1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
|
/*-------------------------------------------------------------------------
*
* nodeAppend.c
* routines to handle append nodes.
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeAppend.c
*
*-------------------------------------------------------------------------
*/
/* INTERFACE ROUTINES
* ExecInitAppend - initialize the append node
* ExecAppend - retrieve the next tuple from the node
* ExecEndAppend - shut down the append node
* ExecReScanAppend - rescan the append node
*
* NOTES
* Each append node contains a list of one or more subplans which
* must be iteratively processed (forwards or backwards).
* Tuples are retrieved by executing the 'whichplan'th subplan
* until the subplan stops returning tuples, at which point that
* plan is shut down and the next started up.
*
* Append nodes don't make use of their left and right
* subtrees, rather they maintain a list of subplans so
* a typical append node looks like this in the plan tree:
*
* ...
* /
* Append -------+------+------+--- nil
* / \ | | |
* nil nil ... ... ...
* subplans
*
* Append nodes are currently used for unions, and to support
* inheritance queries, where several relations need to be scanned.
* For example, in our standard person/student/employee/student-emp
* example, where student and employee inherit from person
* and student-emp inherits from student and employee, the
* query:
*
* select name from person
*
* generates the plan:
*
* |
* Append -------+-------+--------+--------+
* / \ | | | |
* nil nil Scan Scan Scan Scan
* | | | |
* person employee student student-emp
*/
#include "postgres.h"
#include "executor/execdebug.h"
#include "executor/execPartition.h"
#include "executor/nodeAppend.h"
#include "miscadmin.h"
/* Shared state for parallel-aware Append. */
struct ParallelAppendState
{
LWLock pa_lock; /* mutual exclusion to choose next subplan */
int pa_next_plan; /* next plan to choose by any worker */
/*
* pa_finished[i] should be true if no more workers should select subplan
* i. for a non-partial plan, this should be set to true as soon as a
* worker selects the plan; for a partial plan, it remains false until
* some worker executes the plan to completion.
*/
bool pa_finished[FLEXIBLE_ARRAY_MEMBER];
};
#define INVALID_SUBPLAN_INDEX -1
static TupleTableSlot *ExecAppend(PlanState *pstate);
static bool choose_next_subplan_locally(AppendState *node);
static bool choose_next_subplan_for_leader(AppendState *node);
static bool choose_next_subplan_for_worker(AppendState *node);
static void mark_invalid_subplans_as_finished(AppendState *node);
/* ----------------------------------------------------------------
* ExecInitAppend
*
* Begin all of the subscans of the append node.
*
* (This is potentially wasteful, since the entire result of the
* append node may not be scanned, but this way all of the
* structures get allocated in the executor's top level memory
* block instead of that of the call to ExecAppend.)
* ----------------------------------------------------------------
*/
AppendState *
ExecInitAppend(Append *node, EState *estate, int eflags)
{
AppendState *appendstate = makeNode(AppendState);
PlanState **appendplanstates;
Bitmapset *validsubplans;
int nplans;
int firstvalid;
int i,
j;
/* check for unsupported flags */
Assert(!(eflags & EXEC_FLAG_MARK));
/*
* create new AppendState for our append node
*/
appendstate->ps.plan = (Plan *) node;
appendstate->ps.state = estate;
appendstate->ps.ExecProcNode = ExecAppend;
/* Let choose_next_subplan_* function handle setting the first subplan */
appendstate->as_whichplan = INVALID_SUBPLAN_INDEX;
/* If run-time partition pruning is enabled, then set that up now */
if (node->part_prune_info != NULL)
{
PartitionPruneState *prunestate;
/* We may need an expression context to evaluate partition exprs */
ExecAssignExprContext(estate, &appendstate->ps);
/* Create the working data structure for pruning. */
prunestate = ExecCreatePartitionPruneState(&appendstate->ps,
node->part_prune_info);
appendstate->as_prune_state = prunestate;
/* Perform an initial partition prune, if required. */
if (prunestate->do_initial_prune)
{
/* Determine which subplans survive initial pruning */
validsubplans = ExecFindInitialMatchingSubPlans(prunestate,
list_length(node->appendplans));
nplans = bms_num_members(validsubplans);
}
else
{
/* We'll need to initialize all subplans */
nplans = list_length(node->appendplans);
Assert(nplans > 0);
validsubplans = bms_add_range(NULL, 0, nplans - 1);
}
/*
* When no run-time pruning is required and there's at least one
* subplan, we can fill as_valid_subplans immediately, preventing
* later calls to ExecFindMatchingSubPlans.
*/
if (!prunestate->do_exec_prune && nplans > 0)
appendstate->as_valid_subplans = bms_add_range(NULL, 0, nplans - 1);
}
else
{
nplans = list_length(node->appendplans);
/*
* When run-time partition pruning is not enabled we can just mark all
* subplans as valid; they must also all be initialized.
*/
Assert(nplans > 0);
appendstate->as_valid_subplans = validsubplans =
bms_add_range(NULL, 0, nplans - 1);
appendstate->as_prune_state = NULL;
}
/*
* Initialize result tuple type and slot.
*/
ExecInitResultTupleSlotTL(&appendstate->ps, &TTSOpsVirtual);
/* node returns slots from each of its subnodes, therefore not fixed */
appendstate->ps.resultopsset = true;
appendstate->ps.resultopsfixed = false;
appendplanstates = (PlanState **) palloc(nplans *
sizeof(PlanState *));
/*
* call ExecInitNode on each of the valid plans to be executed and save
* the results into the appendplanstates array.
*
* While at it, find out the first valid partial plan.
*/
j = 0;
firstvalid = nplans;
i = -1;
while ((i = bms_next_member(validsubplans, i)) >= 0)
{
Plan *initNode = (Plan *) list_nth(node->appendplans, i);
/*
* Record the lowest appendplans index which is a valid partial plan.
*/
if (i >= node->first_partial_plan && j < firstvalid)
firstvalid = j;
appendplanstates[j++] = ExecInitNode(initNode, estate, eflags);
}
appendstate->as_first_partial_plan = firstvalid;
appendstate->appendplans = appendplanstates;
appendstate->as_nplans = nplans;
/*
* Miscellaneous initialization
*/
appendstate->ps.ps_ProjInfo = NULL;
/* For parallel query, this will be overridden later. */
appendstate->choose_next_subplan = choose_next_subplan_locally;
return appendstate;
}
/* ----------------------------------------------------------------
* ExecAppend
*
* Handles iteration over multiple subplans.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecAppend(PlanState *pstate)
{
AppendState *node = castNode(AppendState, pstate);
if (node->as_whichplan < 0)
{
/* Nothing to do if there are no subplans */
if (node->as_nplans == 0)
return ExecClearTuple(node->ps.ps_ResultTupleSlot);
/*
* If no subplan has been chosen, we must choose one before
* proceeding.
*/
if (node->as_whichplan == INVALID_SUBPLAN_INDEX &&
!node->choose_next_subplan(node))
return ExecClearTuple(node->ps.ps_ResultTupleSlot);
}
for (;;)
{
PlanState *subnode;
TupleTableSlot *result;
CHECK_FOR_INTERRUPTS();
/*
* figure out which subplan we are currently processing
*/
Assert(node->as_whichplan >= 0 && node->as_whichplan < node->as_nplans);
subnode = node->appendplans[node->as_whichplan];
/*
* get a tuple from the subplan
*/
result = ExecProcNode(subnode);
if (!TupIsNull(result))
{
/*
* If the subplan gave us something then return it as-is. We do
* NOT make use of the result slot that was set up in
* ExecInitAppend; there's no need for it.
*/
return result;
}
/* choose new subplan; if none, we're done */
if (!node->choose_next_subplan(node))
return ExecClearTuple(node->ps.ps_ResultTupleSlot);
}
}
/* ----------------------------------------------------------------
* ExecEndAppend
*
* Shuts down the subscans of the append node.
*
* Returns nothing of interest.
* ----------------------------------------------------------------
*/
void
ExecEndAppend(AppendState *node)
{
PlanState **appendplans;
int nplans;
int i;
/*
* get information from the node
*/
appendplans = node->appendplans;
nplans = node->as_nplans;
/*
* shut down each of the subscans
*/
for (i = 0; i < nplans; i++)
ExecEndNode(appendplans[i]);
}
void
ExecReScanAppend(AppendState *node)
{
int i;
/*
* If any PARAM_EXEC Params used in pruning expressions have changed, then
* we'd better unset the valid subplans so that they are reselected for
* the new parameter values.
*/
if (node->as_prune_state &&
bms_overlap(node->ps.chgParam,
node->as_prune_state->execparamids))
{
bms_free(node->as_valid_subplans);
node->as_valid_subplans = NULL;
}
for (i = 0; i < node->as_nplans; i++)
{
PlanState *subnode = node->appendplans[i];
/*
* ExecReScan doesn't know about my subplans, so I have to do
* changed-parameter signaling myself.
*/
if (node->ps.chgParam != NULL)
UpdateChangedParamSet(subnode, node->ps.chgParam);
/*
* If chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode.
*/
if (subnode->chgParam == NULL)
ExecReScan(subnode);
}
/* Let choose_next_subplan_* function handle setting the first subplan */
node->as_whichplan = INVALID_SUBPLAN_INDEX;
}
/* ----------------------------------------------------------------
* Parallel Append Support
* ----------------------------------------------------------------
*/
/* ----------------------------------------------------------------
* ExecAppendEstimate
*
* Compute the amount of space we'll need in the parallel
* query DSM, and inform pcxt->estimator about our needs.
* ----------------------------------------------------------------
*/
void
ExecAppendEstimate(AppendState *node,
ParallelContext *pcxt)
{
node->pstate_len =
add_size(offsetof(ParallelAppendState, pa_finished),
sizeof(bool) * node->as_nplans);
shm_toc_estimate_chunk(&pcxt->estimator, node->pstate_len);
shm_toc_estimate_keys(&pcxt->estimator, 1);
}
/* ----------------------------------------------------------------
* ExecAppendInitializeDSM
*
* Set up shared state for Parallel Append.
* ----------------------------------------------------------------
*/
void
ExecAppendInitializeDSM(AppendState *node,
ParallelContext *pcxt)
{
ParallelAppendState *pstate;
pstate = shm_toc_allocate(pcxt->toc, node->pstate_len);
memset(pstate, 0, node->pstate_len);
LWLockInitialize(&pstate->pa_lock, LWTRANCHE_PARALLEL_APPEND);
shm_toc_insert(pcxt->toc, node->ps.plan->plan_node_id, pstate);
node->as_pstate = pstate;
node->choose_next_subplan = choose_next_subplan_for_leader;
}
/* ----------------------------------------------------------------
* ExecAppendReInitializeDSM
*
* Reset shared state before beginning a fresh scan.
* ----------------------------------------------------------------
*/
void
ExecAppendReInitializeDSM(AppendState *node, ParallelContext *pcxt)
{
ParallelAppendState *pstate = node->as_pstate;
pstate->pa_next_plan = 0;
memset(pstate->pa_finished, 0, sizeof(bool) * node->as_nplans);
}
/* ----------------------------------------------------------------
* ExecAppendInitializeWorker
*
* Copy relevant information from TOC into planstate, and initialize
* whatever is required to choose and execute the optimal subplan.
* ----------------------------------------------------------------
*/
void
ExecAppendInitializeWorker(AppendState *node, ParallelWorkerContext *pwcxt)
{
node->as_pstate = shm_toc_lookup(pwcxt->toc, node->ps.plan->plan_node_id, false);
node->choose_next_subplan = choose_next_subplan_for_worker;
}
/* ----------------------------------------------------------------
* choose_next_subplan_locally
*
* Choose next subplan for a non-parallel-aware Append,
* returning false if there are no more.
* ----------------------------------------------------------------
*/
static bool
choose_next_subplan_locally(AppendState *node)
{
int whichplan = node->as_whichplan;
int nextplan;
/* We should never be called when there are no subplans */
Assert(node->as_nplans > 0);
/*
* If first call then have the bms member function choose the first valid
* subplan by initializing whichplan to -1. If there happen to be no
* valid subplans then the bms member function will handle that by
* returning a negative number which will allow us to exit returning a
* false value.
*/
if (whichplan == INVALID_SUBPLAN_INDEX)
{
if (node->as_valid_subplans == NULL)
node->as_valid_subplans =
ExecFindMatchingSubPlans(node->as_prune_state);
whichplan = -1;
}
/* Ensure whichplan is within the expected range */
Assert(whichplan >= -1 && whichplan <= node->as_nplans);
if (ScanDirectionIsForward(node->ps.state->es_direction))
nextplan = bms_next_member(node->as_valid_subplans, whichplan);
else
nextplan = bms_prev_member(node->as_valid_subplans, whichplan);
if (nextplan < 0)
return false;
node->as_whichplan = nextplan;
return true;
}
/* ----------------------------------------------------------------
* choose_next_subplan_for_leader
*
* Try to pick a plan which doesn't commit us to doing much
* work locally, so that as much work as possible is done in
* the workers. Cheapest subplans are at the end.
* ----------------------------------------------------------------
*/
static bool
choose_next_subplan_for_leader(AppendState *node)
{
ParallelAppendState *pstate = node->as_pstate;
/* Backward scan is not supported by parallel-aware plans */
Assert(ScanDirectionIsForward(node->ps.state->es_direction));
/* We should never be called when there are no subplans */
Assert(node->as_nplans > 0);
LWLockAcquire(&pstate->pa_lock, LW_EXCLUSIVE);
if (node->as_whichplan != INVALID_SUBPLAN_INDEX)
{
/* Mark just-completed subplan as finished. */
node->as_pstate->pa_finished[node->as_whichplan] = true;
}
else
{
/* Start with last subplan. */
node->as_whichplan = node->as_nplans - 1;
/*
* If we've yet to determine the valid subplans then do so now. If
* run-time pruning is disabled then the valid subplans will always be
* set to all subplans.
*/
if (node->as_valid_subplans == NULL)
{
node->as_valid_subplans =
ExecFindMatchingSubPlans(node->as_prune_state);
/*
* Mark each invalid plan as finished to allow the loop below to
* select the first valid subplan.
*/
mark_invalid_subplans_as_finished(node);
}
}
/* Loop until we find a subplan to execute. */
while (pstate->pa_finished[node->as_whichplan])
{
if (node->as_whichplan == 0)
{
pstate->pa_next_plan = INVALID_SUBPLAN_INDEX;
node->as_whichplan = INVALID_SUBPLAN_INDEX;
LWLockRelease(&pstate->pa_lock);
return false;
}
/*
* We needn't pay attention to as_valid_subplans here as all invalid
* plans have been marked as finished.
*/
node->as_whichplan--;
}
/* If non-partial, immediately mark as finished. */
if (node->as_whichplan < node->as_first_partial_plan)
node->as_pstate->pa_finished[node->as_whichplan] = true;
LWLockRelease(&pstate->pa_lock);
return true;
}
/* ----------------------------------------------------------------
* choose_next_subplan_for_worker
*
* Choose next subplan for a parallel-aware Append, returning
* false if there are no more.
*
* We start from the first plan and advance through the list;
* when we get back to the end, we loop back to the first
* partial plan. This assigns the non-partial plans first in
* order of descending cost and then spreads out the workers
* as evenly as possible across the remaining partial plans.
* ----------------------------------------------------------------
*/
static bool
choose_next_subplan_for_worker(AppendState *node)
{
ParallelAppendState *pstate = node->as_pstate;
/* Backward scan is not supported by parallel-aware plans */
Assert(ScanDirectionIsForward(node->ps.state->es_direction));
/* We should never be called when there are no subplans */
Assert(node->as_nplans > 0);
LWLockAcquire(&pstate->pa_lock, LW_EXCLUSIVE);
/* Mark just-completed subplan as finished. */
if (node->as_whichplan != INVALID_SUBPLAN_INDEX)
node->as_pstate->pa_finished[node->as_whichplan] = true;
/*
* If we've yet to determine the valid subplans then do so now. If
* run-time pruning is disabled then the valid subplans will always be set
* to all subplans.
*/
else if (node->as_valid_subplans == NULL)
{
node->as_valid_subplans =
ExecFindMatchingSubPlans(node->as_prune_state);
mark_invalid_subplans_as_finished(node);
}
/* If all the plans are already done, we have nothing to do */
if (pstate->pa_next_plan == INVALID_SUBPLAN_INDEX)
{
LWLockRelease(&pstate->pa_lock);
return false;
}
/* Save the plan from which we are starting the search. */
node->as_whichplan = pstate->pa_next_plan;
/* Loop until we find a valid subplan to execute. */
while (pstate->pa_finished[pstate->pa_next_plan])
{
int nextplan;
nextplan = bms_next_member(node->as_valid_subplans,
pstate->pa_next_plan);
if (nextplan >= 0)
{
/* Advance to the next valid plan. */
pstate->pa_next_plan = nextplan;
}
else if (node->as_whichplan > node->as_first_partial_plan)
{
/*
* Try looping back to the first valid partial plan, if there is
* one. If there isn't, arrange to bail out below.
*/
nextplan = bms_next_member(node->as_valid_subplans,
node->as_first_partial_plan - 1);
pstate->pa_next_plan =
nextplan < 0 ? node->as_whichplan : nextplan;
}
else
{
/*
* At last plan, and either there are no partial plans or we've
* tried them all. Arrange to bail out.
*/
pstate->pa_next_plan = node->as_whichplan;
}
if (pstate->pa_next_plan == node->as_whichplan)
{
/* We've tried everything! */
pstate->pa_next_plan = INVALID_SUBPLAN_INDEX;
LWLockRelease(&pstate->pa_lock);
return false;
}
}
/* Pick the plan we found, and advance pa_next_plan one more time. */
node->as_whichplan = pstate->pa_next_plan;
pstate->pa_next_plan = bms_next_member(node->as_valid_subplans,
pstate->pa_next_plan);
/*
* If there are no more valid plans then try setting the next plan to the
* first valid partial plan.
*/
if (pstate->pa_next_plan < 0)
{
int nextplan = bms_next_member(node->as_valid_subplans,
node->as_first_partial_plan - 1);
if (nextplan >= 0)
pstate->pa_next_plan = nextplan;
else
{
/*
* There are no valid partial plans, and we already chose the last
* non-partial plan; so flag that there's nothing more for our
* fellow workers to do.
*/
pstate->pa_next_plan = INVALID_SUBPLAN_INDEX;
}
}
/* If non-partial, immediately mark as finished. */
if (node->as_whichplan < node->as_first_partial_plan)
node->as_pstate->pa_finished[node->as_whichplan] = true;
LWLockRelease(&pstate->pa_lock);
return true;
}
/*
* mark_invalid_subplans_as_finished
* Marks the ParallelAppendState's pa_finished as true for each invalid
* subplan.
*
* This function should only be called for parallel Append with run-time
* pruning enabled.
*/
static void
mark_invalid_subplans_as_finished(AppendState *node)
{
int i;
/* Only valid to call this while in parallel Append mode */
Assert(node->as_pstate);
/* Shouldn't have been called when run-time pruning is not enabled */
Assert(node->as_prune_state);
/* Nothing to do if all plans are valid */
if (bms_num_members(node->as_valid_subplans) == node->as_nplans)
return;
/* Mark all non-valid plans as finished */
for (i = 0; i < node->as_nplans; i++)
{
if (!bms_is_member(i, node->as_valid_subplans))
node->as_pstate->pa_finished[i] = true;
}
}
|