summaryrefslogtreecommitdiffstats
path: root/src/backend/statistics/dependencies.c
blob: 552843f397caedf58e70b85d853dc4b691f22080 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
/*-------------------------------------------------------------------------
 *
 * dependencies.c
 *	  POSTGRES functional dependencies
 *
 * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/statistics/dependencies.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/htup_details.h"
#include "access/sysattr.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_statistic_ext.h"
#include "catalog/pg_statistic_ext_data.h"
#include "lib/stringinfo.h"
#include "nodes/nodeFuncs.h"
#include "nodes/nodes.h"
#include "nodes/pathnodes.h"
#include "optimizer/clauses.h"
#include "optimizer/optimizer.h"
#include "statistics/extended_stats_internal.h"
#include "statistics/statistics.h"
#include "utils/bytea.h"
#include "utils/fmgroids.h"
#include "utils/fmgrprotos.h"
#include "utils/lsyscache.h"
#include "utils/selfuncs.h"
#include "utils/syscache.h"
#include "utils/typcache.h"

/* size of the struct header fields (magic, type, ndeps) */
#define SizeOfHeader		(3 * sizeof(uint32))

/* size of a serialized dependency (degree, natts, atts) */
#define SizeOfItem(natts) \
	(sizeof(double) + sizeof(AttrNumber) * (1 + (natts)))

/* minimal size of a dependency (with two attributes) */
#define MinSizeOfItem	SizeOfItem(2)

/* minimal size of dependencies, when all deps are minimal */
#define MinSizeOfItems(ndeps) \
	(SizeOfHeader + (ndeps) * MinSizeOfItem)

/*
 * Internal state for DependencyGenerator of dependencies. Dependencies are similar to
 * k-permutations of n elements, except that the order does not matter for the
 * first (k-1) elements. That is, (a,b=>c) and (b,a=>c) are equivalent.
 */
typedef struct DependencyGeneratorData
{
	int			k;				/* size of the dependency */
	int			n;				/* number of possible attributes */
	int			current;		/* next dependency to return (index) */
	AttrNumber	ndependencies;	/* number of dependencies generated */
	AttrNumber *dependencies;	/* array of pre-generated dependencies	*/
} DependencyGeneratorData;

typedef DependencyGeneratorData *DependencyGenerator;

static void generate_dependencies_recurse(DependencyGenerator state,
										  int index, AttrNumber start, AttrNumber *current);
static void generate_dependencies(DependencyGenerator state);
static DependencyGenerator DependencyGenerator_init(int n, int k);
static void DependencyGenerator_free(DependencyGenerator state);
static AttrNumber *DependencyGenerator_next(DependencyGenerator state);
static double dependency_degree(int numrows, HeapTuple *rows, int k,
								AttrNumber *dependency, VacAttrStats **stats, Bitmapset *attrs);
static bool dependency_is_fully_matched(MVDependency *dependency,
										Bitmapset *attnums);
static bool dependency_is_compatible_clause(Node *clause, Index relid,
											AttrNumber *attnum);
static MVDependency *find_strongest_dependency(MVDependencies **dependencies,
											   int ndependencies,
											   Bitmapset *attnums);
static Selectivity clauselist_apply_dependencies(PlannerInfo *root, List *clauses,
												 int varRelid, JoinType jointype,
												 SpecialJoinInfo *sjinfo,
												 MVDependency **dependencies,
												 int ndependencies,
												 AttrNumber *list_attnums,
												 Bitmapset **estimatedclauses);

static void
generate_dependencies_recurse(DependencyGenerator state, int index,
							  AttrNumber start, AttrNumber *current)
{
	/*
	 * The generator handles the first (k-1) elements differently from the
	 * last element.
	 */
	if (index < (state->k - 1))
	{
		AttrNumber	i;

		/*
		 * The first (k-1) values have to be in ascending order, which we
		 * generate recursively.
		 */

		for (i = start; i < state->n; i++)
		{
			current[index] = i;
			generate_dependencies_recurse(state, (index + 1), (i + 1), current);
		}
	}
	else
	{
		int			i;

		/*
		 * the last element is the implied value, which does not respect the
		 * ascending order. We just need to check that the value is not in the
		 * first (k-1) elements.
		 */

		for (i = 0; i < state->n; i++)
		{
			int			j;
			bool		match = false;

			current[index] = i;

			for (j = 0; j < index; j++)
			{
				if (current[j] == i)
				{
					match = true;
					break;
				}
			}

			/*
			 * If the value is not found in the first part of the dependency,
			 * we're done.
			 */
			if (!match)
			{
				state->dependencies = (AttrNumber *) repalloc(state->dependencies,
															  state->k * (state->ndependencies + 1) * sizeof(AttrNumber));
				memcpy(&state->dependencies[(state->k * state->ndependencies)],
					   current, state->k * sizeof(AttrNumber));
				state->ndependencies++;
			}
		}
	}
}

/* generate all dependencies (k-permutations of n elements) */
static void
generate_dependencies(DependencyGenerator state)
{
	AttrNumber *current = (AttrNumber *) palloc0(sizeof(AttrNumber) * state->k);

	generate_dependencies_recurse(state, 0, 0, current);

	pfree(current);
}

/*
 * initialize the DependencyGenerator of variations, and prebuild the variations
 *
 * This pre-builds all the variations. We could also generate them in
 * DependencyGenerator_next(), but this seems simpler.
 */
static DependencyGenerator
DependencyGenerator_init(int n, int k)
{
	DependencyGenerator state;

	Assert((n >= k) && (k > 0));

	/* allocate the DependencyGenerator state */
	state = (DependencyGenerator) palloc0(sizeof(DependencyGeneratorData));
	state->dependencies = (AttrNumber *) palloc(k * sizeof(AttrNumber));

	state->ndependencies = 0;
	state->current = 0;
	state->k = k;
	state->n = n;

	/* now actually pre-generate all the variations */
	generate_dependencies(state);

	return state;
}

/* free the DependencyGenerator state */
static void
DependencyGenerator_free(DependencyGenerator state)
{
	pfree(state->dependencies);
	pfree(state);

}

/* generate next combination */
static AttrNumber *
DependencyGenerator_next(DependencyGenerator state)
{
	if (state->current == state->ndependencies)
		return NULL;

	return &state->dependencies[state->k * state->current++];
}


/*
 * validates functional dependency on the data
 *
 * An actual work horse of detecting functional dependencies. Given a variation
 * of k attributes, it checks that the first (k-1) are sufficient to determine
 * the last one.
 */
static double
dependency_degree(int numrows, HeapTuple *rows, int k, AttrNumber *dependency,
				  VacAttrStats **stats, Bitmapset *attrs)
{
	int			i,
				nitems;
	MultiSortSupport mss;
	SortItem   *items;
	AttrNumber *attnums;
	AttrNumber *attnums_dep;
	int			numattrs;

	/* counters valid within a group */
	int			group_size = 0;
	int			n_violations = 0;

	/* total number of rows supporting (consistent with) the dependency */
	int			n_supporting_rows = 0;

	/* Make sure we have at least two input attributes. */
	Assert(k >= 2);

	/* sort info for all attributes columns */
	mss = multi_sort_init(k);

	/*
	 * Transform the attrs from bitmap to an array to make accessing the i-th
	 * member easier, and then construct a filtered version with only attnums
	 * referenced by the dependency we validate.
	 */
	attnums = build_attnums_array(attrs, &numattrs);

	attnums_dep = (AttrNumber *) palloc(k * sizeof(AttrNumber));
	for (i = 0; i < k; i++)
		attnums_dep[i] = attnums[dependency[i]];

	/*
	 * Verify the dependency (a,b,...)->z, using a rather simple algorithm:
	 *
	 * (a) sort the data lexicographically
	 *
	 * (b) split the data into groups by first (k-1) columns
	 *
	 * (c) for each group count different values in the last column
	 *
	 * We use the column data types' default sort operators and collations;
	 * perhaps at some point it'd be worth using column-specific collations?
	 */

	/* prepare the sort function for the dimensions */
	for (i = 0; i < k; i++)
	{
		VacAttrStats *colstat = stats[dependency[i]];
		TypeCacheEntry *type;

		type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR);
		if (type->lt_opr == InvalidOid) /* shouldn't happen */
			elog(ERROR, "cache lookup failed for ordering operator for type %u",
				 colstat->attrtypid);

		/* prepare the sort function for this dimension */
		multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid);
	}

	/*
	 * build an array of SortItem(s) sorted using the multi-sort support
	 *
	 * XXX This relies on all stats entries pointing to the same tuple
	 * descriptor.  For now that assumption holds, but it might change in the
	 * future for example if we support statistics on multiple tables.
	 */
	items = build_sorted_items(numrows, &nitems, rows, stats[0]->tupDesc,
							   mss, k, attnums_dep);

	/*
	 * Walk through the sorted array, split it into rows according to the
	 * first (k-1) columns. If there's a single value in the last column, we
	 * count the group as 'supporting' the functional dependency. Otherwise we
	 * count it as contradicting.
	 */

	/* start with the first row forming a group */
	group_size = 1;

	/* loop 1 beyond the end of the array so that we count the final group */
	for (i = 1; i <= nitems; i++)
	{
		/*
		 * Check if the group ended, which may be either because we processed
		 * all the items (i==nitems), or because the i-th item is not equal to
		 * the preceding one.
		 */
		if (i == nitems ||
			multi_sort_compare_dims(0, k - 2, &items[i - 1], &items[i], mss) != 0)
		{
			/*
			 * If no violations were found in the group then track the rows of
			 * the group as supporting the functional dependency.
			 */
			if (n_violations == 0)
				n_supporting_rows += group_size;

			/* Reset counters for the new group */
			n_violations = 0;
			group_size = 1;
			continue;
		}
		/* first columns match, but the last one does not (so contradicting) */
		else if (multi_sort_compare_dim(k - 1, &items[i - 1], &items[i], mss) != 0)
			n_violations++;

		group_size++;
	}

	if (items)
		pfree(items);

	pfree(mss);
	pfree(attnums);
	pfree(attnums_dep);

	/* Compute the 'degree of validity' as (supporting/total). */
	return (n_supporting_rows * 1.0 / numrows);
}

/*
 * detects functional dependencies between groups of columns
 *
 * Generates all possible subsets of columns (variations) and computes
 * the degree of validity for each one. For example when creating statistics
 * on three columns (a,b,c) there are 9 possible dependencies
 *
 *	   two columns			  three columns
 *	   -----------			  -------------
 *	   (a) -> b				  (a,b) -> c
 *	   (a) -> c				  (a,c) -> b
 *	   (b) -> a				  (b,c) -> a
 *	   (b) -> c
 *	   (c) -> a
 *	   (c) -> b
 */
MVDependencies *
statext_dependencies_build(int numrows, HeapTuple *rows, Bitmapset *attrs,
						   VacAttrStats **stats)
{
	int			i,
				k;
	int			numattrs;
	AttrNumber *attnums;

	/* result */
	MVDependencies *dependencies = NULL;

	/*
	 * Transform the bms into an array, to make accessing i-th member easier.
	 */
	attnums = build_attnums_array(attrs, &numattrs);

	Assert(numattrs >= 2);

	/*
	 * We'll try build functional dependencies starting from the smallest ones
	 * covering just 2 columns, to the largest ones, covering all columns
	 * included in the statistics object.  We start from the smallest ones
	 * because we want to be able to skip already implied ones.
	 */
	for (k = 2; k <= numattrs; k++)
	{
		AttrNumber *dependency; /* array with k elements */

		/* prepare a DependencyGenerator of variation */
		DependencyGenerator DependencyGenerator = DependencyGenerator_init(numattrs, k);

		/* generate all possible variations of k values (out of n) */
		while ((dependency = DependencyGenerator_next(DependencyGenerator)))
		{
			double		degree;
			MVDependency *d;

			/* compute how valid the dependency seems */
			degree = dependency_degree(numrows, rows, k, dependency, stats, attrs);

			/*
			 * if the dependency seems entirely invalid, don't store it
			 */
			if (degree == 0.0)
				continue;

			d = (MVDependency *) palloc0(offsetof(MVDependency, attributes)
										 + k * sizeof(AttrNumber));

			/* copy the dependency (and keep the indexes into stxkeys) */
			d->degree = degree;
			d->nattributes = k;
			for (i = 0; i < k; i++)
				d->attributes[i] = attnums[dependency[i]];

			/* initialize the list of dependencies */
			if (dependencies == NULL)
			{
				dependencies
					= (MVDependencies *) palloc0(sizeof(MVDependencies));

				dependencies->magic = STATS_DEPS_MAGIC;
				dependencies->type = STATS_DEPS_TYPE_BASIC;
				dependencies->ndeps = 0;
			}

			dependencies->ndeps++;
			dependencies = (MVDependencies *) repalloc(dependencies,
													   offsetof(MVDependencies, deps)
													   + dependencies->ndeps * sizeof(MVDependency *));

			dependencies->deps[dependencies->ndeps - 1] = d;
		}

		/*
		 * we're done with variations of k elements, so free the
		 * DependencyGenerator
		 */
		DependencyGenerator_free(DependencyGenerator);
	}

	return dependencies;
}


/*
 * Serialize list of dependencies into a bytea value.
 */
bytea *
statext_dependencies_serialize(MVDependencies *dependencies)
{
	int			i;
	bytea	   *output;
	char	   *tmp;
	Size		len;

	/* we need to store ndeps, with a number of attributes for each one */
	len = VARHDRSZ + SizeOfHeader;

	/* and also include space for the actual attribute numbers and degrees */
	for (i = 0; i < dependencies->ndeps; i++)
		len += SizeOfItem(dependencies->deps[i]->nattributes);

	output = (bytea *) palloc0(len);
	SET_VARSIZE(output, len);

	tmp = VARDATA(output);

	/* Store the base struct values (magic, type, ndeps) */
	memcpy(tmp, &dependencies->magic, sizeof(uint32));
	tmp += sizeof(uint32);
	memcpy(tmp, &dependencies->type, sizeof(uint32));
	tmp += sizeof(uint32);
	memcpy(tmp, &dependencies->ndeps, sizeof(uint32));
	tmp += sizeof(uint32);

	/* store number of attributes and attribute numbers for each dependency */
	for (i = 0; i < dependencies->ndeps; i++)
	{
		MVDependency *d = dependencies->deps[i];

		memcpy(tmp, &d->degree, sizeof(double));
		tmp += sizeof(double);

		memcpy(tmp, &d->nattributes, sizeof(AttrNumber));
		tmp += sizeof(AttrNumber);

		memcpy(tmp, d->attributes, sizeof(AttrNumber) * d->nattributes);
		tmp += sizeof(AttrNumber) * d->nattributes;

		/* protect against overflow */
		Assert(tmp <= ((char *) output + len));
	}

	/* make sure we've produced exactly the right amount of data */
	Assert(tmp == ((char *) output + len));

	return output;
}

/*
 * Reads serialized dependencies into MVDependencies structure.
 */
MVDependencies *
statext_dependencies_deserialize(bytea *data)
{
	int			i;
	Size		min_expected_size;
	MVDependencies *dependencies;
	char	   *tmp;

	if (data == NULL)
		return NULL;

	if (VARSIZE_ANY_EXHDR(data) < SizeOfHeader)
		elog(ERROR, "invalid MVDependencies size %zd (expected at least %zd)",
			 VARSIZE_ANY_EXHDR(data), SizeOfHeader);

	/* read the MVDependencies header */
	dependencies = (MVDependencies *) palloc0(sizeof(MVDependencies));

	/* initialize pointer to the data part (skip the varlena header) */
	tmp = VARDATA_ANY(data);

	/* read the header fields and perform basic sanity checks */
	memcpy(&dependencies->magic, tmp, sizeof(uint32));
	tmp += sizeof(uint32);
	memcpy(&dependencies->type, tmp, sizeof(uint32));
	tmp += sizeof(uint32);
	memcpy(&dependencies->ndeps, tmp, sizeof(uint32));
	tmp += sizeof(uint32);

	if (dependencies->magic != STATS_DEPS_MAGIC)
		elog(ERROR, "invalid dependency magic %d (expected %d)",
			 dependencies->magic, STATS_DEPS_MAGIC);

	if (dependencies->type != STATS_DEPS_TYPE_BASIC)
		elog(ERROR, "invalid dependency type %d (expected %d)",
			 dependencies->type, STATS_DEPS_TYPE_BASIC);

	if (dependencies->ndeps == 0)
		elog(ERROR, "invalid zero-length item array in MVDependencies");

	/* what minimum bytea size do we expect for those parameters */
	min_expected_size = SizeOfItem(dependencies->ndeps);

	if (VARSIZE_ANY_EXHDR(data) < min_expected_size)
		elog(ERROR, "invalid dependencies size %zd (expected at least %zd)",
			 VARSIZE_ANY_EXHDR(data), min_expected_size);

	/* allocate space for the MCV items */
	dependencies = repalloc(dependencies, offsetof(MVDependencies, deps)
							+ (dependencies->ndeps * sizeof(MVDependency *)));

	for (i = 0; i < dependencies->ndeps; i++)
	{
		double		degree;
		AttrNumber	k;
		MVDependency *d;

		/* degree of validity */
		memcpy(&degree, tmp, sizeof(double));
		tmp += sizeof(double);

		/* number of attributes */
		memcpy(&k, tmp, sizeof(AttrNumber));
		tmp += sizeof(AttrNumber);

		/* is the number of attributes valid? */
		Assert((k >= 2) && (k <= STATS_MAX_DIMENSIONS));

		/* now that we know the number of attributes, allocate the dependency */
		d = (MVDependency *) palloc0(offsetof(MVDependency, attributes)
									 + (k * sizeof(AttrNumber)));

		d->degree = degree;
		d->nattributes = k;

		/* copy attribute numbers */
		memcpy(d->attributes, tmp, sizeof(AttrNumber) * d->nattributes);
		tmp += sizeof(AttrNumber) * d->nattributes;

		dependencies->deps[i] = d;

		/* still within the bytea */
		Assert(tmp <= ((char *) data + VARSIZE_ANY(data)));
	}

	/* we should have consumed the whole bytea exactly */
	Assert(tmp == ((char *) data + VARSIZE_ANY(data)));

	return dependencies;
}

/*
 * dependency_is_fully_matched
 *		checks that a functional dependency is fully matched given clauses on
 *		attributes (assuming the clauses are suitable equality clauses)
 */
static bool
dependency_is_fully_matched(MVDependency *dependency, Bitmapset *attnums)
{
	int			j;

	/*
	 * Check that the dependency actually is fully covered by clauses. We have
	 * to translate all attribute numbers, as those are referenced
	 */
	for (j = 0; j < dependency->nattributes; j++)
	{
		int			attnum = dependency->attributes[j];

		if (!bms_is_member(attnum, attnums))
			return false;
	}

	return true;
}

/*
 * statext_dependencies_load
 *		Load the functional dependencies for the indicated pg_statistic_ext tuple
 */
MVDependencies *
statext_dependencies_load(Oid mvoid)
{
	MVDependencies *result;
	bool		isnull;
	Datum		deps;
	HeapTuple	htup;

	htup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(mvoid));
	if (!HeapTupleIsValid(htup))
		elog(ERROR, "cache lookup failed for statistics object %u", mvoid);

	deps = SysCacheGetAttr(STATEXTDATASTXOID, htup,
						   Anum_pg_statistic_ext_data_stxddependencies, &isnull);
	if (isnull)
		elog(ERROR,
			 "requested statistics kind \"%c\" is not yet built for statistics object %u",
			 STATS_EXT_DEPENDENCIES, mvoid);

	result = statext_dependencies_deserialize(DatumGetByteaPP(deps));

	ReleaseSysCache(htup);

	return result;
}

/*
 * pg_dependencies_in		- input routine for type pg_dependencies.
 *
 * pg_dependencies is real enough to be a table column, but it has no operations
 * of its own, and disallows input too
 */
Datum
pg_dependencies_in(PG_FUNCTION_ARGS)
{
	/*
	 * pg_node_list stores the data in binary form and parsing text input is
	 * not needed, so disallow this.
	 */
	ereport(ERROR,
			(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
			 errmsg("cannot accept a value of type %s", "pg_dependencies")));

	PG_RETURN_VOID();			/* keep compiler quiet */
}

/*
 * pg_dependencies		- output routine for type pg_dependencies.
 */
Datum
pg_dependencies_out(PG_FUNCTION_ARGS)
{
	bytea	   *data = PG_GETARG_BYTEA_PP(0);
	MVDependencies *dependencies = statext_dependencies_deserialize(data);
	int			i,
				j;
	StringInfoData str;

	initStringInfo(&str);
	appendStringInfoChar(&str, '{');

	for (i = 0; i < dependencies->ndeps; i++)
	{
		MVDependency *dependency = dependencies->deps[i];

		if (i > 0)
			appendStringInfoString(&str, ", ");

		appendStringInfoChar(&str, '"');
		for (j = 0; j < dependency->nattributes; j++)
		{
			if (j == dependency->nattributes - 1)
				appendStringInfoString(&str, " => ");
			else if (j > 0)
				appendStringInfoString(&str, ", ");

			appendStringInfo(&str, "%d", dependency->attributes[j]);
		}
		appendStringInfo(&str, "\": %f", dependency->degree);
	}

	appendStringInfoChar(&str, '}');

	PG_RETURN_CSTRING(str.data);
}

/*
 * pg_dependencies_recv		- binary input routine for type pg_dependencies.
 */
Datum
pg_dependencies_recv(PG_FUNCTION_ARGS)
{
	ereport(ERROR,
			(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
			 errmsg("cannot accept a value of type %s", "pg_dependencies")));

	PG_RETURN_VOID();			/* keep compiler quiet */
}

/*
 * pg_dependencies_send		- binary output routine for type pg_dependencies.
 *
 * Functional dependencies are serialized in a bytea value (although the type
 * is named differently), so let's just send that.
 */
Datum
pg_dependencies_send(PG_FUNCTION_ARGS)
{
	return byteasend(fcinfo);
}

/*
 * dependency_is_compatible_clause
 *		Determines if the clause is compatible with functional dependencies
 *
 * Only clauses that have the form of equality to a pseudoconstant, or can be
 * interpreted that way, are currently accepted.  Furthermore the variable
 * part of the clause must be a simple Var belonging to the specified
 * relation, whose attribute number we return in *attnum on success.
 */
static bool
dependency_is_compatible_clause(Node *clause, Index relid, AttrNumber *attnum)
{
	Var		   *var;

	if (IsA(clause, RestrictInfo))
	{
		RestrictInfo *rinfo = (RestrictInfo *) clause;

		/* Pseudoconstants are not interesting (they couldn't contain a Var) */
		if (rinfo->pseudoconstant)
			return false;

		/* Clauses referencing multiple, or no, varnos are incompatible */
		if (bms_membership(rinfo->clause_relids) != BMS_SINGLETON)
			return false;

		clause = (Node *) rinfo->clause;
	}

	if (is_opclause(clause))
	{
		/* If it's an opclause, check for Var = Const or Const = Var. */
		OpExpr	   *expr = (OpExpr *) clause;

		/* Only expressions with two arguments are candidates. */
		if (list_length(expr->args) != 2)
			return false;

		/* Make sure non-selected argument is a pseudoconstant. */
		if (is_pseudo_constant_clause(lsecond(expr->args)))
			var = linitial(expr->args);
		else if (is_pseudo_constant_clause(linitial(expr->args)))
			var = lsecond(expr->args);
		else
			return false;

		/*
		 * If it's not an "=" operator, just ignore the clause, as it's not
		 * compatible with functional dependencies.
		 *
		 * This uses the function for estimating selectivity, not the operator
		 * directly (a bit awkward, but well ...).
		 *
		 * XXX this is pretty dubious; probably it'd be better to check btree
		 * or hash opclass membership, so as not to be fooled by custom
		 * selectivity functions, and to be more consistent with decisions
		 * elsewhere in the planner.
		 */
		if (get_oprrest(expr->opno) != F_EQSEL)
			return false;

		/* OK to proceed with checking "var" */
	}
	else if (IsA(clause, ScalarArrayOpExpr))
	{
		/* If it's an scalar array operator, check for Var IN Const. */
		ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;

		/*
		 * Reject ALL() variant, we only care about ANY/IN.
		 *
		 * FIXME Maybe we should check if all the values are the same, and
		 * allow ALL in that case? Doesn't seem very practical, though.
		 */
		if (!expr->useOr)
			return false;

		/* Only expressions with two arguments are candidates. */
		if (list_length(expr->args) != 2)
			return false;

		/*
		 * We know it's always (Var IN Const), so we assume the var is the
		 * first argument, and pseudoconstant is the second one.
		 */
		if (!is_pseudo_constant_clause(lsecond(expr->args)))
			return false;

		var = linitial(expr->args);

		/*
		 * If it's not an "=" operator, just ignore the clause, as it's not
		 * compatible with functional dependencies. The operator is identified
		 * simply by looking at which function it uses to estimate
		 * selectivity. That's a bit strange, but it's what other similar
		 * places do.
		 */
		if (get_oprrest(expr->opno) != F_EQSEL)
			return false;

		/* OK to proceed with checking "var" */
	}
	else if (is_orclause(clause))
	{
		BoolExpr   *expr = (BoolExpr *) clause;
		ListCell   *lc;

		/* start with no attribute number */
		*attnum = InvalidAttrNumber;

		foreach(lc, expr->args)
		{
			AttrNumber	clause_attnum;

			/*
			 * Had we found incompatible clause in the arguments, treat the
			 * whole clause as incompatible.
			 */
			if (!dependency_is_compatible_clause((Node *) lfirst(lc),
												 relid, &clause_attnum))
				return false;

			if (*attnum == InvalidAttrNumber)
				*attnum = clause_attnum;

			if (*attnum != clause_attnum)
				return false;
		}

		/* the Var is already checked by the recursive call */
		return true;
	}
	else if (is_notclause(clause))
	{
		/*
		 * "NOT x" can be interpreted as "x = false", so get the argument and
		 * proceed with seeing if it's a suitable Var.
		 */
		var = (Var *) get_notclausearg(clause);
	}
	else
	{
		/*
		 * A boolean expression "x" can be interpreted as "x = true", so
		 * proceed with seeing if it's a suitable Var.
		 */
		var = (Var *) clause;
	}

	/*
	 * We may ignore any RelabelType node above the operand.  (There won't be
	 * more than one, since eval_const_expressions has been applied already.)
	 */
	if (IsA(var, RelabelType))
		var = (Var *) ((RelabelType *) var)->arg;

	/* We only support plain Vars for now */
	if (!IsA(var, Var))
		return false;

	/* Ensure Var is from the correct relation */
	if (var->varno != relid)
		return false;

	/* We also better ensure the Var is from the current level */
	if (var->varlevelsup != 0)
		return false;

	/* Also ignore system attributes (we don't allow stats on those) */
	if (!AttrNumberIsForUserDefinedAttr(var->varattno))
		return false;

	*attnum = var->varattno;
	return true;
}

/*
 * find_strongest_dependency
 *		find the strongest dependency on the attributes
 *
 * When applying functional dependencies, we start with the strongest
 * dependencies. That is, we select the dependency that:
 *
 * (a) has all attributes covered by equality clauses
 *
 * (b) has the most attributes
 *
 * (c) has the highest degree of validity
 *
 * This guarantees that we eliminate the most redundant conditions first
 * (see the comment in dependencies_clauselist_selectivity).
 */
static MVDependency *
find_strongest_dependency(MVDependencies **dependencies, int ndependencies,
						  Bitmapset *attnums)
{
	int			i,
				j;
	MVDependency *strongest = NULL;

	/* number of attnums in clauses */
	int			nattnums = bms_num_members(attnums);

	/*
	 * Iterate over the MVDependency items and find the strongest one from the
	 * fully-matched dependencies. We do the cheap checks first, before
	 * matching it against the attnums.
	 */
	for (i = 0; i < ndependencies; i++)
	{
		for (j = 0; j < dependencies[i]->ndeps; j++)
		{
			MVDependency *dependency = dependencies[i]->deps[j];

			/*
			 * Skip dependencies referencing more attributes than available
			 * clauses, as those can't be fully matched.
			 */
			if (dependency->nattributes > nattnums)
				continue;

			if (strongest)
			{
				/* skip dependencies on fewer attributes than the strongest. */
				if (dependency->nattributes < strongest->nattributes)
					continue;

				/* also skip weaker dependencies when attribute count matches */
				if (strongest->nattributes == dependency->nattributes &&
					strongest->degree > dependency->degree)
					continue;
			}

			/*
			 * this dependency is stronger, but we must still check that it's
			 * fully matched to these attnums. We perform this check last as
			 * it's slightly more expensive than the previous checks.
			 */
			if (dependency_is_fully_matched(dependency, attnums))
				strongest = dependency; /* save new best match */
		}
	}

	return strongest;
}

/*
 * clauselist_apply_dependencies
 *		Apply the specified functional dependencies to a list of clauses and
 *		return the estimated selecvitity of the clauses that are compatible
 *		with any of the given dependencies.
 *
 * This will estimate all not-already-estimated clauses that are compatible
 * with functional dependencies, and which have an attribute mentioned by any
 * of the given dependencies (either as an implying or implied attribute).
 *
 * Given (lists of) clauses on attributes (a,b) and a functional dependency
 * (a=>b), the per-column selectivities P(a) and P(b) are notionally combined
 * using the formula
 *
 *		P(a,b) = f * P(a) + (1-f) * P(a) * P(b)
 *
 * where 'f' is the degree of dependency.  This reflects the fact that we
 * expect a fraction f of all rows to be consistent with the dependency
 * (a=>b), and so have a selectivity of P(a), while the remaining rows are
 * treated as independent.
 *
 * In practice, we use a slightly modified version of this formula, which uses
 * a selectivity of Min(P(a), P(b)) for the dependent rows, since the result
 * should obviously not exceed either column's individual selectivity.  I.e.,
 * we actually combine selectivities using the formula
 *
 *		P(a,b) = f * Min(P(a), P(b)) + (1-f) * P(a) * P(b)
 *
 * This can make quite a difference if the specific values matching the
 * clauses are not consistent with the functional dependency.
 */
static Selectivity
clauselist_apply_dependencies(PlannerInfo *root, List *clauses,
							  int varRelid, JoinType jointype,
							  SpecialJoinInfo *sjinfo,
							  MVDependency **dependencies, int ndependencies,
							  AttrNumber *list_attnums,
							  Bitmapset **estimatedclauses)
{
	Bitmapset  *attnums;
	int			i;
	int			j;
	int			nattrs;
	Selectivity *attr_sel;
	int			attidx;
	int			listidx;
	ListCell   *l;
	Selectivity s1;

	/*
	 * Extract the attnums of all implying and implied attributes from all the
	 * given dependencies.  Each of these attributes is expected to have at
	 * least 1 not-already-estimated compatible clause that we will estimate
	 * here.
	 */
	attnums = NULL;
	for (i = 0; i < ndependencies; i++)
	{
		for (j = 0; j < dependencies[i]->nattributes; j++)
		{
			AttrNumber	attnum = dependencies[i]->attributes[j];

			attnums = bms_add_member(attnums, attnum);
		}
	}

	/*
	 * Compute per-column selectivity estimates for each of these attributes,
	 * and mark all the corresponding clauses as estimated.
	 */
	nattrs = bms_num_members(attnums);
	attr_sel = (Selectivity *) palloc(sizeof(Selectivity) * nattrs);

	attidx = 0;
	i = -1;
	while ((i = bms_next_member(attnums, i)) >= 0)
	{
		List	   *attr_clauses = NIL;
		Selectivity simple_sel;

		listidx = -1;
		foreach(l, clauses)
		{
			Node	   *clause = (Node *) lfirst(l);

			listidx++;
			if (list_attnums[listidx] == i)
			{
				attr_clauses = lappend(attr_clauses, clause);
				*estimatedclauses = bms_add_member(*estimatedclauses, listidx);
			}
		}

		simple_sel = clauselist_selectivity_simple(root, attr_clauses, varRelid,
												   jointype, sjinfo, NULL);
		attr_sel[attidx++] = simple_sel;
	}

	/*
	 * Now combine these selectivities using the dependency information.  For
	 * chains of dependencies such as a -> b -> c, the b -> c dependency will
	 * come before the a -> b dependency in the array, so we traverse the
	 * array backwards to ensure such chains are computed in the right order.
	 *
	 * As explained above, pairs of selectivities are combined using the
	 * formula
	 *
	 * P(a,b) = f * Min(P(a), P(b)) + (1-f) * P(a) * P(b)
	 *
	 * to ensure that the combined selectivity is never greater than either
	 * individual selectivity.
	 *
	 * Where multiple dependencies apply (e.g., a -> b -> c), we use
	 * conditional probabilities to compute the overall result as follows:
	 *
	 * P(a,b,c) = P(c|a,b) * P(a,b) = P(c|a,b) * P(b|a) * P(a)
	 *
	 * so we replace the selectivities of all implied attributes with
	 * conditional probabilities, that are conditional on all their implying
	 * attributes.  The selectivities of all other non-implied attributes are
	 * left as they are.
	 */
	for (i = ndependencies - 1; i >= 0; i--)
	{
		MVDependency *dependency = dependencies[i];
		AttrNumber	attnum;
		Selectivity s2;
		double		f;

		/* Selectivity of all the implying attributes */
		s1 = 1.0;
		for (j = 0; j < dependency->nattributes - 1; j++)
		{
			attnum = dependency->attributes[j];
			attidx = bms_member_index(attnums, attnum);
			s1 *= attr_sel[attidx];
		}

		/* Original selectivity of the implied attribute */
		attnum = dependency->attributes[j];
		attidx = bms_member_index(attnums, attnum);
		s2 = attr_sel[attidx];

		/*
		 * Replace s2 with the conditional probability s2 given s1, computed
		 * using the formula P(b|a) = P(a,b) / P(a), which simplifies to
		 *
		 * P(b|a) = f * Min(P(a), P(b)) / P(a) + (1-f) * P(b)
		 *
		 * where P(a) = s1, the selectivity of the implying attributes, and
		 * P(b) = s2, the selectivity of the implied attribute.
		 */
		f = dependency->degree;

		if (s1 <= s2)
			attr_sel[attidx] = f + (1 - f) * s2;
		else
			attr_sel[attidx] = f * s2 / s1 + (1 - f) * s2;
	}

	/*
	 * The overall selectivity of all the clauses on all these attributes is
	 * then the product of all the original (non-implied) probabilities and
	 * the new conditional (implied) probabilities.
	 */
	s1 = 1.0;
	for (i = 0; i < nattrs; i++)
		s1 *= attr_sel[i];

	CLAMP_PROBABILITY(s1);

	pfree(attr_sel);
	bms_free(attnums);

	return s1;
}

/*
 * dependencies_clauselist_selectivity
 *		Return the estimated selectivity of (a subset of) the given clauses
 *		using functional dependency statistics, or 1.0 if no useful functional
 *		dependency statistic exists.
 *
 * 'estimatedclauses' is an input/output argument that gets a bit set
 * corresponding to the (zero-based) list index of each clause that is included
 * in the estimated selectivity.
 *
 * Given equality clauses on attributes (a,b) we find the strongest dependency
 * between them, i.e. either (a=>b) or (b=>a). Assuming (a=>b) is the selected
 * dependency, we then combine the per-clause selectivities using the formula
 *
 *	   P(a,b) = f * P(a) + (1-f) * P(a) * P(b)
 *
 * where 'f' is the degree of the dependency.  (Actually we use a slightly
 * modified version of this formula -- see clauselist_apply_dependencies()).
 *
 * With clauses on more than two attributes, the dependencies are applied
 * recursively, starting with the widest/strongest dependencies. For example
 * P(a,b,c) is first split like this:
 *
 *	   P(a,b,c) = f * P(a,b) + (1-f) * P(a,b) * P(c)
 *
 * assuming (a,b=>c) is the strongest dependency.
 */
Selectivity
dependencies_clauselist_selectivity(PlannerInfo *root,
									List *clauses,
									int varRelid,
									JoinType jointype,
									SpecialJoinInfo *sjinfo,
									RelOptInfo *rel,
									Bitmapset **estimatedclauses)
{
	Selectivity s1 = 1.0;
	ListCell   *l;
	Bitmapset  *clauses_attnums = NULL;
	AttrNumber *list_attnums;
	int			listidx;
	MVDependencies **func_dependencies;
	int			nfunc_dependencies;
	int			total_ndeps;
	MVDependency **dependencies;
	int			ndependencies;
	int			i;

	/* check if there's any stats that might be useful for us. */
	if (!has_stats_of_kind(rel->statlist, STATS_EXT_DEPENDENCIES))
		return 1.0;

	list_attnums = (AttrNumber *) palloc(sizeof(AttrNumber) *
										 list_length(clauses));

	/*
	 * Pre-process the clauses list to extract the attnums seen in each item.
	 * We need to determine if there's any clauses which will be useful for
	 * dependency selectivity estimations. Along the way we'll record all of
	 * the attnums for each clause in a list which we'll reference later so we
	 * don't need to repeat the same work again. We'll also keep track of all
	 * attnums seen.
	 *
	 * We also skip clauses that we already estimated using different types of
	 * statistics (we treat them as incompatible).
	 */
	listidx = 0;
	foreach(l, clauses)
	{
		Node	   *clause = (Node *) lfirst(l);
		AttrNumber	attnum;

		if (!bms_is_member(listidx, *estimatedclauses) &&
			dependency_is_compatible_clause(clause, rel->relid, &attnum))
		{
			list_attnums[listidx] = attnum;
			clauses_attnums = bms_add_member(clauses_attnums, attnum);
		}
		else
			list_attnums[listidx] = InvalidAttrNumber;

		listidx++;
	}

	/*
	 * If there's not at least two distinct attnums then reject the whole list
	 * of clauses. We must return 1.0 so the calling function's selectivity is
	 * unaffected.
	 */
	if (bms_num_members(clauses_attnums) < 2)
	{
		bms_free(clauses_attnums);
		pfree(list_attnums);
		return 1.0;
	}

	/*
	 * Load all functional dependencies matching at least two parameters. We
	 * can simply consider all dependencies at once, without having to search
	 * for the best statistics object.
	 *
	 * To not waste cycles and memory, we deserialize dependencies only for
	 * statistics that match at least two attributes. The array is allocated
	 * with the assumption that all objects match - we could grow the array to
	 * make it just the right size, but it's likely wasteful anyway thanks to
	 * moving the freed chunks to freelists etc.
	 */
	func_dependencies = (MVDependencies **) palloc(sizeof(MVDependencies *) *
												   list_length(rel->statlist));
	nfunc_dependencies = 0;
	total_ndeps = 0;

	foreach(l, rel->statlist)
	{
		StatisticExtInfo *stat = (StatisticExtInfo *) lfirst(l);
		Bitmapset  *matched;
		int			num_matched;

		/* skip statistics that are not of the correct type */
		if (stat->kind != STATS_EXT_DEPENDENCIES)
			continue;

		matched = bms_intersect(clauses_attnums, stat->keys);
		num_matched = bms_num_members(matched);
		bms_free(matched);

		/* skip objects matching fewer than two attributes from clauses */
		if (num_matched < 2)
			continue;

		func_dependencies[nfunc_dependencies]
			= statext_dependencies_load(stat->statOid);

		total_ndeps += func_dependencies[nfunc_dependencies]->ndeps;
		nfunc_dependencies++;
	}

	/* if no matching stats could be found then we've nothing to do */
	if (nfunc_dependencies == 0)
	{
		pfree(func_dependencies);
		bms_free(clauses_attnums);
		pfree(list_attnums);
		return 1.0;
	}

	/*
	 * Work out which dependencies we can apply, starting with the
	 * widest/stongest ones, and proceeding to smaller/weaker ones.
	 */
	dependencies = (MVDependency **) palloc(sizeof(MVDependency *) *
											total_ndeps);
	ndependencies = 0;

	while (true)
	{
		MVDependency *dependency;
		AttrNumber	attnum;

		/* the widest/strongest dependency, fully matched by clauses */
		dependency = find_strongest_dependency(func_dependencies,
											   nfunc_dependencies,
											   clauses_attnums);
		if (!dependency)
			break;

		dependencies[ndependencies++] = dependency;

		/* Ignore dependencies using this implied attribute in later loops */
		attnum = dependency->attributes[dependency->nattributes - 1];
		clauses_attnums = bms_del_member(clauses_attnums, attnum);
	}

	/*
	 * If we found applicable dependencies, use them to estimate all
	 * compatible clauses on attributes that they refer to.
	 */
	if (ndependencies != 0)
		s1 = clauselist_apply_dependencies(root, clauses, varRelid, jointype,
										   sjinfo, dependencies, ndependencies,
										   list_attnums, estimatedclauses);

	/* free deserialized functional dependencies (and then the array) */
	for (i = 0; i < nfunc_dependencies; i++)
		pfree(func_dependencies[i]);

	pfree(dependencies);
	pfree(func_dependencies);
	bms_free(clauses_attnums);
	pfree(list_attnums);

	return s1;
}