, LW_EXCLUSIVE);
+
+ /* Exit quickly if the SLRU is currently not in use. */
+ if (serialControl->headPage < 0)
+ {
+ LWLockRelease(SerialSLRULock);
+ return;
+ }
+
+ if (TransactionIdIsValid(serialControl->tailXid))
+ {
+ /* We can truncate the SLRU up to the page containing tailXid */
+ tailPage = SerialPage(serialControl->tailXid);
+ }
+ else
+ {
+ /*----------
+ * The SLRU is no longer needed. Truncate to head before we set head
+ * invalid.
+ *
+ * XXX: It's possible that the SLRU is not needed again until XID
+ * wrap-around has happened, so that the segment containing headPage
+ * that we leave behind will appear to be new again. In that case it
+ * won't be removed until XID horizon advances enough to make it
+ * current again.
+ *
+ * XXX: This should happen in vac_truncate_clog(), not in checkpoints.
+ * Consider this scenario, starting from a system with no in-progress
+ * transactions and VACUUM FREEZE having maximized oldestXact:
+ * - Start a SERIALIZABLE transaction.
+ * - Start, finish, and summarize a SERIALIZABLE transaction, creating
+ * one SLRU page.
+ * - Consume XIDs to reach xidStopLimit.
+ * - Finish all transactions. Due to the long-running SERIALIZABLE
+ * transaction, earlier checkpoints did not touch headPage. The
+ * next checkpoint will change it, but that checkpoint happens after
+ * the end of the scenario.
+ * - VACUUM to advance XID limits.
+ * - Consume ~2M XIDs, crossing the former xidWrapLimit.
+ * - Start, finish, and summarize a SERIALIZABLE transaction.
+ * SerialAdd() declines to create the targetPage, because headPage
+ * is not regarded as in the past relative to that targetPage. The
+ * transaction instigating the summarize fails in
+ * SimpleLruReadPage().
+ */
+ tailPage = serialControl->headPage;
+ serialControl->headPage = -1;
+ }
+
+ LWLockRelease(SerialSLRULock);
+
+ /* Truncate away pages that are no longer required */
+ SimpleLruTruncate(SerialSlruCtl, tailPage);
+
+ /*
+ * Flush dirty SLRU pages to disk
+ *
+ * This is not actually necessary from a correctness point of view. We do
+ * it merely as a debugging aid.
+ *
+ * We're doing this after the truncation to avoid writing pages right
+ * before deleting the file in which they sit, which would be completely
+ * pointless.
+ */
+ SimpleLruFlush(SerialSlruCtl, true);
+}
+
+/*------------------------------------------------------------------------*/
+
+/*
+ * InitPredicateLocks -- Initialize the predicate locking data structures.
+ *
+ * This is called from CreateSharedMemoryAndSemaphores(), which see for
+ * more comments. In the normal postmaster case, the shared hash tables
+ * are created here. Backends inherit the pointers
+ * to the shared tables via fork(). In the EXEC_BACKEND case, each
+ * backend re-executes this code to obtain pointers to the already existing
+ * shared hash tables.
+ */
+void
+InitPredicateLocks(void)
+{
+ HASHCTL info;
+ long max_table_size;
+ Size requestSize;
+ bool found;
+
+#ifndef EXEC_BACKEND
+ Assert(!IsUnderPostmaster);
+#endif
+
+ /*
+ * Compute size of predicate lock target hashtable. Note these
+ * calculations must agree with PredicateLockShmemSize!
+ */
+ max_table_size = NPREDICATELOCKTARGETENTS();
+
+ /*
+ * Allocate hash table for PREDICATELOCKTARGET structs. This stores
+ * per-predicate-lock-target information.
+ */
+ MemSet(&info, 0, sizeof(info));
+ info.keysize = sizeof(PREDICATELOCKTARGETTAG);
+ info.entrysize = sizeof(PREDICATELOCKTARGET);
+ info.num_partitions = NUM_PREDICATELOCK_PARTITIONS;
+
+ PredicateLockTargetHash = ShmemInitHash("PREDICATELOCKTARGET hash",
+ max_table_size,
+ max_table_size,
+ &info,
+ HASH_ELEM | HASH_BLOBS |
+ HASH_PARTITION | HASH_FIXED_SIZE);
+
+ /*
+ * Reserve a dummy entry in the hash table; we use it to make sure there's
+ * always one entry available when we need to split or combine a page,
+ * because running out of space there could mean aborting a
+ * non-serializable transaction.
+ */
+ if (!IsUnderPostmaster)
+ {
+ (void) hash_search(PredicateLockTargetHash, &ScratchTargetTag,
+ HASH_ENTER, &found);
+ Assert(!found);
+ }
+
+ /* Pre-calculate the hash and partition lock of the scratch entry */
+ ScratchTargetTagHash = PredicateLockTargetTagHashCode(&ScratchTargetTag);
+ ScratchPartitionLock = PredicateLockHashPartitionLock(ScratchTargetTagHash);
+
+ /*
+ * Allocate hash table for PREDICATELOCK structs. This stores per
+ * xact-lock-of-a-target information.
+ */
+ MemSet(&info, 0, sizeof(info));
+ info.keysize = sizeof(PREDICATELOCKTAG);
+ info.entrysize = sizeof(PREDICATELOCK);
+ info.hash = predicatelock_hash;
+ info.num_partitions = NUM_PREDICATELOCK_PARTITIONS;
+
+ /* Assume an average of 2 xacts per target */
+ max_table_size *= 2;
+
+ PredicateLockHash = ShmemInitHash("PREDICATELOCK hash",
+ max_table_size,
+ max_table_size,
+ &info,
+ HASH_ELEM | HASH_FUNCTION |
+ HASH_PARTITION | HASH_FIXED_SIZE);
+
+ /*
+ * Compute size for serializable transaction hashtable. Note these
+ * calculations must agree with PredicateLockShmemSize!
+ */
+ max_table_size = (MaxBackends + max_prepared_xacts);
+
+ /*
+ * Allocate a list to hold information on transactions participating in
+ * predicate locking.
+ *
+ * Assume an average of 10 predicate locking transactions per backend.
+ * This allows aggressive cleanup while detail is present before data must
+ * be summarized for storage in SLRU and the "dummy" transaction.
+ */
+ max_table_size *= 10;
+
+ PredXact = ShmemInitStruct("PredXactList",
+ PredXactListDataSize,
+ &found);
+ Assert(found == IsUnderPostmaster);
+ if (!found)
+ {
+ int i;
+
+ SHMQueueInit(&PredXact->availableList);
+ SHMQueueInit(&PredXact->activeList);
+ PredXact->SxactGlobalXmin = InvalidTransactionId;
+ PredXact->SxactGlobalXminCount = 0;
+ PredXact->WritableSxactCount = 0;
+ PredXact->LastSxactCommitSeqNo = FirstNormalSerCommitSeqNo - 1;
+ PredXact->CanPartialClearThrough = 0;
+ PredXact->HavePartialClearedThrough = 0;
+ requestSize = mul_size((Size) max_table_size,
+ PredXactListElementDataSize);
+ PredXact->element = ShmemAlloc(requestSize);
+ /* Add all elements to available list, clean. */
+ memset(PredXact->element, 0, requestSize);
+ for (i = 0; i < max_table_size; i++)
+ {
+ LWLockInitialize(&PredXact->element[i].sxact.perXactPredicateListLock,
+ LWTRANCHE_PER_XACT_PREDICATE_LIST);
+ SHMQueueInsertBefore(&(PredXact->availableList),
+ &(PredXact->element[i].link));
+ }
+ PredXact->OldCommittedSxact = CreatePredXact();
+ SetInvalidVirtualTransactionId(PredXact->OldCommittedSxact->vxid);
+ PredXact->OldCommittedSxact->prepareSeqNo = 0;
+ PredXact->OldCommittedSxact->commitSeqNo = 0;
+ PredXact->OldCommittedSxact->SeqNo.lastCommitBeforeSnapshot = 0;
+ SHMQueueInit(&PredXact->OldCommittedSxact->outConflicts);
+ SHMQueueInit(&PredXact->OldCommittedSxact->inConflicts);
+ SHMQueueInit(&PredXact->OldCommittedSxact->predicateLocks);
+ SHMQueueInit(&PredXact->OldCommittedSxact->finishedLink);
+ SHMQueueInit(&PredXact->OldCommittedSxact->possibleUnsafeConflicts);
+ PredXact->OldCommittedSxact->topXid = InvalidTransactionId;
+ PredXact->OldCommittedSxact->finishedBefore = InvalidTransactionId;
+ PredXact->OldCommittedSxact->xmin = InvalidTransactionId;
+ PredXact->OldCommittedSxact->flags = SXACT_FLAG_COMMITTED;
+ PredXact->OldCommittedSxact->pid = 0;
+ }
+ /* This never changes, so let's keep a local copy. */
+ OldCommittedSxact = PredXact->OldCommittedSxact;
+
+ /*
+ * Allocate hash table for SERIALIZABLEXID structs. This stores per-xid
+ * information for serializable transactions which have accessed data.
+ */
+ MemSet(&info, 0, sizeof(info));
+ info.keysize = sizeof(SERIALIZABLEXIDTAG);
+ info.entrysize = sizeof(SERIALIZABLEXID);
+
+ SerializableXidHash = ShmemInitHash("SERIALIZABLEXID hash",
+ max_table_size,
+ max_table_size,
+ &info,
+ HASH_ELEM | HASH_BLOBS |
+ HASH_FIXED_SIZE);
+
+ /*
+ * Allocate space for tracking rw-conflicts in lists attached to the
+ * transactions.
+ *
+ * Assume an average of 5 conflicts per transaction. Calculations suggest
+ * that this will prevent resource exhaustion in even the most pessimal
+ * loads up to max_connections = 200 with all 200 connections pounding the
+ * database with serializable transactions. Beyond that, there may be
+ * occasional transactions canceled when trying to flag conflicts. That's
+ * probably OK.
+ */
+ max_table_size *= 5;
+
+ RWConflictPool = ShmemInitStruct("RWConflictPool",
+ RWConflictPoolHeaderDataSize,
+ &found);
+ Assert(found == IsUnderPostmaster);
+ if (!found)
+ {
+ int i;
+
+ SHMQueueInit(&RWConflictPool->availableList);
+ requestSize = mul_size((Size) max_table_size,
+ RWConflictDataSize);
+ RWConflictPool->element = ShmemAlloc(requestSize);
+ /* Add all elements to available list, clean. */
+ memset(RWConflictPool->element, 0, requestSize);
+ for (i = 0; i < max_table_size; i++)
+ {
+ SHMQueueInsertBefore(&(RWConflictPool->availableList),
+ &(RWConflictPool->element[i].outLink));
+ }
+ }
+
+ /*
+ * Create or attach to the header for the list of finished serializable
+ * transactions.
+ */
+ FinishedSerializableTransactions = (SHM_QUEUE *)
+ ShmemInitStruct("FinishedSerializableTransactions",
+ sizeof(SHM_QUEUE),
+ &found);
+ Assert(found == IsUnderPostmaster);
+ if (!found)
+ SHMQueueInit(FinishedSerializableTransactions);
+
+ /*
+ * Initialize the SLRU storage for old committed serializable
+ * transactions.
+ */
+ SerialInit();
+}
+
+/*
+ * Estimate shared-memory space used for predicate lock table
+ */
+Size
+PredicateLockShmemSize(void)
+{
+ Size size = 0;
+ long max_table_size;
+
+ /* predicate lock target hash table */
+ max_table_size = NPREDICATELOCKTARGETENTS();
+ size = add_size(size, hash_estimate_size(max_table_size,
+ sizeof(PREDICATELOCKTARGET)));
+
+ /* predicate lock hash table */
+ max_table_size *= 2;
+ size = add_size(size, hash_estimate_size(max_table_size,
+ sizeof(PREDICATELOCK)));
+
+ /*
+ * Since NPREDICATELOCKTARGETENTS is only an estimate, add 10% safety
+ * margin.
+ */
+ size = add_size(size, size / 10);
+
+ /* transaction list */
+ max_table_size = MaxBackends + max_prepared_xacts;
+ max_table_size *= 10;
+ size = add_size(size, PredXactListDataSize);
+ size = add_size(size, mul_size((Size) max_table_size,
+ PredXactListElementDataSize));
+
+ /* transaction xid table */
+ size = add_size(size, hash_estimate_size(max_table_size,
+ sizeof(SERIALIZABLEXID)));
+
+ /* rw-conflict pool */
+ max_table_size *= 5;
+ size = add_size(size, RWConflictPoolHeaderDataSize);
+ size = add_size(size, mul_size((Size) max_table_size,
+ RWConflictDataSize));
+
+ /* Head for list of finished serializable transactions. */
+ size = add_size(size, sizeof(SHM_QUEUE));
+
+ /* Shared memory structures for SLRU tracking of old committed xids. */
+ size = add_size(size, sizeof(SerialControlData));
+ size = add_size(size, SimpleLruShmemSize(NUM_SERIAL_BUFFERS, 0));
+
+ return size;
+}
+
+
+/*
+ * Compute the hash code associated with a PREDICATELOCKTAG.
+ *
+ * Because we want to use just one set of partition locks for both the
+ * PREDICATELOCKTARGET and PREDICATELOCK hash tables, we have to make sure
+ * that PREDICATELOCKs fall into the same partition number as their
+ * associated PREDICATELOCKTARGETs. dynahash.c expects the partition number
+ * to be the low-order bits of the hash code, and therefore a
+ * PREDICATELOCKTAG's hash code must have the same low-order bits as the
+ * associated PREDICATELOCKTARGETTAG's hash code. We achieve this with this
+ * specialized hash function.
+ */
+static uint32
+predicatelock_hash(const void *key, Size keysize)
+{
+ const PREDICATELOCKTAG *predicatelocktag = (const PREDICATELOCKTAG *) key;
+ uint32 targethash;
+
+ Assert(keysize == sizeof(PREDICATELOCKTAG));
+
+ /* Look into the associated target object, and compute its hash code */
+ targethash = PredicateLockTargetTagHashCode(&predicatelocktag->myTarget->tag);
+
+ return PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash);
+}
+
+
+/*
+ * GetPredicateLockStatusData
+ * Return a table containing the internal state of the predicate
+ * lock manager for use in pg_lock_status.
+ *
+ * Like GetLockStatusData, this function tries to hold the partition LWLocks
+ * for as short a time as possible by returning two arrays that simply
+ * contain the PREDICATELOCKTARGETTAG and SERIALIZABLEXACT for each lock
+ * table entry. Multiple copies of the same PREDICATELOCKTARGETTAG and
+ * SERIALIZABLEXACT will likely appear.
+ */
+PredicateLockData *
+GetPredicateLockStatusData(void)
+{
+ PredicateLockData *data;
+ int i;
+ int els,
+ el;
+ HASH_SEQ_STATUS seqstat;
+ PREDICATELOCK *predlock;
+
+ data = (PredicateLockData *) palloc(sizeof(PredicateLockData));
+
+ /*
+ * To ensure consistency, take simultaneous locks on all partition locks
+ * in ascending order, then SerializableXactHashLock.
+ */
+ for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
+ LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED);
+ LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+
+ /* Get number of locks and allocate appropriately-sized arrays. */
+ els = hash_get_num_entries(PredicateLockHash);
+ data->nelements = els;
+ data->locktags = (PREDICATELOCKTARGETTAG *)
+ palloc(sizeof(PREDICATELOCKTARGETTAG) * els);
+ data->xacts = (SERIALIZABLEXACT *)
+ palloc(sizeof(SERIALIZABLEXACT) * els);
+
+
+ /* Scan through PredicateLockHash and copy contents */
+ hash_seq_init(&seqstat, PredicateLockHash);
+
+ el = 0;
+
+ while ((predlock = (PREDICATELOCK *) hash_seq_search(&seqstat)))
+ {
+ data->locktags[el] = predlock->tag.myTarget->tag;
+ data->xacts[el] = *predlock->tag.myXact;
+ el++;
+ }
+
+ Assert(el == els);
+
+ /* Release locks in reverse order */
+ LWLockRelease(SerializableXactHashLock);
+ for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
+ LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
+
+ return data;
+}
+
+/*
+ * Free up shared memory structures by pushing the oldest sxact (the one at
+ * the front of the SummarizeOldestCommittedSxact queue) into summary form.
+ * Each call will free exactly one SERIALIZABLEXACT structure and may also
+ * free one or more of these structures: SERIALIZABLEXID, PREDICATELOCK,
+ * PREDICATELOCKTARGET, RWConflictData.
+ */
+static void
+SummarizeOldestCommittedSxact(void)
+{
+ SERIALIZABLEXACT *sxact;
+
+ LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
+
+ /*
+ * This function is only called if there are no sxact slots available.
+ * Some of them must belong to old, already-finished transactions, so
+ * there should be something in FinishedSerializableTransactions list that
+ * we can summarize. However, there's a race condition: while we were not
+ * holding any locks, a transaction might have ended and cleaned up all
+ * the finished sxact entries already, freeing up their sxact slots. In
+ * that case, we have nothing to do here. The caller will find one of the
+ * slots released by the other backend when it retries.
+ */
+ if (SHMQueueEmpty(FinishedSerializableTransactions))
+ {
+ LWLockRelease(SerializableFinishedListLock);
+ return;
+ }
+
+ /*
+ * Grab the first sxact off the finished list -- this will be the earliest
+ * commit. Remove it from the list.
+ */
+ sxact = (SERIALIZABLEXACT *)
+ SHMQueueNext(FinishedSerializableTransactions,
+ FinishedSerializableTransactions,
+ offsetof(SERIALIZABLEXACT, finishedLink));
+ SHMQueueDelete(&(sxact->finishedLink));
+
+ /* Add to SLRU summary information. */
+ if (TransactionIdIsValid(sxact->topXid) && !SxactIsReadOnly(sxact))
+ SerialAdd(sxact->topXid, SxactHasConflictOut(sxact)
+ ? sxact->SeqNo.earliestOutConflictCommit : InvalidSerCommitSeqNo);
+
+ /* Summarize and release the detail. */
+ ReleaseOneSerializableXact(sxact, false, true);
+
+ LWLockRelease(SerializableFinishedListLock);
+}
+
+/*
+ * GetSafeSnapshot
+ * Obtain and register a snapshot for a READ ONLY DEFERRABLE
+ * transaction. Ensures that the snapshot is "safe", i.e. a
+ * read-only transaction running on it can execute serializably
+ * without further checks. This requires waiting for concurrent
+ * transactions to complete, and retrying with a new snapshot if
+ * one of them could possibly create a conflict.
+ *
+ * As with GetSerializableTransactionSnapshot (which this is a subroutine
+ * for), the passed-in Snapshot pointer should reference a static data
+ * area that can safely be passed to GetSnapshotData.
+ */
+static Snapshot
+GetSafeSnapshot(Snapshot origSnapshot)
+{
+ Snapshot snapshot;
+
+ Assert(XactReadOnly && XactDeferrable);
+
+ while (true)
+ {
+ /*
+ * GetSerializableTransactionSnapshotInt is going to call
+ * GetSnapshotData, so we need to provide it the static snapshot area
+ * our caller passed to us. The pointer returned is actually the same
+ * one passed to it, but we avoid assuming that here.
+ */
+ snapshot = GetSerializableTransactionSnapshotInt(origSnapshot,
+ NULL, InvalidPid);
+
+ if (MySerializableXact == InvalidSerializableXact)
+ return snapshot; /* no concurrent r/w xacts; it's safe */
+
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
+ /*
+ * Wait for concurrent transactions to finish. Stop early if one of
+ * them marked us as conflicted.
+ */
+ MySerializableXact->flags |= SXACT_FLAG_DEFERRABLE_WAITING;
+ while (!(SHMQueueEmpty(&MySerializableXact->possibleUnsafeConflicts) ||
+ SxactIsROUnsafe(MySerializableXact)))
+ {
+ LWLockRelease(SerializableXactHashLock);
+ ProcWaitForSignal(WAIT_EVENT_SAFE_SNAPSHOT);
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+ }
+ MySerializableXact->flags &= ~SXACT_FLAG_DEFERRABLE_WAITING;
+
+ if (!SxactIsROUnsafe(MySerializableXact))
+ {
+ LWLockRelease(SerializableXactHashLock);
+ break; /* success */
+ }
+
+ LWLockRelease(SerializableXactHashLock);
+
+ /* else, need to retry... */
+ ereport(DEBUG2,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("deferrable snapshot was unsafe; trying a new one")));
+ ReleasePredicateLocks(false, false);
+ }
+
+ /*
+ * Now we have a safe snapshot, so we don't need to do any further checks.
+ */
+ Assert(SxactIsROSafe(MySerializableXact));
+ ReleasePredicateLocks(false, true);
+
+ return snapshot;
+}
+
+/*
+ * GetSafeSnapshotBlockingPids
+ * If the specified process is currently blocked in GetSafeSnapshot,
+ * write the process IDs of all processes that it is blocked by
+ * into the caller-supplied buffer output[]. The list is truncated at
+ * output_size, and the number of PIDs written into the buffer is
+ * returned. Returns zero if the given PID is not currently blocked
+ * in GetSafeSnapshot.
+ */
+int
+GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size)
+{
+ int num_written = 0;
+ SERIALIZABLEXACT *sxact;
+
+ LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+
+ /* Find blocked_pid's SERIALIZABLEXACT by linear search. */
+ for (sxact = FirstPredXact(); sxact != NULL; sxact = NextPredXact(sxact))
+ {
+ if (sxact->pid == blocked_pid)
+ break;
+ }
+
+ /* Did we find it, and is it currently waiting in GetSafeSnapshot? */
+ if (sxact != NULL && SxactIsDeferrableWaiting(sxact))
+ {
+ RWConflict possibleUnsafeConflict;
+
+ /* Traverse the list of possible unsafe conflicts collecting PIDs. */
+ possibleUnsafeConflict = (RWConflict)
+ SHMQueueNext(&sxact->possibleUnsafeConflicts,
+ &sxact->possibleUnsafeConflicts,
+ offsetof(RWConflictData, inLink));
+
+ while (possibleUnsafeConflict != NULL && num_written < output_size)
+ {
+ output[num_written++] = possibleUnsafeConflict->sxactOut->pid;
+ possibleUnsafeConflict = (RWConflict)
+ SHMQueueNext(&sxact->possibleUnsafeConflicts,
+ &possibleUnsafeConflict->inLink,
+ offsetof(RWConflictData, inLink));
+ }
+ }
+
+ LWLockRelease(SerializableXactHashLock);
+
+ return num_written;
+}
+
+/*
+ * Acquire a snapshot that can be used for the current transaction.
+ *
+ * Make sure we have a SERIALIZABLEXACT reference in MySerializableXact.
+ * It should be current for this process and be contained in PredXact.
+ *
+ * The passed-in Snapshot pointer should reference a static data area that
+ * can safely be passed to GetSnapshotData. The return value is actually
+ * always this same pointer; no new snapshot data structure is allocated
+ * within this function.
+ */
+Snapshot
+GetSerializableTransactionSnapshot(Snapshot snapshot)
+{
+ Assert(IsolationIsSerializable());
+
+ /*
+ * Can't use serializable mode while recovery is still active, as it is,
+ * for example, on a hot standby. We could get here despite the check in
+ * check_XactIsoLevel() if default_transaction_isolation is set to
+ * serializable, so phrase the hint accordingly.
+ */
+ if (RecoveryInProgress())
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("cannot use serializable mode in a hot standby"),
+ errdetail("\"default_transaction_isolation\" is set to \"serializable\"."),
+ errhint("You can use \"SET default_transaction_isolation = 'repeatable read'\" to change the default.")));
+
+ /*
+ * A special optimization is available for SERIALIZABLE READ ONLY
+ * DEFERRABLE transactions -- we can wait for a suitable snapshot and
+ * thereby avoid all SSI overhead once it's running.
+ */
+ if (XactReadOnly && XactDeferrable)
+ return GetSafeSnapshot(snapshot);
+
+ return GetSerializableTransactionSnapshotInt(snapshot,
+ NULL, InvalidPid);
+}
+
+/*
+ * Import a snapshot to be used for the current transaction.
+ *
+ * This is nearly the same as GetSerializableTransactionSnapshot, except that
+ * we don't take a new snapshot, but rather use the data we're handed.
+ *
+ * The caller must have verified that the snapshot came from a serializable
+ * transaction; and if we're read-write, the source transaction must not be
+ * read-only.
+ */
+void
+SetSerializableTransactionSnapshot(Snapshot snapshot,
+ VirtualTransactionId *sourcevxid,
+ int sourcepid)
+{
+ Assert(IsolationIsSerializable());
+
+ /*
+ * If this is called by parallel.c in a parallel worker, we don't want to
+ * create a SERIALIZABLEXACT just yet because the leader's
+ * SERIALIZABLEXACT will be installed with AttachSerializableXact(). We
+ * also don't want to reject SERIALIZABLE READ ONLY DEFERRABLE in this
+ * case, because the leader has already determined that the snapshot it
+ * has passed us is safe. So there is nothing for us to do.
+ */
+ if (IsParallelWorker())
+ return;
+
+ /*
+ * We do not allow SERIALIZABLE READ ONLY DEFERRABLE transactions to
+ * import snapshots, since there's no way to wait for a safe snapshot when
+ * we're using the snap we're told to. (XXX instead of throwing an error,
+ * we could just ignore the XactDeferrable flag?)
+ */
+ if (XactReadOnly && XactDeferrable)
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("a snapshot-importing transaction must not be READ ONLY DEFERRABLE")));
+
+ (void) GetSerializableTransactionSnapshotInt(snapshot, sourcevxid,
+ sourcepid);
+}
+
+/*
+ * Guts of GetSerializableTransactionSnapshot
+ *
+ * If sourcevxid is valid, this is actually an import operation and we should
+ * skip calling GetSnapshotData, because the snapshot contents are already
+ * loaded up. HOWEVER: to avoid race conditions, we must check that the
+ * source xact is still running after we acquire SerializableXactHashLock.
+ * We do that by calling ProcArrayInstallImportedXmin.
+ */
+static Snapshot
+GetSerializableTransactionSnapshotInt(Snapshot snapshot,
+ VirtualTransactionId *sourcevxid,
+ int sourcepid)
+{
+ PGPROC *proc;
+ VirtualTransactionId vxid;
+ SERIALIZABLEXACT *sxact,
+ *othersxact;
+
+ /* We only do this for serializable transactions. Once. */
+ Assert(MySerializableXact == InvalidSerializableXact);
+
+ Assert(!RecoveryInProgress());
+
+ /*
+ * Since all parts of a serializable transaction must use the same
+ * snapshot, it is too late to establish one after a parallel operation
+ * has begun.
+ */
+ if (IsInParallelMode())
+ elog(ERROR, "cannot establish serializable snapshot during a parallel operation");
+
+ proc = MyProc;
+ Assert(proc != NULL);
+ GET_VXID_FROM_PGPROC(vxid, *proc);
+
+ /*
+ * First we get the sxact structure, which may involve looping and access
+ * to the "finished" list to free a structure for use.
+ *
+ * We must hold SerializableXactHashLock when taking/checking the snapshot
+ * to avoid race conditions, for much the same reasons that
+ * GetSnapshotData takes the ProcArrayLock. Since we might have to
+ * release SerializableXactHashLock to call SummarizeOldestCommittedSxact,
+ * this means we have to create the sxact first, which is a bit annoying
+ * (in particular, an elog(ERROR) in procarray.c would cause us to leak
+ * the sxact). Consider refactoring to avoid this.
+ */
+#ifdef TEST_SUMMARIZE_SERIAL
+ SummarizeOldestCommittedSxact();
+#endif
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+ do
+ {
+ sxact = CreatePredXact();
+ /* If null, push out committed sxact to SLRU summary & retry. */
+ if (!sxact)
+ {
+ LWLockRelease(SerializableXactHashLock);
+ SummarizeOldestCommittedSxact();
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+ }
+ } while (!sxact);
+
+ /* Get the snapshot, or check that it's safe to use */
+ if (!sourcevxid)
+ snapshot = GetSnapshotData(snapshot);
+ else if (!ProcArrayInstallImportedXmin(snapshot->xmin, sourcevxid))
+ {
+ ReleasePredXact(sxact);
+ LWLockRelease(SerializableXactHashLock);
+ ereport(ERROR,
+ (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
+ errmsg("could not import the requested snapshot"),
+ errdetail("The source process with PID %d is not running anymore.",
+ sourcepid)));
+ }
+
+ /*
+ * If there are no serializable transactions which are not read-only, we
+ * can "opt out" of predicate locking and conflict checking for a
+ * read-only transaction.
+ *
+ * The reason this is safe is that a read-only transaction can only become
+ * part of a dangerous structure if it overlaps a writable transaction
+ * which in turn overlaps a writable transaction which committed before
+ * the read-only transaction started. A new writable transaction can
+ * overlap this one, but it can't meet the other condition of overlapping
+ * a transaction which committed before this one started.
+ */
+ if (XactReadOnly && PredXact->WritableSxactCount == 0)
+ {
+ ReleasePredXact(sxact);
+ LWLockRelease(SerializableXactHashLock);
+ return snapshot;
+ }
+
+ /* Maintain serializable global xmin info. */
+ if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
+ {
+ Assert(PredXact->SxactGlobalXminCount == 0);
+ PredXact->SxactGlobalXmin = snapshot->xmin;
+ PredXact->SxactGlobalXminCount = 1;
+ SerialSetActiveSerXmin(snapshot->xmin);
+ }
+ else if (TransactionIdEquals(snapshot->xmin, PredXact->SxactGlobalXmin))
+ {
+ Assert(PredXact->SxactGlobalXminCount > 0);
+ PredXact->SxactGlobalXminCount++;
+ }
+ else
+ {
+ Assert(TransactionIdFollows(snapshot->xmin, PredXact->SxactGlobalXmin));
+ }
+
+ /* Initialize the structure. */
+ sxact->vxid = vxid;
+ sxact->SeqNo.lastCommitBeforeSnapshot = PredXact->LastSxactCommitSeqNo;
+ sxact->prepareSeqNo = InvalidSerCommitSeqNo;
+ sxact->commitSeqNo = InvalidSerCommitSeqNo;
+ SHMQueueInit(&(sxact->outConflicts));
+ SHMQueueInit(&(sxact->inConflicts));
+ SHMQueueInit(&(sxact->possibleUnsafeConflicts));
+ sxact->topXid = GetTopTransactionIdIfAny();
+ sxact->finishedBefore = InvalidTransactionId;
+ sxact->xmin = snapshot->xmin;
+ sxact->pid = MyProcPid;
+ SHMQueueInit(&(sxact->predicateLocks));
+ SHMQueueElemInit(&(sxact->finishedLink));
+ sxact->flags = 0;
+ if (XactReadOnly)
+ {
+ sxact->flags |= SXACT_FLAG_READ_ONLY;
+
+ /*
+ * Register all concurrent r/w transactions as possible conflicts; if
+ * all of them commit without any outgoing conflicts to earlier
+ * transactions then this snapshot can be deemed safe (and we can run
+ * without tracking predicate locks).
+ */
+ for (othersxact = FirstPredXact();
+ othersxact != NULL;
+ othersxact = NextPredXact(othersxact))
+ {
+ if (!SxactIsCommitted(othersxact)
+ && !SxactIsDoomed(othersxact)
+ && !SxactIsReadOnly(othersxact))
+ {
+ SetPossibleUnsafeConflict(sxact, othersxact);
+ }
+ }
+ }
+ else
+ {
+ ++(PredXact->WritableSxactCount);
+ Assert(PredXact->WritableSxactCount <=
+ (MaxBackends + max_prepared_xacts));
+ }
+
+ MySerializableXact = sxact;
+ MyXactDidWrite = false; /* haven't written anything yet */
+
+ LWLockRelease(SerializableXactHashLock);
+
+ CreateLocalPredicateLockHash();
+
+ return snapshot;
+}
+
+static void
+CreateLocalPredicateLockHash(void)
+{
+ HASHCTL hash_ctl;
+
+ /* Initialize the backend-local hash table of parent locks */
+ Assert(LocalPredicateLockHash == NULL);
+ MemSet(&hash_ctl, 0, sizeof(hash_ctl));
+ hash_ctl.keysize = sizeof(PREDICATELOCKTARGETTAG);
+ hash_ctl.entrysize = sizeof(LOCALPREDICATELOCK);
+ LocalPredicateLockHash = hash_create("Local predicate lock",
+ max_predicate_locks_per_xact,
+ &hash_ctl,
+ HASH_ELEM | HASH_BLOBS);
+}
+
+/*
+ * Register the top level XID in SerializableXidHash.
+ * Also store it for easy reference in MySerializableXact.
+ */
+void
+RegisterPredicateLockingXid(TransactionId xid)
+{
+ SERIALIZABLEXIDTAG sxidtag;
+ SERIALIZABLEXID *sxid;
+ bool found;
+
+ /*
+ * If we're not tracking predicate lock data for this transaction, we
+ * should ignore the request and return quickly.
+ */
+ if (MySerializableXact == InvalidSerializableXact)
+ return;
+
+ /* We should have a valid XID and be at the top level. */
+ Assert(TransactionIdIsValid(xid));
+
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
+ /* This should only be done once per transaction. */
+ Assert(MySerializableXact->topXid == InvalidTransactionId);
+
+ MySerializableXact->topXid = xid;
+
+ sxidtag.xid = xid;
+ sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash,
+ &sxidtag,
+ HASH_ENTER, &found);
+ Assert(!found);
+
+ /* Initialize the structure. */
+ sxid->myXact = MySerializableXact;
+ LWLockRelease(SerializableXactHashLock);
+}
+
+
+/*
+ * Check whether there are any predicate locks held by any transaction
+ * for the page at the given block number.
+ *
+ * Note that the transaction may be completed but not yet subject to
+ * cleanup due to overlapping serializable transactions. This must
+ * return valid information regardless of transaction isolation level.
+ *
+ * Also note that this doesn't check for a conflicting relation lock,
+ * just a lock specifically on the given page.
+ *
+ * One use is to support proper behavior during GiST index vacuum.
+ */
+bool
+PageIsPredicateLocked(Relation relation, BlockNumber blkno)
+{
+ PREDICATELOCKTARGETTAG targettag;
+ uint32 targettaghash;
+ LWLock *partitionLock;
+ PREDICATELOCKTARGET *target;
+
+ SET_PREDICATELOCKTARGETTAG_PAGE(targettag,
+ relation->rd_node.dbNode,
+ relation->rd_id,
+ blkno);
+
+ targettaghash = PredicateLockTargetTagHashCode(&targettag);
+ partitionLock = PredicateLockHashPartitionLock(targettaghash);
+ LWLockAcquire(partitionLock, LW_SHARED);
+ target = (PREDICATELOCKTARGET *)
+ hash_search_with_hash_value(PredicateLockTargetHash,
+ &targettag, targettaghash,
+ HASH_FIND, NULL);
+ LWLockRelease(partitionLock);
+
+ return (target != NULL);
+}
+
+
+/*
+ * Check whether a particular lock is held by this transaction.
+ *
+ * Important note: this function may return false even if the lock is
+ * being held, because it uses the local lock table which is not
+ * updated if another transaction modifies our lock list (e.g. to
+ * split an index page). It can also return true when a coarser
+ * granularity lock that covers this target is being held. Be careful
+ * to only use this function in circumstances where such errors are
+ * acceptable!
+ */
+static bool
+PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag)
+{
+ LOCALPREDICATELOCK *lock;
+
+ /* check local hash table */
+ lock = (LOCALPREDICATELOCK *) hash_search(LocalPredicateLockHash,
+ targettag,
+ HASH_FIND, NULL);
+
+ if (!lock)
+ return false;
+
+ /*
+ * Found entry in the table, but still need to check whether it's actually
+ * held -- it could just be a parent of some held lock.
+ */
+ return lock->held;
+}
+
+/*
+ * Return the parent lock tag in the lock hierarchy: the next coarser
+ * lock that covers the provided tag.
+ *
+ * Returns true and sets *parent to the parent tag if one exists,
+ * returns false if none exists.
+ */
+static bool
+GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag,
+ PREDICATELOCKTARGETTAG *parent)
+{
+ switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
+ {
+ case PREDLOCKTAG_RELATION:
+ /* relation locks have no parent lock */
+ return false;
+
+ case PREDLOCKTAG_PAGE:
+ /* parent lock is relation lock */
+ SET_PREDICATELOCKTARGETTAG_RELATION(*parent,
+ GET_PREDICATELOCKTARGETTAG_DB(*tag),
+ GET_PREDICATELOCKTARGETTAG_RELATION(*tag));
+
+ return true;
+
+ case PREDLOCKTAG_TUPLE:
+ /* parent lock is page lock */
+ SET_PREDICATELOCKTARGETTAG_PAGE(*parent,
+ GET_PREDICATELOCKTARGETTAG_DB(*tag),
+ GET_PREDICATELOCKTARGETTAG_RELATION(*tag),
+ GET_PREDICATELOCKTARGETTAG_PAGE(*tag));
+ return true;
+ }
+
+ /* not reachable */
+ Assert(false);
+ return false;
+}
+
+/*
+ * Check whether the lock we are considering is already covered by a
+ * coarser lock for our transaction.
+ *
+ * Like PredicateLockExists, this function might return a false
+ * negative, but it will never return a false positive.
+ */
+static bool
+CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag)
+{
+ PREDICATELOCKTARGETTAG targettag,
+ parenttag;
+
+ targettag = *newtargettag;
+
+ /* check parents iteratively until no more */
+ while (GetParentPredicateLockTag(&targettag, &parenttag))
+ {
+ targettag = parenttag;
+ if (PredicateLockExists(&targettag))
+ return true;
+ }
+
+ /* no more parents to check; lock is not covered */
+ return false;
+}
+
+/*
+ * Remove the dummy entry from the predicate lock target hash, to free up some
+ * scratch space. The caller must be holding SerializablePredicateListLock,
+ * and must restore the entry with RestoreScratchTarget() before releasing the
+ * lock.
+ *
+ * If lockheld is true, the caller is already holding the partition lock
+ * of the partition containing the scratch entry.
+ */
+static void
+RemoveScratchTarget(bool lockheld)
+{
+ bool found;
+
+ Assert(LWLockHeldByMe(SerializablePredicateListLock));
+
+ if (!lockheld)
+ LWLockAcquire(ScratchPartitionLock, LW_EXCLUSIVE);
+ hash_search_with_hash_value(PredicateLockTargetHash,
+ &ScratchTargetTag,
+ ScratchTargetTagHash,
+ HASH_REMOVE, &found);
+ Assert(found);
+ if (!lockheld)
+ LWLockRelease(ScratchPartitionLock);
+}
+
+/*
+ * Re-insert the dummy entry in predicate lock target hash.
+ */
+static void
+RestoreScratchTarget(bool lockheld)
+{
+ bool found;
+
+ Assert(LWLockHeldByMe(SerializablePredicateListLock));
+
+ if (!lockheld)
+ LWLockAcquire(ScratchPartitionLock, LW_EXCLUSIVE);
+ hash_search_with_hash_value(PredicateLockTargetHash,
+ &ScratchTargetTag,
+ ScratchTargetTagHash,
+ HASH_ENTER, &found);
+ Assert(!found);
+ if (!lockheld)
+ LWLockRelease(ScratchPartitionLock);
+}
+
+/*
+ * Check whether the list of related predicate locks is empty for a
+ * predicate lock target, and remove the target if it is.
+ */
+static void
+RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash)
+{
+ PREDICATELOCKTARGET *rmtarget PG_USED_FOR_ASSERTS_ONLY;
+
+ Assert(LWLockHeldByMe(SerializablePredicateListLock));
+
+ /* Can't remove it until no locks at this target. */
+ if (!SHMQueueEmpty(&target->predicateLocks))
+ return;
+
+ /* Actually remove the target. */
+ rmtarget = hash_search_with_hash_value(PredicateLockTargetHash,
+ &target->tag,
+ targettaghash,
+ HASH_REMOVE, NULL);
+ Assert(rmtarget == target);
+}
+
+/*
+ * Delete child target locks owned by this process.
+ * This implementation is assuming that the usage of each target tag field
+ * is uniform. No need to make this hard if we don't have to.
+ *
+ * We acquire an LWLock in the case of parallel mode, because worker
+ * backends have access to the leader's SERIALIZABLEXACT. Otherwise,
+ * we aren't acquiring LWLocks for the predicate lock or lock
+ * target structures associated with this transaction unless we're going
+ * to modify them, because no other process is permitted to modify our
+ * locks.
+ */
+static void
+DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag)
+{
+ SERIALIZABLEXACT *sxact;
+ PREDICATELOCK *predlock;
+
+ LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
+ sxact = MySerializableXact;
+ if (IsInParallelMode())
+ LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE);
+ predlock = (PREDICATELOCK *)
+ SHMQueueNext(&(sxact->predicateLocks),
+ &(sxact->predicateLocks),
+ offsetof(PREDICATELOCK, xactLink));
+ while (predlock)
+ {
+ SHM_QUEUE *predlocksxactlink;
+ PREDICATELOCK *nextpredlock;
+ PREDICATELOCKTAG oldlocktag;
+ PREDICATELOCKTARGET *oldtarget;
+ PREDICATELOCKTARGETTAG oldtargettag;
+
+ predlocksxactlink = &(predlock->xactLink);
+ nextpredlock = (PREDICATELOCK *)
+ SHMQueueNext(&(sxact->predicateLocks),
+ predlocksxactlink,
+ offsetof(PREDICATELOCK, xactLink));
+
+ oldlocktag = predlock->tag;
+ Assert(oldlocktag.myXact == sxact);
+ oldtarget = oldlocktag.myTarget;
+ oldtargettag = oldtarget->tag;
+
+ if (TargetTagIsCoveredBy(oldtargettag, *newtargettag))
+ {
+ uint32 oldtargettaghash;
+ LWLock *partitionLock;
+ PREDICATELOCK *rmpredlock PG_USED_FOR_ASSERTS_ONLY;
+
+ oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
+ partitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
+
+ LWLockAcquire(partitionLock, LW_EXCLUSIVE);
+
+ SHMQueueDelete(predlocksxactlink);
+ SHMQueueDelete(&(predlock->targetLink));
+ rmpredlock = hash_search_with_hash_value
+ (PredicateLockHash,
+ &oldlocktag,
+ PredicateLockHashCodeFromTargetHashCode(&oldlocktag,
+ oldtargettaghash),
+ HASH_REMOVE, NULL);
+ Assert(rmpredlock == predlock);
+
+ RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash);
+
+ LWLockRelease(partitionLock);
+
+ DecrementParentLocks(&oldtargettag);
+ }
+
+ predlock = nextpredlock;
+ }
+ if (IsInParallelMode())
+ LWLockRelease(&sxact->perXactPredicateListLock);
+ LWLockRelease(SerializablePredicateListLock);
+}
+
+/*
+ * Returns the promotion limit for a given predicate lock target. This is the
+ * max number of descendant locks allowed before promoting to the specified
+ * tag. Note that the limit includes non-direct descendants (e.g., both tuples
+ * and pages for a relation lock).
+ *
+ * Currently the default limit is 2 for a page lock, and half of the value of
+ * max_pred_locks_per_transaction - 1 for a relation lock, to match behavior
+ * of earlier releases when upgrading.
+ *
+ * TODO SSI: We should probably add additional GUCs to allow a maximum ratio
+ * of page and tuple locks based on the pages in a relation, and the maximum
+ * ratio of tuple locks to tuples in a page. This would provide more
+ * generally "balanced" allocation of locks to where they are most useful,
+ * while still allowing the absolute numbers to prevent one relation from
+ * tying up all predicate lock resources.
+ */
+static int
+MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag)
+{
+ switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
+ {
+ case PREDLOCKTAG_RELATION:
+ return max_predicate_locks_per_relation < 0
+ ? (max_predicate_locks_per_xact
+ / (-max_predicate_locks_per_relation)) - 1
+ : max_predicate_locks_per_relation;
+
+ case PREDLOCKTAG_PAGE:
+ return max_predicate_locks_per_page;
+
+ case PREDLOCKTAG_TUPLE:
+
+ /*
+ * not reachable: nothing is finer-granularity than a tuple, so we
+ * should never try to promote to it.
+ */
+ Assert(false);
+ return 0;
+ }
+
+ /* not reachable */
+ Assert(false);
+ return 0;
+}
+
+/*
+ * For all ancestors of a newly-acquired predicate lock, increment
+ * their child count in the parent hash table. If any of them have
+ * more descendants than their promotion threshold, acquire the
+ * coarsest such lock.
+ *
+ * Returns true if a parent lock was acquired and false otherwise.
+ */
+static bool
+CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag)
+{
+ PREDICATELOCKTARGETTAG targettag,
+ nexttag,
+ promotiontag;
+ LOCALPREDICATELOCK *parentlock;
+ bool found,
+ promote;
+
+ promote = false;
+
+ targettag = *reqtag;
+
+ /* check parents iteratively */
+ while (GetParentPredicateLockTag(&targettag, &nexttag))
+ {
+ targettag = nexttag;
+ parentlock = (LOCALPREDICATELOCK *) hash_search(LocalPredicateLockHash,
+ &targettag,
+ HASH_ENTER,
+ &found);
+ if (!found)
+ {
+ parentlock->held = false;
+ parentlock->childLocks = 1;
+ }
+ else
+ parentlock->childLocks++;
+
+ if (parentlock->childLocks >
+ MaxPredicateChildLocks(&targettag))
+ {
+ /*
+ * We should promote to this parent lock. Continue to check its
+ * ancestors, however, both to get their child counts right and to
+ * check whether we should just go ahead and promote to one of
+ * them.
+ */
+ promotiontag = targettag;
+ promote = true;
+ }
+ }
+
+ if (promote)
+ {
+ /* acquire coarsest ancestor eligible for promotion */
+ PredicateLockAcquire(&promotiontag);
+ return true;
+ }
+ else
+ return false;
+}
+
+/*
+ * When releasing a lock, decrement the child count on all ancestor
+ * locks.
+ *
+ * This is called only when releasing a lock via
+ * DeleteChildTargetLocks (i.e. when a lock becomes redundant because
+ * we've acquired its parent, possibly due to promotion) or when a new
+ * MVCC write lock makes the predicate lock unnecessary. There's no
+ * point in calling it when locks are released at transaction end, as
+ * this information is no longer needed.
+ */
+static void
+DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag)
+{
+ PREDICATELOCKTARGETTAG parenttag,
+ nexttag;
+
+ parenttag = *targettag;
+
+ while (GetParentPredicateLockTag(&parenttag, &nexttag))
+ {
+ uint32 targettaghash;
+ LOCALPREDICATELOCK *parentlock,
+ *rmlock PG_USED_FOR_ASSERTS_ONLY;
+
+ parenttag = nexttag;
+ targettaghash = PredicateLockTargetTagHashCode(&parenttag);
+ parentlock = (LOCALPREDICATELOCK *)
+ hash_search_with_hash_value(LocalPredicateLockHash,
+ &parenttag, targettaghash,
+ HASH_FIND, NULL);
+
+ /*
+ * There's a small chance the parent lock doesn't exist in the lock
+ * table. This can happen if we prematurely removed it because an
+ * index split caused the child refcount to be off.
+ */
+ if (parentlock == NULL)
+ continue;
+
+ parentlock->childLocks--;
+
+ /*
+ * Under similar circumstances the parent lock's refcount might be
+ * zero. This only happens if we're holding that lock (otherwise we
+ * would have removed the entry).
+ */
+ if (parentlock->childLocks < 0)
+ {
+ Assert(parentlock->held);
+ parentlock->childLocks = 0;
+ }
+
+ if ((parentlock->childLocks == 0) && (!parentlock->held))
+ {
+ rmlock = (LOCALPREDICATELOCK *)
+ hash_search_with_hash_value(LocalPredicateLockHash,
+ &parenttag, targettaghash,
+ HASH_REMOVE, NULL);
+ Assert(rmlock == parentlock);
+ }
+ }
+}
+
+/*
+ * Indicate that a predicate lock on the given target is held by the
+ * specified transaction. Has no effect if the lock is already held.
+ *
+ * This updates the lock table and the sxact's lock list, and creates
+ * the lock target if necessary, but does *not* do anything related to
+ * granularity promotion or the local lock table. See
+ * PredicateLockAcquire for that.
+ */
+static void
+CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
+ uint32 targettaghash,
+ SERIALIZABLEXACT *sxact)
+{
+ PREDICATELOCKTARGET *target;
+ PREDICATELOCKTAG locktag;
+ PREDICATELOCK *lock;
+ LWLock *partitionLock;
+ bool found;
+
+ partitionLock = PredicateLockHashPartitionLock(targettaghash);
+
+ LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
+ if (IsInParallelMode())
+ LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE);
+ LWLockAcquire(partitionLock, LW_EXCLUSIVE);
+
+ /* Make sure that the target is represented. */
+ target = (PREDICATELOCKTARGET *)
+ hash_search_with_hash_value(PredicateLockTargetHash,
+ targettag, targettaghash,
+ HASH_ENTER_NULL, &found);
+ if (!target)
+ ereport(ERROR,
+ (errcode(ERRCODE_OUT_OF_MEMORY),
+ errmsg("out of shared memory"),
+ errhint("You might need to increase max_pred_locks_per_transaction.")));
+ if (!found)
+ SHMQueueInit(&(target->predicateLocks));
+
+ /* We've got the sxact and target, make sure they're joined. */
+ locktag.myTarget = target;
+ locktag.myXact = sxact;
+ lock = (PREDICATELOCK *)
+ hash_search_with_hash_value(PredicateLockHash, &locktag,
+ PredicateLockHashCodeFromTargetHashCode(&locktag, targettaghash),
+ HASH_ENTER_NULL, &found);
+ if (!lock)
+ ereport(ERROR,
+ (errcode(ERRCODE_OUT_OF_MEMORY),
+ errmsg("out of shared memory"),
+ errhint("You might need to increase max_pred_locks_per_transaction.")));
+
+ if (!found)
+ {
+ SHMQueueInsertBefore(&(target->predicateLocks), &(lock->targetLink));
+ SHMQueueInsertBefore(&(sxact->predicateLocks),
+ &(lock->xactLink));
+ lock->commitSeqNo = InvalidSerCommitSeqNo;
+ }
+
+ LWLockRelease(partitionLock);
+ if (IsInParallelMode())
+ LWLockRelease(&sxact->perXactPredicateListLock);
+ LWLockRelease(SerializablePredicateListLock);
+}
+
+/*
+ * Acquire a predicate lock on the specified target for the current
+ * connection if not already held. This updates the local lock table
+ * and uses it to implement granularity promotion. It will consolidate
+ * multiple locks into a coarser lock if warranted, and will release
+ * any finer-grained locks covered by the new one.
+ */
+static void
+PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag)
+{
+ uint32 targettaghash;
+ bool found;
+ LOCALPREDICATELOCK *locallock;
+
+ /* Do we have the lock already, or a covering lock? */
+ if (PredicateLockExists(targettag))
+ return;
+
+ if (CoarserLockCovers(targettag))
+ return;
+
+ /* the same hash and LW lock apply to the lock target and the local lock. */
+ targettaghash = PredicateLockTargetTagHashCode(targettag);
+
+ /* Acquire lock in local table */
+ locallock = (LOCALPREDICATELOCK *)
+ hash_search_with_hash_value(LocalPredicateLockHash,
+ targettag, targettaghash,
+ HASH_ENTER, &found);
+ locallock->held = true;
+ if (!found)
+ locallock->childLocks = 0;
+
+ /* Actually create the lock */
+ CreatePredicateLock(targettag, targettaghash, MySerializableXact);
+
+ /*
+ * Lock has been acquired. Check whether it should be promoted to a
+ * coarser granularity, or whether there are finer-granularity locks to
+ * clean up.
+ */
+ if (CheckAndPromotePredicateLockRequest(targettag))
+ {
+ /*
+ * Lock request was promoted to a coarser-granularity lock, and that
+ * lock was acquired. It will delete this lock and any of its
+ * children, so we're done.
+ */
+ }
+ else
+ {
+ /* Clean up any finer-granularity locks */
+ if (GET_PREDICATELOCKTARGETTAG_TYPE(*targettag) != PREDLOCKTAG_TUPLE)
+ DeleteChildTargetLocks(targettag);
+ }
+}
+
+
+/*
+ * PredicateLockRelation
+ *
+ * Gets a predicate lock at the relation level.
+ * Skip if not in full serializable transaction isolation level.
+ * Skip if this is a temporary table.
+ * Clear any finer-grained predicate locks this session has on the relation.
+ */
+void
+PredicateLockRelation(Relation relation, Snapshot snapshot)
+{
+ PREDICATELOCKTARGETTAG tag;
+
+ if (!SerializationNeededForRead(relation, snapshot))
+ return;
+
+ SET_PREDICATELOCKTARGETTAG_RELATION(tag,
+ relation->rd_node.dbNode,
+ relation->rd_id);
+ PredicateLockAcquire(&tag);
+}
+
+/*
+ * PredicateLockPage
+ *
+ * Gets a predicate lock at the page level.
+ * Skip if not in full serializable transaction isolation level.
+ * Skip if this is a temporary table.
+ * Skip if a coarser predicate lock already covers this page.
+ * Clear any finer-grained predicate locks this session has on the relation.
+ */
+void
+PredicateLockPage(Relation relation, BlockNumber blkno, Snapshot snapshot)
+{
+ PREDICATELOCKTARGETTAG tag;
+
+ if (!SerializationNeededForRead(relation, snapshot))
+ return;
+
+ SET_PREDICATELOCKTARGETTAG_PAGE(tag,
+ relation->rd_node.dbNode,
+ relation->rd_id,
+ blkno);
+ PredicateLockAcquire(&tag);
+}
+
+/*
+ * PredicateLockTID
+ *
+ * Gets a predicate lock at the tuple level.
+ * Skip if not in full serializable transaction isolation level.
+ * Skip if this is a temporary table.
+ */
+void
+PredicateLockTID(Relation relation, ItemPointer tid, Snapshot snapshot,
+ TransactionId tuple_xid)
+{
+ PREDICATELOCKTARGETTAG tag;
+
+ if (!SerializationNeededForRead(relation, snapshot))
+ return;
+
+ /*
+ * Return if this xact wrote it.
+ */
+ if (relation->rd_index == NULL)
+ {
+ /* If we wrote it; we already have a write lock. */
+ if (TransactionIdIsCurrentTransactionId(tuple_xid))
+ return;
+ }
+
+ /*
+ * Do quick-but-not-definitive test for a relation lock first. This will
+ * never cause a return when the relation is *not* locked, but will
+ * occasionally let the check continue when there really *is* a relation
+ * level lock.
+ */
+ SET_PREDICATELOCKTARGETTAG_RELATION(tag,
+ relation->rd_node.dbNode,
+ relation->rd_id);
+ if (PredicateLockExists(&tag))
+ return;
+
+ SET_PREDICATELOCKTARGETTAG_TUPLE(tag,
+ relation->rd_node.dbNode,
+ relation->rd_id,
+ ItemPointerGetBlockNumber(tid),
+ ItemPointerGetOffsetNumber(tid));
+ PredicateLockAcquire(&tag);
+}
+
+
+/*
+ * DeleteLockTarget
+ *
+ * Remove a predicate lock target along with any locks held for it.
+ *
+ * Caller must hold SerializablePredicateListLock and the
+ * appropriate hash partition lock for the target.
+ */
+static void
+DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash)
+{
+ PREDICATELOCK *predlock;
+ SHM_QUEUE *predlocktargetlink;
+ PREDICATELOCK *nextpredlock;
+ bool found;
+
+ Assert(LWLockHeldByMeInMode(SerializablePredicateListLock,
+ LW_EXCLUSIVE));
+ Assert(LWLockHeldByMe(PredicateLockHashPartitionLock(targettaghash)));
+
+ predlock = (PREDICATELOCK *)
+ SHMQueueNext(&(target->predicateLocks),
+ &(target->predicateLocks),
+ offsetof(PREDICATELOCK, targetLink));
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+ while (predlock)
+ {
+ predlocktargetlink = &(predlock->targetLink);
+ nextpredlock = (PREDICATELOCK *)
+ SHMQueueNext(&(target->predicateLocks),
+ predlocktargetlink,
+ offsetof(PREDICATELOCK, targetLink));
+
+ SHMQueueDelete(&(predlock->xactLink));
+ SHMQueueDelete(&(predlock->targetLink));
+
+ hash_search_with_hash_value
+ (PredicateLockHash,
+ &predlock->tag,
+ PredicateLockHashCodeFromTargetHashCode(&predlock->tag,
+ targettaghash),
+ HASH_REMOVE, &found);
+ Assert(found);
+
+ predlock = nextpredlock;
+ }
+ LWLockRelease(SerializableXactHashLock);
+
+ /* Remove the target itself, if possible. */
+ RemoveTargetIfNoLongerUsed(target, targettaghash);
+}
+
+
+/*
+ * TransferPredicateLocksToNewTarget
+ *
+ * Move or copy all the predicate locks for a lock target, for use by
+ * index page splits/combines and other things that create or replace
+ * lock targets. If 'removeOld' is true, the old locks and the target
+ * will be removed.
+ *
+ * Returns true on success, or false if we ran out of shared memory to
+ * allocate the new target or locks. Guaranteed to always succeed if
+ * removeOld is set (by using the scratch entry in PredicateLockTargetHash
+ * for scratch space).
+ *
+ * Warning: the "removeOld" option should be used only with care,
+ * because this function does not (indeed, can not) update other
+ * backends' LocalPredicateLockHash. If we are only adding new
+ * entries, this is not a problem: the local lock table is used only
+ * as a hint, so missing entries for locks that are held are
+ * OK. Having entries for locks that are no longer held, as can happen
+ * when using "removeOld", is not in general OK. We can only use it
+ * safely when replacing a lock with a coarser-granularity lock that
+ * covers it, or if we are absolutely certain that no one will need to
+ * refer to that lock in the future.
+ *
+ * Caller must hold SerializablePredicateListLock exclusively.
+ */
+static bool
+TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag,
+ PREDICATELOCKTARGETTAG newtargettag,
+ bool removeOld)
+{
+ uint32 oldtargettaghash;
+ LWLock *oldpartitionLock;
+ PREDICATELOCKTARGET *oldtarget;
+ uint32 newtargettaghash;
+ LWLock *newpartitionLock;
+ bool found;
+ bool outOfShmem = false;
+
+ Assert(LWLockHeldByMeInMode(SerializablePredicateListLock,
+ LW_EXCLUSIVE));
+
+ oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
+ newtargettaghash = PredicateLockTargetTagHashCode(&newtargettag);
+ oldpartitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
+ newpartitionLock = PredicateLockHashPartitionLock(newtargettaghash);
+
+ if (removeOld)
+ {
+ /*
+ * Remove the dummy entry to give us scratch space, so we know we'll
+ * be able to create the new lock target.
+ */
+ RemoveScratchTarget(false);
+ }
+
+ /*
+ * We must get the partition locks in ascending sequence to avoid
+ * deadlocks. If old and new partitions are the same, we must request the
+ * lock only once.
+ */
+ if (oldpartitionLock < newpartitionLock)
+ {
+ LWLockAcquire(oldpartitionLock,
+ (removeOld ? LW_EXCLUSIVE : LW_SHARED));
+ LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
+ }
+ else if (oldpartitionLock > newpartitionLock)
+ {
+ LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
+ LWLockAcquire(oldpartitionLock,
+ (removeOld ? LW_EXCLUSIVE : LW_SHARED));
+ }
+ else
+ LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
+
+ /*
+ * Look for the old target. If not found, that's OK; no predicate locks
+ * are affected, so we can just clean up and return. If it does exist,
+ * walk its list of predicate locks and move or copy them to the new
+ * target.
+ */
+ oldtarget = hash_search_with_hash_value(PredicateLockTargetHash,
+ &oldtargettag,
+ oldtargettaghash,
+ HASH_FIND, NULL);
+
+ if (oldtarget)
+ {
+ PREDICATELOCKTARGET *newtarget;
+ PREDICATELOCK *oldpredlock;
+ PREDICATELOCKTAG newpredlocktag;
+
+ newtarget = hash_search_with_hash_value(PredicateLockTargetHash,
+ &newtargettag,
+ newtargettaghash,
+ HASH_ENTER_NULL, &found);
+
+ if (!newtarget)
+ {
+ /* Failed to allocate due to insufficient shmem */
+ outOfShmem = true;
+ goto exit;
+ }
+
+ /* If we created a new entry, initialize it */
+ if (!found)
+ SHMQueueInit(&(newtarget->predicateLocks));
+
+ newpredlocktag.myTarget = newtarget;
+
+ /*
+ * Loop through all the locks on the old target, replacing them with
+ * locks on the new target.
+ */
+ oldpredlock = (PREDICATELOCK *)
+ SHMQueueNext(&(oldtarget->predicateLocks),
+ &(oldtarget->predicateLocks),
+ offsetof(PREDICATELOCK, targetLink));
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+ while (oldpredlock)
+ {
+ SHM_QUEUE *predlocktargetlink;
+ PREDICATELOCK *nextpredlock;
+ PREDICATELOCK *newpredlock;
+ SerCommitSeqNo oldCommitSeqNo = oldpredlock->commitSeqNo;
+
+ predlocktargetlink = &(oldpredlock->targetLink);
+ nextpredlock = (PREDICATELOCK *)
+ SHMQueueNext(&(oldtarget->predicateLocks),
+ predlocktargetlink,
+ offsetof(PREDICATELOCK, targetLink));
+ newpredlocktag.myXact = oldpredlock->tag.myXact;
+
+ if (removeOld)
+ {
+ SHMQueueDelete(&(oldpredlock->xactLink));
+ SHMQueueDelete(&(oldpredlock->targetLink));
+
+ hash_search_with_hash_value
+ (PredicateLockHash,
+ &oldpredlock->tag,
+ PredicateLockHashCodeFromTargetHashCode(&oldpredlock->tag,
+ oldtargettaghash),
+ HASH_REMOVE, &found);
+ Assert(found);
+ }
+
+ newpredlock = (PREDICATELOCK *)
+ hash_search_with_hash_value(PredicateLockHash,
+ &newpredlocktag,
+ PredicateLockHashCodeFromTargetHashCode(&newpredlocktag,
+ newtargettaghash),
+ HASH_ENTER_NULL,
+ &found);
+ if (!newpredlock)
+ {
+ /* Out of shared memory. Undo what we've done so far. */
+ LWLockRelease(SerializableXactHashLock);
+ DeleteLockTarget(newtarget, newtargettaghash);
+ outOfShmem = true;
+ goto exit;
+ }
+ if (!found)
+ {
+ SHMQueueInsertBefore(&(newtarget->predicateLocks),
+ &(newpredlock->targetLink));
+ SHMQueueInsertBefore(&(newpredlocktag.myXact->predicateLocks),
+ &(newpredlock->xactLink));
+ newpredlock->commitSeqNo = oldCommitSeqNo;
+ }
+ else
+ {
+ if (newpredlock->commitSeqNo < oldCommitSeqNo)
+ newpredlock->commitSeqNo = oldCommitSeqNo;
+ }
+
+ Assert(newpredlock->commitSeqNo != 0);
+ Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo)
+ || (newpredlock->tag.myXact == OldCommittedSxact));
+
+ oldpredlock = nextpredlock;
+ }
+ LWLockRelease(SerializableXactHashLock);
+
+ if (removeOld)
+ {
+ Assert(SHMQueueEmpty(&oldtarget->predicateLocks));
+ RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash);
+ }
+ }
+
+
+exit:
+ /* Release partition locks in reverse order of acquisition. */
+ if (oldpartitionLock < newpartitionLock)
+ {
+ LWLockRelease(newpartitionLock);
+ LWLockRelease(oldpartitionLock);
+ }
+ else if (oldpartitionLock > newpartitionLock)
+ {
+ LWLockRelease(oldpartitionLock);
+ LWLockRelease(newpartitionLock);
+ }
+ else
+ LWLockRelease(newpartitionLock);
+
+ if (removeOld)
+ {
+ /* We shouldn't run out of memory if we're moving locks */
+ Assert(!outOfShmem);
+
+ /* Put the scratch entry back */
+ RestoreScratchTarget(false);
+ }
+
+ return !outOfShmem;
+}
+
+/*
+ * Drop all predicate locks of any granularity from the specified relation,
+ * which can be a heap relation or an index relation. If 'transfer' is true,
+ * acquire a relation lock on the heap for any transactions with any lock(s)
+ * on the specified relation.
+ *
+ * This requires grabbing a lot of LW locks and scanning the entire lock
+ * target table for matches. That makes this more expensive than most
+ * predicate lock management functions, but it will only be called for DDL
+ * type commands that are expensive anyway, and there are fast returns when
+ * no serializable transactions are active or the relation is temporary.
+ *
+ * We don't use the TransferPredicateLocksToNewTarget function because it
+ * acquires its own locks on the partitions of the two targets involved,
+ * and we'll already be holding all partition locks.
+ *
+ * We can't throw an error from here, because the call could be from a
+ * transaction which is not serializable.
+ *
+ * NOTE: This is currently only called with transfer set to true, but that may
+ * change. If we decide to clean up the locks from a table on commit of a
+ * transaction which executed DROP TABLE, the false condition will be useful.
+ */
+static void
+DropAllPredicateLocksFromTable(Relation relation, bool transfer)
+{
+ HASH_SEQ_STATUS seqstat;
+ PREDICATELOCKTARGET *oldtarget;
+ PREDICATELOCKTARGET *heaptarget;
+ Oid dbId;
+ Oid relId;
+ Oid heapId;
+ int i;
+ bool isIndex;
+ bool found;
+ uint32 heaptargettaghash;
+
+ /*
+ * Bail out quickly if there are no serializable transactions running.
+ * It's safe to check this without taking locks because the caller is
+ * holding an ACCESS EXCLUSIVE lock on the relation. No new locks which
+ * would matter here can be acquired while that is held.
+ */
+ if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
+ return;
+
+ if (!PredicateLockingNeededForRelation(relation))
+ return;
+
+ dbId = relation->rd_node.dbNode;
+ relId = relation->rd_id;
+ if (relation->rd_index == NULL)
+ {
+ isIndex = false;
+ heapId = relId;
+ }
+ else
+ {
+ isIndex = true;
+ heapId = relation->rd_index->indrelid;
+ }
+ Assert(heapId != InvalidOid);
+ Assert(transfer || !isIndex); /* index OID only makes sense with
+ * transfer */
+
+ /* Retrieve first time needed, then keep. */
+ heaptargettaghash = 0;
+ heaptarget = NULL;
+
+ /* Acquire locks on all lock partitions */
+ LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
+ for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
+ LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_EXCLUSIVE);
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
+ /*
+ * Remove the dummy entry to give us scratch space, so we know we'll be
+ * able to create the new lock target.
+ */
+ if (transfer)
+ RemoveScratchTarget(true);
+
+ /* Scan through target map */
+ hash_seq_init(&seqstat, PredicateLockTargetHash);
+
+ while ((oldtarget = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat)))
+ {
+ PREDICATELOCK *oldpredlock;
+
+ /*
+ * Check whether this is a target which needs attention.
+ */
+ if (GET_PREDICATELOCKTARGETTAG_RELATION(oldtarget->tag) != relId)
+ continue; /* wrong relation id */
+ if (GET_PREDICATELOCKTARGETTAG_DB(oldtarget->tag) != dbId)
+ continue; /* wrong database id */
+ if (transfer && !isIndex
+ && GET_PREDICATELOCKTARGETTAG_TYPE(oldtarget->tag) == PREDLOCKTAG_RELATION)
+ continue; /* already the right lock */
+
+ /*
+ * If we made it here, we have work to do. We make sure the heap
+ * relation lock exists, then we walk the list of predicate locks for
+ * the old target we found, moving all locks to the heap relation lock
+ * -- unless they already hold that.
+ */
+
+ /*
+ * First make sure we have the heap relation target. We only need to
+ * do this once.
+ */
+ if (transfer && heaptarget == NULL)
+ {
+ PREDICATELOCKTARGETTAG heaptargettag;
+
+ SET_PREDICATELOCKTARGETTAG_RELATION(heaptargettag, dbId, heapId);
+ heaptargettaghash = PredicateLockTargetTagHashCode(&heaptargettag);
+ heaptarget = hash_search_with_hash_value(PredicateLockTargetHash,
+ &heaptargettag,
+ heaptargettaghash,
+ HASH_ENTER, &found);
+ if (!found)
+ SHMQueueInit(&heaptarget->predicateLocks);
+ }
+
+ /*
+ * Loop through all the locks on the old target, replacing them with
+ * locks on the new target.
+ */
+ oldpredlock = (PREDICATELOCK *)
+ SHMQueueNext(&(oldtarget->predicateLocks),
+ &(oldtarget->predicateLocks),
+ offsetof(PREDICATELOCK, targetLink));
+ while (oldpredlock)
+ {
+ PREDICATELOCK *nextpredlock;
+ PREDICATELOCK *newpredlock;
+ SerCommitSeqNo oldCommitSeqNo;
+ SERIALIZABLEXACT *oldXact;
+
+ nextpredlock = (PREDICATELOCK *)
+ SHMQueueNext(&(oldtarget->predicateLocks),
+ &(oldpredlock->targetLink),
+ offsetof(PREDICATELOCK, targetLink));
+
+ /*
+ * Remove the old lock first. This avoids the chance of running
+ * out of lock structure entries for the hash table.
+ */
+ oldCommitSeqNo = oldpredlock->commitSeqNo;
+ oldXact = oldpredlock->tag.myXact;
+
+ SHMQueueDelete(&(oldpredlock->xactLink));
+
+ /*
+ * No need for retail delete from oldtarget list, we're removing
+ * the whole target anyway.
+ */
+ hash_search(PredicateLockHash,
+ &oldpredlock->tag,
+ HASH_REMOVE, &found);
+ Assert(found);
+
+ if (transfer)
+ {
+ PREDICATELOCKTAG newpredlocktag;
+
+ newpredlocktag.myTarget = heaptarget;
+ newpredlocktag.myXact = oldXact;
+ newpredlock = (PREDICATELOCK *)
+ hash_search_with_hash_value(PredicateLockHash,
+ &newpredlocktag,
+ PredicateLockHashCodeFromTargetHashCode(&newpredlocktag,
+ heaptargettaghash),
+ HASH_ENTER,
+ &found);
+ if (!found)
+ {
+ SHMQueueInsertBefore(&(heaptarget->predicateLocks),
+ &(newpredlock->targetLink));
+ SHMQueueInsertBefore(&(newpredlocktag.myXact->predicateLocks),
+ &(newpredlock->xactLink));
+ newpredlock->commitSeqNo = oldCommitSeqNo;
+ }
+ else
+ {
+ if (newpredlock->commitSeqNo < oldCommitSeqNo)
+ newpredlock->commitSeqNo = oldCommitSeqNo;
+ }
+
+ Assert(newpredlock->commitSeqNo != 0);
+ Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo)
+ || (newpredlock->tag.myXact == OldCommittedSxact));
+ }
+
+ oldpredlock = nextpredlock;
+ }
+
+ hash_search(PredicateLockTargetHash, &oldtarget->tag, HASH_REMOVE,
+ &found);
+ Assert(found);
+ }
+
+ /* Put the scratch entry back */
+ if (transfer)
+ RestoreScratchTarget(true);
+
+ /* Release locks in reverse order */
+ LWLockRelease(SerializableXactHashLock);
+ for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
+ LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
+ LWLockRelease(SerializablePredicateListLock);
+}
+
+/*
+ * TransferPredicateLocksToHeapRelation
+ * For all transactions, transfer all predicate locks for the given
+ * relation to a single relation lock on the heap.
+ */
+void
+TransferPredicateLocksToHeapRelation(Relation relation)
+{
+ DropAllPredicateLocksFromTable(relation, true);
+}
+
+
+/*
+ * PredicateLockPageSplit
+ *
+ * Copies any predicate locks for the old page to the new page.
+ * Skip if this is a temporary table or toast table.
+ *
+ * NOTE: A page split (or overflow) affects all serializable transactions,
+ * even if it occurs in the context of another transaction isolation level.
+ *
+ * NOTE: This currently leaves the local copy of the locks without
+ * information on the new lock which is in shared memory. This could cause
+ * problems if enough page splits occur on locked pages without the processes
+ * which hold the locks getting in and noticing.
+ */
+void
+PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
+ BlockNumber newblkno)
+{
+ PREDICATELOCKTARGETTAG oldtargettag;
+ PREDICATELOCKTARGETTAG newtargettag;
+ bool success;
+
+ /*
+ * Bail out quickly if there are no serializable transactions running.
+ *
+ * It's safe to do this check without taking any additional locks. Even if
+ * a serializable transaction starts concurrently, we know it can't take
+ * any SIREAD locks on the page being split because the caller is holding
+ * the associated buffer page lock. Memory reordering isn't an issue; the
+ * memory barrier in the LWLock acquisition guarantees that this read
+ * occurs while the buffer page lock is held.
+ */
+ if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
+ return;
+
+ if (!PredicateLockingNeededForRelation(relation))
+ return;
+
+ Assert(oldblkno != newblkno);
+ Assert(BlockNumberIsValid(oldblkno));
+ Assert(BlockNumberIsValid(newblkno));
+
+ SET_PREDICATELOCKTARGETTAG_PAGE(oldtargettag,
+ relation->rd_node.dbNode,
+ relation->rd_id,
+ oldblkno);
+ SET_PREDICATELOCKTARGETTAG_PAGE(newtargettag,
+ relation->rd_node.dbNode,
+ relation->rd_id,
+ newblkno);
+
+ LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
+
+ /*
+ * Try copying the locks over to the new page's tag, creating it if
+ * necessary.
+ */
+ success = TransferPredicateLocksToNewTarget(oldtargettag,
+ newtargettag,
+ false);
+
+ if (!success)
+ {
+ /*
+ * No more predicate lock entries are available. Failure isn't an
+ * option here, so promote the page lock to a relation lock.
+ */
+
+ /* Get the parent relation lock's lock tag */
+ success = GetParentPredicateLockTag(&oldtargettag,
+ &newtargettag);
+ Assert(success);
+
+ /*
+ * Move the locks to the parent. This shouldn't fail.
+ *
+ * Note that here we are removing locks held by other backends,
+ * leading to a possible inconsistency in their local lock hash table.
+ * This is OK because we're replacing it with a lock that covers the
+ * old one.
+ */
+ success = TransferPredicateLocksToNewTarget(oldtargettag,
+ newtargettag,
+ true);
+ Assert(success);
+ }
+
+ LWLockRelease(SerializablePredicateListLock);
+}
+
+/*
+ * PredicateLockPageCombine
+ *
+ * Combines predicate locks for two existing pages.
+ * Skip if this is a temporary table or toast table.
+ *
+ * NOTE: A page combine affects all serializable transactions, even if it
+ * occurs in the context of another transaction isolation level.
+ */
+void
+PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
+ BlockNumber newblkno)
+{
+ /*
+ * Page combines differ from page splits in that we ought to be able to
+ * remove the locks on the old page after transferring them to the new
+ * page, instead of duplicating them. However, because we can't edit other
+ * backends' local lock tables, removing the old lock would leave them
+ * with an entry in their LocalPredicateLockHash for a lock they're not
+ * holding, which isn't acceptable. So we wind up having to do the same
+ * work as a page split, acquiring a lock on the new page and keeping the
+ * old page locked too. That can lead to some false positives, but should
+ * be rare in practice.
+ */
+ PredicateLockPageSplit(relation, oldblkno, newblkno);
+}
+
+/*
+ * Walk the list of in-progress serializable transactions and find the new
+ * xmin.
+ */
+static void
+SetNewSxactGlobalXmin(void)
+{
+ SERIALIZABLEXACT *sxact;
+
+ Assert(LWLockHeldByMe(SerializableXactHashLock));
+
+ PredXact->SxactGlobalXmin = InvalidTransactionId;
+ PredXact->SxactGlobalXminCount = 0;
+
+ for (sxact = FirstPredXact(); sxact != NULL; sxact = NextPredXact(sxact))
+ {
+ if (!SxactIsRolledBack(sxact)
+ && !SxactIsCommitted(sxact)
+ && sxact != OldCommittedSxact)
+ {
+ Assert(sxact->xmin != InvalidTransactionId);
+ if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)
+ || TransactionIdPrecedes(sxact->xmin,
+ PredXact->SxactGlobalXmin))
+ {
+ PredXact->SxactGlobalXmin = sxact->xmin;
+ PredXact->SxactGlobalXminCount = 1;
+ }
+ else if (TransactionIdEquals(sxact->xmin,
+ PredXact->SxactGlobalXmin))
+ PredXact->SxactGlobalXminCount++;
+ }
+ }
+
+ SerialSetActiveSerXmin(PredXact->SxactGlobalXmin);
+}
+
+/*
+ * ReleasePredicateLocks
+ *
+ * Releases predicate locks based on completion of the current transaction,
+ * whether committed or rolled back. It can also be called for a read only
+ * transaction when it becomes impossible for the transaction to become
+ * part of a dangerous structure.
+ *
+ * We do nothing unless this is a serializable transaction.
+ *
+ * This method must ensure that shared memory hash tables are cleaned
+ * up in some relatively timely fashion.
+ *
+ * If this transaction is committing and is holding any predicate locks,
+ * it must be added to a list of completed serializable transactions still
+ * holding locks.
+ *
+ * If isReadOnlySafe is true, then predicate locks are being released before
+ * the end of the transaction because MySerializableXact has been determined
+ * to be RO_SAFE. In non-parallel mode we can release it completely, but it
+ * in parallel mode we partially release the SERIALIZABLEXACT and keep it
+ * around until the end of the transaction, allowing each backend to clear its
+ * MySerializableXact variable and benefit from the optimization in its own
+ * time.
+ */
+void
+ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
+{
+ bool needToClear;
+ RWConflict conflict,
+ nextConflict,
+ possibleUnsafeConflict;
+ SERIALIZABLEXACT *roXact;
+
+ /*
+ * We can't trust XactReadOnly here, because a transaction which started
+ * as READ WRITE can show as READ ONLY later, e.g., within
+ * subtransactions. We want to flag a transaction as READ ONLY if it
+ * commits without writing so that de facto READ ONLY transactions get the
+ * benefit of some RO optimizations, so we will use this local variable to
+ * get some cleanup logic right which is based on whether the transaction
+ * was declared READ ONLY at the top level.
+ */
+ bool topLevelIsDeclaredReadOnly;
+
+ /* We can't be both committing and releasing early due to RO_SAFE. */
+ Assert(!(isCommit && isReadOnlySafe));
+
+ /* Are we at the end of a transaction, that is, a commit or abort? */
+ if (!isReadOnlySafe)
+ {
+ /*
+ * Parallel workers mustn't release predicate locks at the end of
+ * their transaction. The leader will do that at the end of its
+ * transaction.
+ */
+ if (IsParallelWorker())
+ {
+ ReleasePredicateLocksLocal();
+ return;
+ }
+
+ /*
+ * By the time the leader in a parallel query reaches end of
+ * transaction, it has waited for all workers to exit.
+ */
+ Assert(!ParallelContextActive());
+
+ /*
+ * If the leader in a parallel query earlier stashed a partially
+ * released SERIALIZABLEXACT for final clean-up at end of transaction
+ * (because workers might still have been accessing it), then it's
+ * time to restore it.
+ */
+ if (SavedSerializableXact != InvalidSerializableXact)
+ {
+ Assert(MySerializableXact == InvalidSerializableXact);
+ MySerializableXact = SavedSerializableXact;
+ SavedSerializableXact = InvalidSerializableXact;
+ Assert(SxactIsPartiallyReleased(MySerializableXact));
+ }
+ }
+
+ if (MySerializableXact == InvalidSerializableXact)
+ {
+ Assert(LocalPredicateLockHash == NULL);
+ return;
+ }
+
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
+ /*
+ * If the transaction is committing, but it has been partially released
+ * already, then treat this as a roll back. It was marked as rolled back.
+ */
+ if (isCommit && SxactIsPartiallyReleased(MySerializableXact))
+ isCommit = false;
+
+ /*
+ * If we're called in the middle of a transaction because we discovered
+ * that the SXACT_FLAG_RO_SAFE flag was set, then we'll partially release
+ * it (that is, release the predicate locks and conflicts, but not the
+ * SERIALIZABLEXACT itself) if we're the first backend to have noticed.
+ */
+ if (isReadOnlySafe && IsInParallelMode())
+ {
+ /*
+ * The leader needs to stash a pointer to it, so that it can
+ * completely release it at end-of-transaction.
+ */
+ if (!IsParallelWorker())
+ SavedSerializableXact = MySerializableXact;
+
+ /*
+ * The first backend to reach this condition will partially release
+ * the SERIALIZABLEXACT. All others will just clear their
+ * backend-local state so that they stop doing SSI checks for the rest
+ * of the transaction.
+ */
+ if (SxactIsPartiallyReleased(MySerializableXact))
+ {
+ LWLockRelease(SerializableXactHashLock);
+ ReleasePredicateLocksLocal();
+ return;
+ }
+ else
+ {
+ MySerializableXact->flags |= SXACT_FLAG_PARTIALLY_RELEASED;
+ /* ... and proceed to perform the partial release below. */
+ }
+ }
+ Assert(!isCommit || SxactIsPrepared(MySerializableXact));
+ Assert(!isCommit || !SxactIsDoomed(MySerializableXact));
+ Assert(!SxactIsCommitted(MySerializableXact));
+ Assert(SxactIsPartiallyReleased(MySerializableXact)
+ || !SxactIsRolledBack(MySerializableXact));
+
+ /* may not be serializable during COMMIT/ROLLBACK PREPARED */
+ Assert(MySerializableXact->pid == 0 || IsolationIsSerializable());
+
+ /* We'd better not already be on the cleanup list. */
+ Assert(!SxactIsOnFinishedList(MySerializableXact));
+
+ topLevelIsDeclaredReadOnly = SxactIsReadOnly(MySerializableXact);
+
+ /*
+ * We don't hold XidGenLock lock here, assuming that TransactionId is
+ * atomic!
+ *
+ * If this value is changing, we don't care that much whether we get the
+ * old or new value -- it is just used to determine how far
+ * SxactGlobalXmin must advance before this transaction can be fully
+ * cleaned up. The worst that could happen is we wait for one more
+ * transaction to complete before freeing some RAM; correctness of visible
+ * behavior is not affected.
+ */
+ MySerializableXact->finishedBefore = XidFromFullTransactionId(ShmemVariableCache->nextFullXid);
+
+ /*
+ * If it's not a commit it's either a rollback or a read-only transaction
+ * flagged SXACT_FLAG_RO_SAFE, and we can clear our locks immediately.
+ */
+ if (isCommit)
+ {
+ MySerializableXact->flags |= SXACT_FLAG_COMMITTED;
+ MySerializableXact->commitSeqNo = ++(PredXact->LastSxactCommitSeqNo);
+ /* Recognize implicit read-only transaction (commit without write). */
+ if (!MyXactDidWrite)
+ MySerializableXact->flags |= SXACT_FLAG_READ_ONLY;
+ }
+ else
+ {
+ /*
+ * The DOOMED flag indicates that we intend to roll back this
+ * transaction and so it should not cause serialization failures for
+ * other transactions that conflict with it. Note that this flag might
+ * already be set, if another backend marked this transaction for
+ * abort.
+ *
+ * The ROLLED_BACK flag further indicates that ReleasePredicateLocks
+ * has been called, and so the SerializableXact is eligible for
+ * cleanup. This means it should not be considered when calculating
+ * SxactGlobalXmin.
+ */
+ MySerializableXact->flags |= SXACT_FLAG_DOOMED;
+ MySerializableXact->flags |= SXACT_FLAG_ROLLED_BACK;
+
+ /*
+ * If the transaction was previously prepared, but is now failing due
+ * to a ROLLBACK PREPARED or (hopefully very rare) error after the
+ * prepare, clear the prepared flag. This simplifies conflict
+ * checking.
+ */
+ MySerializableXact->flags &= ~SXACT_FLAG_PREPARED;
+ }
+
+ if (!topLevelIsDeclaredReadOnly)
+ {
+ Assert(PredXact->WritableSxactCount > 0);
+ if (--(PredXact->WritableSxactCount) == 0)
+ {
+ /*
+ * Release predicate locks and rw-conflicts in for all committed
+ * transactions. There are no longer any transactions which might
+ * conflict with the locks and no chance for new transactions to
+ * overlap. Similarly, existing conflicts in can't cause pivots,
+ * and any conflicts in which could have completed a dangerous
+ * structure would already have caused a rollback, so any
+ * remaining ones must be benign.
+ */
+ PredXact->CanPartialClearThrough = PredXact->LastSxactCommitSeqNo;
+ }
+ }
+ else
+ {
+ /*
+ * Read-only transactions: clear the list of transactions that might
+ * make us unsafe. Note that we use 'inLink' for the iteration as
+ * opposed to 'outLink' for the r/w xacts.
+ */
+ possibleUnsafeConflict = (RWConflict)
+ SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts,
+ &MySerializableXact->possibleUnsafeConflicts,
+ offsetof(RWConflictData, inLink));
+ while (possibleUnsafeConflict)
+ {
+ nextConflict = (RWConflict)
+ SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts,
+ &possibleUnsafeConflict->inLink,
+ offsetof(RWConflictData, inLink));
+
+ Assert(!SxactIsReadOnly(possibleUnsafeConflict->sxactOut));
+ Assert(MySerializableXact == possibleUnsafeConflict->sxactIn);
+
+ ReleaseRWConflict(possibleUnsafeConflict);
+
+ possibleUnsafeConflict = nextConflict;
+ }
+ }
+
+ /* Check for conflict out to old committed transactions. */
+ if (isCommit
+ && !SxactIsReadOnly(MySerializableXact)
+ && SxactHasSummaryConflictOut(MySerializableXact))
+ {
+ /*
+ * we don't know which old committed transaction we conflicted with,
+ * so be conservative and use FirstNormalSerCommitSeqNo here
+ */
+ MySerializableXact->SeqNo.earliestOutConflictCommit =
+ FirstNormalSerCommitSeqNo;
+ MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT;
+ }
+
+ /*
+ * Release all outConflicts to committed transactions. If we're rolling
+ * back clear them all. Set SXACT_FLAG_CONFLICT_OUT if any point to
+ * previously committed transactions.
+ */
+ conflict = (RWConflict)
+ SHMQueueNext(&MySerializableXact->outConflicts,
+ &MySerializableXact->outConflicts,
+ offsetof(RWConflictData, outLink));
+ while (conflict)
+ {
+ nextConflict = (RWConflict)
+ SHMQueueNext(&MySerializableXact->outConflicts,
+ &conflict->outLink,
+ offsetof(RWConflictData, outLink));
+
+ if (isCommit
+ && !SxactIsReadOnly(MySerializableXact)
+ && SxactIsCommitted(conflict->sxactIn))
+ {
+ if ((MySerializableXact->flags & SXACT_FLAG_CONFLICT_OUT) == 0
+ || conflict->sxactIn->prepareSeqNo < MySerializableXact->SeqNo.earliestOutConflictCommit)
+ MySerializableXact->SeqNo.earliestOutConflictCommit = conflict->sxactIn->prepareSeqNo;
+ MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT;
+ }
+
+ if (!isCommit
+ || SxactIsCommitted(conflict->sxactIn)
+ || (conflict->sxactIn->SeqNo.lastCommitBeforeSnapshot >= PredXact->LastSxactCommitSeqNo))
+ ReleaseRWConflict(conflict);
+
+ conflict = nextConflict;
+ }
+
+ /*
+ * Release all inConflicts from committed and read-only transactions. If
+ * we're rolling back, clear them all.
+ */
+ conflict = (RWConflict)
+ SHMQueueNext(&MySerializableXact->inConflicts,
+ &MySerializableXact->inConflicts,
+ offsetof(RWConflictData, inLink));
+ while (conflict)
+ {
+ nextConflict = (RWConflict)
+ SHMQueueNext(&MySerializableXact->inConflicts,
+ &conflict->inLink,
+ offsetof(RWConflictData, inLink));
+
+ if (!isCommit
+ || SxactIsCommitted(conflict->sxactOut)
+ || SxactIsReadOnly(conflict->sxactOut))
+ ReleaseRWConflict(conflict);
+
+ conflict = nextConflict;
+ }
+
+ if (!topLevelIsDeclaredReadOnly)
+ {
+ /*
+ * Remove ourselves from the list of possible conflicts for concurrent
+ * READ ONLY transactions, flagging them as unsafe if we have a
+ * conflict out. If any are waiting DEFERRABLE transactions, wake them
+ * up if they are known safe or known unsafe.
+ */
+ possibleUnsafeConflict = (RWConflict)
+ SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts,
+ &MySerializableXact->possibleUnsafeConflicts,
+ offsetof(RWConflictData, outLink));
+ while (possibleUnsafeConflict)
+ {
+ nextConflict = (RWConflict)
+ SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts,
+ &possibleUnsafeConflict->outLink,
+ offsetof(RWConflictData, outLink));
+
+ roXact = possibleUnsafeConflict->sxactIn;
+ Assert(MySerializableXact == possibleUnsafeConflict->sxactOut);
+ Assert(SxactIsReadOnly(roXact));
+
+ /* Mark conflicted if necessary. */
+ if (isCommit
+ && MyXactDidWrite
+ && SxactHasConflictOut(MySerializableXact)
+ && (MySerializableXact->SeqNo.earliestOutConflictCommit
+ <= roXact->SeqNo.lastCommitBeforeSnapshot))
+ {
+ /*
+ * This releases possibleUnsafeConflict (as well as all other
+ * possible conflicts for roXact)
+ */
+ FlagSxactUnsafe(roXact);
+ }
+ else
+ {
+ ReleaseRWConflict(possibleUnsafeConflict);
+
+ /*
+ * If we were the last possible conflict, flag it safe. The
+ * transaction can now safely release its predicate locks (but
+ * that transaction's backend has to do that itself).
+ */
+ if (SHMQueueEmpty(&roXact->possibleUnsafeConflicts))
+ roXact->flags |= SXACT_FLAG_RO_SAFE;
+ }
+
+ /*
+ * Wake up the process for a waiting DEFERRABLE transaction if we
+ * now know it's either safe or conflicted.
+ */
+ if (SxactIsDeferrableWaiting(roXact) &&
+ (SxactIsROUnsafe(roXact) || SxactIsROSafe(roXact)))
+ ProcSendSignal(roXact->pid);
+
+ possibleUnsafeConflict = nextConflict;
+ }
+ }
+
+ /*
+ * Check whether it's time to clean up old transactions. This can only be
+ * done when the last serializable transaction with the oldest xmin among
+ * serializable transactions completes. We then find the "new oldest"
+ * xmin and purge any transactions which finished before this transaction
+ * was launched.
+ */
+ needToClear = false;
+ if (TransactionIdEquals(MySerializableXact->xmin, PredXact->SxactGlobalXmin))
+ {
+ Assert(PredXact->SxactGlobalXminCount > 0);
+ if (--(PredXact->SxactGlobalXminCount) == 0)
+ {
+ SetNewSxactGlobalXmin();
+ needToClear = true;
+ }
+ }
+
+ LWLockRelease(SerializableXactHashLock);
+
+ LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
+
+ /* Add this to the list of transactions to check for later cleanup. */
+ if (isCommit)
+ SHMQueueInsertBefore(FinishedSerializableTransactions,
+ &MySerializableXact->finishedLink);
+
+ /*
+ * If we're releasing a RO_SAFE transaction in parallel mode, we'll only
+ * partially release it. That's necessary because other backends may have
+ * a reference to it. The leader will release the SERIALIZABLEXACT itself
+ * at the end of the transaction after workers have stopped running.
+ */
+ if (!isCommit)
+ ReleaseOneSerializableXact(MySerializableXact,
+ isReadOnlySafe && IsInParallelMode(),
+ false);
+
+ LWLockRelease(SerializableFinishedListLock);
+
+ if (needToClear)
+ ClearOldPredicateLocks();
+
+ ReleasePredicateLocksLocal();
+}
+
+static void
+ReleasePredicateLocksLocal(void)
+{
+ MySerializableXact = InvalidSerializableXact;
+ MyXactDidWrite = false;
+
+ /* Delete per-transaction lock table */
+ if (LocalPredicateLockHash != NULL)
+ {
+ hash_destroy(LocalPredicateLockHash);
+ LocalPredicateLockHash = NULL;
+ }
+}
+
+/*
+ * Clear old predicate locks, belonging to committed transactions that are no
+ * longer interesting to any in-progress transaction.
+ */
+static void
+ClearOldPredicateLocks(void)
+{
+ SERIALIZABLEXACT *finishedSxact;
+ PREDICATELOCK *predlock;
+
+ /*
+ * Loop through finished transactions. They are in commit order, so we can
+ * stop as soon as we find one that's still interesting.
+ */
+ LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
+ finishedSxact = (SERIALIZABLEXACT *)
+ SHMQueueNext(FinishedSerializableTransactions,
+ FinishedSerializableTransactions,
+ offsetof(SERIALIZABLEXACT, finishedLink));
+ LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+ while (finishedSxact)
+ {
+ SERIALIZABLEXACT *nextSxact;
+
+ nextSxact = (SERIALIZABLEXACT *)
+ SHMQueueNext(FinishedSerializableTransactions,
+ &(finishedSxact->finishedLink),
+ offsetof(SERIALIZABLEXACT, finishedLink));
+ if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)
+ || TransactionIdPrecedesOrEquals(finishedSxact->finishedBefore,
+ PredXact->SxactGlobalXmin))
+ {
+ /*
+ * This transaction committed before any in-progress transaction
+ * took its snapshot. It's no longer interesting.
+ */
+ LWLockRelease(SerializableXactHashLock);
+ SHMQueueDelete(&(finishedSxact->finishedLink));
+ ReleaseOneSerializableXact(finishedSxact, false, false);
+ LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+ }
+ else if (finishedSxact->commitSeqNo > PredXact->HavePartialClearedThrough
+ && finishedSxact->commitSeqNo <= PredXact->CanPartialClearThrough)
+ {
+ /*
+ * Any active transactions that took their snapshot before this
+ * transaction committed are read-only, so we can clear part of
+ * its state.
+ */
+ LWLockRelease(SerializableXactHashLock);
+
+ if (SxactIsReadOnly(finishedSxact))
+ {
+ /* A read-only transaction can be removed entirely */
+ SHMQueueDelete(&(finishedSxact->finishedLink));
+ ReleaseOneSerializableXact(finishedSxact, false, false);
+ }
+ else
+ {
+ /*
+ * A read-write transaction can only be partially cleared. We
+ * need to keep the SERIALIZABLEXACT but can release the
+ * SIREAD locks and conflicts in.
+ */
+ ReleaseOneSerializableXact(finishedSxact, true, false);
+ }
+
+ PredXact->HavePartialClearedThrough = finishedSxact->commitSeqNo;
+ LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+ }
+ else
+ {
+ /* Still interesting. */
+ break;
+ }
+ finishedSxact = nextSxact;
+ }
+ LWLockRelease(SerializableXactHashLock);
+
+ /*
+ * Loop through predicate locks on dummy transaction for summarized data.
+ */
+ LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
+ predlock = (PREDICATELOCK *)
+ SHMQueueNext(&OldCommittedSxact->predicateLocks,
+ &OldCommittedSxact->predicateLocks,
+ offsetof(PREDICATELOCK, xactLink));
+ while (predlock)
+ {
+ PREDICATELOCK *nextpredlock;
+ bool canDoPartialCleanup;
+
+ nextpredlock = (PREDICATELOCK *)
+ SHMQueueNext(&OldCommittedSxact->predicateLocks,
+ &predlock->xactLink,
+ offsetof(PREDICATELOCK, xactLink));
+
+ LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+ Assert(predlock->commitSeqNo != 0);
+ Assert(predlock->commitSeqNo != InvalidSerCommitSeqNo);
+ canDoPartialCleanup = (predlock->commitSeqNo <= PredXact->CanPartialClearThrough);
+ LWLockRelease(SerializableXactHashLock);
+
+ /*
+ * If this lock originally belonged to an old enough transaction, we
+ * can release it.
+ */
+ if (canDoPartialCleanup)
+ {
+ PREDICATELOCKTAG tag;
+ PREDICATELOCKTARGET *target;
+ PREDICATELOCKTARGETTAG targettag;
+ uint32 targettaghash;
+ LWLock *partitionLock;
+
+ tag = predlock->tag;
+ target = tag.myTarget;
+ targettag = target->tag;
+ targettaghash = PredicateLockTargetTagHashCode(&targettag);
+ partitionLock = PredicateLockHashPartitionLock(targettaghash);
+
+ LWLockAcquire(partitionLock, LW_EXCLUSIVE);
+
+ SHMQueueDelete(&(predlock->targetLink));
+ SHMQueueDelete(&(predlock->xactLink));
+
+ hash_search_with_hash_value(PredicateLockHash, &tag,
+ PredicateLockHashCodeFromTargetHashCode(&tag,
+ targettaghash),
+ HASH_REMOVE, NULL);
+ RemoveTargetIfNoLongerUsed(target, targettaghash);
+
+ LWLockRelease(partitionLock);
+ }
+
+ predlock = nextpredlock;
+ }
+
+ LWLockRelease(SerializablePredicateListLock);
+ LWLockRelease(SerializableFinishedListLock);
+}
+
+/*
+ * This is the normal way to delete anything from any of the predicate
+ * locking hash tables. Given a transaction which we know can be deleted:
+ * delete all predicate locks held by that transaction and any predicate
+ * lock targets which are now unreferenced by a lock; delete all conflicts
+ * for the transaction; delete all xid values for the transaction; then
+ * delete the transaction.
+ *
+ * When the partial flag is set, we can release all predicate locks and
+ * in-conflict information -- we've established that there are no longer
+ * any overlapping read write transactions for which this transaction could
+ * matter -- but keep the transaction entry itself and any outConflicts.
+ *
+ * When the summarize flag is set, we've run short of room for sxact data
+ * and must summarize to the SLRU. Predicate locks are transferred to a
+ * dummy "old" transaction, with duplicate locks on a single target
+ * collapsing to a single lock with the "latest" commitSeqNo from among
+ * the conflicting locks..
+ */
+static void
+ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
+ bool summarize)
+{
+ PREDICATELOCK *predlock;
+ SERIALIZABLEXIDTAG sxidtag;
+ RWConflict conflict,
+ nextConflict;
+
+ Assert(sxact != NULL);
+ Assert(SxactIsRolledBack(sxact) || SxactIsCommitted(sxact));
+ Assert(partial || !SxactIsOnFinishedList(sxact));
+ Assert(LWLockHeldByMe(SerializableFinishedListLock));
+
+ /*
+ * First release all the predicate locks held by this xact (or transfer
+ * them to OldCommittedSxact if summarize is true)
+ */
+ LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
+ if (IsInParallelMode())
+ LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE);
+ predlock = (PREDICATELOCK *)
+ SHMQueueNext(&(sxact->predicateLocks),
+ &(sxact->predicateLocks),
+ offsetof(PREDICATELOCK, xactLink));
+ while (predlock)
+ {
+ PREDICATELOCK *nextpredlock;
+ PREDICATELOCKTAG tag;
+ SHM_QUEUE *targetLink;
+ PREDICATELOCKTARGET *target;
+ PREDICATELOCKTARGETTAG targettag;
+ uint32 targettaghash;
+ LWLock *partitionLock;
+
+ nextpredlock = (PREDICATELOCK *)
+ SHMQueueNext(&(sxact->predicateLocks),
+ &(predlock->xactLink),
+ offsetof(PREDICATELOCK, xactLink));
+
+ tag = predlock->tag;
+ targetLink = &(predlock->targetLink);
+ target = tag.myTarget;
+ targettag = target->tag;
+ targettaghash = PredicateLockTargetTagHashCode(&targettag);
+ partitionLock = PredicateLockHashPartitionLock(targettaghash);
+
+ LWLockAcquire(partitionLock, LW_EXCLUSIVE);
+
+ SHMQueueDelete(targetLink);
+
+ hash_search_with_hash_value(PredicateLockHash, &tag,
+ PredicateLockHashCodeFromTargetHashCode(&tag,
+ targettaghash),
+ HASH_REMOVE, NULL);
+ if (summarize)
+ {
+ bool found;
+
+ /* Fold into dummy transaction list. */
+ tag.myXact = OldCommittedSxact;
+ predlock = hash_search_with_hash_value(PredicateLockHash, &tag,
+ PredicateLockHashCodeFromTargetHashCode(&tag,
+ targettaghash),
+ HASH_ENTER_NULL, &found);
+ if (!predlock)
+ ereport(ERROR,
+ (errcode(ERRCODE_OUT_OF_MEMORY),
+ errmsg("out of shared memory"),
+ errhint("You might need to increase max_pred_locks_per_transaction.")));
+ if (found)
+ {
+ Assert(predlock->commitSeqNo != 0);
+ Assert(predlock->commitSeqNo != InvalidSerCommitSeqNo);
+ if (predlock->commitSeqNo < sxact->commitSeqNo)
+ predlock->commitSeqNo = sxact->commitSeqNo;
+ }
+ else
+ {
+ SHMQueueInsertBefore(&(target->predicateLocks),
+ &(predlock->targetLink));
+ SHMQueueInsertBefore(&(OldCommittedSxact->predicateLocks),
+ &(predlock->xactLink));
+ predlock->commitSeqNo = sxact->commitSeqNo;
+ }
+ }
+ else
+ RemoveTargetIfNoLongerUsed(target, targettaghash);
+
+ LWLockRelease(partitionLock);
+
+ predlock = nextpredlock;
+ }
+
+ /*
+ * Rather than retail removal, just re-init the head after we've run
+ * through the list.
+ */
+ SHMQueueInit(&sxact->predicateLocks);
+
+ if (IsInParallelMode())
+ LWLockRelease(&sxact->perXactPredicateListLock);
+ LWLockRelease(SerializablePredicateListLock);
+
+ sxidtag.xid = sxact->topXid;
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
+ /* Release all outConflicts (unless 'partial' is true) */
+ if (!partial)
+ {
+ conflict = (RWConflict)
+ SHMQueueNext(&sxact->outConflicts,
+ &sxact->outConflicts,
+ offsetof(RWConflictData, outLink));
+ while (conflict)
+ {
+ nextConflict = (RWConflict)
+ SHMQueueNext(&sxact->outConflicts,
+ &conflict->outLink,
+ offsetof(RWConflictData, outLink));
+ if (summarize)
+ conflict->sxactIn->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
+ ReleaseRWConflict(conflict);
+ conflict = nextConflict;
+ }
+ }
+
+ /* Release all inConflicts. */
+ conflict = (RWConflict)
+ SHMQueueNext(&sxact->inConflicts,
+ &sxact->inConflicts,
+ offsetof(RWConflictData, inLink));
+ while (conflict)
+ {
+ nextConflict = (RWConflict)
+ SHMQueueNext(&sxact->inConflicts,
+ &conflict->inLink,
+ offsetof(RWConflictData, inLink));
+ if (summarize)
+ conflict->sxactOut->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
+ ReleaseRWConflict(conflict);
+ conflict = nextConflict;
+ }
+
+ /* Finally, get rid of the xid and the record of the transaction itself. */
+ if (!partial)
+ {
+ if (sxidtag.xid != InvalidTransactionId)
+ hash_search(SerializableXidHash, &sxidtag, HASH_REMOVE, NULL);
+ ReleasePredXact(sxact);
+ }
+
+ LWLockRelease(SerializableXactHashLock);
+}
+
+/*
+ * Tests whether the given top level transaction is concurrent with
+ * (overlaps) our current transaction.
+ *
+ * We need to identify the top level transaction for SSI, anyway, so pass
+ * that to this function to save the overhead of checking the snapshot's
+ * subxip array.
+ */
+static bool
+XidIsConcurrent(TransactionId xid)
+{
+ Snapshot snap;
+ uint32 i;
+
+ Assert(TransactionIdIsValid(xid));
+ Assert(!TransactionIdEquals(xid, GetTopTransactionIdIfAny()));
+
+ snap = GetTransactionSnapshot();
+
+ if (TransactionIdPrecedes(xid, snap->xmin))
+ return false;
+
+ if (TransactionIdFollowsOrEquals(xid, snap->xmax))
+ return true;
+
+ for (i = 0; i < snap->xcnt; i++)
+ {
+ if (xid == snap->xip[i])
+ return true;
+ }
+
+ return false;
+}
+
+bool
+CheckForSerializableConflictOutNeeded(Relation relation, Snapshot snapshot)
+{
+ if (!SerializationNeededForRead(relation, snapshot))
+ return false;
+
+ /* Check if someone else has already decided that we need to die */
+ if (SxactIsDoomed(MySerializableXact))
+ {
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to read/write dependencies among transactions"),
+ errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
+ errhint("The transaction might succeed if retried.")));
+ }
+
+ return true;
+}
+
+/*
+ * CheckForSerializableConflictOut
+ * A table AM is reading a tuple that has been modified. If it determines
+ * that the tuple version it is reading is not visible to us, it should
+ * pass in the top level xid of the transaction that created it.
+ * Otherwise, if it determines that it is visible to us but it has been
+ * deleted or there is a newer version available due to an update, it
+ * should pass in the top level xid of the modifying transaction.
+ *
+ * This function will check for overlap with our own transaction. If the given
+ * xid is also serializable and the transactions overlap (i.e., they cannot see
+ * each other's writes), then we have a conflict out.
+ */
+void
+CheckForSerializableConflictOut(Relation relation, TransactionId xid, Snapshot snapshot)
+{
+ SERIALIZABLEXIDTAG sxidtag;
+ SERIALIZABLEXID *sxid;
+ SERIALIZABLEXACT *sxact;
+
+ if (!SerializationNeededForRead(relation, snapshot))
+ return;
+
+ /* Check if someone else has already decided that we need to die */
+ if (SxactIsDoomed(MySerializableXact))
+ {
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to read/write dependencies among transactions"),
+ errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
+ errhint("The transaction might succeed if retried.")));
+ }
+ Assert(TransactionIdIsValid(xid));
+
+ if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
+ return;
+
+ /*
+ * Find sxact or summarized info for the top level xid.
+ */
+ sxidtag.xid = xid;
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+ sxid = (SERIALIZABLEXID *)
+ hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
+ if (!sxid)
+ {
+ /*
+ * Transaction not found in "normal" SSI structures. Check whether it
+ * got pushed out to SLRU storage for "old committed" transactions.
+ */
+ SerCommitSeqNo conflictCommitSeqNo;
+
+ conflictCommitSeqNo = SerialGetMinConflictCommitSeqNo(xid);
+ if (conflictCommitSeqNo != 0)
+ {
+ if (conflictCommitSeqNo != InvalidSerCommitSeqNo
+ && (!SxactIsReadOnly(MySerializableXact)
+ || conflictCommitSeqNo
+ <= MySerializableXact->SeqNo.lastCommitBeforeSnapshot))
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to read/write dependencies among transactions"),
+ errdetail_internal("Reason code: Canceled on conflict out to old pivot %u.", xid),
+ errhint("The transaction might succeed if retried.")));
+
+ if (SxactHasSummaryConflictIn(MySerializableXact)
+ || !SHMQueueEmpty(&MySerializableXact->inConflicts))
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to read/write dependencies among transactions"),
+ errdetail_internal("Reason code: Canceled on identification as a pivot, with conflict out to old committed transaction %u.", xid),
+ errhint("The transaction might succeed if retried.")));
+
+ MySerializableXact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
+ }
+
+ /* It's not serializable or otherwise not important. */
+ LWLockRelease(SerializableXactHashLock);
+ return;
+ }
+ sxact = sxid->myXact;
+ Assert(TransactionIdEquals(sxact->topXid, xid));
+ if (sxact == MySerializableXact || SxactIsDoomed(sxact))
+ {
+ /* Can't conflict with ourself or a transaction that will roll back. */
+ LWLockRelease(SerializableXactHashLock);
+ return;
+ }
+
+ /*
+ * We have a conflict out to a transaction which has a conflict out to a
+ * summarized transaction. That summarized transaction must have
+ * committed first, and we can't tell when it committed in relation to our
+ * snapshot acquisition, so something needs to be canceled.
+ */
+ if (SxactHasSummaryConflictOut(sxact))
+ {
+ if (!SxactIsPrepared(sxact))
+ {
+ sxact->flags |= SXACT_FLAG_DOOMED;
+ LWLockRelease(SerializableXactHashLock);
+ return;
+ }
+ else
+ {
+ LWLockRelease(SerializableXactHashLock);
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to read/write dependencies among transactions"),
+ errdetail_internal("Reason code: Canceled on conflict out to old pivot."),
+ errhint("The transaction might succeed if retried.")));
+ }
+ }
+
+ /*
+ * If this is a read-only transaction and the writing transaction has
+ * committed, and it doesn't have a rw-conflict to a transaction which
+ * committed before it, no conflict.
+ */
+ if (SxactIsReadOnly(MySerializableXact)
+ && SxactIsCommitted(sxact)
+ && !SxactHasSummaryConflictOut(sxact)
+ && (!SxactHasConflictOut(sxact)
+ || MySerializableXact->SeqNo.lastCommitBeforeSnapshot < sxact->SeqNo.earliestOutConflictCommit))
+ {
+ /* Read-only transaction will appear to run first. No conflict. */
+ LWLockRelease(SerializableXactHashLock);
+ return;
+ }
+
+ if (!XidIsConcurrent(xid))
+ {
+ /* This write was already in our snapshot; no conflict. */
+ LWLockRelease(SerializableXactHashLock);
+ return;
+ }
+
+ if (RWConflictExists(MySerializableXact, sxact))
+ {
+ /* We don't want duplicate conflict records in the list. */
+ LWLockRelease(SerializableXactHashLock);
+ return;
+ }
+
+ /*
+ * Flag the conflict. But first, if this conflict creates a dangerous
+ * structure, ereport an error.
+ */
+ FlagRWConflict(MySerializableXact, sxact);
+ LWLockRelease(SerializableXactHashLock);
+}
+
+/*
+ * Check a particular target for rw-dependency conflict in. A subroutine of
+ * CheckForSerializableConflictIn().
+ */
+static void
+CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag)
+{
+ uint32 targettaghash;
+ LWLock *partitionLock;
+ PREDICATELOCKTARGET *target;
+ PREDICATELOCK *predlock;
+ PREDICATELOCK *mypredlock = NULL;
+ PREDICATELOCKTAG mypredlocktag;
+
+ Assert(MySerializableXact != InvalidSerializableXact);
+
+ /*
+ * The same hash and LW lock apply to the lock target and the lock itself.
+ */
+ targettaghash = PredicateLockTargetTagHashCode(targettag);
+ partitionLock = PredicateLockHashPartitionLock(targettaghash);
+ LWLockAcquire(partitionLock, LW_SHARED);
+ target = (PREDICATELOCKTARGET *)
+ hash_search_with_hash_value(PredicateLockTargetHash,
+ targettag, targettaghash,
+ HASH_FIND, NULL);
+ if (!target)
+ {
+ /* Nothing has this target locked; we're done here. */
+ LWLockRelease(partitionLock);
+ return;
+ }
+
+ /*
+ * Each lock for an overlapping transaction represents a conflict: a
+ * rw-dependency in to this transaction.
+ */
+ predlock = (PREDICATELOCK *)
+ SHMQueueNext(&(target->predicateLocks),
+ &(target->predicateLocks),
+ offsetof(PREDICATELOCK, targetLink));
+ LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+ while (predlock)
+ {
+ SHM_QUEUE *predlocktargetlink;
+ PREDICATELOCK *nextpredlock;
+ SERIALIZABLEXACT *sxact;
+
+ predlocktargetlink = &(predlock->targetLink);
+ nextpredlock = (PREDICATELOCK *)
+ SHMQueueNext(&(target->predicateLocks),
+ predlocktargetlink,
+ offsetof(PREDICATELOCK, targetLink));
+
+ sxact = predlock->tag.myXact;
+ if (sxact == MySerializableXact)
+ {
+ /*
+ * If we're getting a write lock on a tuple, we don't need a
+ * predicate (SIREAD) lock on the same tuple. We can safely remove
+ * our SIREAD lock, but we'll defer doing so until after the loop
+ * because that requires upgrading to an exclusive partition lock.
+ *
+ * We can't use this optimization within a subtransaction because
+ * the subtransaction could roll back, and we would be left
+ * without any lock at the top level.
+ */
+ if (!IsSubTransaction()
+ && GET_PREDICATELOCKTARGETTAG_OFFSET(*targettag))
+ {
+ mypredlock = predlock;
+ mypredlocktag = predlock->tag;
+ }
+ }
+ else if (!SxactIsDoomed(sxact)
+ && (!SxactIsCommitted(sxact)
+ || TransactionIdPrecedes(GetTransactionSnapshot()->xmin,
+ sxact->finishedBefore))
+ && !RWConflictExists(sxact, MySerializableXact))
+ {
+ LWLockRelease(SerializableXactHashLock);
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
+ /*
+ * Re-check after getting exclusive lock because the other
+ * transaction may have flagged a conflict.
+ */
+ if (!SxactIsDoomed(sxact)
+ && (!SxactIsCommitted(sxact)
+ || TransactionIdPrecedes(GetTransactionSnapshot()->xmin,
+ sxact->finishedBefore))
+ && !RWConflictExists(sxact, MySerializableXact))
+ {
+ FlagRWConflict(sxact, MySerializableXact);
+ }
+
+ LWLockRelease(SerializableXactHashLock);
+ LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+ }
+
+ predlock = nextpredlock;
+ }
+ LWLockRelease(SerializableXactHashLock);
+ LWLockRelease(partitionLock);
+
+ /*
+ * If we found one of our own SIREAD locks to remove, remove it now.
+ *
+ * At this point our transaction already has a RowExclusiveLock on the
+ * relation, so we are OK to drop the predicate lock on the tuple, if
+ * found, without fearing that another write against the tuple will occur
+ * before the MVCC information makes it to the buffer.
+ */
+ if (mypredlock != NULL)
+ {
+ uint32 predlockhashcode;
+ PREDICATELOCK *rmpredlock;
+
+ LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
+ if (IsInParallelMode())
+ LWLockAcquire(&MySerializableXact->perXactPredicateListLock, LW_EXCLUSIVE);
+ LWLockAcquire(partitionLock, LW_EXCLUSIVE);
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
+ /*
+ * Remove the predicate lock from shared memory, if it wasn't removed
+ * while the locks were released. One way that could happen is from
+ * autovacuum cleaning up an index.
+ */
+ predlockhashcode = PredicateLockHashCodeFromTargetHashCode
+ (&mypredlocktag, targettaghash);
+ rmpredlock = (PREDICATELOCK *)
+ hash_search_with_hash_value(PredicateLockHash,
+ &mypredlocktag,
+ predlockhashcode,
+ HASH_FIND, NULL);
+ if (rmpredlock != NULL)
+ {
+ Assert(rmpredlock == mypredlock);
+
+ SHMQueueDelete(&(mypredlock->targetLink));
+ SHMQueueDelete(&(mypredlock->xactLink));
+
+ rmpredlock = (PREDICATELOCK *)
+ hash_search_with_hash_value(PredicateLockHash,
+ &mypredlocktag,
+ predlockhashcode,
+ HASH_REMOVE, NULL);
+ Assert(rmpredlock == mypredlock);
+
+ RemoveTargetIfNoLongerUsed(target, targettaghash);
+ }
+
+ LWLockRelease(SerializableXactHashLock);
+ LWLockRelease(partitionLock);
+ if (IsInParallelMode())
+ LWLockRelease(&MySerializableXact->perXactPredicateListLock);
+ LWLockRelease(SerializablePredicateListLock);
+
+ if (rmpredlock != NULL)
+ {
+ /*
+ * Remove entry in local lock table if it exists. It's OK if it
+ * doesn't exist; that means the lock was transferred to a new
+ * target by a different backend.
+ */
+ hash_search_with_hash_value(LocalPredicateLockHash,
+ targettag, targettaghash,
+ HASH_REMOVE, NULL);
+
+ DecrementParentLocks(targettag);
+ }
+ }
+}
+
+/*
+ * CheckForSerializableConflictIn
+ * We are writing the given tuple. If that indicates a rw-conflict
+ * in from another serializable transaction, take appropriate action.
+ *
+ * Skip checking for any granularity for which a parameter is missing.
+ *
+ * A tuple update or delete is in conflict if we have a predicate lock
+ * against the relation or page in which the tuple exists, or against the
+ * tuple itself.
+ */
+void
+CheckForSerializableConflictIn(Relation relation, ItemPointer tid, BlockNumber blkno)
+{
+ PREDICATELOCKTARGETTAG targettag;
+
+ if (!SerializationNeededForWrite(relation))
+ return;
+
+ /* Check if someone else has already decided that we need to die */
+ if (SxactIsDoomed(MySerializableXact))
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to read/write dependencies among transactions"),
+ errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict in checking."),
+ errhint("The transaction might succeed if retried.")));
+
+ /*
+ * We're doing a write which might cause rw-conflicts now or later.
+ * Memorize that fact.
+ */
+ MyXactDidWrite = true;
+
+ /*
+ * It is important that we check for locks from the finest granularity to
+ * the coarsest granularity, so that granularity promotion doesn't cause
+ * us to miss a lock. The new (coarser) lock will be acquired before the
+ * old (finer) locks are released.
+ *
+ * It is not possible to take and hold a lock across the checks for all
+ * granularities because each target could be in a separate partition.
+ */
+ if (tid != NULL)
+ {
+ SET_PREDICATELOCKTARGETTAG_TUPLE(targettag,
+ relation->rd_node.dbNode,
+ relation->rd_id,
+ ItemPointerGetBlockNumber(tid),
+ ItemPointerGetOffsetNumber(tid));
+ CheckTargetForConflictsIn(&targettag);
+ }
+
+ if (blkno != InvalidBlockNumber)
+ {
+ SET_PREDICATELOCKTARGETTAG_PAGE(targettag,
+ relation->rd_node.dbNode,
+ relation->rd_id,
+ blkno);
+ CheckTargetForConflictsIn(&targettag);
+ }
+
+ SET_PREDICATELOCKTARGETTAG_RELATION(targettag,
+ relation->rd_node.dbNode,
+ relation->rd_id);
+ CheckTargetForConflictsIn(&targettag);
+}
+
+/*
+ * CheckTableForSerializableConflictIn
+ * The entire table is going through a DDL-style logical mass delete
+ * like TRUNCATE or DROP TABLE. If that causes a rw-conflict in from
+ * another serializable transaction, take appropriate action.
+ *
+ * While these operations do not operate entirely within the bounds of
+ * snapshot isolation, they can occur inside a serializable transaction, and
+ * will logically occur after any reads which saw rows which were destroyed
+ * by these operations, so we do what we can to serialize properly under
+ * SSI.
+ *
+ * The relation passed in must be a heap relation. Any predicate lock of any
+ * granularity on the heap will cause a rw-conflict in to this transaction.
+ * Predicate locks on indexes do not matter because they only exist to guard
+ * against conflicting inserts into the index, and this is a mass *delete*.
+ * When a table is truncated or dropped, the index will also be truncated
+ * or dropped, and we'll deal with locks on the index when that happens.
+ *
+ * Dropping or truncating a table also needs to drop any existing predicate
+ * locks on heap tuples or pages, because they're about to go away. This
+ * should be done before altering the predicate locks because the transaction
+ * could be rolled back because of a conflict, in which case the lock changes
+ * are not needed. (At the moment, we don't actually bother to drop the
+ * existing locks on a dropped or truncated table at the moment. That might
+ * lead to some false positives, but it doesn't seem worth the trouble.)
+ */
+void
+CheckTableForSerializableConflictIn(Relation relation)
+{
+ HASH_SEQ_STATUS seqstat;
+ PREDICATELOCKTARGET *target;
+ Oid dbId;
+ Oid heapId;
+ int i;
+
+ /*
+ * Bail out quickly if there are no serializable transactions running.
+ * It's safe to check this without taking locks because the caller is
+ * holding an ACCESS EXCLUSIVE lock on the relation. No new locks which
+ * would matter here can be acquired while that is held.
+ */
+ if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
+ return;
+
+ if (!SerializationNeededForWrite(relation))
+ return;
+
+ /*
+ * We're doing a write which might cause rw-conflicts now or later.
+ * Memorize that fact.
+ */
+ MyXactDidWrite = true;
+
+ Assert(relation->rd_index == NULL); /* not an index relation */
+
+ dbId = relation->rd_node.dbNode;
+ heapId = relation->rd_id;
+
+ LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
+ for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
+ LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED);
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
+ /* Scan through target list */
+ hash_seq_init(&seqstat, PredicateLockTargetHash);
+
+ while ((target = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat)))
+ {
+ PREDICATELOCK *predlock;
+
+ /*
+ * Check whether this is a target which needs attention.
+ */
+ if (GET_PREDICATELOCKTARGETTAG_RELATION(target->tag) != heapId)
+ continue; /* wrong relation id */
+ if (GET_PREDICATELOCKTARGETTAG_DB(target->tag) != dbId)
+ continue; /* wrong database id */
+
+ /*
+ * Loop through locks for this target and flag conflicts.
+ */
+ predlock = (PREDICATELOCK *)
+ SHMQueueNext(&(target->predicateLocks),
+ &(target->predicateLocks),
+ offsetof(PREDICATELOCK, targetLink));
+ while (predlock)
+ {
+ PREDICATELOCK *nextpredlock;
+
+ nextpredlock = (PREDICATELOCK *)
+ SHMQueueNext(&(target->predicateLocks),
+ &(predlock->targetLink),
+ offsetof(PREDICATELOCK, targetLink));
+
+ if (predlock->tag.myXact != MySerializableXact
+ && !RWConflictExists(predlock->tag.myXact, MySerializableXact))
+ {
+ FlagRWConflict(predlock->tag.myXact, MySerializableXact);
+ }
+
+ predlock = nextpredlock;
+ }
+ }
+
+ /* Release locks in reverse order */
+ LWLockRelease(SerializableXactHashLock);
+ for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
+ LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
+ LWLockRelease(SerializablePredicateListLock);
+}
+
+
+/*
+ * Flag a rw-dependency between two serializable transactions.
+ *
+ * The caller is responsible for ensuring that we have a LW lock on
+ * the transaction hash table.
+ */
+static void
+FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
+{
+ Assert(reader != writer);
+
+ /* First, see if this conflict causes failure. */
+ OnConflict_CheckForSerializationFailure(reader, writer);
+
+ /* Actually do the conflict flagging. */
+ if (reader == OldCommittedSxact)
+ writer->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
+ else if (writer == OldCommittedSxact)
+ reader->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
+ else
+ SetRWConflict(reader, writer);
+}
+
+/*----------------------------------------------------------------------------
+ * We are about to add a RW-edge to the dependency graph - check that we don't
+ * introduce a dangerous structure by doing so, and abort one of the
+ * transactions if so.
+ *
+ * A serialization failure can only occur if there is a dangerous structure
+ * in the dependency graph:
+ *
+ * Tin ------> Tpivot ------> Tout
+ * rw rw
+ *
+ * Furthermore, Tout must commit first.
+ *
+ * One more optimization is that if Tin is declared READ ONLY (or commits
+ * without writing), we can only have a problem if Tout committed before Tin
+ * acquired its snapshot.
+ *----------------------------------------------------------------------------
+ */
+static void
+OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
+ SERIALIZABLEXACT *writer)
+{
+ bool failure;
+ RWConflict conflict;
+
+ Assert(LWLockHeldByMe(SerializableXactHashLock));
+
+ failure = false;
+
+ /*------------------------------------------------------------------------
+ * Check for already-committed writer with rw-conflict out flagged
+ * (conflict-flag on W means that T2 committed before W):
+ *
+ * R ------> W ------> T2
+ * rw rw
+ *
+ * That is a dangerous structure, so we must abort. (Since the writer
+ * has already committed, we must be the reader)
+ *------------------------------------------------------------------------
+ */
+ if (SxactIsCommitted(writer)
+ && (SxactHasConflictOut(writer) || SxactHasSummaryConflictOut(writer)))
+ failure = true;
+
+ /*------------------------------------------------------------------------
+ * Check whether the writer has become a pivot with an out-conflict
+ * committed transaction (T2), and T2 committed first:
+ *
+ * R ------> W ------> T2
+ * rw rw
+ *
+ * Because T2 must've committed first, there is no anomaly if:
+ * - the reader committed before T2
+ * - the writer committed before T2
+ * - the reader is a READ ONLY transaction and the reader was concurrent
+ * with T2 (= reader acquired its snapshot before T2 committed)
+ *
+ * We also handle the case that T2 is prepared but not yet committed
+ * here. In that case T2 has already checked for conflicts, so if it
+ * commits first, making the above conflict real, it's too late for it
+ * to abort.
+ *------------------------------------------------------------------------
+ */
+ if (!failure)
+ {
+ if (SxactHasSummaryConflictOut(writer))
+ {
+ failure = true;
+ conflict = NULL;
+ }
+ else
+ conflict = (RWConflict)
+ SHMQueueNext(&writer->outConflicts,
+ &writer->outConflicts,
+ offsetof(RWConflictData, outLink));
+ while (conflict)
+ {
+ SERIALIZABLEXACT *t2 = conflict->sxactIn;
+
+ if (SxactIsPrepared(t2)
+ && (!SxactIsCommitted(reader)
+ || t2->prepareSeqNo <= reader->commitSeqNo)
+ && (!SxactIsCommitted(writer)
+ || t2->prepareSeqNo <= writer->commitSeqNo)
+ && (!SxactIsReadOnly(reader)
+ || t2->prepareSeqNo <= reader->SeqNo.lastCommitBeforeSnapshot))
+ {
+ failure = true;
+ break;
+ }
+ conflict = (RWConflict)
+ SHMQueueNext(&writer->outConflicts,
+ &conflict->outLink,
+ offsetof(RWConflictData, outLink));
+ }
+ }
+
+ /*------------------------------------------------------------------------
+ * Check whether the reader has become a pivot with a writer
+ * that's committed (or prepared):
+ *
+ * T0 ------> R ------> W
+ * rw rw
+ *
+ * Because W must've committed first for an anomaly to occur, there is no
+ * anomaly if:
+ * - T0 committed before the writer
+ * - T0 is READ ONLY, and overlaps the writer
+ *------------------------------------------------------------------------
+ */
+ if (!failure && SxactIsPrepared(writer) && !SxactIsReadOnly(reader))
+ {
+ if (SxactHasSummaryConflictIn(reader))
+ {
+ failure = true;
+ conflict = NULL;
+ }
+ else
+ conflict = (RWConflict)
+ SHMQueueNext(&reader->inConflicts,
+ &reader->inConflicts,
+ offsetof(RWConflictData, inLink));
+ while (conflict)
+ {
+ SERIALIZABLEXACT *t0 = conflict->sxactOut;
+
+ if (!SxactIsDoomed(t0)
+ && (!SxactIsCommitted(t0)
+ || t0->commitSeqNo >= writer->prepareSeqNo)
+ && (!SxactIsReadOnly(t0)
+ || t0->SeqNo.lastCommitBeforeSnapshot >= writer->prepareSeqNo))
+ {
+ failure = true;
+ break;
+ }
+ conflict = (RWConflict)
+ SHMQueueNext(&reader->inConflicts,
+ &conflict->inLink,
+ offsetof(RWConflictData, inLink));
+ }
+ }
+
+ if (failure)
+ {
+ /*
+ * We have to kill a transaction to avoid a possible anomaly from
+ * occurring. If the writer is us, we can just ereport() to cause a
+ * transaction abort. Otherwise we flag the writer for termination,
+ * causing it to abort when it tries to commit. However, if the writer
+ * is a prepared transaction, already prepared, we can't abort it
+ * anymore, so we have to kill the reader instead.
+ */
+ if (MySerializableXact == writer)
+ {
+ LWLockRelease(SerializableXactHashLock);
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to read/write dependencies among transactions"),
+ errdetail_internal("Reason code: Canceled on identification as a pivot, during write."),
+ errhint("The transaction might succeed if retried.")));
+ }
+ else if (SxactIsPrepared(writer))
+ {
+ LWLockRelease(SerializableXactHashLock);
+
+ /* if we're not the writer, we have to be the reader */
+ Assert(MySerializableXact == reader);
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to read/write dependencies among transactions"),
+ errdetail_internal("Reason code: Canceled on conflict out to pivot %u, during read.", writer->topXid),
+ errhint("The transaction might succeed if retried.")));
+ }
+ writer->flags |= SXACT_FLAG_DOOMED;
+ }
+}
+
+/*
+ * PreCommit_CheckForSerializationFailure
+ * Check for dangerous structures in a serializable transaction
+ * at commit.
+ *
+ * We're checking for a dangerous structure as each conflict is recorded.
+ * The only way we could have a problem at commit is if this is the "out"
+ * side of a pivot, and neither the "in" side nor the pivot has yet
+ * committed.
+ *
+ * If a dangerous structure is found, the pivot (the near conflict) is
+ * marked for death, because rolling back another transaction might mean
+ * that we fail without ever making progress. This transaction is
+ * committing writes, so letting it commit ensures progress. If we
+ * canceled the far conflict, it might immediately fail again on retry.
+ */
+void
+PreCommit_CheckForSerializationFailure(void)
+{
+ RWConflict nearConflict;
+
+ if (MySerializableXact == InvalidSerializableXact)
+ return;
+
+ Assert(IsolationIsSerializable());
+
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
+ /* Check if someone else has already decided that we need to die */
+ if (SxactIsDoomed(MySerializableXact))
+ {
+ Assert(!SxactIsPartiallyReleased(MySerializableXact));
+ LWLockRelease(SerializableXactHashLock);
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to read/write dependencies among transactions"),
+ errdetail_internal("Reason code: Canceled on identification as a pivot, during commit attempt."),
+ errhint("The transaction might succeed if retried.")));
+ }
+
+ nearConflict = (RWConflict)
+ SHMQueueNext(&MySerializableXact->inConflicts,
+ &MySerializableXact->inConflicts,
+ offsetof(RWConflictData, inLink));
+ while (nearConflict)
+ {
+ if (!SxactIsCommitted(nearConflict->sxactOut)
+ && !SxactIsDoomed(nearConflict->sxactOut))
+ {
+ RWConflict farConflict;
+
+ farConflict = (RWConflict)
+ SHMQueueNext(&nearConflict->sxactOut->inConflicts,
+ &nearConflict->sxactOut->inConflicts,
+ offsetof(RWConflictData, inLink));
+ while (farConflict)
+ {
+ if (farConflict->sxactOut == MySerializableXact
+ || (!SxactIsCommitted(farConflict->sxactOut)
+ && !SxactIsReadOnly(farConflict->sxactOut)
+ && !SxactIsDoomed(farConflict->sxactOut)))
+ {
+ /*
+ * Normally, we kill the pivot transaction to make sure we
+ * make progress if the failing transaction is retried.
+ * However, we can't kill it if it's already prepared, so
+ * in that case we commit suicide instead.
+ */
+ if (SxactIsPrepared(nearConflict->sxactOut))
+ {
+ LWLockRelease(SerializableXactHashLock);
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to read/write dependencies among transactions"),
+ errdetail_internal("Reason code: Canceled on commit attempt with conflict in from prepared pivot."),
+ errhint("The transaction might succeed if retried.")));
+ }
+ nearConflict->sxactOut->flags |= SXACT_FLAG_DOOMED;
+ break;
+ }
+ farConflict = (RWConflict)
+ SHMQueueNext(&nearConflict->sxactOut->inConflicts,
+ &farConflict->inLink,
+ offsetof(RWConflictData, inLink));
+ }
+ }
+
+ nearConflict = (RWConflict)
+ SHMQueueNext(&MySerializableXact->inConflicts,
+ &nearConflict->inLink,
+ offsetof(RWConflictData, inLink));
+ }
+
+ MySerializableXact->prepareSeqNo = ++(PredXact->LastSxactCommitSeqNo);
+ MySerializableXact->flags |= SXACT_FLAG_PREPARED;
+
+ LWLockRelease(SerializableXactHashLock);
+}
+
+/*------------------------------------------------------------------------*/
+
+/*
+ * Two-phase commit support
+ */
+
+/*
+ * AtPrepare_Locks
+ * Do the preparatory work for a PREPARE: make 2PC state file
+ * records for all predicate locks currently held.
+ */
+void
+AtPrepare_PredicateLocks(void)
+{
+ PREDICATELOCK *predlock;
+ SERIALIZABLEXACT *sxact;
+ TwoPhasePredicateRecord record;
+ TwoPhasePredicateXactRecord *xactRecord;
+ TwoPhasePredicateLockRecord *lockRecord;
+
+ sxact = MySerializableXact;
+ xactRecord = &(record.data.xactRecord);
+ lockRecord = &(record.data.lockRecord);
+
+ if (MySerializableXact == InvalidSerializableXact)
+ return;
+
+ /* Generate an xact record for our SERIALIZABLEXACT */
+ record.type = TWOPHASEPREDICATERECORD_XACT;
+ xactRecord->xmin = MySerializableXact->xmin;
+ xactRecord->flags = MySerializableXact->flags;
+
+ /*
+ * Note that we don't include the list of conflicts in our out in the
+ * statefile, because new conflicts can be added even after the
+ * transaction prepares. We'll just make a conservative assumption during
+ * recovery instead.
+ */
+
+ RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0,
+ &record, sizeof(record));
+
+ /*
+ * Generate a lock record for each lock.
+ *
+ * To do this, we need to walk the predicate lock list in our sxact rather
+ * than using the local predicate lock table because the latter is not
+ * guaranteed to be accurate.
+ */
+ LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
+
+ /*
+ * No need to take sxact->perXactPredicateListLock in parallel mode
+ * because there cannot be any parallel workers running while we are
+ * preparing a transaction.
+ */
+ Assert(!IsParallelWorker() && !ParallelContextActive());
+
+ predlock = (PREDICATELOCK *)
+ SHMQueueNext(&(sxact->predicateLocks),
+ &(sxact->predicateLocks),
+ offsetof(PREDICATELOCK, xactLink));
+
+ while (predlock != NULL)
+ {
+ record.type = TWOPHASEPREDICATERECORD_LOCK;
+ lockRecord->target = predlock->tag.myTarget->tag;
+
+ RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0,
+ &record, sizeof(record));
+
+ predlock = (PREDICATELOCK *)
+ SHMQueueNext(&(sxact->predicateLocks),
+ &(predlock->xactLink),
+ offsetof(PREDICATELOCK, xactLink));
+ }
+
+ LWLockRelease(SerializablePredicateListLock);
+}
+
+/*
+ * PostPrepare_Locks
+ * Clean up after successful PREPARE. Unlike the non-predicate
+ * lock manager, we do not need to transfer locks to a dummy
+ * PGPROC because our SERIALIZABLEXACT will stay around
+ * anyway. We only need to clean up our local state.
+ */
+void
+PostPrepare_PredicateLocks(TransactionId xid)
+{
+ if (MySerializableXact == InvalidSerializableXact)
+ return;
+
+ Assert(SxactIsPrepared(MySerializableXact));
+
+ MySerializableXact->pid = 0;
+
+ hash_destroy(LocalPredicateLockHash);
+ LocalPredicateLockHash = NULL;
+
+ MySerializableXact = InvalidSerializableXact;
+ MyXactDidWrite = false;
+}
+
+/*
+ * PredicateLockTwoPhaseFinish
+ * Release a prepared transaction's predicate locks once it
+ * commits or aborts.
+ */
+void
+PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit)
+{
+ SERIALIZABLEXID *sxid;
+ SERIALIZABLEXIDTAG sxidtag;
+
+ sxidtag.xid = xid;
+
+ LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+ sxid = (SERIALIZABLEXID *)
+ hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
+ LWLockRelease(SerializableXactHashLock);
+
+ /* xid will not be found if it wasn't a serializable transaction */
+ if (sxid == NULL)
+ return;
+
+ /* Release its locks */
+ MySerializableXact = sxid->myXact;
+ MyXactDidWrite = true; /* conservatively assume that we wrote
+ * something */
+ ReleasePredicateLocks(isCommit, false);
+}
+
+/*
+ * Re-acquire a predicate lock belonging to a transaction that was prepared.
+ */
+void
+predicatelock_twophase_recover(TransactionId xid, uint16 info,
+ void *recdata, uint32 len)
+{
+ TwoPhasePredicateRecord *record;
+
+ Assert(len == sizeof(TwoPhasePredicateRecord));
+
+ record = (TwoPhasePredicateRecord *) recdata;
+
+ Assert((record->type == TWOPHASEPREDICATERECORD_XACT) ||
+ (record->type == TWOPHASEPREDICATERECORD_LOCK));
+
+ if (record->type == TWOPHASEPREDICATERECORD_XACT)
+ {
+ /* Per-transaction record. Set up a SERIALIZABLEXACT. */
+ TwoPhasePredicateXactRecord *xactRecord;
+ SERIALIZABLEXACT *sxact;
+ SERIALIZABLEXID *sxid;
+ SERIALIZABLEXIDTAG sxidtag;
+ bool found;
+
+ xactRecord = (TwoPhasePredicateXactRecord *) &record->data.xactRecord;
+
+ LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+ sxact = CreatePredXact();
+ if (!sxact)
+ ereport(ERROR,
+ (errcode(ERRCODE_OUT_OF_MEMORY),
+ errmsg("out of shared memory")));
+
+ /* vxid for a prepared xact is InvalidBackendId/xid; no pid */
+ sxact->vxid.backendId = InvalidBackendId;
+ sxact->vxid.localTransactionId = (LocalTransactionId) xid;
+ sxact->pid = 0;
+
+ /* a prepared xact hasn't committed yet */
+ sxact->prepareSeqNo = RecoverySerCommitSeqNo;
+ sxact->commitSeqNo = InvalidSerCommitSeqNo;
+ sxact->finishedBefore = InvalidTransactionId;
+
+ sxact->SeqNo.lastCommitBeforeSnapshot = RecoverySerCommitSeqNo;
+
+ /*
+ * Don't need to track this; no transactions running at the time the
+ * recovered xact started are still active, except possibly other
+ * prepared xacts and we don't care whether those are RO_SAFE or not.
+ */
+ SHMQueueInit(&(sxact->possibleUnsafeConflicts));
+
+ SHMQueueInit(&(sxact->predicateLocks));
+ SHMQueueElemInit(&(sxact->finishedLink));
+
+ sxact->topXid = xid;
+ sxact->xmin = xactRecord->xmin;
+ sxact->flags = xactRecord->flags;
+ Assert(SxactIsPrepared(sxact));
+ if (!SxactIsReadOnly(sxact))
+ {
+ ++(PredXact->WritableSxactCount);
+ Assert(PredXact->WritableSxactCount <=
+ (MaxBackends + max_prepared_xacts));
+ }
+
+ /*
+ * We don't know whether the transaction had any conflicts or not, so
+ * we'll conservatively assume that it had both a conflict in and a
+ * conflict out, and represent that with the summary conflict flags.
+ */
+ SHMQueueInit(&(sxact->outConflicts));
+ SHMQueueInit(&(sxact->inConflicts));
+ sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
+ sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
+
+ /* Register the transaction's xid */
+ sxidtag.xid = xid;
+ sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash,
+ &sxidtag,
+ HASH_ENTER, &found);
+ Assert(sxid != NULL);
+ Assert(!found);
+ sxid->myXact = (SERIALIZABLEXACT *) sxact;
+
+ /*
+ * Update global xmin. Note that this is a special case compared to
+ * registering a normal transaction, because the global xmin might go
+ * backwards. That's OK, because until recovery is over we're not
+ * going to complete any transactions or create any non-prepared
+ * transactions, so there's no danger of throwing away.
+ */
+ if ((!TransactionIdIsValid(PredXact->SxactGlobalXmin)) ||
+ (TransactionIdFollows(PredXact->SxactGlobalXmin, sxact->xmin)))
+ {
+ PredXact->SxactGlobalXmin = sxact->xmin;
+ PredXact->SxactGlobalXminCount = 1;
+ SerialSetActiveSerXmin(sxact->xmin);
+ }
+ else if (TransactionIdEquals(sxact->xmin, PredXact->SxactGlobalXmin))
+ {
+ Assert(PredXact->SxactGlobalXminCount > 0);
+ PredXact->SxactGlobalXminCount++;
+ }
+
+ LWLockRelease(SerializableXactHashLock);
+ }
+ else if (record->type == TWOPHASEPREDICATERECORD_LOCK)
+ {
+ /* Lock record. Recreate the PREDICATELOCK */
+ TwoPhasePredicateLockRecord *lockRecord;
+ SERIALIZABLEXID *sxid;
+ SERIALIZABLEXACT *sxact;
+ SERIALIZABLEXIDTAG sxidtag;
+ uint32 targettaghash;
+
+ lockRecord = (TwoPhasePredicateLockRecord *) &record->data.lockRecord;
+ targettaghash = PredicateLockTargetTagHashCode(&lockRecord->target);
+
+ LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+ sxidtag.xid = xid;
+ sxid = (SERIALIZABLEXID *)
+ hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
+ LWLockRelease(SerializableXactHashLock);
+
+ Assert(sxid != NULL);
+ sxact = sxid->myXact;
+ Assert(sxact != InvalidSerializableXact);
+
+ CreatePredicateLock(&lockRecord->target, targettaghash, sxact);
+ }
+}
+
+/*
+ * Prepare to share the current SERIALIZABLEXACT with parallel workers.
+ * Return a handle object that can be used by AttachSerializableXact() in a
+ * parallel worker.
+ */
+SerializableXactHandle
+ShareSerializableXact(void)
+{
+ return MySerializableXact;
+}
+
+/*
+ * Allow parallel workers to import the leader's SERIALIZABLEXACT.
+ */
+void
+AttachSerializableXact(SerializableXactHandle handle)
+{
+
+ Assert(MySerializableXact == InvalidSerializableXact);
+
+ MySerializableXact = (SERIALIZABLEXACT *) handle;
+ if (MySerializableXact != InvalidSerializableXact)
+ CreateLocalPredicateLockHash();
+}