1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
|
/*-------------------------------------------------------------------------
*
* nodeHashjoin.c
* Routines to handle hash join nodes
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeHashjoin.c
*
* PARALLELISM
*
* Hash joins can participate in parallel query execution in several ways. A
* parallel-oblivious hash join is one where the node is unaware that it is
* part of a parallel plan. In this case, a copy of the inner plan is used to
* build a copy of the hash table in every backend, and the outer plan could
* either be built from a partial or complete path, so that the results of the
* hash join are correspondingly either partial or complete. A parallel-aware
* hash join is one that behaves differently, coordinating work between
* backends, and appears as Parallel Hash Join in EXPLAIN output. A Parallel
* Hash Join always appears with a Parallel Hash node.
*
* Parallel-aware hash joins use the same per-backend state machine to track
* progress through the hash join algorithm as parallel-oblivious hash joins.
* In a parallel-aware hash join, there is also a shared state machine that
* co-operating backends use to synchronize their local state machines and
* program counters. The shared state machine is managed with a Barrier IPC
* primitive. When all attached participants arrive at a barrier, the phase
* advances and all waiting participants are released.
*
* When a participant begins working on a parallel hash join, it must first
* figure out how much progress has already been made, because participants
* don't wait for each other to begin. For this reason there are switch
* statements at key points in the code where we have to synchronize our local
* state machine with the phase, and then jump to the correct part of the
* algorithm so that we can get started.
*
* One barrier called build_barrier is used to coordinate the hashing phases.
* The phase is represented by an integer which begins at zero and increments
* one by one, but in the code it is referred to by symbolic names as follows:
*
* PHJ_BUILD_ELECTING -- initial state
* PHJ_BUILD_ALLOCATING -- one sets up the batches and table 0
* PHJ_BUILD_HASHING_INNER -- all hash the inner rel
* PHJ_BUILD_HASHING_OUTER -- (multi-batch only) all hash the outer
* PHJ_BUILD_DONE -- building done, probing can begin
*
* While in the phase PHJ_BUILD_HASHING_INNER a separate pair of barriers may
* be used repeatedly as required to coordinate expansions in the number of
* batches or buckets. Their phases are as follows:
*
* PHJ_GROW_BATCHES_ELECTING -- initial state
* PHJ_GROW_BATCHES_ALLOCATING -- one allocates new batches
* PHJ_GROW_BATCHES_REPARTITIONING -- all repartition
* PHJ_GROW_BATCHES_FINISHING -- one cleans up, detects skew
*
* PHJ_GROW_BUCKETS_ELECTING -- initial state
* PHJ_GROW_BUCKETS_ALLOCATING -- one allocates new buckets
* PHJ_GROW_BUCKETS_REINSERTING -- all insert tuples
*
* If the planner got the number of batches and buckets right, those won't be
* necessary, but on the other hand we might finish up needing to expand the
* buckets or batches multiple times while hashing the inner relation to stay
* within our memory budget and load factor target. For that reason it's a
* separate pair of barriers using circular phases.
*
* The PHJ_BUILD_HASHING_OUTER phase is required only for multi-batch joins,
* because we need to divide the outer relation into batches up front in order
* to be able to process batches entirely independently. In contrast, the
* parallel-oblivious algorithm simply throws tuples 'forward' to 'later'
* batches whenever it encounters them while scanning and probing, which it
* can do because it processes batches in serial order.
*
* Once PHJ_BUILD_DONE is reached, backends then split up and process
* different batches, or gang up and work together on probing batches if there
* aren't enough to go around. For each batch there is a separate barrier
* with the following phases:
*
* PHJ_BATCH_ELECTING -- initial state
* PHJ_BATCH_ALLOCATING -- one allocates buckets
* PHJ_BATCH_LOADING -- all load the hash table from disk
* PHJ_BATCH_PROBING -- all probe
* PHJ_BATCH_DONE -- end
*
* Batch 0 is a special case, because it starts out in phase
* PHJ_BATCH_PROBING; populating batch 0's hash table is done during
* PHJ_BUILD_HASHING_INNER so we can skip loading.
*
* Initially we try to plan for a single-batch hash join using the combined
* hash_mem of all participants to create a large shared hash table. If that
* turns out either at planning or execution time to be impossible then we
* fall back to regular hash_mem sized hash tables.
*
* To avoid deadlocks, we never wait for any barrier unless it is known that
* all other backends attached to it are actively executing the node or have
* already arrived. Practically, that means that we never return a tuple
* while attached to a barrier, unless the barrier has reached its final
* state. In the slightly special case of the per-batch barrier, we return
* tuples while in PHJ_BATCH_PROBING phase, but that's OK because we use
* BarrierArriveAndDetach() to advance it to PHJ_BATCH_DONE without waiting.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/parallel.h"
#include "executor/executor.h"
#include "executor/hashjoin.h"
#include "executor/nodeHash.h"
#include "executor/nodeHashjoin.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "utils/memutils.h"
#include "utils/sharedtuplestore.h"
/*
* States of the ExecHashJoin state machine
*/
#define HJ_BUILD_HASHTABLE 1
#define HJ_NEED_NEW_OUTER 2
#define HJ_SCAN_BUCKET 3
#define HJ_FILL_OUTER_TUPLE 4
#define HJ_FILL_INNER_TUPLES 5
#define HJ_NEED_NEW_BATCH 6
/* Returns true if doing null-fill on outer relation */
#define HJ_FILL_OUTER(hjstate) ((hjstate)->hj_NullInnerTupleSlot != NULL)
/* Returns true if doing null-fill on inner relation */
#define HJ_FILL_INNER(hjstate) ((hjstate)->hj_NullOuterTupleSlot != NULL)
static TupleTableSlot *ExecHashJoinOuterGetTuple(PlanState *outerNode,
HashJoinState *hjstate,
uint32 *hashvalue);
static TupleTableSlot *ExecParallelHashJoinOuterGetTuple(PlanState *outerNode,
HashJoinState *hjstate,
uint32 *hashvalue);
static TupleTableSlot *ExecHashJoinGetSavedTuple(HashJoinState *hjstate,
BufFile *file,
uint32 *hashvalue,
TupleTableSlot *tupleSlot);
static bool ExecHashJoinNewBatch(HashJoinState *hjstate);
static bool ExecParallelHashJoinNewBatch(HashJoinState *hjstate);
static void ExecParallelHashJoinPartitionOuter(HashJoinState *node);
/* ----------------------------------------------------------------
* ExecHashJoinImpl
*
* This function implements the Hybrid Hashjoin algorithm. It is marked
* with an always-inline attribute so that ExecHashJoin() and
* ExecParallelHashJoin() can inline it. Compilers that respect the
* attribute should create versions specialized for parallel == true and
* parallel == false with unnecessary branches removed.
*
* Note: the relation we build hash table on is the "inner"
* the other one is "outer".
* ----------------------------------------------------------------
*/
static pg_attribute_always_inline TupleTableSlot *
ExecHashJoinImpl(PlanState *pstate, bool parallel)
{
HashJoinState *node = castNode(HashJoinState, pstate);
PlanState *outerNode;
HashState *hashNode;
ExprState *joinqual;
ExprState *otherqual;
ExprContext *econtext;
HashJoinTable hashtable;
TupleTableSlot *outerTupleSlot;
uint32 hashvalue;
int batchno;
ParallelHashJoinState *parallel_state;
/*
* get information from HashJoin node
*/
joinqual = node->js.joinqual;
otherqual = node->js.ps.qual;
hashNode = (HashState *) innerPlanState(node);
outerNode = outerPlanState(node);
hashtable = node->hj_HashTable;
econtext = node->js.ps.ps_ExprContext;
parallel_state = hashNode->parallel_state;
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous tuple cycle.
*/
ResetExprContext(econtext);
/*
* run the hash join state machine
*/
for (;;)
{
/*
* It's possible to iterate this loop many times before returning a
* tuple, in some pathological cases such as needing to move much of
* the current batch to a later batch. So let's check for interrupts
* each time through.
*/
CHECK_FOR_INTERRUPTS();
switch (node->hj_JoinState)
{
case HJ_BUILD_HASHTABLE:
/*
* First time through: build hash table for inner relation.
*/
Assert(hashtable == NULL);
/*
* If the outer relation is completely empty, and it's not
* right/full join, we can quit without building the hash
* table. However, for an inner join it is only a win to
* check this when the outer relation's startup cost is less
* than the projected cost of building the hash table.
* Otherwise it's best to build the hash table first and see
* if the inner relation is empty. (When it's a left join, we
* should always make this check, since we aren't going to be
* able to skip the join on the strength of an empty inner
* relation anyway.)
*
* If we are rescanning the join, we make use of information
* gained on the previous scan: don't bother to try the
* prefetch if the previous scan found the outer relation
* nonempty. This is not 100% reliable since with new
* parameters the outer relation might yield different
* results, but it's a good heuristic.
*
* The only way to make the check is to try to fetch a tuple
* from the outer plan node. If we succeed, we have to stash
* it away for later consumption by ExecHashJoinOuterGetTuple.
*/
if (HJ_FILL_INNER(node))
{
/* no chance to not build the hash table */
node->hj_FirstOuterTupleSlot = NULL;
}
else if (parallel)
{
/*
* The empty-outer optimization is not implemented for
* shared hash tables, because no one participant can
* determine that there are no outer tuples, and it's not
* yet clear that it's worth the synchronization overhead
* of reaching consensus to figure that out. So we have
* to build the hash table.
*/
node->hj_FirstOuterTupleSlot = NULL;
}
else if (HJ_FILL_OUTER(node) ||
(outerNode->plan->startup_cost < hashNode->ps.plan->total_cost &&
!node->hj_OuterNotEmpty))
{
node->hj_FirstOuterTupleSlot = ExecProcNode(outerNode);
if (TupIsNull(node->hj_FirstOuterTupleSlot))
{
node->hj_OuterNotEmpty = false;
return NULL;
}
else
node->hj_OuterNotEmpty = true;
}
else
node->hj_FirstOuterTupleSlot = NULL;
/*
* Create the hash table. If using Parallel Hash, then
* whoever gets here first will create the hash table and any
* later arrivals will merely attach to it.
*/
hashtable = ExecHashTableCreate(hashNode,
node->hj_HashOperators,
node->hj_Collations,
HJ_FILL_INNER(node));
node->hj_HashTable = hashtable;
/*
* Execute the Hash node, to build the hash table. If using
* Parallel Hash, then we'll try to help hashing unless we
* arrived too late.
*/
hashNode->hashtable = hashtable;
(void) MultiExecProcNode((PlanState *) hashNode);
/*
* If the inner relation is completely empty, and we're not
* doing a left outer join, we can quit without scanning the
* outer relation.
*/
if (hashtable->totalTuples == 0 && !HJ_FILL_OUTER(node))
return NULL;
/*
* need to remember whether nbatch has increased since we
* began scanning the outer relation
*/
hashtable->nbatch_outstart = hashtable->nbatch;
/*
* Reset OuterNotEmpty for scan. (It's OK if we fetched a
* tuple above, because ExecHashJoinOuterGetTuple will
* immediately set it again.)
*/
node->hj_OuterNotEmpty = false;
if (parallel)
{
Barrier *build_barrier;
build_barrier = ¶llel_state->build_barrier;
Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASHING_OUTER ||
BarrierPhase(build_barrier) == PHJ_BUILD_DONE);
if (BarrierPhase(build_barrier) == PHJ_BUILD_HASHING_OUTER)
{
/*
* If multi-batch, we need to hash the outer relation
* up front.
*/
if (hashtable->nbatch > 1)
ExecParallelHashJoinPartitionOuter(node);
BarrierArriveAndWait(build_barrier,
WAIT_EVENT_HASH_BUILD_HASH_OUTER);
}
Assert(BarrierPhase(build_barrier) == PHJ_BUILD_DONE);
/* Each backend should now select a batch to work on. */
hashtable->curbatch = -1;
node->hj_JoinState = HJ_NEED_NEW_BATCH;
continue;
}
else
node->hj_JoinState = HJ_NEED_NEW_OUTER;
/* FALL THRU */
case HJ_NEED_NEW_OUTER:
/*
* We don't have an outer tuple, try to get the next one
*/
if (parallel)
outerTupleSlot =
ExecParallelHashJoinOuterGetTuple(outerNode, node,
&hashvalue);
else
outerTupleSlot =
ExecHashJoinOuterGetTuple(outerNode, node, &hashvalue);
if (TupIsNull(outerTupleSlot))
{
/* end of batch, or maybe whole join */
if (HJ_FILL_INNER(node))
{
/* set up to scan for unmatched inner tuples */
ExecPrepHashTableForUnmatched(node);
node->hj_JoinState = HJ_FILL_INNER_TUPLES;
}
else
node->hj_JoinState = HJ_NEED_NEW_BATCH;
continue;
}
econtext->ecxt_outertuple = outerTupleSlot;
node->hj_MatchedOuter = false;
/*
* Find the corresponding bucket for this tuple in the main
* hash table or skew hash table.
*/
node->hj_CurHashValue = hashvalue;
ExecHashGetBucketAndBatch(hashtable, hashvalue,
&node->hj_CurBucketNo, &batchno);
node->hj_CurSkewBucketNo = ExecHashGetSkewBucket(hashtable,
hashvalue);
node->hj_CurTuple = NULL;
/*
* The tuple might not belong to the current batch (where
* "current batch" includes the skew buckets if any).
*/
if (batchno != hashtable->curbatch &&
node->hj_CurSkewBucketNo == INVALID_SKEW_BUCKET_NO)
{
bool shouldFree;
MinimalTuple mintuple = ExecFetchSlotMinimalTuple(outerTupleSlot,
&shouldFree);
/*
* Need to postpone this outer tuple to a later batch.
* Save it in the corresponding outer-batch file.
*/
Assert(parallel_state == NULL);
Assert(batchno > hashtable->curbatch);
ExecHashJoinSaveTuple(mintuple, hashvalue,
&hashtable->outerBatchFile[batchno]);
if (shouldFree)
heap_free_minimal_tuple(mintuple);
/* Loop around, staying in HJ_NEED_NEW_OUTER state */
continue;
}
/* OK, let's scan the bucket for matches */
node->hj_JoinState = HJ_SCAN_BUCKET;
/* FALL THRU */
case HJ_SCAN_BUCKET:
/*
* Scan the selected hash bucket for matches to current outer
*/
if (parallel)
{
if (!ExecParallelScanHashBucket(node, econtext))
{
/* out of matches; check for possible outer-join fill */
node->hj_JoinState = HJ_FILL_OUTER_TUPLE;
continue;
}
}
else
{
if (!ExecScanHashBucket(node, econtext))
{
/* out of matches; check for possible outer-join fill */
node->hj_JoinState = HJ_FILL_OUTER_TUPLE;
continue;
}
}
/*
* We've got a match, but still need to test non-hashed quals.
* ExecScanHashBucket already set up all the state needed to
* call ExecQual.
*
* If we pass the qual, then save state for next call and have
* ExecProject form the projection, store it in the tuple
* table, and return the slot.
*
* Only the joinquals determine tuple match status, but all
* quals must pass to actually return the tuple.
*/
if (joinqual == NULL || ExecQual(joinqual, econtext))
{
node->hj_MatchedOuter = true;
if (parallel)
{
/*
* Full/right outer joins are currently not supported
* for parallel joins, so we don't need to set the
* match bit. Experiments show that it's worth
* avoiding the shared memory traffic on large
* systems.
*/
Assert(!HJ_FILL_INNER(node));
}
else
{
/*
* This is really only needed if HJ_FILL_INNER(node),
* but we'll avoid the branch and just set it always.
*/
HeapTupleHeaderSetMatch(HJTUPLE_MINTUPLE(node->hj_CurTuple));
}
/* In an antijoin, we never return a matched tuple */
if (node->js.jointype == JOIN_ANTI)
{
node->hj_JoinState = HJ_NEED_NEW_OUTER;
continue;
}
/*
* If we only need to join to the first matching inner
* tuple, then consider returning this one, but after that
* continue with next outer tuple.
*/
if (node->js.single_match)
node->hj_JoinState = HJ_NEED_NEW_OUTER;
if (otherqual == NULL || ExecQual(otherqual, econtext))
return ExecProject(node->js.ps.ps_ProjInfo);
else
InstrCountFiltered2(node, 1);
}
else
InstrCountFiltered1(node, 1);
break;
case HJ_FILL_OUTER_TUPLE:
/*
* The current outer tuple has run out of matches, so check
* whether to emit a dummy outer-join tuple. Whether we emit
* one or not, the next state is NEED_NEW_OUTER.
*/
node->hj_JoinState = HJ_NEED_NEW_OUTER;
if (!node->hj_MatchedOuter &&
HJ_FILL_OUTER(node))
{
/*
* Generate a fake join tuple with nulls for the inner
* tuple, and return it if it passes the non-join quals.
*/
econtext->ecxt_innertuple = node->hj_NullInnerTupleSlot;
if (otherqual == NULL || ExecQual(otherqual, econtext))
return ExecProject(node->js.ps.ps_ProjInfo);
else
InstrCountFiltered2(node, 1);
}
break;
case HJ_FILL_INNER_TUPLES:
/*
* We have finished a batch, but we are doing right/full join,
* so any unmatched inner tuples in the hashtable have to be
* emitted before we continue to the next batch.
*/
if (!ExecScanHashTableForUnmatched(node, econtext))
{
/* no more unmatched tuples */
node->hj_JoinState = HJ_NEED_NEW_BATCH;
continue;
}
/*
* Generate a fake join tuple with nulls for the outer tuple,
* and return it if it passes the non-join quals.
*/
econtext->ecxt_outertuple = node->hj_NullOuterTupleSlot;
if (otherqual == NULL || ExecQual(otherqual, econtext))
return ExecProject(node->js.ps.ps_ProjInfo);
else
InstrCountFiltered2(node, 1);
break;
case HJ_NEED_NEW_BATCH:
/*
* Try to advance to next batch. Done if there are no more.
*/
if (parallel)
{
if (!ExecParallelHashJoinNewBatch(node))
return NULL; /* end of parallel-aware join */
}
else
{
if (!ExecHashJoinNewBatch(node))
return NULL; /* end of parallel-oblivious join */
}
node->hj_JoinState = HJ_NEED_NEW_OUTER;
break;
default:
elog(ERROR, "unrecognized hashjoin state: %d",
(int) node->hj_JoinState);
}
}
}
/* ----------------------------------------------------------------
* ExecHashJoin
*
* Parallel-oblivious version.
* ----------------------------------------------------------------
*/
static TupleTableSlot * /* return: a tuple or NULL */
ExecHashJoin(PlanState *pstate)
{
/*
* On sufficiently smart compilers this should be inlined with the
* parallel-aware branches removed.
*/
return ExecHashJoinImpl(pstate, false);
}
/* ----------------------------------------------------------------
* ExecParallelHashJoin
*
* Parallel-aware version.
* ----------------------------------------------------------------
*/
static TupleTableSlot * /* return: a tuple or NULL */
ExecParallelHashJoin(PlanState *pstate)
{
/*
* On sufficiently smart compilers this should be inlined with the
* parallel-oblivious branches removed.
*/
return ExecHashJoinImpl(pstate, true);
}
/* ----------------------------------------------------------------
* ExecInitHashJoin
*
* Init routine for HashJoin node.
* ----------------------------------------------------------------
*/
HashJoinState *
ExecInitHashJoin(HashJoin *node, EState *estate, int eflags)
{
HashJoinState *hjstate;
Plan *outerNode;
Hash *hashNode;
TupleDesc outerDesc,
innerDesc;
const TupleTableSlotOps *ops;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
/*
* create state structure
*/
hjstate = makeNode(HashJoinState);
hjstate->js.ps.plan = (Plan *) node;
hjstate->js.ps.state = estate;
/*
* See ExecHashJoinInitializeDSM() and ExecHashJoinInitializeWorker()
* where this function may be replaced with a parallel version, if we
* managed to launch a parallel query.
*/
hjstate->js.ps.ExecProcNode = ExecHashJoin;
hjstate->js.jointype = node->join.jointype;
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &hjstate->js.ps);
/*
* initialize child nodes
*
* Note: we could suppress the REWIND flag for the inner input, which
* would amount to betting that the hash will be a single batch. Not
* clear if this would be a win or not.
*/
outerNode = outerPlan(node);
hashNode = (Hash *) innerPlan(node);
outerPlanState(hjstate) = ExecInitNode(outerNode, estate, eflags);
outerDesc = ExecGetResultType(outerPlanState(hjstate));
innerPlanState(hjstate) = ExecInitNode((Plan *) hashNode, estate, eflags);
innerDesc = ExecGetResultType(innerPlanState(hjstate));
/*
* Initialize result slot, type and projection.
*/
ExecInitResultTupleSlotTL(&hjstate->js.ps, &TTSOpsVirtual);
ExecAssignProjectionInfo(&hjstate->js.ps, NULL);
/*
* tuple table initialization
*/
ops = ExecGetResultSlotOps(outerPlanState(hjstate), NULL);
hjstate->hj_OuterTupleSlot = ExecInitExtraTupleSlot(estate, outerDesc,
ops);
/*
* detect whether we need only consider the first matching inner tuple
*/
hjstate->js.single_match = (node->join.inner_unique ||
node->join.jointype == JOIN_SEMI);
/* set up null tuples for outer joins, if needed */
switch (node->join.jointype)
{
case JOIN_INNER:
case JOIN_SEMI:
break;
case JOIN_LEFT:
case JOIN_ANTI:
hjstate->hj_NullInnerTupleSlot =
ExecInitNullTupleSlot(estate, innerDesc, &TTSOpsVirtual);
break;
case JOIN_RIGHT:
hjstate->hj_NullOuterTupleSlot =
ExecInitNullTupleSlot(estate, outerDesc, &TTSOpsVirtual);
break;
case JOIN_FULL:
hjstate->hj_NullOuterTupleSlot =
ExecInitNullTupleSlot(estate, outerDesc, &TTSOpsVirtual);
hjstate->hj_NullInnerTupleSlot =
ExecInitNullTupleSlot(estate, innerDesc, &TTSOpsVirtual);
break;
default:
elog(ERROR, "unrecognized join type: %d",
(int) node->join.jointype);
}
/*
* now for some voodoo. our temporary tuple slot is actually the result
* tuple slot of the Hash node (which is our inner plan). we can do this
* because Hash nodes don't return tuples via ExecProcNode() -- instead
* the hash join node uses ExecScanHashBucket() to get at the contents of
* the hash table. -cim 6/9/91
*/
{
HashState *hashstate = (HashState *) innerPlanState(hjstate);
TupleTableSlot *slot = hashstate->ps.ps_ResultTupleSlot;
hjstate->hj_HashTupleSlot = slot;
}
/*
* initialize child expressions
*/
hjstate->js.ps.qual =
ExecInitQual(node->join.plan.qual, (PlanState *) hjstate);
hjstate->js.joinqual =
ExecInitQual(node->join.joinqual, (PlanState *) hjstate);
hjstate->hashclauses =
ExecInitQual(node->hashclauses, (PlanState *) hjstate);
/*
* initialize hash-specific info
*/
hjstate->hj_HashTable = NULL;
hjstate->hj_FirstOuterTupleSlot = NULL;
hjstate->hj_CurHashValue = 0;
hjstate->hj_CurBucketNo = 0;
hjstate->hj_CurSkewBucketNo = INVALID_SKEW_BUCKET_NO;
hjstate->hj_CurTuple = NULL;
hjstate->hj_OuterHashKeys = ExecInitExprList(node->hashkeys,
(PlanState *) hjstate);
hjstate->hj_HashOperators = node->hashoperators;
hjstate->hj_Collations = node->hashcollations;
hjstate->hj_JoinState = HJ_BUILD_HASHTABLE;
hjstate->hj_MatchedOuter = false;
hjstate->hj_OuterNotEmpty = false;
return hjstate;
}
/* ----------------------------------------------------------------
* ExecEndHashJoin
*
* clean up routine for HashJoin node
* ----------------------------------------------------------------
*/
void
ExecEndHashJoin(HashJoinState *node)
{
/*
* Free hash table
*/
if (node->hj_HashTable)
{
ExecHashTableDestroy(node->hj_HashTable);
node->hj_HashTable = NULL;
}
/*
* Free the exprcontext
*/
ExecFreeExprContext(&node->js.ps);
/*
* clean out the tuple table
*/
ExecClearTuple(node->js.ps.ps_ResultTupleSlot);
ExecClearTuple(node->hj_OuterTupleSlot);
ExecClearTuple(node->hj_HashTupleSlot);
/*
* clean up subtrees
*/
ExecEndNode(outerPlanState(node));
ExecEndNode(innerPlanState(node));
}
/*
* ExecHashJoinOuterGetTuple
*
* get the next outer tuple for a parallel oblivious hashjoin: either by
* executing the outer plan node in the first pass, or from the temp
* files for the hashjoin batches.
*
* Returns a null slot if no more outer tuples (within the current batch).
*
* On success, the tuple's hash value is stored at *hashvalue --- this is
* either originally computed, or re-read from the temp file.
*/
static TupleTableSlot *
ExecHashJoinOuterGetTuple(PlanState *outerNode,
HashJoinState *hjstate,
uint32 *hashvalue)
{
HashJoinTable hashtable = hjstate->hj_HashTable;
int curbatch = hashtable->curbatch;
TupleTableSlot *slot;
if (curbatch == 0) /* if it is the first pass */
{
/*
* Check to see if first outer tuple was already fetched by
* ExecHashJoin() and not used yet.
*/
slot = hjstate->hj_FirstOuterTupleSlot;
if (!TupIsNull(slot))
hjstate->hj_FirstOuterTupleSlot = NULL;
else
slot = ExecProcNode(outerNode);
while (!TupIsNull(slot))
{
/*
* We have to compute the tuple's hash value.
*/
ExprContext *econtext = hjstate->js.ps.ps_ExprContext;
econtext->ecxt_outertuple = slot;
if (ExecHashGetHashValue(hashtable, econtext,
hjstate->hj_OuterHashKeys,
true, /* outer tuple */
HJ_FILL_OUTER(hjstate),
hashvalue))
{
/* remember outer relation is not empty for possible rescan */
hjstate->hj_OuterNotEmpty = true;
return slot;
}
/*
* That tuple couldn't match because of a NULL, so discard it and
* continue with the next one.
*/
slot = ExecProcNode(outerNode);
}
}
else if (curbatch < hashtable->nbatch)
{
BufFile *file = hashtable->outerBatchFile[curbatch];
/*
* In outer-join cases, we could get here even though the batch file
* is empty.
*/
if (file == NULL)
return NULL;
slot = ExecHashJoinGetSavedTuple(hjstate,
file,
hashvalue,
hjstate->hj_OuterTupleSlot);
if (!TupIsNull(slot))
return slot;
}
/* End of this batch */
return NULL;
}
/*
* ExecHashJoinOuterGetTuple variant for the parallel case.
*/
static TupleTableSlot *
ExecParallelHashJoinOuterGetTuple(PlanState *outerNode,
HashJoinState *hjstate,
uint32 *hashvalue)
{
HashJoinTable hashtable = hjstate->hj_HashTable;
int curbatch = hashtable->curbatch;
TupleTableSlot *slot;
/*
* In the Parallel Hash case we only run the outer plan directly for
* single-batch hash joins. Otherwise we have to go to batch files, even
* for batch 0.
*/
if (curbatch == 0 && hashtable->nbatch == 1)
{
slot = ExecProcNode(outerNode);
while (!TupIsNull(slot))
{
ExprContext *econtext = hjstate->js.ps.ps_ExprContext;
econtext->ecxt_outertuple = slot;
if (ExecHashGetHashValue(hashtable, econtext,
hjstate->hj_OuterHashKeys,
true, /* outer tuple */
HJ_FILL_OUTER(hjstate),
hashvalue))
return slot;
/*
* That tuple couldn't match because of a NULL, so discard it and
* continue with the next one.
*/
slot = ExecProcNode(outerNode);
}
}
else if (curbatch < hashtable->nbatch)
{
MinimalTuple tuple;
tuple = sts_parallel_scan_next(hashtable->batches[curbatch].outer_tuples,
hashvalue);
if (tuple != NULL)
{
ExecForceStoreMinimalTuple(tuple,
hjstate->hj_OuterTupleSlot,
false);
slot = hjstate->hj_OuterTupleSlot;
return slot;
}
else
ExecClearTuple(hjstate->hj_OuterTupleSlot);
}
/* End of this batch */
return NULL;
}
/*
* ExecHashJoinNewBatch
* switch to a new hashjoin batch
*
* Returns true if successful, false if there are no more batches.
*/
static bool
ExecHashJoinNewBatch(HashJoinState *hjstate)
{
HashJoinTable hashtable = hjstate->hj_HashTable;
int nbatch;
int curbatch;
BufFile *innerFile;
TupleTableSlot *slot;
uint32 hashvalue;
nbatch = hashtable->nbatch;
curbatch = hashtable->curbatch;
if (curbatch > 0)
{
/*
* We no longer need the previous outer batch file; close it right
* away to free disk space.
*/
if (hashtable->outerBatchFile[curbatch])
BufFileClose(hashtable->outerBatchFile[curbatch]);
hashtable->outerBatchFile[curbatch] = NULL;
}
else /* we just finished the first batch */
{
/*
* Reset some of the skew optimization state variables, since we no
* longer need to consider skew tuples after the first batch. The
* memory context reset we are about to do will release the skew
* hashtable itself.
*/
hashtable->skewEnabled = false;
hashtable->skewBucket = NULL;
hashtable->skewBucketNums = NULL;
hashtable->nSkewBuckets = 0;
hashtable->spaceUsedSkew = 0;
}
/*
* We can always skip over any batches that are completely empty on both
* sides. We can sometimes skip over batches that are empty on only one
* side, but there are exceptions:
*
* 1. In a left/full outer join, we have to process outer batches even if
* the inner batch is empty. Similarly, in a right/full outer join, we
* have to process inner batches even if the outer batch is empty.
*
* 2. If we have increased nbatch since the initial estimate, we have to
* scan inner batches since they might contain tuples that need to be
* reassigned to later inner batches.
*
* 3. Similarly, if we have increased nbatch since starting the outer
* scan, we have to rescan outer batches in case they contain tuples that
* need to be reassigned.
*/
curbatch++;
while (curbatch < nbatch &&
(hashtable->outerBatchFile[curbatch] == NULL ||
hashtable->innerBatchFile[curbatch] == NULL))
{
if (hashtable->outerBatchFile[curbatch] &&
HJ_FILL_OUTER(hjstate))
break; /* must process due to rule 1 */
if (hashtable->innerBatchFile[curbatch] &&
HJ_FILL_INNER(hjstate))
break; /* must process due to rule 1 */
if (hashtable->innerBatchFile[curbatch] &&
nbatch != hashtable->nbatch_original)
break; /* must process due to rule 2 */
if (hashtable->outerBatchFile[curbatch] &&
nbatch != hashtable->nbatch_outstart)
break; /* must process due to rule 3 */
/* We can ignore this batch. */
/* Release associated temp files right away. */
if (hashtable->innerBatchFile[curbatch])
BufFileClose(hashtable->innerBatchFile[curbatch]);
hashtable->innerBatchFile[curbatch] = NULL;
if (hashtable->outerBatchFile[curbatch])
BufFileClose(hashtable->outerBatchFile[curbatch]);
hashtable->outerBatchFile[curbatch] = NULL;
curbatch++;
}
if (curbatch >= nbatch)
return false; /* no more batches */
hashtable->curbatch = curbatch;
/*
* Reload the hash table with the new inner batch (which could be empty)
*/
ExecHashTableReset(hashtable);
innerFile = hashtable->innerBatchFile[curbatch];
if (innerFile != NULL)
{
if (BufFileSeek(innerFile, 0, 0L, SEEK_SET))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not rewind hash-join temporary file")));
while ((slot = ExecHashJoinGetSavedTuple(hjstate,
innerFile,
&hashvalue,
hjstate->hj_HashTupleSlot)))
{
/*
* NOTE: some tuples may be sent to future batches. Also, it is
* possible for hashtable->nbatch to be increased here!
*/
ExecHashTableInsert(hashtable, slot, hashvalue);
}
/*
* after we build the hash table, the inner batch file is no longer
* needed
*/
BufFileClose(innerFile);
hashtable->innerBatchFile[curbatch] = NULL;
}
/*
* Rewind outer batch file (if present), so that we can start reading it.
*/
if (hashtable->outerBatchFile[curbatch] != NULL)
{
if (BufFileSeek(hashtable->outerBatchFile[curbatch], 0, 0L, SEEK_SET))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not rewind hash-join temporary file")));
}
return true;
}
/*
* Choose a batch to work on, and attach to it. Returns true if successful,
* false if there are no more batches.
*/
static bool
ExecParallelHashJoinNewBatch(HashJoinState *hjstate)
{
HashJoinTable hashtable = hjstate->hj_HashTable;
int start_batchno;
int batchno;
/*
* If we started up so late that the batch tracking array has been freed
* already by ExecHashTableDetach(), then we are finished. See also
* ExecParallelHashEnsureBatchAccessors().
*/
if (hashtable->batches == NULL)
return false;
/*
* If we were already attached to a batch, remember not to bother checking
* it again, and detach from it (possibly freeing the hash table if we are
* last to detach).
*/
if (hashtable->curbatch >= 0)
{
hashtable->batches[hashtable->curbatch].done = true;
ExecHashTableDetachBatch(hashtable);
}
/*
* Search for a batch that isn't done. We use an atomic counter to start
* our search at a different batch in every participant when there are
* more batches than participants.
*/
batchno = start_batchno =
pg_atomic_fetch_add_u32(&hashtable->parallel_state->distributor, 1) %
hashtable->nbatch;
do
{
uint32 hashvalue;
MinimalTuple tuple;
TupleTableSlot *slot;
if (!hashtable->batches[batchno].done)
{
SharedTuplestoreAccessor *inner_tuples;
Barrier *batch_barrier =
&hashtable->batches[batchno].shared->batch_barrier;
switch (BarrierAttach(batch_barrier))
{
case PHJ_BATCH_ELECTING:
/* One backend allocates the hash table. */
if (BarrierArriveAndWait(batch_barrier,
WAIT_EVENT_HASH_BATCH_ELECT))
ExecParallelHashTableAlloc(hashtable, batchno);
/* Fall through. */
case PHJ_BATCH_ALLOCATING:
/* Wait for allocation to complete. */
BarrierArriveAndWait(batch_barrier,
WAIT_EVENT_HASH_BATCH_ALLOCATE);
/* Fall through. */
case PHJ_BATCH_LOADING:
/* Start (or join in) loading tuples. */
ExecParallelHashTableSetCurrentBatch(hashtable, batchno);
inner_tuples = hashtable->batches[batchno].inner_tuples;
sts_begin_parallel_scan(inner_tuples);
while ((tuple = sts_parallel_scan_next(inner_tuples,
&hashvalue)))
{
ExecForceStoreMinimalTuple(tuple,
hjstate->hj_HashTupleSlot,
false);
slot = hjstate->hj_HashTupleSlot;
ExecParallelHashTableInsertCurrentBatch(hashtable, slot,
hashvalue);
}
sts_end_parallel_scan(inner_tuples);
BarrierArriveAndWait(batch_barrier,
WAIT_EVENT_HASH_BATCH_LOAD);
/* Fall through. */
case PHJ_BATCH_PROBING:
/*
* This batch is ready to probe. Return control to
* caller. We stay attached to batch_barrier so that the
* hash table stays alive until everyone's finished
* probing it, but no participant is allowed to wait at
* this barrier again (or else a deadlock could occur).
* All attached participants must eventually call
* BarrierArriveAndDetach() so that the final phase
* PHJ_BATCH_DONE can be reached.
*/
ExecParallelHashTableSetCurrentBatch(hashtable, batchno);
sts_begin_parallel_scan(hashtable->batches[batchno].outer_tuples);
return true;
case PHJ_BATCH_DONE:
/*
* Already done. Detach and go around again (if any
* remain).
*/
BarrierDetach(batch_barrier);
hashtable->batches[batchno].done = true;
hashtable->curbatch = -1;
break;
default:
elog(ERROR, "unexpected batch phase %d",
BarrierPhase(batch_barrier));
}
}
batchno = (batchno + 1) % hashtable->nbatch;
} while (batchno != start_batchno);
return false;
}
/*
* ExecHashJoinSaveTuple
* save a tuple to a batch file.
*
* The data recorded in the file for each tuple is its hash value,
* then the tuple in MinimalTuple format.
*
* Note: it is important always to call this in the regular executor
* context, not in a shorter-lived context; else the temp file buffers
* will get messed up.
*/
void
ExecHashJoinSaveTuple(MinimalTuple tuple, uint32 hashvalue,
BufFile **fileptr)
{
BufFile *file = *fileptr;
if (file == NULL)
{
/* First write to this batch file, so open it. */
file = BufFileCreateTemp(false);
*fileptr = file;
}
BufFileWrite(file, (void *) &hashvalue, sizeof(uint32));
BufFileWrite(file, (void *) tuple, tuple->t_len);
}
/*
* ExecHashJoinGetSavedTuple
* read the next tuple from a batch file. Return NULL if no more.
*
* On success, *hashvalue is set to the tuple's hash value, and the tuple
* itself is stored in the given slot.
*/
static TupleTableSlot *
ExecHashJoinGetSavedTuple(HashJoinState *hjstate,
BufFile *file,
uint32 *hashvalue,
TupleTableSlot *tupleSlot)
{
uint32 header[2];
size_t nread;
MinimalTuple tuple;
/*
* We check for interrupts here because this is typically taken as an
* alternative code path to an ExecProcNode() call, which would include
* such a check.
*/
CHECK_FOR_INTERRUPTS();
/*
* Since both the hash value and the MinimalTuple length word are uint32,
* we can read them both in one BufFileRead() call without any type
* cheating.
*/
nread = BufFileRead(file, (void *) header, sizeof(header));
if (nread == 0) /* end of file */
{
ExecClearTuple(tupleSlot);
return NULL;
}
if (nread != sizeof(header))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read from hash-join temporary file: read only %zu of %zu bytes",
nread, sizeof(header))));
*hashvalue = header[0];
tuple = (MinimalTuple) palloc(header[1]);
tuple->t_len = header[1];
nread = BufFileRead(file,
(void *) ((char *) tuple + sizeof(uint32)),
header[1] - sizeof(uint32));
if (nread != header[1] - sizeof(uint32))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read from hash-join temporary file: read only %zu of %zu bytes",
nread, header[1] - sizeof(uint32))));
ExecForceStoreMinimalTuple(tuple, tupleSlot, true);
return tupleSlot;
}
void
ExecReScanHashJoin(HashJoinState *node)
{
/*
* In a multi-batch join, we currently have to do rescans the hard way,
* primarily because batch temp files may have already been released. But
* if it's a single-batch join, and there is no parameter change for the
* inner subnode, then we can just re-use the existing hash table without
* rebuilding it.
*/
if (node->hj_HashTable != NULL)
{
if (node->hj_HashTable->nbatch == 1 &&
node->js.ps.righttree->chgParam == NULL)
{
/*
* Okay to reuse the hash table; needn't rescan inner, either.
*
* However, if it's a right/full join, we'd better reset the
* inner-tuple match flags contained in the table.
*/
if (HJ_FILL_INNER(node))
ExecHashTableResetMatchFlags(node->hj_HashTable);
/*
* Also, we need to reset our state about the emptiness of the
* outer relation, so that the new scan of the outer will update
* it correctly if it turns out to be empty this time. (There's no
* harm in clearing it now because ExecHashJoin won't need the
* info. In the other cases, where the hash table doesn't exist
* or we are destroying it, we leave this state alone because
* ExecHashJoin will need it the first time through.)
*/
node->hj_OuterNotEmpty = false;
/* ExecHashJoin can skip the BUILD_HASHTABLE step */
node->hj_JoinState = HJ_NEED_NEW_OUTER;
}
else
{
/* must destroy and rebuild hash table */
HashState *hashNode = castNode(HashState, innerPlanState(node));
Assert(hashNode->hashtable == node->hj_HashTable);
/* accumulate stats from old hash table, if wanted */
/* (this should match ExecShutdownHash) */
if (hashNode->ps.instrument && !hashNode->hinstrument)
hashNode->hinstrument = (HashInstrumentation *)
palloc0(sizeof(HashInstrumentation));
if (hashNode->hinstrument)
ExecHashAccumInstrumentation(hashNode->hinstrument,
hashNode->hashtable);
/* for safety, be sure to clear child plan node's pointer too */
hashNode->hashtable = NULL;
ExecHashTableDestroy(node->hj_HashTable);
node->hj_HashTable = NULL;
node->hj_JoinState = HJ_BUILD_HASHTABLE;
/*
* if chgParam of subnode is not null then plan will be re-scanned
* by first ExecProcNode.
*/
if (node->js.ps.righttree->chgParam == NULL)
ExecReScan(node->js.ps.righttree);
}
}
/* Always reset intra-tuple state */
node->hj_CurHashValue = 0;
node->hj_CurBucketNo = 0;
node->hj_CurSkewBucketNo = INVALID_SKEW_BUCKET_NO;
node->hj_CurTuple = NULL;
node->hj_MatchedOuter = false;
node->hj_FirstOuterTupleSlot = NULL;
/*
* if chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode.
*/
if (node->js.ps.lefttree->chgParam == NULL)
ExecReScan(node->js.ps.lefttree);
}
void
ExecShutdownHashJoin(HashJoinState *node)
{
if (node->hj_HashTable)
{
/*
* Detach from shared state before DSM memory goes away. This makes
* sure that we don't have any pointers into DSM memory by the time
* ExecEndHashJoin runs.
*/
ExecHashTableDetachBatch(node->hj_HashTable);
ExecHashTableDetach(node->hj_HashTable);
}
}
static void
ExecParallelHashJoinPartitionOuter(HashJoinState *hjstate)
{
PlanState *outerState = outerPlanState(hjstate);
ExprContext *econtext = hjstate->js.ps.ps_ExprContext;
HashJoinTable hashtable = hjstate->hj_HashTable;
TupleTableSlot *slot;
uint32 hashvalue;
int i;
Assert(hjstate->hj_FirstOuterTupleSlot == NULL);
/* Execute outer plan, writing all tuples to shared tuplestores. */
for (;;)
{
slot = ExecProcNode(outerState);
if (TupIsNull(slot))
break;
econtext->ecxt_outertuple = slot;
if (ExecHashGetHashValue(hashtable, econtext,
hjstate->hj_OuterHashKeys,
true, /* outer tuple */
HJ_FILL_OUTER(hjstate),
&hashvalue))
{
int batchno;
int bucketno;
bool shouldFree;
MinimalTuple mintup = ExecFetchSlotMinimalTuple(slot, &shouldFree);
ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno,
&batchno);
sts_puttuple(hashtable->batches[batchno].outer_tuples,
&hashvalue, mintup);
if (shouldFree)
heap_free_minimal_tuple(mintup);
}
CHECK_FOR_INTERRUPTS();
}
/* Make sure all outer partitions are readable by any backend. */
for (i = 0; i < hashtable->nbatch; ++i)
sts_end_write(hashtable->batches[i].outer_tuples);
}
void
ExecHashJoinEstimate(HashJoinState *state, ParallelContext *pcxt)
{
shm_toc_estimate_chunk(&pcxt->estimator, sizeof(ParallelHashJoinState));
shm_toc_estimate_keys(&pcxt->estimator, 1);
}
void
ExecHashJoinInitializeDSM(HashJoinState *state, ParallelContext *pcxt)
{
int plan_node_id = state->js.ps.plan->plan_node_id;
HashState *hashNode;
ParallelHashJoinState *pstate;
/*
* Disable shared hash table mode if we failed to create a real DSM
* segment, because that means that we don't have a DSA area to work with.
*/
if (pcxt->seg == NULL)
return;
ExecSetExecProcNode(&state->js.ps, ExecParallelHashJoin);
/*
* Set up the state needed to coordinate access to the shared hash
* table(s), using the plan node ID as the toc key.
*/
pstate = shm_toc_allocate(pcxt->toc, sizeof(ParallelHashJoinState));
shm_toc_insert(pcxt->toc, plan_node_id, pstate);
/*
* Set up the shared hash join state with no batches initially.
* ExecHashTableCreate() will prepare at least one later and set nbatch
* and space_allowed.
*/
pstate->nbatch = 0;
pstate->space_allowed = 0;
pstate->batches = InvalidDsaPointer;
pstate->old_batches = InvalidDsaPointer;
pstate->nbuckets = 0;
pstate->growth = PHJ_GROWTH_OK;
pstate->chunk_work_queue = InvalidDsaPointer;
pg_atomic_init_u32(&pstate->distributor, 0);
pstate->nparticipants = pcxt->nworkers + 1;
pstate->total_tuples = 0;
LWLockInitialize(&pstate->lock,
LWTRANCHE_PARALLEL_HASH_JOIN);
BarrierInit(&pstate->build_barrier, 0);
BarrierInit(&pstate->grow_batches_barrier, 0);
BarrierInit(&pstate->grow_buckets_barrier, 0);
/* Set up the space we'll use for shared temporary files. */
SharedFileSetInit(&pstate->fileset, pcxt->seg);
/* Initialize the shared state in the hash node. */
hashNode = (HashState *) innerPlanState(state);
hashNode->parallel_state = pstate;
}
/* ----------------------------------------------------------------
* ExecHashJoinReInitializeDSM
*
* Reset shared state before beginning a fresh scan.
* ----------------------------------------------------------------
*/
void
ExecHashJoinReInitializeDSM(HashJoinState *state, ParallelContext *cxt)
{
int plan_node_id = state->js.ps.plan->plan_node_id;
ParallelHashJoinState *pstate =
shm_toc_lookup(cxt->toc, plan_node_id, false);
/*
* It would be possible to reuse the shared hash table in single-batch
* cases by resetting and then fast-forwarding build_barrier to
* PHJ_BUILD_DONE and batch 0's batch_barrier to PHJ_BATCH_PROBING, but
* currently shared hash tables are already freed by now (by the last
* participant to detach from the batch). We could consider keeping it
* around for single-batch joins. We'd also need to adjust
* finalize_plan() so that it doesn't record a dummy dependency for
* Parallel Hash nodes, preventing the rescan optimization. For now we
* don't try.
*/
/* Detach, freeing any remaining shared memory. */
if (state->hj_HashTable != NULL)
{
ExecHashTableDetachBatch(state->hj_HashTable);
ExecHashTableDetach(state->hj_HashTable);
}
/* Clear any shared batch files. */
SharedFileSetDeleteAll(&pstate->fileset);
/* Reset build_barrier to PHJ_BUILD_ELECTING so we can go around again. */
BarrierInit(&pstate->build_barrier, 0);
}
void
ExecHashJoinInitializeWorker(HashJoinState *state,
ParallelWorkerContext *pwcxt)
{
HashState *hashNode;
int plan_node_id = state->js.ps.plan->plan_node_id;
ParallelHashJoinState *pstate =
shm_toc_lookup(pwcxt->toc, plan_node_id, false);
/* Attach to the space for shared temporary files. */
SharedFileSetAttach(&pstate->fileset, pwcxt->seg);
/* Attach to the shared state in the hash node. */
hashNode = (HashState *) innerPlanState(state);
hashNode->parallel_state = pstate;
ExecSetExecProcNode(&state->js.ps, ExecParallelHashJoin);
}
|