summaryrefslogtreecommitdiffstats
path: root/src/backend/storage/ipc/dsm_impl.c
blob: 1972aecbedc1aab7a235558a81e1a16308d01da7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
/*-------------------------------------------------------------------------
 *
 * dsm_impl.c
 *	  manage dynamic shared memory segments
 *
 * This file provides low-level APIs for creating and destroying shared
 * memory segments using several different possible techniques.  We refer
 * to these segments as dynamic because they can be created, altered, and
 * destroyed at any point during the server life cycle.  This is unlike
 * the main shared memory segment, of which there is always exactly one
 * and which is always mapped at a fixed address in every PostgreSQL
 * background process.
 *
 * Because not all systems provide the same primitives in this area, nor
 * do all primitives behave the same way on all systems, we provide
 * several implementations of this facility.  Many systems implement
 * POSIX shared memory (shm_open etc.), which is well-suited to our needs
 * in this area, with the exception that shared memory identifiers live
 * in a flat system-wide namespace, raising the uncomfortable prospect of
 * name collisions with other processes (including other copies of
 * PostgreSQL) running on the same system.  Some systems only support
 * the older System V shared memory interface (shmget etc.) which is
 * also usable; however, the default allocation limits are often quite
 * small, and the namespace is even more restricted.
 *
 * We also provide an mmap-based shared memory implementation.  This may
 * be useful on systems that provide shared memory via a special-purpose
 * filesystem; by opting for this implementation, the user can even
 * control precisely where their shared memory segments are placed.  It
 * can also be used as a fallback for systems where shm_open and shmget
 * are not available or can't be used for some reason.  Of course,
 * mapping a file residing on an actual spinning disk is a fairly poor
 * approximation for shared memory because writeback may hurt performance
 * substantially, but there should be few systems where we must make do
 * with such poor tools.
 *
 * As ever, Windows requires its own implementation.
 *
 * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/storage/ipc/dsm_impl.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include <fcntl.h>
#include <unistd.h>
#ifndef WIN32
#include <sys/mman.h>
#endif
#include <sys/stat.h>
#ifdef HAVE_SYS_IPC_H
#include <sys/ipc.h>
#endif
#ifdef HAVE_SYS_SHM_H
#include <sys/shm.h>
#endif

#include "common/file_perm.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "portability/mem.h"
#include "postmaster/postmaster.h"
#include "storage/dsm_impl.h"
#include "storage/fd.h"
#include "utils/guc.h"
#include "utils/memutils.h"

#ifdef USE_DSM_POSIX
static bool dsm_impl_posix(dsm_op op, dsm_handle handle, Size request_size,
						   void **impl_private, void **mapped_address,
						   Size *mapped_size, int elevel);
static int	dsm_impl_posix_resize(int fd, off_t size);
#endif
#ifdef USE_DSM_SYSV
static bool dsm_impl_sysv(dsm_op op, dsm_handle handle, Size request_size,
						  void **impl_private, void **mapped_address,
						  Size *mapped_size, int elevel);
#endif
#ifdef USE_DSM_WINDOWS
static bool dsm_impl_windows(dsm_op op, dsm_handle handle, Size request_size,
							 void **impl_private, void **mapped_address,
							 Size *mapped_size, int elevel);
#endif
#ifdef USE_DSM_MMAP
static bool dsm_impl_mmap(dsm_op op, dsm_handle handle, Size request_size,
						  void **impl_private, void **mapped_address,
						  Size *mapped_size, int elevel);
#endif
static int	errcode_for_dynamic_shared_memory(void);

const struct config_enum_entry dynamic_shared_memory_options[] = {
#ifdef USE_DSM_POSIX
	{"posix", DSM_IMPL_POSIX, false},
#endif
#ifdef USE_DSM_SYSV
	{"sysv", DSM_IMPL_SYSV, false},
#endif
#ifdef USE_DSM_WINDOWS
	{"windows", DSM_IMPL_WINDOWS, false},
#endif
#ifdef USE_DSM_MMAP
	{"mmap", DSM_IMPL_MMAP, false},
#endif
	{NULL, 0, false}
};

/* Implementation selector. */
int			dynamic_shared_memory_type;

/* Size of buffer to be used for zero-filling. */
#define ZBUFFER_SIZE				8192

#define SEGMENT_NAME_PREFIX			"Global/PostgreSQL"

/*------
 * Perform a low-level shared memory operation in a platform-specific way,
 * as dictated by the selected implementation.  Each implementation is
 * required to implement the following primitives.
 *
 * DSM_OP_CREATE.  Create a segment whose size is the request_size and
 * map it.
 *
 * DSM_OP_ATTACH.  Map the segment, whose size must be the request_size.
 *
 * DSM_OP_DETACH.  Unmap the segment.
 *
 * DSM_OP_DESTROY.  Unmap the segment, if it is mapped.  Destroy the
 * segment.
 *
 * Arguments:
 *	 op: The operation to be performed.
 *	 handle: The handle of an existing object, or for DSM_OP_CREATE, the
 *	   a new handle the caller wants created.
 *	 request_size: For DSM_OP_CREATE, the requested size.  Otherwise, 0.
 *	 impl_private: Private, implementation-specific data.  Will be a pointer
 *	   to NULL for the first operation on a shared memory segment within this
 *	   backend; thereafter, it will point to the value to which it was set
 *	   on the previous call.
 *	 mapped_address: Pointer to start of current mapping; pointer to NULL
 *	   if none.  Updated with new mapping address.
 *	 mapped_size: Pointer to size of current mapping; pointer to 0 if none.
 *	   Updated with new mapped size.
 *	 elevel: Level at which to log errors.
 *
 * Return value: true on success, false on failure.  When false is returned,
 * a message should first be logged at the specified elevel, except in the
 * case where DSM_OP_CREATE experiences a name collision, which should
 * silently return false.
 *-----
 */
bool
dsm_impl_op(dsm_op op, dsm_handle handle, Size request_size,
			void **impl_private, void **mapped_address, Size *mapped_size,
			int elevel)
{
	Assert(op == DSM_OP_CREATE || request_size == 0);
	Assert((op != DSM_OP_CREATE && op != DSM_OP_ATTACH) ||
		   (*mapped_address == NULL && *mapped_size == 0));

	switch (dynamic_shared_memory_type)
	{
#ifdef USE_DSM_POSIX
		case DSM_IMPL_POSIX:
			return dsm_impl_posix(op, handle, request_size, impl_private,
								  mapped_address, mapped_size, elevel);
#endif
#ifdef USE_DSM_SYSV
		case DSM_IMPL_SYSV:
			return dsm_impl_sysv(op, handle, request_size, impl_private,
								 mapped_address, mapped_size, elevel);
#endif
#ifdef USE_DSM_WINDOWS
		case DSM_IMPL_WINDOWS:
			return dsm_impl_windows(op, handle, request_size, impl_private,
									mapped_address, mapped_size, elevel);
#endif
#ifdef USE_DSM_MMAP
		case DSM_IMPL_MMAP:
			return dsm_impl_mmap(op, handle, request_size, impl_private,
								 mapped_address, mapped_size, elevel);
#endif
		default:
			elog(ERROR, "unexpected dynamic shared memory type: %d",
				 dynamic_shared_memory_type);
			return false;
	}
}

#ifdef USE_DSM_POSIX
/*
 * Operating system primitives to support POSIX shared memory.
 *
 * POSIX shared memory segments are created and attached using shm_open()
 * and shm_unlink(); other operations, such as sizing or mapping the
 * segment, are performed as if the shared memory segments were files.
 *
 * Indeed, on some platforms, they may be implemented that way.  While
 * POSIX shared memory segments seem intended to exist in a flat namespace,
 * some operating systems may implement them as files, even going so far
 * to treat a request for /xyz as a request to create a file by that name
 * in the root directory.  Users of such broken platforms should select
 * a different shared memory implementation.
 */
static bool
dsm_impl_posix(dsm_op op, dsm_handle handle, Size request_size,
			   void **impl_private, void **mapped_address, Size *mapped_size,
			   int elevel)
{
	char		name[64];
	int			flags;
	int			fd;
	char	   *address;

	snprintf(name, 64, "/PostgreSQL.%u", handle);

	/* Handle teardown cases. */
	if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY)
	{
		if (*mapped_address != NULL
			&& munmap(*mapped_address, *mapped_size) != 0)
		{
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not unmap shared memory segment \"%s\": %m",
							name)));
			return false;
		}
		*mapped_address = NULL;
		*mapped_size = 0;
		if (op == DSM_OP_DESTROY && shm_unlink(name) != 0)
		{
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not remove shared memory segment \"%s\": %m",
							name)));
			return false;
		}
		return true;
	}

	/*
	 * Create new segment or open an existing one for attach.
	 *
	 * Even though we will close the FD before returning, it seems desirable
	 * to use Reserve/ReleaseExternalFD, to reduce the probability of EMFILE
	 * failure.  The fact that we won't hold the FD open long justifies using
	 * ReserveExternalFD rather than AcquireExternalFD, though.
	 */
	ReserveExternalFD();

	flags = O_RDWR | (op == DSM_OP_CREATE ? O_CREAT | O_EXCL : 0);
	if ((fd = shm_open(name, flags, PG_FILE_MODE_OWNER)) == -1)
	{
		ReleaseExternalFD();
		if (errno != EEXIST)
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not open shared memory segment \"%s\": %m",
							name)));
		return false;
	}

	/*
	 * If we're attaching the segment, determine the current size; if we are
	 * creating the segment, set the size to the requested value.
	 */
	if (op == DSM_OP_ATTACH)
	{
		struct stat st;

		if (fstat(fd, &st) != 0)
		{
			int			save_errno;

			/* Back out what's already been done. */
			save_errno = errno;
			close(fd);
			ReleaseExternalFD();
			errno = save_errno;

			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not stat shared memory segment \"%s\": %m",
							name)));
			return false;
		}
		request_size = st.st_size;
	}
	else if (dsm_impl_posix_resize(fd, request_size) != 0)
	{
		int			save_errno;

		/* Back out what's already been done. */
		save_errno = errno;
		close(fd);
		ReleaseExternalFD();
		shm_unlink(name);
		errno = save_errno;

		/*
		 * If we received a query cancel or termination signal, we will have
		 * EINTR set here.  If the caller said that errors are OK here, check
		 * for interrupts immediately.
		 */
		if (errno == EINTR && elevel >= ERROR)
			CHECK_FOR_INTERRUPTS();

		ereport(elevel,
				(errcode_for_dynamic_shared_memory(),
				 errmsg("could not resize shared memory segment \"%s\" to %zu bytes: %m",
						name, request_size)));
		return false;
	}

	/* Map it. */
	address = mmap(NULL, request_size, PROT_READ | PROT_WRITE,
				   MAP_SHARED | MAP_HASSEMAPHORE | MAP_NOSYNC, fd, 0);
	if (address == MAP_FAILED)
	{
		int			save_errno;

		/* Back out what's already been done. */
		save_errno = errno;
		close(fd);
		ReleaseExternalFD();
		if (op == DSM_OP_CREATE)
			shm_unlink(name);
		errno = save_errno;

		ereport(elevel,
				(errcode_for_dynamic_shared_memory(),
				 errmsg("could not map shared memory segment \"%s\": %m",
						name)));
		return false;
	}
	*mapped_address = address;
	*mapped_size = request_size;
	close(fd);
	ReleaseExternalFD();

	return true;
}

/*
 * Set the size of a virtual memory region associated with a file descriptor.
 * If necessary, also ensure that virtual memory is actually allocated by the
 * operating system, to avoid nasty surprises later.
 *
 * Returns non-zero if either truncation or allocation fails, and sets errno.
 */
static int
dsm_impl_posix_resize(int fd, off_t size)
{
	int			rc;

	/* Truncate (or extend) the file to the requested size. */
	rc = ftruncate(fd, size);

	/*
	 * On Linux, a shm_open fd is backed by a tmpfs file.  After resizing with
	 * ftruncate, the file may contain a hole.  Accessing memory backed by a
	 * hole causes tmpfs to allocate pages, which fails with SIGBUS if there
	 * is no more tmpfs space available.  So we ask tmpfs to allocate pages
	 * here, so we can fail gracefully with ENOSPC now rather than risking
	 * SIGBUS later.
	 */
#if defined(HAVE_POSIX_FALLOCATE) && defined(__linux__)
	if (rc == 0)
	{
		/*
		 * We may get interrupted.  If so, just retry unless there is an
		 * interrupt pending.  This avoids the possibility of looping forever
		 * if another backend is repeatedly trying to interrupt us.
		 */
		pgstat_report_wait_start(WAIT_EVENT_DSM_FILL_ZERO_WRITE);
		do
		{
			rc = posix_fallocate(fd, 0, size);
		} while (rc == EINTR && !(ProcDiePending || QueryCancelPending));
		pgstat_report_wait_end();

		/*
		 * The caller expects errno to be set, but posix_fallocate() doesn't
		 * set it.  Instead it returns error numbers directly.  So set errno,
		 * even though we'll also return rc to indicate success or failure.
		 */
		errno = rc;
	}
#endif							/* HAVE_POSIX_FALLOCATE && __linux__ */

	return rc;
}

#endif							/* USE_DSM_POSIX */

#ifdef USE_DSM_SYSV
/*
 * Operating system primitives to support System V shared memory.
 *
 * System V shared memory segments are manipulated using shmget(), shmat(),
 * shmdt(), and shmctl().  As the default allocation limits for System V
 * shared memory are usually quite low, the POSIX facilities may be
 * preferable; but those are not supported everywhere.
 */
static bool
dsm_impl_sysv(dsm_op op, dsm_handle handle, Size request_size,
			  void **impl_private, void **mapped_address, Size *mapped_size,
			  int elevel)
{
	key_t		key;
	int			ident;
	char	   *address;
	char		name[64];
	int		   *ident_cache;

	/*
	 * POSIX shared memory and mmap-based shared memory identify segments with
	 * names.  To avoid needless error message variation, we use the handle as
	 * the name.
	 */
	snprintf(name, 64, "%u", handle);

	/*
	 * The System V shared memory namespace is very restricted; names are of
	 * type key_t, which is expected to be some sort of integer data type, but
	 * not necessarily the same one as dsm_handle.  Since we use dsm_handle to
	 * identify shared memory segments across processes, this might seem like
	 * a problem, but it's really not.  If dsm_handle is bigger than key_t,
	 * the cast below might truncate away some bits from the handle the
	 * user-provided, but it'll truncate exactly the same bits away in exactly
	 * the same fashion every time we use that handle, which is all that
	 * really matters.  Conversely, if dsm_handle is smaller than key_t, we
	 * won't use the full range of available key space, but that's no big deal
	 * either.
	 *
	 * We do make sure that the key isn't negative, because that might not be
	 * portable.
	 */
	key = (key_t) handle;
	if (key < 1)				/* avoid compiler warning if type is unsigned */
		key = -key;

	/*
	 * There's one special key, IPC_PRIVATE, which can't be used.  If we end
	 * up with that value by chance during a create operation, just pretend it
	 * already exists, so that caller will retry.  If we run into it anywhere
	 * else, the caller has passed a handle that doesn't correspond to
	 * anything we ever created, which should not happen.
	 */
	if (key == IPC_PRIVATE)
	{
		if (op != DSM_OP_CREATE)
			elog(DEBUG4, "System V shared memory key may not be IPC_PRIVATE");
		errno = EEXIST;
		return false;
	}

	/*
	 * Before we can do anything with a shared memory segment, we have to map
	 * the shared memory key to a shared memory identifier using shmget(). To
	 * avoid repeated lookups, we store the key using impl_private.
	 */
	if (*impl_private != NULL)
	{
		ident_cache = *impl_private;
		ident = *ident_cache;
	}
	else
	{
		int			flags = IPCProtection;
		size_t		segsize;

		/*
		 * Allocate the memory BEFORE acquiring the resource, so that we don't
		 * leak the resource if memory allocation fails.
		 */
		ident_cache = MemoryContextAlloc(TopMemoryContext, sizeof(int));

		/*
		 * When using shmget to find an existing segment, we must pass the
		 * size as 0.  Passing a non-zero size which is greater than the
		 * actual size will result in EINVAL.
		 */
		segsize = 0;

		if (op == DSM_OP_CREATE)
		{
			flags |= IPC_CREAT | IPC_EXCL;
			segsize = request_size;
		}

		if ((ident = shmget(key, segsize, flags)) == -1)
		{
			if (errno != EEXIST)
			{
				int			save_errno = errno;

				pfree(ident_cache);
				errno = save_errno;
				ereport(elevel,
						(errcode_for_dynamic_shared_memory(),
						 errmsg("could not get shared memory segment: %m")));
			}
			return false;
		}

		*ident_cache = ident;
		*impl_private = ident_cache;
	}

	/* Handle teardown cases. */
	if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY)
	{
		pfree(ident_cache);
		*impl_private = NULL;
		if (*mapped_address != NULL && shmdt(*mapped_address) != 0)
		{
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not unmap shared memory segment \"%s\": %m",
							name)));
			return false;
		}
		*mapped_address = NULL;
		*mapped_size = 0;
		if (op == DSM_OP_DESTROY && shmctl(ident, IPC_RMID, NULL) < 0)
		{
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not remove shared memory segment \"%s\": %m",
							name)));
			return false;
		}
		return true;
	}

	/* If we're attaching it, we must use IPC_STAT to determine the size. */
	if (op == DSM_OP_ATTACH)
	{
		struct shmid_ds shm;

		if (shmctl(ident, IPC_STAT, &shm) != 0)
		{
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not stat shared memory segment \"%s\": %m",
							name)));
			return false;
		}
		request_size = shm.shm_segsz;
	}

	/* Map it. */
	address = shmat(ident, NULL, PG_SHMAT_FLAGS);
	if (address == (void *) -1)
	{
		int			save_errno;

		/* Back out what's already been done. */
		save_errno = errno;
		if (op == DSM_OP_CREATE)
			shmctl(ident, IPC_RMID, NULL);
		errno = save_errno;

		ereport(elevel,
				(errcode_for_dynamic_shared_memory(),
				 errmsg("could not map shared memory segment \"%s\": %m",
						name)));
		return false;
	}
	*mapped_address = address;
	*mapped_size = request_size;

	return true;
}
#endif

#ifdef USE_DSM_WINDOWS
/*
 * Operating system primitives to support Windows shared memory.
 *
 * Windows shared memory implementation is done using file mapping
 * which can be backed by either physical file or system paging file.
 * Current implementation uses system paging file as other effects
 * like performance are not clear for physical file and it is used in similar
 * way for main shared memory in windows.
 *
 * A memory mapping object is a kernel object - they always get deleted when
 * the last reference to them goes away, either explicitly via a CloseHandle or
 * when the process containing the reference exits.
 */
static bool
dsm_impl_windows(dsm_op op, dsm_handle handle, Size request_size,
				 void **impl_private, void **mapped_address,
				 Size *mapped_size, int elevel)
{
	char	   *address;
	HANDLE		hmap;
	char		name[64];
	MEMORY_BASIC_INFORMATION info;

	/*
	 * Storing the shared memory segment in the Global\ namespace, can allow
	 * any process running in any session to access that file mapping object
	 * provided that the caller has the required access rights. But to avoid
	 * issues faced in main shared memory, we are using the naming convention
	 * similar to main shared memory. We can change here once issue mentioned
	 * in GetSharedMemName is resolved.
	 */
	snprintf(name, 64, "%s.%u", SEGMENT_NAME_PREFIX, handle);

	/*
	 * Handle teardown cases.  Since Windows automatically destroys the object
	 * when no references remain, we can treat it the same as detach.
	 */
	if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY)
	{
		if (*mapped_address != NULL
			&& UnmapViewOfFile(*mapped_address) == 0)
		{
			_dosmaperr(GetLastError());
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not unmap shared memory segment \"%s\": %m",
							name)));
			return false;
		}
		if (*impl_private != NULL
			&& CloseHandle(*impl_private) == 0)
		{
			_dosmaperr(GetLastError());
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not remove shared memory segment \"%s\": %m",
							name)));
			return false;
		}

		*impl_private = NULL;
		*mapped_address = NULL;
		*mapped_size = 0;
		return true;
	}

	/* Create new segment or open an existing one for attach. */
	if (op == DSM_OP_CREATE)
	{
		DWORD		size_high;
		DWORD		size_low;
		DWORD		errcode;

		/* Shifts >= the width of the type are undefined. */
#ifdef _WIN64
		size_high = request_size >> 32;
#else
		size_high = 0;
#endif
		size_low = (DWORD) request_size;

		/* CreateFileMapping might not clear the error code on success */
		SetLastError(0);

		hmap = CreateFileMapping(INVALID_HANDLE_VALUE,	/* Use the pagefile */
								 NULL,	/* Default security attrs */
								 PAGE_READWRITE,	/* Memory is read/write */
								 size_high, /* Upper 32 bits of size */
								 size_low,	/* Lower 32 bits of size */
								 name);

		errcode = GetLastError();
		if (errcode == ERROR_ALREADY_EXISTS || errcode == ERROR_ACCESS_DENIED)
		{
			/*
			 * On Windows, when the segment already exists, a handle for the
			 * existing segment is returned.  We must close it before
			 * returning.  However, if the existing segment is created by a
			 * service, then it returns ERROR_ACCESS_DENIED. We don't do
			 * _dosmaperr here, so errno won't be modified.
			 */
			if (hmap)
				CloseHandle(hmap);
			return false;
		}

		if (!hmap)
		{
			_dosmaperr(errcode);
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not create shared memory segment \"%s\": %m",
							name)));
			return false;
		}
	}
	else
	{
		hmap = OpenFileMapping(FILE_MAP_WRITE | FILE_MAP_READ,
							   FALSE,	/* do not inherit the name */
							   name);	/* name of mapping object */
		if (!hmap)
		{
			_dosmaperr(GetLastError());
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not open shared memory segment \"%s\": %m",
							name)));
			return false;
		}
	}

	/* Map it. */
	address = MapViewOfFile(hmap, FILE_MAP_WRITE | FILE_MAP_READ,
							0, 0, 0);
	if (!address)
	{
		int			save_errno;

		_dosmaperr(GetLastError());
		/* Back out what's already been done. */
		save_errno = errno;
		CloseHandle(hmap);
		errno = save_errno;

		ereport(elevel,
				(errcode_for_dynamic_shared_memory(),
				 errmsg("could not map shared memory segment \"%s\": %m",
						name)));
		return false;
	}

	/*
	 * VirtualQuery gives size in page_size units, which is 4K for Windows. We
	 * need size only when we are attaching, but it's better to get the size
	 * when creating new segment to keep size consistent both for
	 * DSM_OP_CREATE and DSM_OP_ATTACH.
	 */
	if (VirtualQuery(address, &info, sizeof(info)) == 0)
	{
		int			save_errno;

		_dosmaperr(GetLastError());
		/* Back out what's already been done. */
		save_errno = errno;
		UnmapViewOfFile(address);
		CloseHandle(hmap);
		errno = save_errno;

		ereport(elevel,
				(errcode_for_dynamic_shared_memory(),
				 errmsg("could not stat shared memory segment \"%s\": %m",
						name)));
		return false;
	}

	*mapped_address = address;
	*mapped_size = info.RegionSize;
	*impl_private = hmap;

	return true;
}
#endif

#ifdef USE_DSM_MMAP
/*
 * Operating system primitives to support mmap-based shared memory.
 *
 * Calling this "shared memory" is somewhat of a misnomer, because what
 * we're really doing is creating a bunch of files and mapping them into
 * our address space.  The operating system may feel obliged to
 * synchronize the contents to disk even if nothing is being paged out,
 * which will not serve us well.  The user can relocate the pg_dynshmem
 * directory to a ramdisk to avoid this problem, if available.
 */
static bool
dsm_impl_mmap(dsm_op op, dsm_handle handle, Size request_size,
			  void **impl_private, void **mapped_address, Size *mapped_size,
			  int elevel)
{
	char		name[64];
	int			flags;
	int			fd;
	char	   *address;

	snprintf(name, 64, PG_DYNSHMEM_DIR "/" PG_DYNSHMEM_MMAP_FILE_PREFIX "%u",
			 handle);

	/* Handle teardown cases. */
	if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY)
	{
		if (*mapped_address != NULL
			&& munmap(*mapped_address, *mapped_size) != 0)
		{
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not unmap shared memory segment \"%s\": %m",
							name)));
			return false;
		}
		*mapped_address = NULL;
		*mapped_size = 0;
		if (op == DSM_OP_DESTROY && unlink(name) != 0)
		{
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not remove shared memory segment \"%s\": %m",
							name)));
			return false;
		}
		return true;
	}

	/* Create new segment or open an existing one for attach. */
	flags = O_RDWR | (op == DSM_OP_CREATE ? O_CREAT | O_EXCL : 0);
	if ((fd = OpenTransientFile(name, flags)) == -1)
	{
		if (errno != EEXIST)
			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not open shared memory segment \"%s\": %m",
							name)));
		return false;
	}

	/*
	 * If we're attaching the segment, determine the current size; if we are
	 * creating the segment, set the size to the requested value.
	 */
	if (op == DSM_OP_ATTACH)
	{
		struct stat st;

		if (fstat(fd, &st) != 0)
		{
			int			save_errno;

			/* Back out what's already been done. */
			save_errno = errno;
			CloseTransientFile(fd);
			errno = save_errno;

			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not stat shared memory segment \"%s\": %m",
							name)));
			return false;
		}
		request_size = st.st_size;
	}
	else
	{
		/*
		 * Allocate a buffer full of zeros.
		 *
		 * Note: palloc zbuffer, instead of just using a local char array, to
		 * ensure it is reasonably well-aligned; this may save a few cycles
		 * transferring data to the kernel.
		 */
		char	   *zbuffer = (char *) palloc0(ZBUFFER_SIZE);
		uint32		remaining = request_size;
		bool		success = true;

		/*
		 * Zero-fill the file. We have to do this the hard way to ensure that
		 * all the file space has really been allocated, so that we don't
		 * later seg fault when accessing the memory mapping.  This is pretty
		 * pessimal.
		 */
		while (success && remaining > 0)
		{
			Size		goal = remaining;

			if (goal > ZBUFFER_SIZE)
				goal = ZBUFFER_SIZE;
			pgstat_report_wait_start(WAIT_EVENT_DSM_FILL_ZERO_WRITE);
			if (write(fd, zbuffer, goal) == goal)
				remaining -= goal;
			else
				success = false;
			pgstat_report_wait_end();
		}

		if (!success)
		{
			int			save_errno;

			/* Back out what's already been done. */
			save_errno = errno;
			CloseTransientFile(fd);
			unlink(name);
			errno = save_errno ? save_errno : ENOSPC;

			ereport(elevel,
					(errcode_for_dynamic_shared_memory(),
					 errmsg("could not resize shared memory segment \"%s\" to %zu bytes: %m",
							name, request_size)));
			return false;
		}
	}

	/* Map it. */
	address = mmap(NULL, request_size, PROT_READ | PROT_WRITE,
				   MAP_SHARED | MAP_HASSEMAPHORE | MAP_NOSYNC, fd, 0);
	if (address == MAP_FAILED)
	{
		int			save_errno;

		/* Back out what's already been done. */
		save_errno = errno;
		CloseTransientFile(fd);
		if (op == DSM_OP_CREATE)
			unlink(name);
		errno = save_errno;

		ereport(elevel,
				(errcode_for_dynamic_shared_memory(),
				 errmsg("could not map shared memory segment \"%s\": %m",
						name)));
		return false;
	}
	*mapped_address = address;
	*mapped_size = request_size;

	if (CloseTransientFile(fd) != 0)
	{
		ereport(elevel,
				(errcode_for_file_access(),
				 errmsg("could not close shared memory segment \"%s\": %m",
						name)));
		return false;
	}

	return true;
}
#endif

/*
 * Implementation-specific actions that must be performed when a segment is to
 * be preserved even when no backend has it attached.
 *
 * Except on Windows, we don't need to do anything at all.  But since Windows
 * cleans up segments automatically when no references remain, we duplicate
 * the segment handle into the postmaster process.  The postmaster needn't
 * do anything to receive the handle; Windows transfers it automatically.
 */
void
dsm_impl_pin_segment(dsm_handle handle, void *impl_private,
					 void **impl_private_pm_handle)
{
	switch (dynamic_shared_memory_type)
	{
#ifdef USE_DSM_WINDOWS
		case DSM_IMPL_WINDOWS:
			{
				HANDLE		hmap;

				if (!DuplicateHandle(GetCurrentProcess(), impl_private,
									 PostmasterHandle, &hmap, 0, FALSE,
									 DUPLICATE_SAME_ACCESS))
				{
					char		name[64];

					snprintf(name, 64, "%s.%u", SEGMENT_NAME_PREFIX, handle);
					_dosmaperr(GetLastError());
					ereport(ERROR,
							(errcode_for_dynamic_shared_memory(),
							 errmsg("could not duplicate handle for \"%s\": %m",
									name)));
				}

				/*
				 * Here, we remember the handle that we created in the
				 * postmaster process.  This handle isn't actually usable in
				 * any process other than the postmaster, but that doesn't
				 * matter.  We're just holding onto it so that, if the segment
				 * is unpinned, dsm_impl_unpin_segment can close it.
				 */
				*impl_private_pm_handle = hmap;
				break;
			}
#endif
		default:
			break;
	}
}

/*
 * Implementation-specific actions that must be performed when a segment is no
 * longer to be preserved, so that it will be cleaned up when all backends
 * have detached from it.
 *
 * Except on Windows, we don't need to do anything at all.  For Windows, we
 * close the extra handle that dsm_impl_pin_segment created in the
 * postmaster's process space.
 */
void
dsm_impl_unpin_segment(dsm_handle handle, void **impl_private)
{
	switch (dynamic_shared_memory_type)
	{
#ifdef USE_DSM_WINDOWS
		case DSM_IMPL_WINDOWS:
			{
				if (*impl_private &&
					!DuplicateHandle(PostmasterHandle, *impl_private,
									 NULL, NULL, 0, FALSE,
									 DUPLICATE_CLOSE_SOURCE))
				{
					char		name[64];

					snprintf(name, 64, "%s.%u", SEGMENT_NAME_PREFIX, handle);
					_dosmaperr(GetLastError());
					ereport(ERROR,
							(errcode_for_dynamic_shared_memory(),
							 errmsg("could not duplicate handle for \"%s\": %m",
									name)));
				}

				*impl_private = NULL;
				break;
			}
#endif
		default:
			break;
	}
}

static int
errcode_for_dynamic_shared_memory(void)
{
	if (errno == EFBIG || errno == ENOMEM)
		return errcode(ERRCODE_OUT_OF_MEMORY);
	else
		return errcode_for_file_access();
}