summaryrefslogtreecommitdiffstats
path: root/src/include/storage/s_lock.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/include/storage/s_lock.h')
-rw-r--r--src/include/storage/s_lock.h1047
1 files changed, 1047 insertions, 0 deletions
diff --git a/src/include/storage/s_lock.h b/src/include/storage/s_lock.h
new file mode 100644
index 0000000..31a5ca6
--- /dev/null
+++ b/src/include/storage/s_lock.h
@@ -0,0 +1,1047 @@
+/*-------------------------------------------------------------------------
+ *
+ * s_lock.h
+ * Hardware-dependent implementation of spinlocks.
+ *
+ * NOTE: none of the macros in this file are intended to be called directly.
+ * Call them through the hardware-independent macros in spin.h.
+ *
+ * The following hardware-dependent macros must be provided for each
+ * supported platform:
+ *
+ * void S_INIT_LOCK(slock_t *lock)
+ * Initialize a spinlock (to the unlocked state).
+ *
+ * int S_LOCK(slock_t *lock)
+ * Acquire a spinlock, waiting if necessary.
+ * Time out and abort() if unable to acquire the lock in a
+ * "reasonable" amount of time --- typically ~ 1 minute.
+ * Should return number of "delays"; see s_lock.c
+ *
+ * void S_UNLOCK(slock_t *lock)
+ * Unlock a previously acquired lock.
+ *
+ * bool S_LOCK_FREE(slock_t *lock)
+ * Tests if the lock is free. Returns true if free, false if locked.
+ * This does *not* change the state of the lock.
+ *
+ * void SPIN_DELAY(void)
+ * Delay operation to occur inside spinlock wait loop.
+ *
+ * Note to implementors: there are default implementations for all these
+ * macros at the bottom of the file. Check if your platform can use
+ * these or needs to override them.
+ *
+ * Usually, S_LOCK() is implemented in terms of even lower-level macros
+ * TAS() and TAS_SPIN():
+ *
+ * int TAS(slock_t *lock)
+ * Atomic test-and-set instruction. Attempt to acquire the lock,
+ * but do *not* wait. Returns 0 if successful, nonzero if unable
+ * to acquire the lock.
+ *
+ * int TAS_SPIN(slock_t *lock)
+ * Like TAS(), but this version is used when waiting for a lock
+ * previously found to be contended. By default, this is the
+ * same as TAS(), but on some architectures it's better to poll a
+ * contended lock using an unlocked instruction and retry the
+ * atomic test-and-set only when it appears free.
+ *
+ * TAS() and TAS_SPIN() are NOT part of the API, and should never be called
+ * directly.
+ *
+ * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report
+ * failure to acquire a lock even when the lock is not locked. For example,
+ * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must
+ * always be used, even if you are certain the lock is free.
+ *
+ * It is the responsibility of these macros to make sure that the compiler
+ * does not re-order accesses to shared memory to precede the actual lock
+ * acquisition, or follow the lock release. Prior to PostgreSQL 9.5, this
+ * was the caller's responsibility, which meant that callers had to use
+ * volatile-qualified pointers to refer to both the spinlock itself and the
+ * shared data being accessed within the spinlocked critical section. This
+ * was notationally awkward, easy to forget (and thus error-prone), and
+ * prevented some useful compiler optimizations. For these reasons, we
+ * now require that the macros themselves prevent compiler re-ordering,
+ * so that the caller doesn't need to take special precautions.
+ *
+ * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and
+ * S_UNLOCK() macros must further include hardware-level memory fence
+ * instructions to prevent similar re-ordering at the hardware level.
+ * TAS() and TAS_SPIN() must guarantee that loads and stores issued after
+ * the macro are not executed until the lock has been obtained. Conversely,
+ * S_UNLOCK() must guarantee that loads and stores issued before the macro
+ * have been executed before the lock is released.
+ *
+ * On most supported platforms, TAS() uses a tas() function written
+ * in assembly language to execute a hardware atomic-test-and-set
+ * instruction. Equivalent OS-supplied mutex routines could be used too.
+ *
+ * If no system-specific TAS() is available (ie, HAVE_SPINLOCKS is not
+ * defined), then we fall back on an emulation that uses SysV semaphores
+ * (see spin.c). This emulation will be MUCH MUCH slower than a proper TAS()
+ * implementation, because of the cost of a kernel call per lock or unlock.
+ * An old report is that Postgres spends around 40% of its time in semop(2)
+ * when using the SysV semaphore code.
+ *
+ *
+ * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * src/include/storage/s_lock.h
+ *
+ *-------------------------------------------------------------------------
+ */
+#ifndef S_LOCK_H
+#define S_LOCK_H
+
+#ifdef FRONTEND
+#error "s_lock.h may not be included from frontend code"
+#endif
+
+#ifdef HAVE_SPINLOCKS /* skip spinlocks if requested */
+
+#if defined(__GNUC__) || defined(__INTEL_COMPILER)
+/*************************************************************************
+ * All the gcc inlines
+ * Gcc consistently defines the CPU as __cpu__.
+ * Other compilers use __cpu or __cpu__ so we test for both in those cases.
+ */
+
+/*----------
+ * Standard gcc asm format (assuming "volatile slock_t *lock"):
+
+ __asm__ __volatile__(
+ " instruction \n"
+ " instruction \n"
+ " instruction \n"
+: "=r"(_res), "+m"(*lock) // return register, in/out lock value
+: "r"(lock) // lock pointer, in input register
+: "memory", "cc"); // show clobbered registers here
+
+ * The output-operands list (after first colon) should always include
+ * "+m"(*lock), whether or not the asm code actually refers to this
+ * operand directly. This ensures that gcc believes the value in the
+ * lock variable is used and set by the asm code. Also, the clobbers
+ * list (after third colon) should always include "memory"; this prevents
+ * gcc from thinking it can cache the values of shared-memory fields
+ * across the asm code. Add "cc" if your asm code changes the condition
+ * code register, and also list any temp registers the code uses.
+ *----------
+ */
+
+
+#ifdef __i386__ /* 32-bit i386 */
+#define HAS_TEST_AND_SET
+
+typedef unsigned char slock_t;
+
+#define TAS(lock) tas(lock)
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ register slock_t _res = 1;
+
+ /*
+ * Use a non-locking test before asserting the bus lock. Note that the
+ * extra test appears to be a small loss on some x86 platforms and a small
+ * win on others; it's by no means clear that we should keep it.
+ *
+ * When this was last tested, we didn't have separate TAS() and TAS_SPIN()
+ * macros. Nowadays it probably would be better to do a non-locking test
+ * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the
+ * testing to verify that. Without some empirical evidence, better to
+ * leave it alone.
+ */
+ __asm__ __volatile__(
+ " cmpb $0,%1 \n"
+ " jne 1f \n"
+ " lock \n"
+ " xchgb %0,%1 \n"
+ "1: \n"
+: "+q"(_res), "+m"(*lock)
+: /* no inputs */
+: "memory", "cc");
+ return (int) _res;
+}
+
+#define SPIN_DELAY() spin_delay()
+
+static __inline__ void
+spin_delay(void)
+{
+ /*
+ * This sequence is equivalent to the PAUSE instruction ("rep" is
+ * ignored by old IA32 processors if the following instruction is
+ * not a string operation); the IA-32 Architecture Software
+ * Developer's Manual, Vol. 3, Section 7.7.2 describes why using
+ * PAUSE in the inner loop of a spin lock is necessary for good
+ * performance:
+ *
+ * The PAUSE instruction improves the performance of IA-32
+ * processors supporting Hyper-Threading Technology when
+ * executing spin-wait loops and other routines where one
+ * thread is accessing a shared lock or semaphore in a tight
+ * polling loop. When executing a spin-wait loop, the
+ * processor can suffer a severe performance penalty when
+ * exiting the loop because it detects a possible memory order
+ * violation and flushes the core processor's pipeline. The
+ * PAUSE instruction provides a hint to the processor that the
+ * code sequence is a spin-wait loop. The processor uses this
+ * hint to avoid the memory order violation and prevent the
+ * pipeline flush. In addition, the PAUSE instruction
+ * de-pipelines the spin-wait loop to prevent it from
+ * consuming execution resources excessively.
+ */
+ __asm__ __volatile__(
+ " rep; nop \n");
+}
+
+#endif /* __i386__ */
+
+
+#ifdef __x86_64__ /* AMD Opteron, Intel EM64T */
+#define HAS_TEST_AND_SET
+
+typedef unsigned char slock_t;
+
+#define TAS(lock) tas(lock)
+
+/*
+ * On Intel EM64T, it's a win to use a non-locking test before the xchg proper,
+ * but only when spinning.
+ *
+ * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T
+ * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is
+ * available at:
+ * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures
+ */
+#define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ register slock_t _res = 1;
+
+ __asm__ __volatile__(
+ " lock \n"
+ " xchgb %0,%1 \n"
+: "+q"(_res), "+m"(*lock)
+: /* no inputs */
+: "memory", "cc");
+ return (int) _res;
+}
+
+#define SPIN_DELAY() spin_delay()
+
+static __inline__ void
+spin_delay(void)
+{
+ /*
+ * Adding a PAUSE in the spin delay loop is demonstrably a no-op on
+ * Opteron, but it may be of some use on EM64T, so we keep it.
+ */
+ __asm__ __volatile__(
+ " rep; nop \n");
+}
+
+#endif /* __x86_64__ */
+
+
+#if defined(__ia64__) || defined(__ia64)
+/*
+ * Intel Itanium, gcc or Intel's compiler.
+ *
+ * Itanium has weak memory ordering, but we rely on the compiler to enforce
+ * strict ordering of accesses to volatile data. In particular, while the
+ * xchg instruction implicitly acts as a memory barrier with 'acquire'
+ * semantics, we do not have an explicit memory fence instruction in the
+ * S_UNLOCK macro. We use a regular assignment to clear the spinlock, and
+ * trust that the compiler marks the generated store instruction with the
+ * ".rel" opcode.
+ *
+ * Testing shows that assumption to hold on gcc, although I could not find
+ * any explicit statement on that in the gcc manual. In Intel's compiler,
+ * the -m[no-]serialize-volatile option controls that, and testing shows that
+ * it is enabled by default.
+ *
+ * While icc accepts gcc asm blocks on x86[_64], this is not true on ia64
+ * (at least not in icc versions before 12.x). So we have to carry a separate
+ * compiler-intrinsic-based implementation for it.
+ */
+#define HAS_TEST_AND_SET
+
+typedef unsigned int slock_t;
+
+#define TAS(lock) tas(lock)
+
+/* On IA64, it's a win to use a non-locking test before the xchg proper */
+#define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
+
+#ifndef __INTEL_COMPILER
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ long int ret;
+
+ __asm__ __volatile__(
+ " xchg4 %0=%1,%2 \n"
+: "=r"(ret), "+m"(*lock)
+: "r"(1)
+: "memory");
+ return (int) ret;
+}
+
+#else /* __INTEL_COMPILER */
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ int ret;
+
+ ret = _InterlockedExchange(lock,1); /* this is a xchg asm macro */
+
+ return ret;
+}
+
+/* icc can't use the regular gcc S_UNLOCK() macro either in this case */
+#define S_UNLOCK(lock) \
+ do { __memory_barrier(); *(lock) = 0; } while (0)
+
+#endif /* __INTEL_COMPILER */
+#endif /* __ia64__ || __ia64 */
+
+/*
+ * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available.
+ *
+ * We use the int-width variant of the builtin because it works on more chips
+ * than other widths.
+ */
+#if defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(__aarch64)
+#ifdef HAVE_GCC__SYNC_INT32_TAS
+#define HAS_TEST_AND_SET
+
+#define TAS(lock) tas(lock)
+
+typedef int slock_t;
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ return __sync_lock_test_and_set(lock, 1);
+}
+
+#define S_UNLOCK(lock) __sync_lock_release(lock)
+
+#endif /* HAVE_GCC__SYNC_INT32_TAS */
+#endif /* __arm__ || __arm || __aarch64__ || __aarch64 */
+
+
+/* S/390 and S/390x Linux (32- and 64-bit zSeries) */
+#if defined(__s390__) || defined(__s390x__)
+#define HAS_TEST_AND_SET
+
+typedef unsigned int slock_t;
+
+#define TAS(lock) tas(lock)
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ int _res = 0;
+
+ __asm__ __volatile__(
+ " cs %0,%3,0(%2) \n"
+: "+d"(_res), "+m"(*lock)
+: "a"(lock), "d"(1)
+: "memory", "cc");
+ return _res;
+}
+
+#endif /* __s390__ || __s390x__ */
+
+
+#if defined(__sparc__) /* Sparc */
+/*
+ * Solaris has always run sparc processors in TSO (total store) mode, but
+ * linux didn't use to and the *BSDs still don't. So, be careful about
+ * acquire/release semantics. The CPU will treat superfluous membars as
+ * NOPs, so it's just code space.
+ */
+#define HAS_TEST_AND_SET
+
+typedef unsigned char slock_t;
+
+#define TAS(lock) tas(lock)
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ register slock_t _res;
+
+ /*
+ * See comment in src/backend/port/tas/sunstudio_sparc.s for why this
+ * uses "ldstub", and that file uses "cas". gcc currently generates
+ * sparcv7-targeted binaries, so "cas" use isn't possible.
+ */
+ __asm__ __volatile__(
+ " ldstub [%2], %0 \n"
+: "=r"(_res), "+m"(*lock)
+: "r"(lock)
+: "memory");
+#if defined(__sparcv7) || defined(__sparc_v7__)
+ /*
+ * No stbar or membar available, luckily no actually produced hardware
+ * requires a barrier.
+ */
+#elif defined(__sparcv8) || defined(__sparc_v8__)
+ /* stbar is available (and required for both PSO, RMO), membar isn't */
+ __asm__ __volatile__ ("stbar \n":::"memory");
+#else
+ /*
+ * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire
+ * barrier for sparcv8+ upwards.
+ */
+ __asm__ __volatile__ ("membar #LoadStore | #LoadLoad \n":::"memory");
+#endif
+ return (int) _res;
+}
+
+#if defined(__sparcv7) || defined(__sparc_v7__)
+/*
+ * No stbar or membar available, luckily no actually produced hardware
+ * requires a barrier. We fall through to the default gcc definition of
+ * S_UNLOCK in this case.
+ */
+#elif defined(__sparcv8) || defined(__sparc_v8__)
+/* stbar is available (and required for both PSO, RMO), membar isn't */
+#define S_UNLOCK(lock) \
+do \
+{ \
+ __asm__ __volatile__ ("stbar \n":::"memory"); \
+ *((volatile slock_t *) (lock)) = 0; \
+} while (0)
+#else
+/*
+ * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate
+ * release barrier for sparcv8+ upwards.
+ */
+#define S_UNLOCK(lock) \
+do \
+{ \
+ __asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \
+ *((volatile slock_t *) (lock)) = 0; \
+} while (0)
+#endif
+
+#endif /* __sparc__ */
+
+
+/* PowerPC */
+#if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__)
+#define HAS_TEST_AND_SET
+
+typedef unsigned int slock_t;
+
+#define TAS(lock) tas(lock)
+
+/* On PPC, it's a win to use a non-locking test before the lwarx */
+#define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
+
+/*
+ * The second operand of addi can hold a constant zero or a register number,
+ * hence constraint "=&b" to avoid allocating r0. "b" stands for "address
+ * base register"; most operands having this register-or-zero property are
+ * address bases, e.g. the second operand of lwax.
+ *
+ * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002,
+ * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop.
+ * On newer machines, we can use lwsync instead for better performance.
+ *
+ * Ordinarily, we'd code the branches here using GNU-style local symbols, that
+ * is "1f" referencing "1:" and so on. But some people run gcc on AIX with
+ * IBM's assembler as backend, and IBM's assembler doesn't do local symbols.
+ * So hand-code the branch offsets; fortunately, all PPC instructions are
+ * exactly 4 bytes each, so it's not too hard to count.
+ */
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ slock_t _t;
+ int _res;
+
+ __asm__ __volatile__(
+#ifdef USE_PPC_LWARX_MUTEX_HINT
+" lwarx %0,0,%3,1 \n"
+#else
+" lwarx %0,0,%3 \n"
+#endif
+" cmpwi %0,0 \n"
+" bne $+16 \n" /* branch to li %1,1 */
+" addi %0,%0,1 \n"
+" stwcx. %0,0,%3 \n"
+" beq $+12 \n" /* branch to lwsync/isync */
+" li %1,1 \n"
+" b $+12 \n" /* branch to end of asm sequence */
+#ifdef USE_PPC_LWSYNC
+" lwsync \n"
+#else
+" isync \n"
+#endif
+" li %1,0 \n"
+
+: "=&b"(_t), "=r"(_res), "+m"(*lock)
+: "r"(lock)
+: "memory", "cc");
+ return _res;
+}
+
+/*
+ * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction.
+ * On newer machines, we can use lwsync instead for better performance.
+ */
+#ifdef USE_PPC_LWSYNC
+#define S_UNLOCK(lock) \
+do \
+{ \
+ __asm__ __volatile__ (" lwsync \n" ::: "memory"); \
+ *((volatile slock_t *) (lock)) = 0; \
+} while (0)
+#else
+#define S_UNLOCK(lock) \
+do \
+{ \
+ __asm__ __volatile__ (" sync \n" ::: "memory"); \
+ *((volatile slock_t *) (lock)) = 0; \
+} while (0)
+#endif /* USE_PPC_LWSYNC */
+
+#endif /* powerpc */
+
+
+/* Linux Motorola 68k */
+#if (defined(__mc68000__) || defined(__m68k__)) && defined(__linux__)
+#define HAS_TEST_AND_SET
+
+typedef unsigned char slock_t;
+
+#define TAS(lock) tas(lock)
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ register int rv;
+
+ __asm__ __volatile__(
+ " clrl %0 \n"
+ " tas %1 \n"
+ " sne %0 \n"
+: "=d"(rv), "+m"(*lock)
+: /* no inputs */
+: "memory", "cc");
+ return rv;
+}
+
+#endif /* (__mc68000__ || __m68k__) && __linux__ */
+
+
+/* Motorola 88k */
+#if defined(__m88k__)
+#define HAS_TEST_AND_SET
+
+typedef unsigned int slock_t;
+
+#define TAS(lock) tas(lock)
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ register slock_t _res = 1;
+
+ __asm__ __volatile__(
+ " xmem %0, %2, %%r0 \n"
+: "+r"(_res), "+m"(*lock)
+: "r"(lock)
+: "memory");
+ return (int) _res;
+}
+
+#endif /* __m88k__ */
+
+
+/*
+ * VAXen -- even multiprocessor ones
+ * (thanks to Tom Ivar Helbekkmo)
+ */
+#if defined(__vax__)
+#define HAS_TEST_AND_SET
+
+typedef unsigned char slock_t;
+
+#define TAS(lock) tas(lock)
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ register int _res;
+
+ __asm__ __volatile__(
+ " movl $1, %0 \n"
+ " bbssi $0, (%2), 1f \n"
+ " clrl %0 \n"
+ "1: \n"
+: "=&r"(_res), "+m"(*lock)
+: "r"(lock)
+: "memory");
+ return _res;
+}
+
+#endif /* __vax__ */
+
+
+#if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */
+#define HAS_TEST_AND_SET
+
+typedef unsigned int slock_t;
+
+#define TAS(lock) tas(lock)
+
+/*
+ * Original MIPS-I processors lacked the LL/SC instructions, but if we are
+ * so unfortunate as to be running on one of those, we expect that the kernel
+ * will handle the illegal-instruction traps and emulate them for us. On
+ * anything newer (and really, MIPS-I is extinct) LL/SC is the only sane
+ * choice because any other synchronization method must involve a kernel
+ * call. Unfortunately, many toolchains still default to MIPS-I as the
+ * codegen target; if the symbol __mips shows that that's the case, we
+ * have to force the assembler to accept LL/SC.
+ *
+ * R10000 and up processors require a separate SYNC, which has the same
+ * issues as LL/SC.
+ */
+#if __mips < 2
+#define MIPS_SET_MIPS2 " .set mips2 \n"
+#else
+#define MIPS_SET_MIPS2
+#endif
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ register volatile slock_t *_l = lock;
+ register int _res;
+ register int _tmp;
+
+ __asm__ __volatile__(
+ " .set push \n"
+ MIPS_SET_MIPS2
+ " .set noreorder \n"
+ " .set nomacro \n"
+ " ll %0, %2 \n"
+ " or %1, %0, 1 \n"
+ " sc %1, %2 \n"
+ " xori %1, 1 \n"
+ " or %0, %0, %1 \n"
+ " sync \n"
+ " .set pop "
+: "=&r" (_res), "=&r" (_tmp), "+R" (*_l)
+: /* no inputs */
+: "memory");
+ return _res;
+}
+
+/* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */
+#define S_UNLOCK(lock) \
+do \
+{ \
+ __asm__ __volatile__( \
+ " .set push \n" \
+ MIPS_SET_MIPS2 \
+ " .set noreorder \n" \
+ " .set nomacro \n" \
+ " sync \n" \
+ " .set pop " \
+: /* no outputs */ \
+: /* no inputs */ \
+: "memory"); \
+ *((volatile slock_t *) (lock)) = 0; \
+} while (0)
+
+#endif /* __mips__ && !__sgi */
+
+
+#if defined(__m32r__) && defined(HAVE_SYS_TAS_H) /* Renesas' M32R */
+#define HAS_TEST_AND_SET
+
+#include <sys/tas.h>
+
+typedef int slock_t;
+
+#define TAS(lock) tas(lock)
+
+#endif /* __m32r__ */
+
+
+#if defined(__sh__) /* Renesas' SuperH */
+#define HAS_TEST_AND_SET
+
+typedef unsigned char slock_t;
+
+#define TAS(lock) tas(lock)
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ register int _res;
+
+ /*
+ * This asm is coded as if %0 could be any register, but actually SuperH
+ * restricts the target of xor-immediate to be R0. That's handled by
+ * the "z" constraint on _res.
+ */
+ __asm__ __volatile__(
+ " tas.b @%2 \n"
+ " movt %0 \n"
+ " xor #1,%0 \n"
+: "=z"(_res), "+m"(*lock)
+: "r"(lock)
+: "memory", "t");
+ return _res;
+}
+
+#endif /* __sh__ */
+
+
+/* These live in s_lock.c, but only for gcc */
+
+
+#if defined(__m68k__) && !defined(__linux__) /* non-Linux Motorola 68k */
+#define HAS_TEST_AND_SET
+
+typedef unsigned char slock_t;
+#endif
+
+/*
+ * Default implementation of S_UNLOCK() for gcc/icc.
+ *
+ * Note that this implementation is unsafe for any platform that can reorder
+ * a memory access (either load or store) after a following store. That
+ * happens not to be possible on x86 and most legacy architectures (some are
+ * single-processor!), but many modern systems have weaker memory ordering.
+ * Those that do must define their own version of S_UNLOCK() rather than
+ * relying on this one.
+ */
+#if !defined(S_UNLOCK)
+#define S_UNLOCK(lock) \
+ do { __asm__ __volatile__("" : : : "memory"); *(lock) = 0; } while (0)
+#endif
+
+#endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */
+
+
+
+/*
+ * ---------------------------------------------------------------------
+ * Platforms that use non-gcc inline assembly:
+ * ---------------------------------------------------------------------
+ */
+
+#if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */
+
+
+#if defined(__hppa) || defined(__hppa__) /* HP PA-RISC, GCC and HP compilers */
+/*
+ * HP's PA-RISC
+ *
+ * See src/backend/port/hpux/tas.c.template for details about LDCWX. Because
+ * LDCWX requires a 16-byte-aligned address, we declare slock_t as a 16-byte
+ * struct. The active word in the struct is whichever has the aligned address;
+ * the other three words just sit at -1.
+ *
+ * When using gcc, we can inline the required assembly code.
+ */
+#define HAS_TEST_AND_SET
+
+typedef struct
+{
+ int sema[4];
+} slock_t;
+
+#define TAS_ACTIVE_WORD(lock) ((volatile int *) (((uintptr_t) (lock) + 15) & ~15))
+
+#if defined(__GNUC__)
+
+static __inline__ int
+tas(volatile slock_t *lock)
+{
+ volatile int *lockword = TAS_ACTIVE_WORD(lock);
+ register int lockval;
+
+ __asm__ __volatile__(
+ " ldcwx 0(0,%2),%0 \n"
+: "=r"(lockval), "+m"(*lockword)
+: "r"(lockword)
+: "memory");
+ return (lockval == 0);
+}
+
+/*
+ * The hppa implementation doesn't follow the rules of this files and provides
+ * a gcc specific implementation outside of the above defined(__GNUC__). It
+ * does so to avoid duplication between the HP compiler and gcc. So undefine
+ * the generic fallback S_UNLOCK from above.
+ */
+#ifdef S_UNLOCK
+#undef S_UNLOCK
+#endif
+#define S_UNLOCK(lock) \
+ do { \
+ __asm__ __volatile__("" : : : "memory"); \
+ *TAS_ACTIVE_WORD(lock) = -1; \
+ } while (0)
+
+#endif /* __GNUC__ */
+
+#define S_INIT_LOCK(lock) \
+ do { \
+ volatile slock_t *lock_ = (lock); \
+ lock_->sema[0] = -1; \
+ lock_->sema[1] = -1; \
+ lock_->sema[2] = -1; \
+ lock_->sema[3] = -1; \
+ } while (0)
+
+#define S_LOCK_FREE(lock) (*TAS_ACTIVE_WORD(lock) != 0)
+
+#endif /* __hppa || __hppa__ */
+
+
+#if defined(__hpux) && defined(__ia64) && !defined(__GNUC__)
+/*
+ * HP-UX on Itanium, non-gcc/icc compiler
+ *
+ * We assume that the compiler enforces strict ordering of loads/stores on
+ * volatile data (see comments on the gcc-version earlier in this file).
+ * Note that this assumption does *not* hold if you use the
+ * +Ovolatile=__unordered option on the HP-UX compiler, so don't do that.
+ *
+ * See also Implementing Spinlocks on the Intel Itanium Architecture and
+ * PA-RISC, by Tor Ekqvist and David Graves, for more information. As of
+ * this writing, version 1.0 of the manual is available at:
+ * http://h21007.www2.hp.com/portal/download/files/unprot/itanium/spinlocks.pdf
+ */
+#define HAS_TEST_AND_SET
+
+typedef unsigned int slock_t;
+
+#include <ia64/sys/inline.h>
+#define TAS(lock) _Asm_xchg(_SZ_W, lock, 1, _LDHINT_NONE)
+/* On IA64, it's a win to use a non-locking test before the xchg proper */
+#define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
+#define S_UNLOCK(lock) \
+ do { _Asm_mf(); (*(lock)) = 0; } while (0)
+
+#endif /* HPUX on IA64, non gcc/icc */
+
+#if defined(_AIX) /* AIX */
+/*
+ * AIX (POWER)
+ */
+#define HAS_TEST_AND_SET
+
+#include <sys/atomic_op.h>
+
+typedef int slock_t;
+
+#define TAS(lock) _check_lock((slock_t *) (lock), 0, 1)
+#define S_UNLOCK(lock) _clear_lock((slock_t *) (lock), 0)
+#endif /* _AIX */
+
+
+/* These are in sunstudio_(sparc|x86).s */
+
+#if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc))
+#define HAS_TEST_AND_SET
+
+#if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus)
+typedef unsigned int slock_t;
+#else
+typedef unsigned char slock_t;
+#endif
+
+extern slock_t pg_atomic_cas(volatile slock_t *lock, slock_t with,
+ slock_t cmp);
+
+#define TAS(a) (pg_atomic_cas((a), 1, 0) != 0)
+#endif
+
+
+#ifdef _MSC_VER
+typedef LONG slock_t;
+
+#define HAS_TEST_AND_SET
+#define TAS(lock) (InterlockedCompareExchange(lock, 1, 0))
+
+#define SPIN_DELAY() spin_delay()
+
+/* If using Visual C++ on Win64, inline assembly is unavailable.
+ * Use a _mm_pause intrinsic instead of rep nop.
+ */
+#if defined(_WIN64)
+static __forceinline void
+spin_delay(void)
+{
+ _mm_pause();
+}
+#else
+static __forceinline void
+spin_delay(void)
+{
+ /* See comment for gcc code. Same code, MASM syntax */
+ __asm rep nop;
+}
+#endif
+
+#include <intrin.h>
+#pragma intrinsic(_ReadWriteBarrier)
+
+#define S_UNLOCK(lock) \
+ do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0)
+
+#endif
+
+
+#endif /* !defined(HAS_TEST_AND_SET) */
+
+
+/* Blow up if we didn't have any way to do spinlocks */
+#ifndef HAS_TEST_AND_SET
+#error PostgreSQL does not have native spinlock support on this platform. To continue the compilation, rerun configure using --disable-spinlocks. However, performance will be poor. Please report this to pgsql-bugs@lists.postgresql.org.
+#endif
+
+
+#else /* !HAVE_SPINLOCKS */
+
+
+/*
+ * Fake spinlock implementation using semaphores --- slow and prone
+ * to fall foul of kernel limits on number of semaphores, so don't use this
+ * unless you must! The subroutines appear in spin.c.
+ */
+typedef int slock_t;
+
+extern bool s_lock_free_sema(volatile slock_t *lock);
+extern void s_unlock_sema(volatile slock_t *lock);
+extern void s_init_lock_sema(volatile slock_t *lock, bool nested);
+extern int tas_sema(volatile slock_t *lock);
+
+#define S_LOCK_FREE(lock) s_lock_free_sema(lock)
+#define S_UNLOCK(lock) s_unlock_sema(lock)
+#define S_INIT_LOCK(lock) s_init_lock_sema(lock, false)
+#define TAS(lock) tas_sema(lock)
+
+
+#endif /* HAVE_SPINLOCKS */
+
+
+/*
+ * Default Definitions - override these above as needed.
+ */
+
+#if !defined(S_LOCK)
+#define S_LOCK(lock) \
+ (TAS(lock) ? s_lock((lock), __FILE__, __LINE__, PG_FUNCNAME_MACRO) : 0)
+#endif /* S_LOCK */
+
+#if !defined(S_LOCK_FREE)
+#define S_LOCK_FREE(lock) (*(lock) == 0)
+#endif /* S_LOCK_FREE */
+
+#if !defined(S_UNLOCK)
+/*
+ * Our default implementation of S_UNLOCK is essentially *(lock) = 0. This
+ * is unsafe if the platform can reorder a memory access (either load or
+ * store) after a following store; platforms where this is possible must
+ * define their own S_UNLOCK. But CPU reordering is not the only concern:
+ * if we simply defined S_UNLOCK() as an inline macro, the compiler might
+ * reorder instructions from inside the critical section to occur after the
+ * lock release. Since the compiler probably can't know what the external
+ * function s_unlock is doing, putting the same logic there should be adequate.
+ * A sufficiently-smart globally optimizing compiler could break that
+ * assumption, though, and the cost of a function call for every spinlock
+ * release may hurt performance significantly, so we use this implementation
+ * only for platforms where we don't know of a suitable intrinsic. For the
+ * most part, those are relatively obscure platform/compiler combinations to
+ * which the PostgreSQL project does not have access.
+ */
+#define USE_DEFAULT_S_UNLOCK
+extern void s_unlock(volatile slock_t *lock);
+#define S_UNLOCK(lock) s_unlock(lock)
+#endif /* S_UNLOCK */
+
+#if !defined(S_INIT_LOCK)
+#define S_INIT_LOCK(lock) S_UNLOCK(lock)
+#endif /* S_INIT_LOCK */
+
+#if !defined(SPIN_DELAY)
+#define SPIN_DELAY() ((void) 0)
+#endif /* SPIN_DELAY */
+
+#if !defined(TAS)
+extern int tas(volatile slock_t *lock); /* in port/.../tas.s, or
+ * s_lock.c */
+
+#define TAS(lock) tas(lock)
+#endif /* TAS */
+
+#if !defined(TAS_SPIN)
+#define TAS_SPIN(lock) TAS(lock)
+#endif /* TAS_SPIN */
+
+extern slock_t dummy_spinlock;
+
+/*
+ * Platform-independent out-of-line support routines
+ */
+extern int s_lock(volatile slock_t *lock, const char *file, int line, const char *func);
+
+/* Support for dynamic adjustment of spins_per_delay */
+#define DEFAULT_SPINS_PER_DELAY 100
+
+extern void set_spins_per_delay(int shared_spins_per_delay);
+extern int update_spins_per_delay(int shared_spins_per_delay);
+
+/*
+ * Support for spin delay which is useful in various places where
+ * spinlock-like procedures take place.
+ */
+typedef struct
+{
+ int spins;
+ int delays;
+ int cur_delay;
+ const char *file;
+ int line;
+ const char *func;
+} SpinDelayStatus;
+
+static inline void
+init_spin_delay(SpinDelayStatus *status,
+ const char *file, int line, const char *func)
+{
+ status->spins = 0;
+ status->delays = 0;
+ status->cur_delay = 0;
+ status->file = file;
+ status->line = line;
+ status->func = func;
+}
+
+#define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, PG_FUNCNAME_MACRO)
+void perform_spin_delay(SpinDelayStatus *status);
+void finish_spin_delay(SpinDelayStatus *status);
+
+#endif /* S_LOCK_H */