1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
/*-------------------------------------------------------------------------
*
* bipartite_match.c
* Hopcroft-Karp maximum cardinality algorithm for bipartite graphs
*
* This implementation is based on pseudocode found at:
*
* https://en.wikipedia.org/w/index.php?title=Hopcroft%E2%80%93Karp_algorithm&oldid=593898016
*
* Copyright (c) 2015-2020, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/backend/lib/bipartite_match.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include "lib/bipartite_match.h"
#include "miscadmin.h"
/*
* The distances computed in hk_breadth_search can easily be seen to never
* exceed u_size. Since we restrict u_size to be less than SHRT_MAX, we
* can therefore use SHRT_MAX as the "infinity" distance needed as a marker.
*/
#define HK_INFINITY SHRT_MAX
static bool hk_breadth_search(BipartiteMatchState *state);
static bool hk_depth_search(BipartiteMatchState *state, int u);
/*
* Given the size of U and V, where each is indexed 1..size, and an adjacency
* list, perform the matching and return the resulting state.
*/
BipartiteMatchState *
BipartiteMatch(int u_size, int v_size, short **adjacency)
{
BipartiteMatchState *state = palloc(sizeof(BipartiteMatchState));
if (u_size < 0 || u_size >= SHRT_MAX ||
v_size < 0 || v_size >= SHRT_MAX)
elog(ERROR, "invalid set size for BipartiteMatch");
state->u_size = u_size;
state->v_size = v_size;
state->adjacency = adjacency;
state->matching = 0;
state->pair_uv = (short *) palloc0((u_size + 1) * sizeof(short));
state->pair_vu = (short *) palloc0((v_size + 1) * sizeof(short));
state->distance = (short *) palloc((u_size + 1) * sizeof(short));
state->queue = (short *) palloc((u_size + 2) * sizeof(short));
while (hk_breadth_search(state))
{
int u;
for (u = 1; u <= u_size; u++)
{
if (state->pair_uv[u] == 0)
if (hk_depth_search(state, u))
state->matching++;
}
CHECK_FOR_INTERRUPTS(); /* just in case */
}
return state;
}
/*
* Free a state returned by BipartiteMatch, except for the original adjacency
* list, which is owned by the caller. This only frees memory, so it's optional.
*/
void
BipartiteMatchFree(BipartiteMatchState *state)
{
/* adjacency matrix is treated as owned by the caller */
pfree(state->pair_uv);
pfree(state->pair_vu);
pfree(state->distance);
pfree(state->queue);
pfree(state);
}
/*
* Perform the breadth-first search step of H-K matching.
* Returns true if successful.
*/
static bool
hk_breadth_search(BipartiteMatchState *state)
{
int usize = state->u_size;
short *queue = state->queue;
short *distance = state->distance;
int qhead = 0; /* we never enqueue any node more than once */
int qtail = 0; /* so don't have to worry about wrapping */
int u;
distance[0] = HK_INFINITY;
for (u = 1; u <= usize; u++)
{
if (state->pair_uv[u] == 0)
{
distance[u] = 0;
queue[qhead++] = u;
}
else
distance[u] = HK_INFINITY;
}
while (qtail < qhead)
{
u = queue[qtail++];
if (distance[u] < distance[0])
{
short *u_adj = state->adjacency[u];
int i = u_adj ? u_adj[0] : 0;
for (; i > 0; i--)
{
int u_next = state->pair_vu[u_adj[i]];
if (distance[u_next] == HK_INFINITY)
{
distance[u_next] = 1 + distance[u];
Assert(qhead < usize + 2);
queue[qhead++] = u_next;
}
}
}
}
return (distance[0] != HK_INFINITY);
}
/*
* Perform the depth-first search step of H-K matching.
* Returns true if successful.
*/
static bool
hk_depth_search(BipartiteMatchState *state, int u)
{
short *distance = state->distance;
short *pair_uv = state->pair_uv;
short *pair_vu = state->pair_vu;
short *u_adj = state->adjacency[u];
int i = u_adj ? u_adj[0] : 0;
short nextdist;
if (u == 0)
return true;
if (distance[u] == HK_INFINITY)
return false;
nextdist = distance[u] + 1;
check_stack_depth();
for (; i > 0; i--)
{
int v = u_adj[i];
if (distance[pair_vu[v]] == nextdist)
{
if (hk_depth_search(state, pair_vu[v]))
{
pair_vu[v] = u;
pair_uv[u] = v;
return true;
}
}
}
distance[u] = HK_INFINITY;
return false;
}
|