1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
|
/*-------------------------------------------------------------------------
*
* procarray.c
* POSTGRES process array code.
*
*
* This module maintains arrays of the PGPROC and PGXACT structures for all
* active backends. Although there are several uses for this, the principal
* one is as a means of determining the set of currently running transactions.
*
* Because of various subtle race conditions it is critical that a backend
* hold the correct locks while setting or clearing its MyPgXact->xid field.
* See notes in src/backend/access/transam/README.
*
* The process arrays now also include structures representing prepared
* transactions. The xid and subxids fields of these are valid, as are the
* myProcLocks lists. They can be distinguished from regular backend PGPROCs
* at need by checking for pid == 0.
*
* During hot standby, we also keep a list of XIDs representing transactions
* that are known to be running in the master (or more precisely, were running
* as of the current point in the WAL stream). This list is kept in the
* KnownAssignedXids array, and is updated by watching the sequence of
* arriving XIDs. This is necessary because if we leave those XIDs out of
* snapshots taken for standby queries, then they will appear to be already
* complete, leading to MVCC failures. Note that in hot standby, the PGPROC
* array represents standby processes, which by definition are not running
* transactions that have XIDs.
*
* It is perhaps possible for a backend on the master to terminate without
* writing an abort record for its transaction. While that shouldn't really
* happen, it would tie up KnownAssignedXids indefinitely, so we protect
* ourselves by pruning the array when a valid list of running XIDs arrives.
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/storage/ipc/procarray.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <signal.h>
#include "access/clog.h"
#include "access/subtrans.h"
#include "access/transam.h"
#include "access/twophase.h"
#include "access/xact.h"
#include "access/xlog.h"
#include "catalog/catalog.h"
#include "catalog/pg_authid.h"
#include "commands/dbcommands.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "storage/spin.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/rel.h"
#include "utils/snapmgr.h"
#define UINT32_ACCESS_ONCE(var) ((uint32)(*((volatile uint32 *)&(var))))
/* Our shared memory area */
typedef struct ProcArrayStruct
{
int numProcs; /* number of valid procs entries */
int maxProcs; /* allocated size of procs array */
/*
* Known assigned XIDs handling
*/
int maxKnownAssignedXids; /* allocated size of array */
int numKnownAssignedXids; /* current # of valid entries */
int tailKnownAssignedXids; /* index of oldest valid element */
int headKnownAssignedXids; /* index of newest element, + 1 */
slock_t known_assigned_xids_lck; /* protects head/tail pointers */
/*
* Highest subxid that has been removed from KnownAssignedXids array to
* prevent overflow; or InvalidTransactionId if none. We track this for
* similar reasons to tracking overflowing cached subxids in PGXACT
* entries. Must hold exclusive ProcArrayLock to change this, and shared
* lock to read it.
*/
TransactionId lastOverflowedXid;
/* oldest xmin of any replication slot */
TransactionId replication_slot_xmin;
/* oldest catalog xmin of any replication slot */
TransactionId replication_slot_catalog_xmin;
/* indexes into allPgXact[], has PROCARRAY_MAXPROCS entries */
int pgprocnos[FLEXIBLE_ARRAY_MEMBER];
} ProcArrayStruct;
static ProcArrayStruct *procArray;
static PGPROC *allProcs;
static PGXACT *allPgXact;
/*
* Bookkeeping for tracking emulated transactions in recovery
*/
static TransactionId *KnownAssignedXids;
static bool *KnownAssignedXidsValid;
static TransactionId latestObservedXid = InvalidTransactionId;
/*
* If we're in STANDBY_SNAPSHOT_PENDING state, standbySnapshotPendingXmin is
* the highest xid that might still be running that we don't have in
* KnownAssignedXids.
*/
static TransactionId standbySnapshotPendingXmin;
#ifdef XIDCACHE_DEBUG
/* counters for XidCache measurement */
static long xc_by_recent_xmin = 0;
static long xc_by_known_xact = 0;
static long xc_by_my_xact = 0;
static long xc_by_latest_xid = 0;
static long xc_by_main_xid = 0;
static long xc_by_child_xid = 0;
static long xc_by_known_assigned = 0;
static long xc_no_overflow = 0;
static long xc_slow_answer = 0;
#define xc_by_recent_xmin_inc() (xc_by_recent_xmin++)
#define xc_by_known_xact_inc() (xc_by_known_xact++)
#define xc_by_my_xact_inc() (xc_by_my_xact++)
#define xc_by_latest_xid_inc() (xc_by_latest_xid++)
#define xc_by_main_xid_inc() (xc_by_main_xid++)
#define xc_by_child_xid_inc() (xc_by_child_xid++)
#define xc_by_known_assigned_inc() (xc_by_known_assigned++)
#define xc_no_overflow_inc() (xc_no_overflow++)
#define xc_slow_answer_inc() (xc_slow_answer++)
static void DisplayXidCache(void);
#else /* !XIDCACHE_DEBUG */
#define xc_by_recent_xmin_inc() ((void) 0)
#define xc_by_known_xact_inc() ((void) 0)
#define xc_by_my_xact_inc() ((void) 0)
#define xc_by_latest_xid_inc() ((void) 0)
#define xc_by_main_xid_inc() ((void) 0)
#define xc_by_child_xid_inc() ((void) 0)
#define xc_by_known_assigned_inc() ((void) 0)
#define xc_no_overflow_inc() ((void) 0)
#define xc_slow_answer_inc() ((void) 0)
#endif /* XIDCACHE_DEBUG */
/* Primitives for KnownAssignedXids array handling for standby */
static void KnownAssignedXidsCompress(bool force);
static void KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid,
bool exclusive_lock);
static bool KnownAssignedXidsSearch(TransactionId xid, bool remove);
static bool KnownAssignedXidExists(TransactionId xid);
static void KnownAssignedXidsRemove(TransactionId xid);
static void KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids,
TransactionId *subxids);
static void KnownAssignedXidsRemovePreceding(TransactionId xid);
static int KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax);
static int KnownAssignedXidsGetAndSetXmin(TransactionId *xarray,
TransactionId *xmin,
TransactionId xmax);
static TransactionId KnownAssignedXidsGetOldestXmin(void);
static void KnownAssignedXidsDisplay(int trace_level);
static void KnownAssignedXidsReset(void);
static inline void ProcArrayEndTransactionInternal(PGPROC *proc,
PGXACT *pgxact, TransactionId latestXid);
static void ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid);
/*
* Report shared-memory space needed by CreateSharedProcArray.
*/
Size
ProcArrayShmemSize(void)
{
Size size;
/* Size of the ProcArray structure itself */
#define PROCARRAY_MAXPROCS (MaxBackends + max_prepared_xacts)
size = offsetof(ProcArrayStruct, pgprocnos);
size = add_size(size, mul_size(sizeof(int), PROCARRAY_MAXPROCS));
/*
* During Hot Standby processing we have a data structure called
* KnownAssignedXids, created in shared memory. Local data structures are
* also created in various backends during GetSnapshotData(),
* TransactionIdIsInProgress() and GetRunningTransactionData(). All of the
* main structures created in those functions must be identically sized,
* since we may at times copy the whole of the data structures around. We
* refer to this size as TOTAL_MAX_CACHED_SUBXIDS.
*
* Ideally we'd only create this structure if we were actually doing hot
* standby in the current run, but we don't know that yet at the time
* shared memory is being set up.
*/
#define TOTAL_MAX_CACHED_SUBXIDS \
((PGPROC_MAX_CACHED_SUBXIDS + 1) * PROCARRAY_MAXPROCS)
if (EnableHotStandby)
{
size = add_size(size,
mul_size(sizeof(TransactionId),
TOTAL_MAX_CACHED_SUBXIDS));
size = add_size(size,
mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS));
}
return size;
}
/*
* Initialize the shared PGPROC array during postmaster startup.
*/
void
CreateSharedProcArray(void)
{
bool found;
/* Create or attach to the ProcArray shared structure */
procArray = (ProcArrayStruct *)
ShmemInitStruct("Proc Array",
add_size(offsetof(ProcArrayStruct, pgprocnos),
mul_size(sizeof(int),
PROCARRAY_MAXPROCS)),
&found);
if (!found)
{
/*
* We're the first - initialize.
*/
procArray->numProcs = 0;
procArray->maxProcs = PROCARRAY_MAXPROCS;
procArray->maxKnownAssignedXids = TOTAL_MAX_CACHED_SUBXIDS;
procArray->numKnownAssignedXids = 0;
procArray->tailKnownAssignedXids = 0;
procArray->headKnownAssignedXids = 0;
SpinLockInit(&procArray->known_assigned_xids_lck);
procArray->lastOverflowedXid = InvalidTransactionId;
procArray->replication_slot_xmin = InvalidTransactionId;
procArray->replication_slot_catalog_xmin = InvalidTransactionId;
}
allProcs = ProcGlobal->allProcs;
allPgXact = ProcGlobal->allPgXact;
/* Create or attach to the KnownAssignedXids arrays too, if needed */
if (EnableHotStandby)
{
KnownAssignedXids = (TransactionId *)
ShmemInitStruct("KnownAssignedXids",
mul_size(sizeof(TransactionId),
TOTAL_MAX_CACHED_SUBXIDS),
&found);
KnownAssignedXidsValid = (bool *)
ShmemInitStruct("KnownAssignedXidsValid",
mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS),
&found);
}
}
/*
* Add the specified PGPROC to the shared array.
*/
void
ProcArrayAdd(PGPROC *proc)
{
ProcArrayStruct *arrayP = procArray;
int index;
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
if (arrayP->numProcs >= arrayP->maxProcs)
{
/*
* Oops, no room. (This really shouldn't happen, since there is a
* fixed supply of PGPROC structs too, and so we should have failed
* earlier.)
*/
LWLockRelease(ProcArrayLock);
ereport(FATAL,
(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
errmsg("sorry, too many clients already")));
}
/*
* Keep the procs array sorted by (PGPROC *) so that we can utilize
* locality of references much better. This is useful while traversing the
* ProcArray because there is an increased likelihood of finding the next
* PGPROC structure in the cache.
*
* Since the occurrence of adding/removing a proc is much lower than the
* access to the ProcArray itself, the overhead should be marginal
*/
for (index = 0; index < arrayP->numProcs; index++)
{
/*
* If we are the first PGPROC or if we have found our right position
* in the array, break
*/
if ((arrayP->pgprocnos[index] == -1) || (arrayP->pgprocnos[index] > proc->pgprocno))
break;
}
memmove(&arrayP->pgprocnos[index + 1], &arrayP->pgprocnos[index],
(arrayP->numProcs - index) * sizeof(int));
arrayP->pgprocnos[index] = proc->pgprocno;
arrayP->numProcs++;
LWLockRelease(ProcArrayLock);
}
/*
* Remove the specified PGPROC from the shared array.
*
* When latestXid is a valid XID, we are removing a live 2PC gxact from the
* array, and thus causing it to appear as "not running" anymore. In this
* case we must advance latestCompletedXid. (This is essentially the same
* as ProcArrayEndTransaction followed by removal of the PGPROC, but we take
* the ProcArrayLock only once, and don't damage the content of the PGPROC;
* twophase.c depends on the latter.)
*/
void
ProcArrayRemove(PGPROC *proc, TransactionId latestXid)
{
ProcArrayStruct *arrayP = procArray;
int index;
#ifdef XIDCACHE_DEBUG
/* dump stats at backend shutdown, but not prepared-xact end */
if (proc->pid != 0)
DisplayXidCache();
#endif
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
if (TransactionIdIsValid(latestXid))
{
Assert(TransactionIdIsValid(allPgXact[proc->pgprocno].xid));
/* Advance global latestCompletedXid while holding the lock */
if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid,
latestXid))
ShmemVariableCache->latestCompletedXid = latestXid;
}
else
{
/* Shouldn't be trying to remove a live transaction here */
Assert(!TransactionIdIsValid(allPgXact[proc->pgprocno].xid));
}
for (index = 0; index < arrayP->numProcs; index++)
{
if (arrayP->pgprocnos[index] == proc->pgprocno)
{
/* Keep the PGPROC array sorted. See notes above */
memmove(&arrayP->pgprocnos[index], &arrayP->pgprocnos[index + 1],
(arrayP->numProcs - index - 1) * sizeof(int));
arrayP->pgprocnos[arrayP->numProcs - 1] = -1; /* for debugging */
arrayP->numProcs--;
LWLockRelease(ProcArrayLock);
return;
}
}
/* Oops */
LWLockRelease(ProcArrayLock);
elog(LOG, "failed to find proc %p in ProcArray", proc);
}
/*
* ProcArrayEndTransaction -- mark a transaction as no longer running
*
* This is used interchangeably for commit and abort cases. The transaction
* commit/abort must already be reported to WAL and pg_xact.
*
* proc is currently always MyProc, but we pass it explicitly for flexibility.
* latestXid is the latest Xid among the transaction's main XID and
* subtransactions, or InvalidTransactionId if it has no XID. (We must ask
* the caller to pass latestXid, instead of computing it from the PGPROC's
* contents, because the subxid information in the PGPROC might be
* incomplete.)
*/
void
ProcArrayEndTransaction(PGPROC *proc, TransactionId latestXid)
{
PGXACT *pgxact = &allPgXact[proc->pgprocno];
if (TransactionIdIsValid(latestXid))
{
/*
* We must lock ProcArrayLock while clearing our advertised XID, so
* that we do not exit the set of "running" transactions while someone
* else is taking a snapshot. See discussion in
* src/backend/access/transam/README.
*/
Assert(TransactionIdIsValid(allPgXact[proc->pgprocno].xid));
/*
* If we can immediately acquire ProcArrayLock, we clear our own XID
* and release the lock. If not, use group XID clearing to improve
* efficiency.
*/
if (LWLockConditionalAcquire(ProcArrayLock, LW_EXCLUSIVE))
{
ProcArrayEndTransactionInternal(proc, pgxact, latestXid);
LWLockRelease(ProcArrayLock);
}
else
ProcArrayGroupClearXid(proc, latestXid);
}
else
{
/*
* If we have no XID, we don't need to lock, since we won't affect
* anyone else's calculation of a snapshot. We might change their
* estimate of global xmin, but that's OK.
*/
Assert(!TransactionIdIsValid(allPgXact[proc->pgprocno].xid));
proc->lxid = InvalidLocalTransactionId;
pgxact->xmin = InvalidTransactionId;
/* must be cleared with xid/xmin: */
pgxact->vacuumFlags &= ~PROC_VACUUM_STATE_MASK;
proc->delayChkpt = false; /* be sure this is cleared in abort */
proc->recoveryConflictPending = false;
Assert(pgxact->nxids == 0);
Assert(pgxact->overflowed == false);
}
}
/*
* Mark a write transaction as no longer running.
*
* We don't do any locking here; caller must handle that.
*/
static inline void
ProcArrayEndTransactionInternal(PGPROC *proc, PGXACT *pgxact,
TransactionId latestXid)
{
pgxact->xid = InvalidTransactionId;
proc->lxid = InvalidLocalTransactionId;
pgxact->xmin = InvalidTransactionId;
/* must be cleared with xid/xmin: */
pgxact->vacuumFlags &= ~PROC_VACUUM_STATE_MASK;
proc->delayChkpt = false; /* be sure this is cleared in abort */
proc->recoveryConflictPending = false;
/* Clear the subtransaction-XID cache too while holding the lock */
pgxact->nxids = 0;
pgxact->overflowed = false;
/* Also advance global latestCompletedXid while holding the lock */
if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid,
latestXid))
ShmemVariableCache->latestCompletedXid = latestXid;
}
/*
* ProcArrayGroupClearXid -- group XID clearing
*
* When we cannot immediately acquire ProcArrayLock in exclusive mode at
* commit time, add ourselves to a list of processes that need their XIDs
* cleared. The first process to add itself to the list will acquire
* ProcArrayLock in exclusive mode and perform ProcArrayEndTransactionInternal
* on behalf of all group members. This avoids a great deal of contention
* around ProcArrayLock when many processes are trying to commit at once,
* since the lock need not be repeatedly handed off from one committing
* process to the next.
*/
static void
ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid)
{
PROC_HDR *procglobal = ProcGlobal;
uint32 nextidx;
uint32 wakeidx;
/* We should definitely have an XID to clear. */
Assert(TransactionIdIsValid(allPgXact[proc->pgprocno].xid));
/* Add ourselves to the list of processes needing a group XID clear. */
proc->procArrayGroupMember = true;
proc->procArrayGroupMemberXid = latestXid;
nextidx = pg_atomic_read_u32(&procglobal->procArrayGroupFirst);
while (true)
{
pg_atomic_write_u32(&proc->procArrayGroupNext, nextidx);
if (pg_atomic_compare_exchange_u32(&procglobal->procArrayGroupFirst,
&nextidx,
(uint32) proc->pgprocno))
break;
}
/*
* If the list was not empty, the leader will clear our XID. It is
* impossible to have followers without a leader because the first process
* that has added itself to the list will always have nextidx as
* INVALID_PGPROCNO.
*/
if (nextidx != INVALID_PGPROCNO)
{
int extraWaits = 0;
/* Sleep until the leader clears our XID. */
pgstat_report_wait_start(WAIT_EVENT_PROCARRAY_GROUP_UPDATE);
for (;;)
{
/* acts as a read barrier */
PGSemaphoreLock(proc->sem);
if (!proc->procArrayGroupMember)
break;
extraWaits++;
}
pgstat_report_wait_end();
Assert(pg_atomic_read_u32(&proc->procArrayGroupNext) == INVALID_PGPROCNO);
/* Fix semaphore count for any absorbed wakeups */
while (extraWaits-- > 0)
PGSemaphoreUnlock(proc->sem);
return;
}
/* We are the leader. Acquire the lock on behalf of everyone. */
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
/*
* Now that we've got the lock, clear the list of processes waiting for
* group XID clearing, saving a pointer to the head of the list. Trying
* to pop elements one at a time could lead to an ABA problem.
*/
nextidx = pg_atomic_exchange_u32(&procglobal->procArrayGroupFirst,
INVALID_PGPROCNO);
/* Remember head of list so we can perform wakeups after dropping lock. */
wakeidx = nextidx;
/* Walk the list and clear all XIDs. */
while (nextidx != INVALID_PGPROCNO)
{
PGPROC *proc = &allProcs[nextidx];
PGXACT *pgxact = &allPgXact[nextidx];
ProcArrayEndTransactionInternal(proc, pgxact, proc->procArrayGroupMemberXid);
/* Move to next proc in list. */
nextidx = pg_atomic_read_u32(&proc->procArrayGroupNext);
}
/* We're done with the lock now. */
LWLockRelease(ProcArrayLock);
/*
* Now that we've released the lock, go back and wake everybody up. We
* don't do this under the lock so as to keep lock hold times to a
* minimum. The system calls we need to perform to wake other processes
* up are probably much slower than the simple memory writes we did while
* holding the lock.
*/
while (wakeidx != INVALID_PGPROCNO)
{
PGPROC *proc = &allProcs[wakeidx];
wakeidx = pg_atomic_read_u32(&proc->procArrayGroupNext);
pg_atomic_write_u32(&proc->procArrayGroupNext, INVALID_PGPROCNO);
/* ensure all previous writes are visible before follower continues. */
pg_write_barrier();
proc->procArrayGroupMember = false;
if (proc != MyProc)
PGSemaphoreUnlock(proc->sem);
}
}
/*
* ProcArrayClearTransaction -- clear the transaction fields
*
* This is used after successfully preparing a 2-phase transaction. We are
* not actually reporting the transaction's XID as no longer running --- it
* will still appear as running because the 2PC's gxact is in the ProcArray
* too. We just have to clear out our own PGXACT.
*/
void
ProcArrayClearTransaction(PGPROC *proc)
{
PGXACT *pgxact = &allPgXact[proc->pgprocno];
/*
* We can skip locking ProcArrayLock here, because this action does not
* actually change anyone's view of the set of running XIDs: our entry is
* duplicate with the gxact that has already been inserted into the
* ProcArray.
*/
pgxact->xid = InvalidTransactionId;
proc->lxid = InvalidLocalTransactionId;
pgxact->xmin = InvalidTransactionId;
proc->recoveryConflictPending = false;
/* redundant, but just in case */
pgxact->vacuumFlags &= ~PROC_VACUUM_STATE_MASK;
proc->delayChkpt = false;
/* Clear the subtransaction-XID cache too */
pgxact->nxids = 0;
pgxact->overflowed = false;
}
/*
* ProcArrayInitRecovery -- initialize recovery xid mgmt environment
*
* Remember up to where the startup process initialized the CLOG and subtrans
* so we can ensure it's initialized gaplessly up to the point where necessary
* while in recovery.
*/
void
ProcArrayInitRecovery(TransactionId initializedUptoXID)
{
Assert(standbyState == STANDBY_INITIALIZED);
Assert(TransactionIdIsNormal(initializedUptoXID));
/*
* we set latestObservedXid to the xid SUBTRANS has been initialized up
* to, so we can extend it from that point onwards in
* RecordKnownAssignedTransactionIds, and when we get consistent in
* ProcArrayApplyRecoveryInfo().
*/
latestObservedXid = initializedUptoXID;
TransactionIdRetreat(latestObservedXid);
}
/*
* ProcArrayApplyRecoveryInfo -- apply recovery info about xids
*
* Takes us through 3 states: Initialized, Pending and Ready.
* Normal case is to go all the way to Ready straight away, though there
* are atypical cases where we need to take it in steps.
*
* Use the data about running transactions on master to create the initial
* state of KnownAssignedXids. We also use these records to regularly prune
* KnownAssignedXids because we know it is possible that some transactions
* with FATAL errors fail to write abort records, which could cause eventual
* overflow.
*
* See comments for LogStandbySnapshot().
*/
void
ProcArrayApplyRecoveryInfo(RunningTransactions running)
{
TransactionId *xids;
int nxids;
int i;
Assert(standbyState >= STANDBY_INITIALIZED);
Assert(TransactionIdIsValid(running->nextXid));
Assert(TransactionIdIsValid(running->oldestRunningXid));
Assert(TransactionIdIsNormal(running->latestCompletedXid));
/*
* Remove stale transactions, if any.
*/
ExpireOldKnownAssignedTransactionIds(running->oldestRunningXid);
/*
* Remove stale locks, if any.
*/
StandbyReleaseOldLocks(running->oldestRunningXid);
/*
* If our snapshot is already valid, nothing else to do...
*/
if (standbyState == STANDBY_SNAPSHOT_READY)
return;
/*
* If our initial RunningTransactionsData had an overflowed snapshot then
* we knew we were missing some subxids from our snapshot. If we continue
* to see overflowed snapshots then we might never be able to start up, so
* we make another test to see if our snapshot is now valid. We know that
* the missing subxids are equal to or earlier than nextXid. After we
* initialise we continue to apply changes during recovery, so once the
* oldestRunningXid is later than the nextXid from the initial snapshot we
* know that we no longer have missing information and can mark the
* snapshot as valid.
*/
if (standbyState == STANDBY_SNAPSHOT_PENDING)
{
/*
* If the snapshot isn't overflowed or if its empty we can reset our
* pending state and use this snapshot instead.
*/
if (!running->subxid_overflow || running->xcnt == 0)
{
/*
* If we have already collected known assigned xids, we need to
* throw them away before we apply the recovery snapshot.
*/
KnownAssignedXidsReset();
standbyState = STANDBY_INITIALIZED;
}
else
{
if (TransactionIdPrecedes(standbySnapshotPendingXmin,
running->oldestRunningXid))
{
standbyState = STANDBY_SNAPSHOT_READY;
elog(trace_recovery(DEBUG1),
"recovery snapshots are now enabled");
}
else
elog(trace_recovery(DEBUG1),
"recovery snapshot waiting for non-overflowed snapshot or "
"until oldest active xid on standby is at least %u (now %u)",
standbySnapshotPendingXmin,
running->oldestRunningXid);
return;
}
}
Assert(standbyState == STANDBY_INITIALIZED);
/*
* NB: this can be reached at least twice, so make sure new code can deal
* with that.
*/
/*
* Nobody else is running yet, but take locks anyhow
*/
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
/*
* KnownAssignedXids is sorted so we cannot just add the xids, we have to
* sort them first.
*
* Some of the new xids are top-level xids and some are subtransactions.
* We don't call SubTransSetParent because it doesn't matter yet. If we
* aren't overflowed then all xids will fit in snapshot and so we don't
* need subtrans. If we later overflow, an xid assignment record will add
* xids to subtrans. If RunningTransactionsData is overflowed then we
* don't have enough information to correctly update subtrans anyway.
*/
/*
* Allocate a temporary array to avoid modifying the array passed as
* argument.
*/
xids = palloc(sizeof(TransactionId) * (running->xcnt + running->subxcnt));
/*
* Add to the temp array any xids which have not already completed.
*/
nxids = 0;
for (i = 0; i < running->xcnt + running->subxcnt; i++)
{
TransactionId xid = running->xids[i];
/*
* The running-xacts snapshot can contain xids that were still visible
* in the procarray when the snapshot was taken, but were already
* WAL-logged as completed. They're not running anymore, so ignore
* them.
*/
if (TransactionIdDidCommit(xid) || TransactionIdDidAbort(xid))
continue;
xids[nxids++] = xid;
}
if (nxids > 0)
{
if (procArray->numKnownAssignedXids != 0)
{
LWLockRelease(ProcArrayLock);
elog(ERROR, "KnownAssignedXids is not empty");
}
/*
* Sort the array so that we can add them safely into
* KnownAssignedXids.
*/
qsort(xids, nxids, sizeof(TransactionId), xidComparator);
/*
* Add the sorted snapshot into KnownAssignedXids. The running-xacts
* snapshot may include duplicated xids because of prepared
* transactions, so ignore them.
*/
for (i = 0; i < nxids; i++)
{
if (i > 0 && TransactionIdEquals(xids[i - 1], xids[i]))
{
elog(DEBUG1,
"found duplicated transaction %u for KnownAssignedXids insertion",
xids[i]);
continue;
}
KnownAssignedXidsAdd(xids[i], xids[i], true);
}
KnownAssignedXidsDisplay(trace_recovery(DEBUG3));
}
pfree(xids);
/*
* latestObservedXid is at least set to the point where SUBTRANS was
* started up to (cf. ProcArrayInitRecovery()) or to the biggest xid
* RecordKnownAssignedTransactionIds() was called for. Initialize
* subtrans from thereon, up to nextXid - 1.
*
* We need to duplicate parts of RecordKnownAssignedTransactionId() here,
* because we've just added xids to the known assigned xids machinery that
* haven't gone through RecordKnownAssignedTransactionId().
*/
Assert(TransactionIdIsNormal(latestObservedXid));
TransactionIdAdvance(latestObservedXid);
while (TransactionIdPrecedes(latestObservedXid, running->nextXid))
{
ExtendSUBTRANS(latestObservedXid);
TransactionIdAdvance(latestObservedXid);
}
TransactionIdRetreat(latestObservedXid); /* = running->nextXid - 1 */
/* ----------
* Now we've got the running xids we need to set the global values that
* are used to track snapshots as they evolve further.
*
* - latestCompletedXid which will be the xmax for snapshots
* - lastOverflowedXid which shows whether snapshots overflow
* - nextXid
*
* If the snapshot overflowed, then we still initialise with what we know,
* but the recovery snapshot isn't fully valid yet because we know there
* are some subxids missing. We don't know the specific subxids that are
* missing, so conservatively assume the last one is latestObservedXid.
* ----------
*/
if (running->subxid_overflow)
{
standbyState = STANDBY_SNAPSHOT_PENDING;
standbySnapshotPendingXmin = latestObservedXid;
procArray->lastOverflowedXid = latestObservedXid;
}
else
{
standbyState = STANDBY_SNAPSHOT_READY;
standbySnapshotPendingXmin = InvalidTransactionId;
}
/*
* If a transaction wrote a commit record in the gap between taking and
* logging the snapshot then latestCompletedXid may already be higher than
* the value from the snapshot, so check before we use the incoming value.
*/
if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid,
running->latestCompletedXid))
ShmemVariableCache->latestCompletedXid = running->latestCompletedXid;
Assert(TransactionIdIsNormal(ShmemVariableCache->latestCompletedXid));
LWLockRelease(ProcArrayLock);
/* ShmemVariableCache->nextFullXid must be beyond any observed xid. */
AdvanceNextFullTransactionIdPastXid(latestObservedXid);
Assert(FullTransactionIdIsValid(ShmemVariableCache->nextFullXid));
KnownAssignedXidsDisplay(trace_recovery(DEBUG3));
if (standbyState == STANDBY_SNAPSHOT_READY)
elog(trace_recovery(DEBUG1), "recovery snapshots are now enabled");
else
elog(trace_recovery(DEBUG1),
"recovery snapshot waiting for non-overflowed snapshot or "
"until oldest active xid on standby is at least %u (now %u)",
standbySnapshotPendingXmin,
running->oldestRunningXid);
}
/*
* ProcArrayApplyXidAssignment
* Process an XLOG_XACT_ASSIGNMENT WAL record
*/
void
ProcArrayApplyXidAssignment(TransactionId topxid,
int nsubxids, TransactionId *subxids)
{
TransactionId max_xid;
int i;
Assert(standbyState >= STANDBY_INITIALIZED);
max_xid = TransactionIdLatest(topxid, nsubxids, subxids);
/*
* Mark all the subtransactions as observed.
*
* NOTE: This will fail if the subxid contains too many previously
* unobserved xids to fit into known-assigned-xids. That shouldn't happen
* as the code stands, because xid-assignment records should never contain
* more than PGPROC_MAX_CACHED_SUBXIDS entries.
*/
RecordKnownAssignedTransactionIds(max_xid);
/*
* Notice that we update pg_subtrans with the top-level xid, rather than
* the parent xid. This is a difference between normal processing and
* recovery, yet is still correct in all cases. The reason is that
* subtransaction commit is not marked in clog until commit processing, so
* all aborted subtransactions have already been clearly marked in clog.
* As a result we are able to refer directly to the top-level
* transaction's state rather than skipping through all the intermediate
* states in the subtransaction tree. This should be the first time we
* have attempted to SubTransSetParent().
*/
for (i = 0; i < nsubxids; i++)
SubTransSetParent(subxids[i], topxid);
/* KnownAssignedXids isn't maintained yet, so we're done for now */
if (standbyState == STANDBY_INITIALIZED)
return;
/*
* Uses same locking as transaction commit
*/
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
/*
* Remove subxids from known-assigned-xacts.
*/
KnownAssignedXidsRemoveTree(InvalidTransactionId, nsubxids, subxids);
/*
* Advance lastOverflowedXid to be at least the last of these subxids.
*/
if (TransactionIdPrecedes(procArray->lastOverflowedXid, max_xid))
procArray->lastOverflowedXid = max_xid;
LWLockRelease(ProcArrayLock);
}
/*
* TransactionIdIsInProgress -- is given transaction running in some backend
*
* Aside from some shortcuts such as checking RecentXmin and our own Xid,
* there are four possibilities for finding a running transaction:
*
* 1. The given Xid is a main transaction Id. We will find this out cheaply
* by looking at the PGXACT struct for each backend.
*
* 2. The given Xid is one of the cached subxact Xids in the PGPROC array.
* We can find this out cheaply too.
*
* 3. In Hot Standby mode, we must search the KnownAssignedXids list to see
* if the Xid is running on the master.
*
* 4. Search the SubTrans tree to find the Xid's topmost parent, and then see
* if that is running according to PGXACT or KnownAssignedXids. This is the
* slowest way, but sadly it has to be done always if the others failed,
* unless we see that the cached subxact sets are complete (none have
* overflowed).
*
* ProcArrayLock has to be held while we do 1, 2, 3. If we save the top Xids
* while doing 1 and 3, we can release the ProcArrayLock while we do 4.
* This buys back some concurrency (and we can't retrieve the main Xids from
* PGXACT again anyway; see GetNewTransactionId).
*/
bool
TransactionIdIsInProgress(TransactionId xid)
{
static TransactionId *xids = NULL;
int nxids = 0;
ProcArrayStruct *arrayP = procArray;
TransactionId topxid;
int i,
j;
/*
* Don't bother checking a transaction older than RecentXmin; it could not
* possibly still be running. (Note: in particular, this guarantees that
* we reject InvalidTransactionId, FrozenTransactionId, etc as not
* running.)
*/
if (TransactionIdPrecedes(xid, RecentXmin))
{
xc_by_recent_xmin_inc();
return false;
}
/*
* We may have just checked the status of this transaction, so if it is
* already known to be completed, we can fall out without any access to
* shared memory.
*/
if (TransactionIdIsKnownCompleted(xid))
{
xc_by_known_xact_inc();
return false;
}
/*
* Also, we can handle our own transaction (and subtransactions) without
* any access to shared memory.
*/
if (TransactionIdIsCurrentTransactionId(xid))
{
xc_by_my_xact_inc();
return true;
}
/*
* If first time through, get workspace to remember main XIDs in. We
* malloc it permanently to avoid repeated palloc/pfree overhead.
*/
if (xids == NULL)
{
/*
* In hot standby mode, reserve enough space to hold all xids in the
* known-assigned list. If we later finish recovery, we no longer need
* the bigger array, but we don't bother to shrink it.
*/
int maxxids = RecoveryInProgress() ? TOTAL_MAX_CACHED_SUBXIDS : arrayP->maxProcs;
xids = (TransactionId *) malloc(maxxids * sizeof(TransactionId));
if (xids == NULL)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
}
LWLockAcquire(ProcArrayLock, LW_SHARED);
/*
* Now that we have the lock, we can check latestCompletedXid; if the
* target Xid is after that, it's surely still running.
*/
if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid, xid))
{
LWLockRelease(ProcArrayLock);
xc_by_latest_xid_inc();
return true;
}
/* No shortcuts, gotta grovel through the array */
for (i = 0; i < arrayP->numProcs; i++)
{
int pgprocno = arrayP->pgprocnos[i];
PGPROC *proc = &allProcs[pgprocno];
PGXACT *pgxact = &allPgXact[pgprocno];
TransactionId pxid;
int pxids;
/* Ignore my own proc --- dealt with it above */
if (proc == MyProc)
continue;
/* Fetch xid just once - see GetNewTransactionId */
pxid = UINT32_ACCESS_ONCE(pgxact->xid);
if (!TransactionIdIsValid(pxid))
continue;
/*
* Step 1: check the main Xid
*/
if (TransactionIdEquals(pxid, xid))
{
LWLockRelease(ProcArrayLock);
xc_by_main_xid_inc();
return true;
}
/*
* We can ignore main Xids that are younger than the target Xid, since
* the target could not possibly be their child.
*/
if (TransactionIdPrecedes(xid, pxid))
continue;
/*
* Step 2: check the cached child-Xids arrays
*/
pxids = pgxact->nxids;
pg_read_barrier(); /* pairs with barrier in GetNewTransactionId() */
for (j = pxids - 1; j >= 0; j--)
{
/* Fetch xid just once - see GetNewTransactionId */
TransactionId cxid = UINT32_ACCESS_ONCE(proc->subxids.xids[j]);
if (TransactionIdEquals(cxid, xid))
{
LWLockRelease(ProcArrayLock);
xc_by_child_xid_inc();
return true;
}
}
/*
* Save the main Xid for step 4. We only need to remember main Xids
* that have uncached children. (Note: there is no race condition
* here because the overflowed flag cannot be cleared, only set, while
* we hold ProcArrayLock. So we can't miss an Xid that we need to
* worry about.)
*/
if (pgxact->overflowed)
xids[nxids++] = pxid;
}
/*
* Step 3: in hot standby mode, check the known-assigned-xids list. XIDs
* in the list must be treated as running.
*/
if (RecoveryInProgress())
{
/* none of the PGXACT entries should have XIDs in hot standby mode */
Assert(nxids == 0);
if (KnownAssignedXidExists(xid))
{
LWLockRelease(ProcArrayLock);
xc_by_known_assigned_inc();
return true;
}
/*
* If the KnownAssignedXids overflowed, we have to check pg_subtrans
* too. Fetch all xids from KnownAssignedXids that are lower than
* xid, since if xid is a subtransaction its parent will always have a
* lower value. Note we will collect both main and subXIDs here, but
* there's no help for it.
*/
if (TransactionIdPrecedesOrEquals(xid, procArray->lastOverflowedXid))
nxids = KnownAssignedXidsGet(xids, xid);
}
LWLockRelease(ProcArrayLock);
/*
* If none of the relevant caches overflowed, we know the Xid is not
* running without even looking at pg_subtrans.
*/
if (nxids == 0)
{
xc_no_overflow_inc();
return false;
}
/*
* Step 4: have to check pg_subtrans.
*
* At this point, we know it's either a subtransaction of one of the Xids
* in xids[], or it's not running. If it's an already-failed
* subtransaction, we want to say "not running" even though its parent may
* still be running. So first, check pg_xact to see if it's been aborted.
*/
xc_slow_answer_inc();
if (TransactionIdDidAbort(xid))
return false;
/*
* It isn't aborted, so check whether the transaction tree it belongs to
* is still running (or, more precisely, whether it was running when we
* held ProcArrayLock).
*/
topxid = SubTransGetTopmostTransaction(xid);
Assert(TransactionIdIsValid(topxid));
if (!TransactionIdEquals(topxid, xid))
{
for (i = 0; i < nxids; i++)
{
if (TransactionIdEquals(xids[i], topxid))
return true;
}
}
return false;
}
/*
* TransactionIdIsActive -- is xid the top-level XID of an active backend?
*
* This differs from TransactionIdIsInProgress in that it ignores prepared
* transactions, as well as transactions running on the master if we're in
* hot standby. Also, we ignore subtransactions since that's not needed
* for current uses.
*/
bool
TransactionIdIsActive(TransactionId xid)
{
bool result = false;
ProcArrayStruct *arrayP = procArray;
int i;
/*
* Don't bother checking a transaction older than RecentXmin; it could not
* possibly still be running.
*/
if (TransactionIdPrecedes(xid, RecentXmin))
return false;
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (i = 0; i < arrayP->numProcs; i++)
{
int pgprocno = arrayP->pgprocnos[i];
PGPROC *proc = &allProcs[pgprocno];
PGXACT *pgxact = &allPgXact[pgprocno];
TransactionId pxid;
/* Fetch xid just once - see GetNewTransactionId */
pxid = UINT32_ACCESS_ONCE(pgxact->xid);
if (!TransactionIdIsValid(pxid))
continue;
if (proc->pid == 0)
continue; /* ignore prepared transactions */
if (TransactionIdEquals(pxid, xid))
{
result = true;
break;
}
}
LWLockRelease(ProcArrayLock);
return result;
}
/*
* GetOldestXmin -- returns oldest transaction that was running
* when any current transaction was started.
*
* If rel is NULL or a shared relation, all backends are considered, otherwise
* only backends running in this database are considered.
*
* The flags are used to ignore the backends in calculation when any of the
* corresponding flags is set. Typically, if you want to ignore ones with
* PROC_IN_VACUUM flag, you can use PROCARRAY_FLAGS_VACUUM.
*
* PROCARRAY_SLOTS_XMIN causes GetOldestXmin to ignore the xmin and
* catalog_xmin of any replication slots that exist in the system when
* calculating the oldest xmin.
*
* This is used by VACUUM to decide which deleted tuples must be preserved in
* the passed in table. For shared relations backends in all databases must be
* considered, but for non-shared relations that's not required, since only
* backends in my own database could ever see the tuples in them. Also, we can
* ignore concurrently running lazy VACUUMs because (a) they must be working
* on other tables, and (b) they don't need to do snapshot-based lookups.
*
* This is also used to determine where to truncate pg_subtrans. For that
* backends in all databases have to be considered, so rel = NULL has to be
* passed in.
*
* Note: we include all currently running xids in the set of considered xids.
* This ensures that if a just-started xact has not yet set its snapshot,
* when it does set the snapshot it cannot set xmin less than what we compute.
* See notes in src/backend/access/transam/README.
*
* Note: despite the above, it's possible for the calculated value to move
* backwards on repeated calls. The calculated value is conservative, so that
* anything older is definitely not considered as running by anyone anymore,
* but the exact value calculated depends on a number of things. For example,
* if rel = NULL and there are no transactions running in the current
* database, GetOldestXmin() returns latestCompletedXid. If a transaction
* begins after that, its xmin will include in-progress transactions in other
* databases that started earlier, so another call will return a lower value.
* Nonetheless it is safe to vacuum a table in the current database with the
* first result. There are also replication-related effects: a walsender
* process can set its xmin based on transactions that are no longer running
* in the master but are still being replayed on the standby, thus possibly
* making the GetOldestXmin reading go backwards. In this case there is a
* possibility that we lose data that the standby would like to have, but
* unless the standby uses a replication slot to make its xmin persistent
* there is little we can do about that --- data is only protected if the
* walsender runs continuously while queries are executed on the standby.
* (The Hot Standby code deals with such cases by failing standby queries
* that needed to access already-removed data, so there's no integrity bug.)
* The return value is also adjusted with vacuum_defer_cleanup_age, so
* increasing that setting on the fly is another easy way to make
* GetOldestXmin() move backwards, with no consequences for data integrity.
*/
TransactionId
GetOldestXmin(Relation rel, int flags)
{
ProcArrayStruct *arrayP = procArray;
TransactionId result;
int index;
bool allDbs;
TransactionId replication_slot_xmin = InvalidTransactionId;
TransactionId replication_slot_catalog_xmin = InvalidTransactionId;
/*
* If we're not computing a relation specific limit, or if a shared
* relation has been passed in, backends in all databases have to be
* considered.
*/
allDbs = rel == NULL || rel->rd_rel->relisshared;
/* Cannot look for individual databases during recovery */
Assert(allDbs || !RecoveryInProgress());
LWLockAcquire(ProcArrayLock, LW_SHARED);
/*
* We initialize the MIN() calculation with latestCompletedXid + 1. This
* is a lower bound for the XIDs that might appear in the ProcArray later,
* and so protects us against overestimating the result due to future
* additions.
*/
result = ShmemVariableCache->latestCompletedXid;
Assert(TransactionIdIsNormal(result));
TransactionIdAdvance(result);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
PGXACT *pgxact = &allPgXact[pgprocno];
if (pgxact->vacuumFlags & (flags & PROCARRAY_PROC_FLAGS_MASK))
continue;
if (allDbs ||
proc->databaseId == MyDatabaseId ||
proc->databaseId == 0) /* always include WalSender */
{
/* Fetch xid just once - see GetNewTransactionId */
TransactionId xid = UINT32_ACCESS_ONCE(pgxact->xid);
/* First consider the transaction's own Xid, if any */
if (TransactionIdIsNormal(xid) &&
TransactionIdPrecedes(xid, result))
result = xid;
/*
* Also consider the transaction's Xmin, if set.
*
* We must check both Xid and Xmin because a transaction might
* have an Xmin but not (yet) an Xid; conversely, if it has an
* Xid, that could determine some not-yet-set Xmin.
*/
xid = UINT32_ACCESS_ONCE(pgxact->xmin);
if (TransactionIdIsNormal(xid) &&
TransactionIdPrecedes(xid, result))
result = xid;
}
}
/*
* Fetch into local variable while ProcArrayLock is held - the
* LWLockRelease below is a barrier, ensuring this happens inside the
* lock.
*/
replication_slot_xmin = procArray->replication_slot_xmin;
replication_slot_catalog_xmin = procArray->replication_slot_catalog_xmin;
if (RecoveryInProgress())
{
/*
* Check to see whether KnownAssignedXids contains an xid value older
* than the main procarray.
*/
TransactionId kaxmin = KnownAssignedXidsGetOldestXmin();
LWLockRelease(ProcArrayLock);
if (TransactionIdIsNormal(kaxmin) &&
TransactionIdPrecedes(kaxmin, result))
result = kaxmin;
}
else
{
/*
* No other information needed, so release the lock immediately.
*/
LWLockRelease(ProcArrayLock);
/*
* Compute the cutoff XID by subtracting vacuum_defer_cleanup_age,
* being careful not to generate a "permanent" XID.
*
* vacuum_defer_cleanup_age provides some additional "slop" for the
* benefit of hot standby queries on standby servers. This is quick
* and dirty, and perhaps not all that useful unless the master has a
* predictable transaction rate, but it offers some protection when
* there's no walsender connection. Note that we are assuming
* vacuum_defer_cleanup_age isn't large enough to cause wraparound ---
* so guc.c should limit it to no more than the xidStopLimit threshold
* in varsup.c. Also note that we intentionally don't apply
* vacuum_defer_cleanup_age on standby servers.
*/
result -= vacuum_defer_cleanup_age;
if (!TransactionIdIsNormal(result))
result = FirstNormalTransactionId;
}
/*
* Check whether there are replication slots requiring an older xmin.
*/
if (!(flags & PROCARRAY_SLOTS_XMIN) &&
TransactionIdIsValid(replication_slot_xmin) &&
NormalTransactionIdPrecedes(replication_slot_xmin, result))
result = replication_slot_xmin;
/*
* After locks have been released and vacuum_defer_cleanup_age has been
* applied, check whether we need to back up further to make logical
* decoding possible. We need to do so if we're computing the global limit
* (rel = NULL) or if the passed relation is a catalog relation of some
* kind.
*/
if (!(flags & PROCARRAY_SLOTS_XMIN) &&
(rel == NULL ||
RelationIsAccessibleInLogicalDecoding(rel)) &&
TransactionIdIsValid(replication_slot_catalog_xmin) &&
NormalTransactionIdPrecedes(replication_slot_catalog_xmin, result))
result = replication_slot_catalog_xmin;
return result;
}
/*
* GetMaxSnapshotXidCount -- get max size for snapshot XID array
*
* We have to export this for use by snapmgr.c.
*/
int
GetMaxSnapshotXidCount(void)
{
return procArray->maxProcs;
}
/*
* GetMaxSnapshotSubxidCount -- get max size for snapshot sub-XID array
*
* We have to export this for use by snapmgr.c.
*/
int
GetMaxSnapshotSubxidCount(void)
{
return TOTAL_MAX_CACHED_SUBXIDS;
}
/*
* GetSnapshotData -- returns information about running transactions.
*
* The returned snapshot includes xmin (lowest still-running xact ID),
* xmax (highest completed xact ID + 1), and a list of running xact IDs
* in the range xmin <= xid < xmax. It is used as follows:
* All xact IDs < xmin are considered finished.
* All xact IDs >= xmax are considered still running.
* For an xact ID xmin <= xid < xmax, consult list to see whether
* it is considered running or not.
* This ensures that the set of transactions seen as "running" by the
* current xact will not change after it takes the snapshot.
*
* All running top-level XIDs are included in the snapshot, except for lazy
* VACUUM processes. We also try to include running subtransaction XIDs,
* but since PGPROC has only a limited cache area for subxact XIDs, full
* information may not be available. If we find any overflowed subxid arrays,
* we have to mark the snapshot's subxid data as overflowed, and extra work
* *may* need to be done to determine what's running (see XidInMVCCSnapshot()
* in heapam_visibility.c).
*
* We also update the following backend-global variables:
* TransactionXmin: the oldest xmin of any snapshot in use in the
* current transaction (this is the same as MyPgXact->xmin).
* RecentXmin: the xmin computed for the most recent snapshot. XIDs
* older than this are known not running any more.
* RecentGlobalXmin: the global xmin (oldest TransactionXmin across all
* running transactions, except those running LAZY VACUUM). This is
* the same computation done by
* GetOldestXmin(NULL, PROCARRAY_FLAGS_VACUUM).
* RecentGlobalDataXmin: the global xmin for non-catalog tables
* >= RecentGlobalXmin
*
* Note: this function should probably not be called with an argument that's
* not statically allocated (see xip allocation below).
*/
Snapshot
GetSnapshotData(Snapshot snapshot)
{
ProcArrayStruct *arrayP = procArray;
TransactionId xmin;
TransactionId xmax;
TransactionId globalxmin;
int index;
int count = 0;
int subcount = 0;
bool suboverflowed = false;
TransactionId replication_slot_xmin = InvalidTransactionId;
TransactionId replication_slot_catalog_xmin = InvalidTransactionId;
Assert(snapshot != NULL);
/*
* Allocating space for maxProcs xids is usually overkill; numProcs would
* be sufficient. But it seems better to do the malloc while not holding
* the lock, so we can't look at numProcs. Likewise, we allocate much
* more subxip storage than is probably needed.
*
* This does open a possibility for avoiding repeated malloc/free: since
* maxProcs does not change at runtime, we can simply reuse the previous
* xip arrays if any. (This relies on the fact that all callers pass
* static SnapshotData structs.)
*/
if (snapshot->xip == NULL)
{
/*
* First call for this snapshot. Snapshot is same size whether or not
* we are in recovery, see later comments.
*/
snapshot->xip = (TransactionId *)
malloc(GetMaxSnapshotXidCount() * sizeof(TransactionId));
if (snapshot->xip == NULL)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
Assert(snapshot->subxip == NULL);
snapshot->subxip = (TransactionId *)
malloc(GetMaxSnapshotSubxidCount() * sizeof(TransactionId));
if (snapshot->subxip == NULL)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
}
/*
* It is sufficient to get shared lock on ProcArrayLock, even if we are
* going to set MyPgXact->xmin.
*/
LWLockAcquire(ProcArrayLock, LW_SHARED);
/* xmax is always latestCompletedXid + 1 */
xmax = ShmemVariableCache->latestCompletedXid;
Assert(TransactionIdIsNormal(xmax));
TransactionIdAdvance(xmax);
/* initialize xmin calculation with xmax */
globalxmin = xmin = xmax;
snapshot->takenDuringRecovery = RecoveryInProgress();
if (!snapshot->takenDuringRecovery)
{
int *pgprocnos = arrayP->pgprocnos;
int numProcs;
/*
* Spin over procArray checking xid, xmin, and subxids. The goal is
* to gather all active xids, find the lowest xmin, and try to record
* subxids.
*/
numProcs = arrayP->numProcs;
for (index = 0; index < numProcs; index++)
{
int pgprocno = pgprocnos[index];
PGXACT *pgxact = &allPgXact[pgprocno];
TransactionId xid;
/*
* Skip over backends doing logical decoding which manages xmin
* separately (check below) and ones running LAZY VACUUM.
*/
if (pgxact->vacuumFlags &
(PROC_IN_LOGICAL_DECODING | PROC_IN_VACUUM))
continue;
/* Update globalxmin to be the smallest valid xmin */
xid = UINT32_ACCESS_ONCE(pgxact->xmin);
if (TransactionIdIsNormal(xid) &&
NormalTransactionIdPrecedes(xid, globalxmin))
globalxmin = xid;
/* Fetch xid just once - see GetNewTransactionId */
xid = UINT32_ACCESS_ONCE(pgxact->xid);
/*
* If the transaction has no XID assigned, we can skip it; it
* won't have sub-XIDs either. If the XID is >= xmax, we can also
* skip it; such transactions will be treated as running anyway
* (and any sub-XIDs will also be >= xmax).
*/
if (!TransactionIdIsNormal(xid)
|| !NormalTransactionIdPrecedes(xid, xmax))
continue;
/*
* We don't include our own XIDs (if any) in the snapshot, but we
* must include them in xmin.
*/
if (NormalTransactionIdPrecedes(xid, xmin))
xmin = xid;
if (pgxact == MyPgXact)
continue;
/* Add XID to snapshot. */
snapshot->xip[count++] = xid;
/*
* Save subtransaction XIDs if possible (if we've already
* overflowed, there's no point). Note that the subxact XIDs must
* be later than their parent, so no need to check them against
* xmin. We could filter against xmax, but it seems better not to
* do that much work while holding the ProcArrayLock.
*
* The other backend can add more subxids concurrently, but cannot
* remove any. Hence it's important to fetch nxids just once.
* Should be safe to use memcpy, though. (We needn't worry about
* missing any xids added concurrently, because they must postdate
* xmax.)
*
* Again, our own XIDs are not included in the snapshot.
*/
if (!suboverflowed)
{
if (pgxact->overflowed)
suboverflowed = true;
else
{
int nxids = pgxact->nxids;
if (nxids > 0)
{
PGPROC *proc = &allProcs[pgprocno];
pg_read_barrier(); /* pairs with GetNewTransactionId */
memcpy(snapshot->subxip + subcount,
(void *) proc->subxids.xids,
nxids * sizeof(TransactionId));
subcount += nxids;
}
}
}
}
}
else
{
/*
* We're in hot standby, so get XIDs from KnownAssignedXids.
*
* We store all xids directly into subxip[]. Here's why:
*
* In recovery we don't know which xids are top-level and which are
* subxacts, a design choice that greatly simplifies xid processing.
*
* It seems like we would want to try to put xids into xip[] only, but
* that is fairly small. We would either need to make that bigger or
* to increase the rate at which we WAL-log xid assignment; neither is
* an appealing choice.
*
* We could try to store xids into xip[] first and then into subxip[]
* if there are too many xids. That only works if the snapshot doesn't
* overflow because we do not search subxip[] in that case. A simpler
* way is to just store all xids in the subxact array because this is
* by far the bigger array. We just leave the xip array empty.
*
* Either way we need to change the way XidInMVCCSnapshot() works
* depending upon when the snapshot was taken, or change normal
* snapshot processing so it matches.
*
* Note: It is possible for recovery to end before we finish taking
* the snapshot, and for newly assigned transaction ids to be added to
* the ProcArray. xmax cannot change while we hold ProcArrayLock, so
* those newly added transaction ids would be filtered away, so we
* need not be concerned about them.
*/
subcount = KnownAssignedXidsGetAndSetXmin(snapshot->subxip, &xmin,
xmax);
if (TransactionIdPrecedesOrEquals(xmin, procArray->lastOverflowedXid))
suboverflowed = true;
}
/*
* Fetch into local variable while ProcArrayLock is held - the
* LWLockRelease below is a barrier, ensuring this happens inside the
* lock.
*/
replication_slot_xmin = procArray->replication_slot_xmin;
replication_slot_catalog_xmin = procArray->replication_slot_catalog_xmin;
if (!TransactionIdIsValid(MyPgXact->xmin))
MyPgXact->xmin = TransactionXmin = xmin;
LWLockRelease(ProcArrayLock);
/*
* Update globalxmin to include actual process xids. This is a slightly
* different way of computing it than GetOldestXmin uses, but should give
* the same result.
*/
if (TransactionIdPrecedes(xmin, globalxmin))
globalxmin = xmin;
/* Update global variables too */
RecentGlobalXmin = globalxmin - vacuum_defer_cleanup_age;
if (!TransactionIdIsNormal(RecentGlobalXmin))
RecentGlobalXmin = FirstNormalTransactionId;
/* Check whether there's a replication slot requiring an older xmin. */
if (TransactionIdIsValid(replication_slot_xmin) &&
NormalTransactionIdPrecedes(replication_slot_xmin, RecentGlobalXmin))
RecentGlobalXmin = replication_slot_xmin;
/* Non-catalog tables can be vacuumed if older than this xid */
RecentGlobalDataXmin = RecentGlobalXmin;
/*
* Check whether there's a replication slot requiring an older catalog
* xmin.
*/
if (TransactionIdIsNormal(replication_slot_catalog_xmin) &&
NormalTransactionIdPrecedes(replication_slot_catalog_xmin, RecentGlobalXmin))
RecentGlobalXmin = replication_slot_catalog_xmin;
RecentXmin = xmin;
snapshot->xmin = xmin;
snapshot->xmax = xmax;
snapshot->xcnt = count;
snapshot->subxcnt = subcount;
snapshot->suboverflowed = suboverflowed;
snapshot->curcid = GetCurrentCommandId(false);
/*
* This is a new snapshot, so set both refcounts are zero, and mark it as
* not copied in persistent memory.
*/
snapshot->active_count = 0;
snapshot->regd_count = 0;
snapshot->copied = false;
if (old_snapshot_threshold < 0)
{
/*
* If not using "snapshot too old" feature, fill related fields with
* dummy values that don't require any locking.
*/
snapshot->lsn = InvalidXLogRecPtr;
snapshot->whenTaken = 0;
}
else
{
/*
* Capture the current time and WAL stream location in case this
* snapshot becomes old enough to need to fall back on the special
* "old snapshot" logic.
*/
snapshot->lsn = GetXLogInsertRecPtr();
snapshot->whenTaken = GetSnapshotCurrentTimestamp();
MaintainOldSnapshotTimeMapping(snapshot->whenTaken, xmin);
}
return snapshot;
}
/*
* ProcArrayInstallImportedXmin -- install imported xmin into MyPgXact->xmin
*
* This is called when installing a snapshot imported from another
* transaction. To ensure that OldestXmin doesn't go backwards, we must
* check that the source transaction is still running, and we'd better do
* that atomically with installing the new xmin.
*
* Returns true if successful, false if source xact is no longer running.
*/
bool
ProcArrayInstallImportedXmin(TransactionId xmin,
VirtualTransactionId *sourcevxid)
{
bool result = false;
ProcArrayStruct *arrayP = procArray;
int index;
Assert(TransactionIdIsNormal(xmin));
if (!sourcevxid)
return false;
/* Get lock so source xact can't end while we're doing this */
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
PGXACT *pgxact = &allPgXact[pgprocno];
TransactionId xid;
/* Ignore procs running LAZY VACUUM */
if (pgxact->vacuumFlags & PROC_IN_VACUUM)
continue;
/* We are only interested in the specific virtual transaction. */
if (proc->backendId != sourcevxid->backendId)
continue;
if (proc->lxid != sourcevxid->localTransactionId)
continue;
/*
* We check the transaction's database ID for paranoia's sake: if it's
* in another DB then its xmin does not cover us. Caller should have
* detected this already, so we just treat any funny cases as
* "transaction not found".
*/
if (proc->databaseId != MyDatabaseId)
continue;
/*
* Likewise, let's just make real sure its xmin does cover us.
*/
xid = UINT32_ACCESS_ONCE(pgxact->xmin);
if (!TransactionIdIsNormal(xid) ||
!TransactionIdPrecedesOrEquals(xid, xmin))
continue;
/*
* We're good. Install the new xmin. As in GetSnapshotData, set
* TransactionXmin too. (Note that because snapmgr.c called
* GetSnapshotData first, we'll be overwriting a valid xmin here, so
* we don't check that.)
*/
MyPgXact->xmin = TransactionXmin = xmin;
result = true;
break;
}
LWLockRelease(ProcArrayLock);
return result;
}
/*
* ProcArrayInstallRestoredXmin -- install restored xmin into MyPgXact->xmin
*
* This is like ProcArrayInstallImportedXmin, but we have a pointer to the
* PGPROC of the transaction from which we imported the snapshot, rather than
* an XID.
*
* Returns true if successful, false if source xact is no longer running.
*/
bool
ProcArrayInstallRestoredXmin(TransactionId xmin, PGPROC *proc)
{
bool result = false;
TransactionId xid;
PGXACT *pgxact;
Assert(TransactionIdIsNormal(xmin));
Assert(proc != NULL);
/* Get lock so source xact can't end while we're doing this */
LWLockAcquire(ProcArrayLock, LW_SHARED);
pgxact = &allPgXact[proc->pgprocno];
/*
* Be certain that the referenced PGPROC has an advertised xmin which is
* no later than the one we're installing, so that the system-wide xmin
* can't go backwards. Also, make sure it's running in the same database,
* so that the per-database xmin cannot go backwards.
*/
xid = UINT32_ACCESS_ONCE(pgxact->xmin);
if (proc->databaseId == MyDatabaseId &&
TransactionIdIsNormal(xid) &&
TransactionIdPrecedesOrEquals(xid, xmin))
{
MyPgXact->xmin = TransactionXmin = xmin;
result = true;
}
LWLockRelease(ProcArrayLock);
return result;
}
/*
* GetRunningTransactionData -- returns information about running transactions.
*
* Similar to GetSnapshotData but returns more information. We include
* all PGXACTs with an assigned TransactionId, even VACUUM processes and
* prepared transactions.
*
* We acquire XidGenLock and ProcArrayLock, but the caller is responsible for
* releasing them. Acquiring XidGenLock ensures that no new XIDs enter the proc
* array until the caller has WAL-logged this snapshot, and releases the
* lock. Acquiring ProcArrayLock ensures that no transactions commit until the
* lock is released.
*
* The returned data structure is statically allocated; caller should not
* modify it, and must not assume it is valid past the next call.
*
* This is never executed during recovery so there is no need to look at
* KnownAssignedXids.
*
* Dummy PGXACTs from prepared transaction are included, meaning that this
* may return entries with duplicated TransactionId values coming from
* transaction finishing to prepare. Nothing is done about duplicated
* entries here to not hold on ProcArrayLock more than necessary.
*
* We don't worry about updating other counters, we want to keep this as
* simple as possible and leave GetSnapshotData() as the primary code for
* that bookkeeping.
*
* Note that if any transaction has overflowed its cached subtransactions
* then there is no real need include any subtransactions.
*/
RunningTransactions
GetRunningTransactionData(void)
{
/* result workspace */
static RunningTransactionsData CurrentRunningXactsData;
ProcArrayStruct *arrayP = procArray;
RunningTransactions CurrentRunningXacts = &CurrentRunningXactsData;
TransactionId latestCompletedXid;
TransactionId oldestRunningXid;
TransactionId *xids;
int index;
int count;
int subcount;
bool suboverflowed;
Assert(!RecoveryInProgress());
/*
* Allocating space for maxProcs xids is usually overkill; numProcs would
* be sufficient. But it seems better to do the malloc while not holding
* the lock, so we can't look at numProcs. Likewise, we allocate much
* more subxip storage than is probably needed.
*
* Should only be allocated in bgwriter, since only ever executed during
* checkpoints.
*/
if (CurrentRunningXacts->xids == NULL)
{
/*
* First call
*/
CurrentRunningXacts->xids = (TransactionId *)
malloc(TOTAL_MAX_CACHED_SUBXIDS * sizeof(TransactionId));
if (CurrentRunningXacts->xids == NULL)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
}
xids = CurrentRunningXacts->xids;
count = subcount = 0;
suboverflowed = false;
/*
* Ensure that no xids enter or leave the procarray while we obtain
* snapshot.
*/
LWLockAcquire(ProcArrayLock, LW_SHARED);
LWLockAcquire(XidGenLock, LW_SHARED);
latestCompletedXid = ShmemVariableCache->latestCompletedXid;
oldestRunningXid = XidFromFullTransactionId(ShmemVariableCache->nextFullXid);
/*
* Spin over procArray collecting all xids
*/
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGXACT *pgxact = &allPgXact[pgprocno];
TransactionId xid;
/* Fetch xid just once - see GetNewTransactionId */
xid = UINT32_ACCESS_ONCE(pgxact->xid);
/*
* We don't need to store transactions that don't have a TransactionId
* yet because they will not show as running on a standby server.
*/
if (!TransactionIdIsValid(xid))
continue;
/*
* Be careful not to exclude any xids before calculating the values of
* oldestRunningXid and suboverflowed, since these are used to clean
* up transaction information held on standbys.
*/
if (TransactionIdPrecedes(xid, oldestRunningXid))
oldestRunningXid = xid;
if (pgxact->overflowed)
suboverflowed = true;
/*
* If we wished to exclude xids this would be the right place for it.
* Procs with the PROC_IN_VACUUM flag set don't usually assign xids,
* but they do during truncation at the end when they get the lock and
* truncate, so it is not much of a problem to include them if they
* are seen and it is cleaner to include them.
*/
xids[count++] = xid;
}
/*
* Spin over procArray collecting all subxids, but only if there hasn't
* been a suboverflow.
*/
if (!suboverflowed)
{
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
PGXACT *pgxact = &allPgXact[pgprocno];
int nxids;
/*
* Save subtransaction XIDs. Other backends can't add or remove
* entries while we're holding XidGenLock.
*/
nxids = pgxact->nxids;
if (nxids > 0)
{
/* barrier not really required, as XidGenLock is held, but ... */
pg_read_barrier(); /* pairs with GetNewTransactionId */
memcpy(&xids[count], (void *) proc->subxids.xids,
nxids * sizeof(TransactionId));
count += nxids;
subcount += nxids;
/*
* Top-level XID of a transaction is always less than any of
* its subxids, so we don't need to check if any of the
* subxids are smaller than oldestRunningXid
*/
}
}
}
/*
* It's important *not* to include the limits set by slots here because
* snapbuild.c uses oldestRunningXid to manage its xmin horizon. If those
* were to be included here the initial value could never increase because
* of a circular dependency where slots only increase their limits when
* running xacts increases oldestRunningXid and running xacts only
* increases if slots do.
*/
CurrentRunningXacts->xcnt = count - subcount;
CurrentRunningXacts->subxcnt = subcount;
CurrentRunningXacts->subxid_overflow = suboverflowed;
CurrentRunningXacts->nextXid = XidFromFullTransactionId(ShmemVariableCache->nextFullXid);
CurrentRunningXacts->oldestRunningXid = oldestRunningXid;
CurrentRunningXacts->latestCompletedXid = latestCompletedXid;
Assert(TransactionIdIsValid(CurrentRunningXacts->nextXid));
Assert(TransactionIdIsValid(CurrentRunningXacts->oldestRunningXid));
Assert(TransactionIdIsNormal(CurrentRunningXacts->latestCompletedXid));
/* We don't release the locks here, the caller is responsible for that */
return CurrentRunningXacts;
}
/*
* GetOldestActiveTransactionId()
*
* Similar to GetSnapshotData but returns just oldestActiveXid. We include
* all PGXACTs with an assigned TransactionId, even VACUUM processes.
* We look at all databases, though there is no need to include WALSender
* since this has no effect on hot standby conflicts.
*
* This is never executed during recovery so there is no need to look at
* KnownAssignedXids.
*
* We don't worry about updating other counters, we want to keep this as
* simple as possible and leave GetSnapshotData() as the primary code for
* that bookkeeping.
*/
TransactionId
GetOldestActiveTransactionId(void)
{
ProcArrayStruct *arrayP = procArray;
TransactionId oldestRunningXid;
int index;
Assert(!RecoveryInProgress());
/*
* Read nextXid, as the upper bound of what's still active.
*
* Reading a TransactionId is atomic, but we must grab the lock to make
* sure that all XIDs < nextXid are already present in the proc array (or
* have already completed), when we spin over it.
*/
LWLockAcquire(XidGenLock, LW_SHARED);
oldestRunningXid = XidFromFullTransactionId(ShmemVariableCache->nextFullXid);
LWLockRelease(XidGenLock);
/*
* Spin over procArray collecting all xids and subxids.
*/
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGXACT *pgxact = &allPgXact[pgprocno];
TransactionId xid;
/* Fetch xid just once - see GetNewTransactionId */
xid = UINT32_ACCESS_ONCE(pgxact->xid);
if (!TransactionIdIsNormal(xid))
continue;
if (TransactionIdPrecedes(xid, oldestRunningXid))
oldestRunningXid = xid;
/*
* Top-level XID of a transaction is always less than any of its
* subxids, so we don't need to check if any of the subxids are
* smaller than oldestRunningXid
*/
}
LWLockRelease(ProcArrayLock);
return oldestRunningXid;
}
/*
* GetOldestSafeDecodingTransactionId -- lowest xid not affected by vacuum
*
* Returns the oldest xid that we can guarantee not to have been affected by
* vacuum, i.e. no rows >= that xid have been vacuumed away unless the
* transaction aborted. Note that the value can (and most of the time will) be
* much more conservative than what really has been affected by vacuum, but we
* currently don't have better data available.
*
* This is useful to initialize the cutoff xid after which a new changeset
* extraction replication slot can start decoding changes.
*
* Must be called with ProcArrayLock held either shared or exclusively,
* although most callers will want to use exclusive mode since it is expected
* that the caller will immediately use the xid to peg the xmin horizon.
*/
TransactionId
GetOldestSafeDecodingTransactionId(bool catalogOnly)
{
ProcArrayStruct *arrayP = procArray;
TransactionId oldestSafeXid;
int index;
bool recovery_in_progress = RecoveryInProgress();
Assert(LWLockHeldByMe(ProcArrayLock));
/*
* Acquire XidGenLock, so no transactions can acquire an xid while we're
* running. If no transaction with xid were running concurrently a new xid
* could influence the RecentXmin et al.
*
* We initialize the computation to nextXid since that's guaranteed to be
* a safe, albeit pessimal, value.
*/
LWLockAcquire(XidGenLock, LW_SHARED);
oldestSafeXid = XidFromFullTransactionId(ShmemVariableCache->nextFullXid);
/*
* If there's already a slot pegging the xmin horizon, we can start with
* that value, it's guaranteed to be safe since it's computed by this
* routine initially and has been enforced since. We can always use the
* slot's general xmin horizon, but the catalog horizon is only usable
* when only catalog data is going to be looked at.
*/
if (TransactionIdIsValid(procArray->replication_slot_xmin) &&
TransactionIdPrecedes(procArray->replication_slot_xmin,
oldestSafeXid))
oldestSafeXid = procArray->replication_slot_xmin;
if (catalogOnly &&
TransactionIdIsValid(procArray->replication_slot_catalog_xmin) &&
TransactionIdPrecedes(procArray->replication_slot_catalog_xmin,
oldestSafeXid))
oldestSafeXid = procArray->replication_slot_catalog_xmin;
/*
* If we're not in recovery, we walk over the procarray and collect the
* lowest xid. Since we're called with ProcArrayLock held and have
* acquired XidGenLock, no entries can vanish concurrently, since
* PGXACT->xid is only set with XidGenLock held and only cleared with
* ProcArrayLock held.
*
* In recovery we can't lower the safe value besides what we've computed
* above, so we'll have to wait a bit longer there. We unfortunately can
* *not* use KnownAssignedXidsGetOldestXmin() since the KnownAssignedXids
* machinery can miss values and return an older value than is safe.
*/
if (!recovery_in_progress)
{
/*
* Spin over procArray collecting all min(PGXACT->xid)
*/
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGXACT *pgxact = &allPgXact[pgprocno];
TransactionId xid;
/* Fetch xid just once - see GetNewTransactionId */
xid = UINT32_ACCESS_ONCE(pgxact->xid);
if (!TransactionIdIsNormal(xid))
continue;
if (TransactionIdPrecedes(xid, oldestSafeXid))
oldestSafeXid = xid;
}
}
LWLockRelease(XidGenLock);
return oldestSafeXid;
}
/*
* GetVirtualXIDsDelayingChkpt -- Get the VXIDs of transactions that are
* delaying checkpoint because they have critical actions in progress.
*
* Constructs an array of VXIDs of transactions that are currently in commit
* critical sections, as shown by having delayChkpt set in their PGPROC.
*
* Returns a palloc'd array that should be freed by the caller.
* *nvxids is the number of valid entries.
*
* Note that because backends set or clear delayChkpt without holding any lock,
* the result is somewhat indeterminate, but we don't really care. Even in
* a multiprocessor with delayed writes to shared memory, it should be certain
* that setting of delayChkpt will propagate to shared memory when the backend
* takes a lock, so we cannot fail to see a virtual xact as delayChkpt if
* it's already inserted its commit record. Whether it takes a little while
* for clearing of delayChkpt to propagate is unimportant for correctness.
*/
VirtualTransactionId *
GetVirtualXIDsDelayingChkpt(int *nvxids)
{
VirtualTransactionId *vxids;
ProcArrayStruct *arrayP = procArray;
int count = 0;
int index;
/* allocate what's certainly enough result space */
vxids = (VirtualTransactionId *)
palloc(sizeof(VirtualTransactionId) * arrayP->maxProcs);
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
if (proc->delayChkpt)
{
VirtualTransactionId vxid;
GET_VXID_FROM_PGPROC(vxid, *proc);
if (VirtualTransactionIdIsValid(vxid))
vxids[count++] = vxid;
}
}
LWLockRelease(ProcArrayLock);
*nvxids = count;
return vxids;
}
/*
* HaveVirtualXIDsDelayingChkpt -- Are any of the specified VXIDs delaying?
*
* This is used with the results of GetVirtualXIDsDelayingChkpt to see if any
* of the specified VXIDs are still in critical sections of code.
*
* Note: this is O(N^2) in the number of vxacts that are/were delaying, but
* those numbers should be small enough for it not to be a problem.
*/
bool
HaveVirtualXIDsDelayingChkpt(VirtualTransactionId *vxids, int nvxids)
{
bool result = false;
ProcArrayStruct *arrayP = procArray;
int index;
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
VirtualTransactionId vxid;
GET_VXID_FROM_PGPROC(vxid, *proc);
if (proc->delayChkpt && VirtualTransactionIdIsValid(vxid))
{
int i;
for (i = 0; i < nvxids; i++)
{
if (VirtualTransactionIdEquals(vxid, vxids[i]))
{
result = true;
break;
}
}
if (result)
break;
}
}
LWLockRelease(ProcArrayLock);
return result;
}
/*
* BackendPidGetProc -- get a backend's PGPROC given its PID
*
* Returns NULL if not found. Note that it is up to the caller to be
* sure that the question remains meaningful for long enough for the
* answer to be used ...
*/
PGPROC *
BackendPidGetProc(int pid)
{
PGPROC *result;
if (pid == 0) /* never match dummy PGPROCs */
return NULL;
LWLockAcquire(ProcArrayLock, LW_SHARED);
result = BackendPidGetProcWithLock(pid);
LWLockRelease(ProcArrayLock);
return result;
}
/*
* BackendPidGetProcWithLock -- get a backend's PGPROC given its PID
*
* Same as above, except caller must be holding ProcArrayLock. The found
* entry, if any, can be assumed to be valid as long as the lock remains held.
*/
PGPROC *
BackendPidGetProcWithLock(int pid)
{
PGPROC *result = NULL;
ProcArrayStruct *arrayP = procArray;
int index;
if (pid == 0) /* never match dummy PGPROCs */
return NULL;
for (index = 0; index < arrayP->numProcs; index++)
{
PGPROC *proc = &allProcs[arrayP->pgprocnos[index]];
if (proc->pid == pid)
{
result = proc;
break;
}
}
return result;
}
/*
* BackendXidGetPid -- get a backend's pid given its XID
*
* Returns 0 if not found or it's a prepared transaction. Note that
* it is up to the caller to be sure that the question remains
* meaningful for long enough for the answer to be used ...
*
* Only main transaction Ids are considered. This function is mainly
* useful for determining what backend owns a lock.
*
* Beware that not every xact has an XID assigned. However, as long as you
* only call this using an XID found on disk, you're safe.
*/
int
BackendXidGetPid(TransactionId xid)
{
int result = 0;
ProcArrayStruct *arrayP = procArray;
int index;
if (xid == InvalidTransactionId) /* never match invalid xid */
return 0;
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
PGXACT *pgxact = &allPgXact[pgprocno];
if (pgxact->xid == xid)
{
result = proc->pid;
break;
}
}
LWLockRelease(ProcArrayLock);
return result;
}
/*
* IsBackendPid -- is a given pid a running backend
*
* This is not called by the backend, but is called by external modules.
*/
bool
IsBackendPid(int pid)
{
return (BackendPidGetProc(pid) != NULL);
}
/*
* GetCurrentVirtualXIDs -- returns an array of currently active VXIDs.
*
* The array is palloc'd. The number of valid entries is returned into *nvxids.
*
* The arguments allow filtering the set of VXIDs returned. Our own process
* is always skipped. In addition:
* If limitXmin is not InvalidTransactionId, skip processes with
* xmin > limitXmin.
* If excludeXmin0 is true, skip processes with xmin = 0.
* If allDbs is false, skip processes attached to other databases.
* If excludeVacuum isn't zero, skip processes for which
* (vacuumFlags & excludeVacuum) is not zero.
*
* Note: the purpose of the limitXmin and excludeXmin0 parameters is to
* allow skipping backends whose oldest live snapshot is no older than
* some snapshot we have. Since we examine the procarray with only shared
* lock, there are race conditions: a backend could set its xmin just after
* we look. Indeed, on multiprocessors with weak memory ordering, the
* other backend could have set its xmin *before* we look. We know however
* that such a backend must have held shared ProcArrayLock overlapping our
* own hold of ProcArrayLock, else we would see its xmin update. Therefore,
* any snapshot the other backend is taking concurrently with our scan cannot
* consider any transactions as still running that we think are committed
* (since backends must hold ProcArrayLock exclusive to commit).
*/
VirtualTransactionId *
GetCurrentVirtualXIDs(TransactionId limitXmin, bool excludeXmin0,
bool allDbs, int excludeVacuum,
int *nvxids)
{
VirtualTransactionId *vxids;
ProcArrayStruct *arrayP = procArray;
int count = 0;
int index;
/* allocate what's certainly enough result space */
vxids = (VirtualTransactionId *)
palloc(sizeof(VirtualTransactionId) * arrayP->maxProcs);
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
PGXACT *pgxact = &allPgXact[pgprocno];
if (proc == MyProc)
continue;
if (excludeVacuum & pgxact->vacuumFlags)
continue;
if (allDbs || proc->databaseId == MyDatabaseId)
{
/* Fetch xmin just once - might change on us */
TransactionId pxmin = UINT32_ACCESS_ONCE(pgxact->xmin);
if (excludeXmin0 && !TransactionIdIsValid(pxmin))
continue;
/*
* InvalidTransactionId precedes all other XIDs, so a proc that
* hasn't set xmin yet will not be rejected by this test.
*/
if (!TransactionIdIsValid(limitXmin) ||
TransactionIdPrecedesOrEquals(pxmin, limitXmin))
{
VirtualTransactionId vxid;
GET_VXID_FROM_PGPROC(vxid, *proc);
if (VirtualTransactionIdIsValid(vxid))
vxids[count++] = vxid;
}
}
}
LWLockRelease(ProcArrayLock);
*nvxids = count;
return vxids;
}
/*
* GetConflictingVirtualXIDs -- returns an array of currently active VXIDs.
*
* Usage is limited to conflict resolution during recovery on standby servers.
* limitXmin is supplied as either latestRemovedXid, or InvalidTransactionId
* in cases where we cannot accurately determine a value for latestRemovedXid.
*
* If limitXmin is InvalidTransactionId then we want to kill everybody,
* so we're not worried if they have a snapshot or not, nor does it really
* matter what type of lock we hold.
*
* All callers that are checking xmins always now supply a valid and useful
* value for limitXmin. The limitXmin is always lower than the lowest
* numbered KnownAssignedXid that is not already a FATAL error. This is
* because we only care about cleanup records that are cleaning up tuple
* versions from committed transactions. In that case they will only occur
* at the point where the record is less than the lowest running xid. That
* allows us to say that if any backend takes a snapshot concurrently with
* us then the conflict assessment made here would never include the snapshot
* that is being derived. So we take LW_SHARED on the ProcArray and allow
* concurrent snapshots when limitXmin is valid. We might think about adding
* Assert(limitXmin < lowest(KnownAssignedXids))
* but that would not be true in the case of FATAL errors lagging in array,
* but we already know those are bogus anyway, so we skip that test.
*
* If dbOid is valid we skip backends attached to other databases.
*
* Be careful to *not* pfree the result from this function. We reuse
* this array sufficiently often that we use malloc for the result.
*/
VirtualTransactionId *
GetConflictingVirtualXIDs(TransactionId limitXmin, Oid dbOid)
{
static VirtualTransactionId *vxids;
ProcArrayStruct *arrayP = procArray;
int count = 0;
int index;
/*
* If first time through, get workspace to remember main XIDs in. We
* malloc it permanently to avoid repeated palloc/pfree overhead. Allow
* result space, remembering room for a terminator.
*/
if (vxids == NULL)
{
vxids = (VirtualTransactionId *)
malloc(sizeof(VirtualTransactionId) * (arrayP->maxProcs + 1));
if (vxids == NULL)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
}
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
PGXACT *pgxact = &allPgXact[pgprocno];
/* Exclude prepared transactions */
if (proc->pid == 0)
continue;
if (!OidIsValid(dbOid) ||
proc->databaseId == dbOid)
{
/* Fetch xmin just once - can't change on us, but good coding */
TransactionId pxmin = UINT32_ACCESS_ONCE(pgxact->xmin);
/*
* We ignore an invalid pxmin because this means that backend has
* no snapshot currently. We hold a Share lock to avoid contention
* with users taking snapshots. That is not a problem because the
* current xmin is always at least one higher than the latest
* removed xid, so any new snapshot would never conflict with the
* test here.
*/
if (!TransactionIdIsValid(limitXmin) ||
(TransactionIdIsValid(pxmin) && !TransactionIdFollows(pxmin, limitXmin)))
{
VirtualTransactionId vxid;
GET_VXID_FROM_PGPROC(vxid, *proc);
if (VirtualTransactionIdIsValid(vxid))
vxids[count++] = vxid;
}
}
}
LWLockRelease(ProcArrayLock);
/* add the terminator */
vxids[count].backendId = InvalidBackendId;
vxids[count].localTransactionId = InvalidLocalTransactionId;
return vxids;
}
/*
* CancelVirtualTransaction - used in recovery conflict processing
*
* Returns pid of the process signaled, or 0 if not found.
*/
pid_t
CancelVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode)
{
return SignalVirtualTransaction(vxid, sigmode, true);
}
pid_t
SignalVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode,
bool conflictPending)
{
ProcArrayStruct *arrayP = procArray;
int index;
pid_t pid = 0;
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
VirtualTransactionId procvxid;
GET_VXID_FROM_PGPROC(procvxid, *proc);
if (procvxid.backendId == vxid.backendId &&
procvxid.localTransactionId == vxid.localTransactionId)
{
proc->recoveryConflictPending = conflictPending;
pid = proc->pid;
if (pid != 0)
{
/*
* Kill the pid if it's still here. If not, that's what we
* wanted so ignore any errors.
*/
(void) SendProcSignal(pid, sigmode, vxid.backendId);
}
break;
}
}
LWLockRelease(ProcArrayLock);
return pid;
}
/*
* MinimumActiveBackends --- count backends (other than myself) that are
* in active transactions. Return true if the count exceeds the
* minimum threshold passed. This is used as a heuristic to decide if
* a pre-XLOG-flush delay is worthwhile during commit.
*
* Do not count backends that are blocked waiting for locks, since they are
* not going to get to run until someone else commits.
*/
bool
MinimumActiveBackends(int min)
{
ProcArrayStruct *arrayP = procArray;
int count = 0;
int index;
/* Quick short-circuit if no minimum is specified */
if (min == 0)
return true;
/*
* Note: for speed, we don't acquire ProcArrayLock. This is a little bit
* bogus, but since we are only testing fields for zero or nonzero, it
* should be OK. The result is only used for heuristic purposes anyway...
*/
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
PGXACT *pgxact = &allPgXact[pgprocno];
/*
* Since we're not holding a lock, need to be prepared to deal with
* garbage, as someone could have incremented numProcs but not yet
* filled the structure.
*
* If someone just decremented numProcs, 'proc' could also point to a
* PGPROC entry that's no longer in the array. It still points to a
* PGPROC struct, though, because freed PGPROC entries just go to the
* free list and are recycled. Its contents are nonsense in that case,
* but that's acceptable for this function.
*/
if (pgprocno == -1)
continue; /* do not count deleted entries */
if (proc == MyProc)
continue; /* do not count myself */
if (pgxact->xid == InvalidTransactionId)
continue; /* do not count if no XID assigned */
if (proc->pid == 0)
continue; /* do not count prepared xacts */
if (proc->waitLock != NULL)
continue; /* do not count if blocked on a lock */
count++;
if (count >= min)
break;
}
return count >= min;
}
/*
* CountDBBackends --- count backends that are using specified database
*/
int
CountDBBackends(Oid databaseid)
{
ProcArrayStruct *arrayP = procArray;
int count = 0;
int index;
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
if (proc->pid == 0)
continue; /* do not count prepared xacts */
if (!OidIsValid(databaseid) ||
proc->databaseId == databaseid)
count++;
}
LWLockRelease(ProcArrayLock);
return count;
}
/*
* CountDBConnections --- counts database backends ignoring any background
* worker processes
*/
int
CountDBConnections(Oid databaseid)
{
ProcArrayStruct *arrayP = procArray;
int count = 0;
int index;
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
if (proc->pid == 0)
continue; /* do not count prepared xacts */
if (proc->isBackgroundWorker)
continue; /* do not count background workers */
if (!OidIsValid(databaseid) ||
proc->databaseId == databaseid)
count++;
}
LWLockRelease(ProcArrayLock);
return count;
}
/*
* CancelDBBackends --- cancel backends that are using specified database
*/
void
CancelDBBackends(Oid databaseid, ProcSignalReason sigmode, bool conflictPending)
{
ProcArrayStruct *arrayP = procArray;
int index;
pid_t pid = 0;
/* tell all backends to die */
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
if (databaseid == InvalidOid || proc->databaseId == databaseid)
{
VirtualTransactionId procvxid;
GET_VXID_FROM_PGPROC(procvxid, *proc);
proc->recoveryConflictPending = conflictPending;
pid = proc->pid;
if (pid != 0)
{
/*
* Kill the pid if it's still here. If not, that's what we
* wanted so ignore any errors.
*/
(void) SendProcSignal(pid, sigmode, procvxid.backendId);
}
}
}
LWLockRelease(ProcArrayLock);
}
/*
* CountUserBackends --- count backends that are used by specified user
*/
int
CountUserBackends(Oid roleid)
{
ProcArrayStruct *arrayP = procArray;
int count = 0;
int index;
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
if (proc->pid == 0)
continue; /* do not count prepared xacts */
if (proc->isBackgroundWorker)
continue; /* do not count background workers */
if (proc->roleId == roleid)
count++;
}
LWLockRelease(ProcArrayLock);
return count;
}
/*
* CountOtherDBBackends -- check for other backends running in the given DB
*
* If there are other backends in the DB, we will wait a maximum of 5 seconds
* for them to exit. Autovacuum backends are encouraged to exit early by
* sending them SIGTERM, but normal user backends are just waited for.
*
* The current backend is always ignored; it is caller's responsibility to
* check whether the current backend uses the given DB, if it's important.
*
* Returns true if there are (still) other backends in the DB, false if not.
* Also, *nbackends and *nprepared are set to the number of other backends
* and prepared transactions in the DB, respectively.
*
* This function is used to interlock DROP DATABASE and related commands
* against there being any active backends in the target DB --- dropping the
* DB while active backends remain would be a Bad Thing. Note that we cannot
* detect here the possibility of a newly-started backend that is trying to
* connect to the doomed database, so additional interlocking is needed during
* backend startup. The caller should normally hold an exclusive lock on the
* target DB before calling this, which is one reason we mustn't wait
* indefinitely.
*/
bool
CountOtherDBBackends(Oid databaseId, int *nbackends, int *nprepared)
{
ProcArrayStruct *arrayP = procArray;
#define MAXAUTOVACPIDS 10 /* max autovacs to SIGTERM per iteration */
int autovac_pids[MAXAUTOVACPIDS];
int tries;
/* 50 tries with 100ms sleep between tries makes 5 sec total wait */
for (tries = 0; tries < 50; tries++)
{
int nautovacs = 0;
bool found = false;
int index;
CHECK_FOR_INTERRUPTS();
*nbackends = *nprepared = 0;
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (index = 0; index < arrayP->numProcs; index++)
{
int pgprocno = arrayP->pgprocnos[index];
PGPROC *proc = &allProcs[pgprocno];
PGXACT *pgxact = &allPgXact[pgprocno];
if (proc->databaseId != databaseId)
continue;
if (proc == MyProc)
continue;
found = true;
if (proc->pid == 0)
(*nprepared)++;
else
{
(*nbackends)++;
if ((pgxact->vacuumFlags & PROC_IS_AUTOVACUUM) &&
nautovacs < MAXAUTOVACPIDS)
autovac_pids[nautovacs++] = proc->pid;
}
}
LWLockRelease(ProcArrayLock);
if (!found)
return false; /* no conflicting backends, so done */
/*
* Send SIGTERM to any conflicting autovacuums before sleeping. We
* postpone this step until after the loop because we don't want to
* hold ProcArrayLock while issuing kill(). We have no idea what might
* block kill() inside the kernel...
*/
for (index = 0; index < nautovacs; index++)
(void) kill(autovac_pids[index], SIGTERM); /* ignore any error */
/* sleep, then try again */
pg_usleep(100 * 1000L); /* 100ms */
}
return true; /* timed out, still conflicts */
}
/*
* Terminate existing connections to the specified database. This routine
* is used by the DROP DATABASE command when user has asked to forcefully
* drop the database.
*
* The current backend is always ignored; it is caller's responsibility to
* check whether the current backend uses the given DB, if it's important.
*
* It doesn't allow to terminate the connections even if there is a one
* backend with the prepared transaction in the target database.
*/
void
TerminateOtherDBBackends(Oid databaseId)
{
ProcArrayStruct *arrayP = procArray;
List *pids = NIL;
int nprepared = 0;
int i;
LWLockAcquire(ProcArrayLock, LW_SHARED);
for (i = 0; i < procArray->numProcs; i++)
{
int pgprocno = arrayP->pgprocnos[i];
PGPROC *proc = &allProcs[pgprocno];
if (proc->databaseId != databaseId)
continue;
if (proc == MyProc)
continue;
if (proc->pid != 0)
pids = lappend_int(pids, proc->pid);
else
nprepared++;
}
LWLockRelease(ProcArrayLock);
if (nprepared > 0)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_IN_USE),
errmsg("database \"%s\" is being used by prepared transactions",
get_database_name(databaseId)),
errdetail_plural("There is %d prepared transaction using the database.",
"There are %d prepared transactions using the database.",
nprepared,
nprepared)));
if (pids)
{
ListCell *lc;
/*
* Check whether we have the necessary rights to terminate other
* sessions. We don't terminate any session until we ensure that we
* have rights on all the sessions to be terminated. These checks are
* the same as we do in pg_terminate_backend.
*
* In this case we don't raise some warnings - like "PID %d is not a
* PostgreSQL server process", because for us already finished session
* is not a problem.
*/
foreach(lc, pids)
{
int pid = lfirst_int(lc);
PGPROC *proc = BackendPidGetProc(pid);
if (proc != NULL)
{
/* Only allow superusers to signal superuser-owned backends. */
if (superuser_arg(proc->roleId) && !superuser())
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("must be a superuser to terminate superuser process")));
/* Users can signal backends they have role membership in. */
if (!has_privs_of_role(GetUserId(), proc->roleId) &&
!has_privs_of_role(GetUserId(), DEFAULT_ROLE_SIGNAL_BACKENDID))
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("must be a member of the role whose process is being terminated or member of pg_signal_backend")));
}
}
/*
* There's a race condition here: once we release the ProcArrayLock,
* it's possible for the session to exit before we issue kill. That
* race condition possibility seems too unlikely to worry about. See
* pg_signal_backend.
*/
foreach(lc, pids)
{
int pid = lfirst_int(lc);
PGPROC *proc = BackendPidGetProc(pid);
if (proc != NULL)
{
/*
* If we have setsid(), signal the backend's whole process
* group
*/
#ifdef HAVE_SETSID
(void) kill(-pid, SIGTERM);
#else
(void) kill(pid, SIGTERM);
#endif
}
}
}
}
/*
* ProcArraySetReplicationSlotXmin
*
* Install limits to future computations of the xmin horizon to prevent vacuum
* and HOT pruning from removing affected rows still needed by clients with
* replication slots.
*/
void
ProcArraySetReplicationSlotXmin(TransactionId xmin, TransactionId catalog_xmin,
bool already_locked)
{
Assert(!already_locked || LWLockHeldByMe(ProcArrayLock));
if (!already_locked)
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
procArray->replication_slot_xmin = xmin;
procArray->replication_slot_catalog_xmin = catalog_xmin;
if (!already_locked)
LWLockRelease(ProcArrayLock);
}
/*
* ProcArrayGetReplicationSlotXmin
*
* Return the current slot xmin limits. That's useful to be able to remove
* data that's older than those limits.
*/
void
ProcArrayGetReplicationSlotXmin(TransactionId *xmin,
TransactionId *catalog_xmin)
{
LWLockAcquire(ProcArrayLock, LW_SHARED);
if (xmin != NULL)
*xmin = procArray->replication_slot_xmin;
if (catalog_xmin != NULL)
*catalog_xmin = procArray->replication_slot_catalog_xmin;
LWLockRelease(ProcArrayLock);
}
#define XidCacheRemove(i) \
do { \
MyProc->subxids.xids[i] = MyProc->subxids.xids[MyPgXact->nxids - 1]; \
pg_write_barrier(); \
MyPgXact->nxids--; \
} while (0)
/*
* XidCacheRemoveRunningXids
*
* Remove a bunch of TransactionIds from the list of known-running
* subtransactions for my backend. Both the specified xid and those in
* the xids[] array (of length nxids) are removed from the subxids cache.
* latestXid must be the latest XID among the group.
*/
void
XidCacheRemoveRunningXids(TransactionId xid,
int nxids, const TransactionId *xids,
TransactionId latestXid)
{
int i,
j;
Assert(TransactionIdIsValid(xid));
/*
* We must hold ProcArrayLock exclusively in order to remove transactions
* from the PGPROC array. (See src/backend/access/transam/README.) It's
* possible this could be relaxed since we know this routine is only used
* to abort subtransactions, but pending closer analysis we'd best be
* conservative.
*
* Note that we do not have to be careful about memory ordering of our own
* reads wrt. GetNewTransactionId() here - only this process can modify
* relevant fields of MyProc/MyPgXact. But we do have to be careful about
* our own writes being well ordered.
*/
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
/*
* Under normal circumstances xid and xids[] will be in increasing order,
* as will be the entries in subxids. Scan backwards to avoid O(N^2)
* behavior when removing a lot of xids.
*/
for (i = nxids - 1; i >= 0; i--)
{
TransactionId anxid = xids[i];
for (j = MyPgXact->nxids - 1; j >= 0; j--)
{
if (TransactionIdEquals(MyProc->subxids.xids[j], anxid))
{
XidCacheRemove(j);
break;
}
}
/*
* Ordinarily we should have found it, unless the cache has
* overflowed. However it's also possible for this routine to be
* invoked multiple times for the same subtransaction, in case of an
* error during AbortSubTransaction. So instead of Assert, emit a
* debug warning.
*/
if (j < 0 && !MyPgXact->overflowed)
elog(WARNING, "did not find subXID %u in MyProc", anxid);
}
for (j = MyPgXact->nxids - 1; j >= 0; j--)
{
if (TransactionIdEquals(MyProc->subxids.xids[j], xid))
{
XidCacheRemove(j);
break;
}
}
/* Ordinarily we should have found it, unless the cache has overflowed */
if (j < 0 && !MyPgXact->overflowed)
elog(WARNING, "did not find subXID %u in MyProc", xid);
/* Also advance global latestCompletedXid while holding the lock */
if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid,
latestXid))
ShmemVariableCache->latestCompletedXid = latestXid;
LWLockRelease(ProcArrayLock);
}
#ifdef XIDCACHE_DEBUG
/*
* Print stats about effectiveness of XID cache
*/
static void
DisplayXidCache(void)
{
fprintf(stderr,
"XidCache: xmin: %ld, known: %ld, myxact: %ld, latest: %ld, mainxid: %ld, childxid: %ld, knownassigned: %ld, nooflo: %ld, slow: %ld\n",
xc_by_recent_xmin,
xc_by_known_xact,
xc_by_my_xact,
xc_by_latest_xid,
xc_by_main_xid,
xc_by_child_xid,
xc_by_known_assigned,
xc_no_overflow,
xc_slow_answer);
}
#endif /* XIDCACHE_DEBUG */
/* ----------------------------------------------
* KnownAssignedTransactionIds sub-module
* ----------------------------------------------
*/
/*
* In Hot Standby mode, we maintain a list of transactions that are (or were)
* running in the master at the current point in WAL. These XIDs must be
* treated as running by standby transactions, even though they are not in
* the standby server's PGXACT array.
*
* We record all XIDs that we know have been assigned. That includes all the
* XIDs seen in WAL records, plus all unobserved XIDs that we can deduce have
* been assigned. We can deduce the existence of unobserved XIDs because we
* know XIDs are assigned in sequence, with no gaps. The KnownAssignedXids
* list expands as new XIDs are observed or inferred, and contracts when
* transaction completion records arrive.
*
* During hot standby we do not fret too much about the distinction between
* top-level XIDs and subtransaction XIDs. We store both together in the
* KnownAssignedXids list. In backends, this is copied into snapshots in
* GetSnapshotData(), taking advantage of the fact that XidInMVCCSnapshot()
* doesn't care about the distinction either. Subtransaction XIDs are
* effectively treated as top-level XIDs and in the typical case pg_subtrans
* links are *not* maintained (which does not affect visibility).
*
* We have room in KnownAssignedXids and in snapshots to hold maxProcs *
* (1 + PGPROC_MAX_CACHED_SUBXIDS) XIDs, so every master transaction must
* report its subtransaction XIDs in a WAL XLOG_XACT_ASSIGNMENT record at
* least every PGPROC_MAX_CACHED_SUBXIDS. When we receive one of these
* records, we mark the subXIDs as children of the top XID in pg_subtrans,
* and then remove them from KnownAssignedXids. This prevents overflow of
* KnownAssignedXids and snapshots, at the cost that status checks for these
* subXIDs will take a slower path through TransactionIdIsInProgress().
* This means that KnownAssignedXids is not necessarily complete for subXIDs,
* though it should be complete for top-level XIDs; this is the same situation
* that holds with respect to the PGPROC entries in normal running.
*
* When we throw away subXIDs from KnownAssignedXids, we need to keep track of
* that, similarly to tracking overflow of a PGPROC's subxids array. We do
* that by remembering the lastOverflowedXid, ie the last thrown-away subXID.
* As long as that is within the range of interesting XIDs, we have to assume
* that subXIDs are missing from snapshots. (Note that subXID overflow occurs
* on primary when 65th subXID arrives, whereas on standby it occurs when 64th
* subXID arrives - that is not an error.)
*
* Should a backend on primary somehow disappear before it can write an abort
* record, then we just leave those XIDs in KnownAssignedXids. They actually
* aborted but we think they were running; the distinction is irrelevant
* because either way any changes done by the transaction are not visible to
* backends in the standby. We prune KnownAssignedXids when
* XLOG_RUNNING_XACTS arrives, to forestall possible overflow of the
* array due to such dead XIDs.
*/
/*
* RecordKnownAssignedTransactionIds
* Record the given XID in KnownAssignedXids, as well as any preceding
* unobserved XIDs.
*
* RecordKnownAssignedTransactionIds() should be run for *every* WAL record
* associated with a transaction. Must be called for each record after we
* have executed StartupCLOG() et al, since we must ExtendCLOG() etc..
*
* Called during recovery in analogy with and in place of GetNewTransactionId()
*/
void
RecordKnownAssignedTransactionIds(TransactionId xid)
{
Assert(standbyState >= STANDBY_INITIALIZED);
Assert(TransactionIdIsValid(xid));
Assert(TransactionIdIsValid(latestObservedXid));
elog(trace_recovery(DEBUG4), "record known xact %u latestObservedXid %u",
xid, latestObservedXid);
/*
* When a newly observed xid arrives, it is frequently the case that it is
* *not* the next xid in sequence. When this occurs, we must treat the
* intervening xids as running also.
*/
if (TransactionIdFollows(xid, latestObservedXid))
{
TransactionId next_expected_xid;
/*
* Extend subtrans like we do in GetNewTransactionId() during normal
* operation using individual extend steps. Note that we do not need
* to extend clog since its extensions are WAL logged.
*
* This part has to be done regardless of standbyState since we
* immediately start assigning subtransactions to their toplevel
* transactions.
*/
next_expected_xid = latestObservedXid;
while (TransactionIdPrecedes(next_expected_xid, xid))
{
TransactionIdAdvance(next_expected_xid);
ExtendSUBTRANS(next_expected_xid);
}
Assert(next_expected_xid == xid);
/*
* If the KnownAssignedXids machinery isn't up yet, there's nothing
* more to do since we don't track assigned xids yet.
*/
if (standbyState <= STANDBY_INITIALIZED)
{
latestObservedXid = xid;
return;
}
/*
* Add (latestObservedXid, xid] onto the KnownAssignedXids array.
*/
next_expected_xid = latestObservedXid;
TransactionIdAdvance(next_expected_xid);
KnownAssignedXidsAdd(next_expected_xid, xid, false);
/*
* Now we can advance latestObservedXid
*/
latestObservedXid = xid;
/* ShmemVariableCache->nextFullXid must be beyond any observed xid */
AdvanceNextFullTransactionIdPastXid(latestObservedXid);
next_expected_xid = latestObservedXid;
TransactionIdAdvance(next_expected_xid);
}
}
/*
* ExpireTreeKnownAssignedTransactionIds
* Remove the given XIDs from KnownAssignedXids.
*
* Called during recovery in analogy with and in place of ProcArrayEndTransaction()
*/
void
ExpireTreeKnownAssignedTransactionIds(TransactionId xid, int nsubxids,
TransactionId *subxids, TransactionId max_xid)
{
Assert(standbyState >= STANDBY_INITIALIZED);
/*
* Uses same locking as transaction commit
*/
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
KnownAssignedXidsRemoveTree(xid, nsubxids, subxids);
/* As in ProcArrayEndTransaction, advance latestCompletedXid */
if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid,
max_xid))
ShmemVariableCache->latestCompletedXid = max_xid;
LWLockRelease(ProcArrayLock);
}
/*
* ExpireAllKnownAssignedTransactionIds
* Remove all entries in KnownAssignedXids
*/
void
ExpireAllKnownAssignedTransactionIds(void)
{
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
KnownAssignedXidsRemovePreceding(InvalidTransactionId);
LWLockRelease(ProcArrayLock);
}
/*
* ExpireOldKnownAssignedTransactionIds
* Remove KnownAssignedXids entries preceding the given XID
*/
void
ExpireOldKnownAssignedTransactionIds(TransactionId xid)
{
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
KnownAssignedXidsRemovePreceding(xid);
LWLockRelease(ProcArrayLock);
}
/*
* Private module functions to manipulate KnownAssignedXids
*
* There are 5 main uses of the KnownAssignedXids data structure:
*
* * backends taking snapshots - all valid XIDs need to be copied out
* * backends seeking to determine presence of a specific XID
* * startup process adding new known-assigned XIDs
* * startup process removing specific XIDs as transactions end
* * startup process pruning array when special WAL records arrive
*
* This data structure is known to be a hot spot during Hot Standby, so we
* go to some lengths to make these operations as efficient and as concurrent
* as possible.
*
* The XIDs are stored in an array in sorted order --- TransactionIdPrecedes
* order, to be exact --- to allow binary search for specific XIDs. Note:
* in general TransactionIdPrecedes would not provide a total order, but
* we know that the entries present at any instant should not extend across
* a large enough fraction of XID space to wrap around (the master would
* shut down for fear of XID wrap long before that happens). So it's OK to
* use TransactionIdPrecedes as a binary-search comparator.
*
* It's cheap to maintain the sortedness during insertions, since new known
* XIDs are always reported in XID order; we just append them at the right.
*
* To keep individual deletions cheap, we need to allow gaps in the array.
* This is implemented by marking array elements as valid or invalid using
* the parallel boolean array KnownAssignedXidsValid[]. A deletion is done
* by setting KnownAssignedXidsValid[i] to false, *without* clearing the
* XID entry itself. This preserves the property that the XID entries are
* sorted, so we can do binary searches easily. Periodically we compress
* out the unused entries; that's much cheaper than having to compress the
* array immediately on every deletion.
*
* The actually valid items in KnownAssignedXids[] and KnownAssignedXidsValid[]
* are those with indexes tail <= i < head; items outside this subscript range
* have unspecified contents. When head reaches the end of the array, we
* force compression of unused entries rather than wrapping around, since
* allowing wraparound would greatly complicate the search logic. We maintain
* an explicit tail pointer so that pruning of old XIDs can be done without
* immediately moving the array contents. In most cases only a small fraction
* of the array contains valid entries at any instant.
*
* Although only the startup process can ever change the KnownAssignedXids
* data structure, we still need interlocking so that standby backends will
* not observe invalid intermediate states. The convention is that backends
* must hold shared ProcArrayLock to examine the array. To remove XIDs from
* the array, the startup process must hold ProcArrayLock exclusively, for
* the usual transactional reasons (compare commit/abort of a transaction
* during normal running). Compressing unused entries out of the array
* likewise requires exclusive lock. To add XIDs to the array, we just insert
* them into slots to the right of the head pointer and then advance the head
* pointer. This wouldn't require any lock at all, except that on machines
* with weak memory ordering we need to be careful that other processors
* see the array element changes before they see the head pointer change.
* We handle this by using a spinlock to protect reads and writes of the
* head/tail pointers. (We could dispense with the spinlock if we were to
* create suitable memory access barrier primitives and use those instead.)
* The spinlock must be taken to read or write the head/tail pointers unless
* the caller holds ProcArrayLock exclusively.
*
* Algorithmic analysis:
*
* If we have a maximum of M slots, with N XIDs currently spread across
* S elements then we have N <= S <= M always.
*
* * Adding a new XID is O(1) and needs little locking (unless compression
* must happen)
* * Compressing the array is O(S) and requires exclusive lock
* * Removing an XID is O(logS) and requires exclusive lock
* * Taking a snapshot is O(S) and requires shared lock
* * Checking for an XID is O(logS) and requires shared lock
*
* In comparison, using a hash table for KnownAssignedXids would mean that
* taking snapshots would be O(M). If we can maintain S << M then the
* sorted array technique will deliver significantly faster snapshots.
* If we try to keep S too small then we will spend too much time compressing,
* so there is an optimal point for any workload mix. We use a heuristic to
* decide when to compress the array, though trimming also helps reduce
* frequency of compressing. The heuristic requires us to track the number of
* currently valid XIDs in the array.
*/
/*
* Compress KnownAssignedXids by shifting valid data down to the start of the
* array, removing any gaps.
*
* A compression step is forced if "force" is true, otherwise we do it
* only if a heuristic indicates it's a good time to do it.
*
* Caller must hold ProcArrayLock in exclusive mode.
*/
static void
KnownAssignedXidsCompress(bool force)
{
ProcArrayStruct *pArray = procArray;
int head,
tail;
int compress_index;
int i;
/* no spinlock required since we hold ProcArrayLock exclusively */
head = pArray->headKnownAssignedXids;
tail = pArray->tailKnownAssignedXids;
if (!force)
{
/*
* If we can choose how much to compress, use a heuristic to avoid
* compressing too often or not often enough.
*
* Heuristic is if we have a large enough current spread and less than
* 50% of the elements are currently in use, then compress. This
* should ensure we compress fairly infrequently. We could compress
* less often though the virtual array would spread out more and
* snapshots would become more expensive.
*/
int nelements = head - tail;
if (nelements < 4 * PROCARRAY_MAXPROCS ||
nelements < 2 * pArray->numKnownAssignedXids)
return;
}
/*
* We compress the array by reading the valid values from tail to head,
* re-aligning data to 0th element.
*/
compress_index = 0;
for (i = tail; i < head; i++)
{
if (KnownAssignedXidsValid[i])
{
KnownAssignedXids[compress_index] = KnownAssignedXids[i];
KnownAssignedXidsValid[compress_index] = true;
compress_index++;
}
}
pArray->tailKnownAssignedXids = 0;
pArray->headKnownAssignedXids = compress_index;
}
/*
* Add xids into KnownAssignedXids at the head of the array.
*
* xids from from_xid to to_xid, inclusive, are added to the array.
*
* If exclusive_lock is true then caller already holds ProcArrayLock in
* exclusive mode, so we need no extra locking here. Else caller holds no
* lock, so we need to be sure we maintain sufficient interlocks against
* concurrent readers. (Only the startup process ever calls this, so no need
* to worry about concurrent writers.)
*/
static void
KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid,
bool exclusive_lock)
{
ProcArrayStruct *pArray = procArray;
TransactionId next_xid;
int head,
tail;
int nxids;
int i;
Assert(TransactionIdPrecedesOrEquals(from_xid, to_xid));
/*
* Calculate how many array slots we'll need. Normally this is cheap; in
* the unusual case where the XIDs cross the wrap point, we do it the hard
* way.
*/
if (to_xid >= from_xid)
nxids = to_xid - from_xid + 1;
else
{
nxids = 1;
next_xid = from_xid;
while (TransactionIdPrecedes(next_xid, to_xid))
{
nxids++;
TransactionIdAdvance(next_xid);
}
}
/*
* Since only the startup process modifies the head/tail pointers, we
* don't need a lock to read them here.
*/
head = pArray->headKnownAssignedXids;
tail = pArray->tailKnownAssignedXids;
Assert(head >= 0 && head <= pArray->maxKnownAssignedXids);
Assert(tail >= 0 && tail < pArray->maxKnownAssignedXids);
/*
* Verify that insertions occur in TransactionId sequence. Note that even
* if the last existing element is marked invalid, it must still have a
* correctly sequenced XID value.
*/
if (head > tail &&
TransactionIdFollowsOrEquals(KnownAssignedXids[head - 1], from_xid))
{
KnownAssignedXidsDisplay(LOG);
elog(ERROR, "out-of-order XID insertion in KnownAssignedXids");
}
/*
* If our xids won't fit in the remaining space, compress out free space
*/
if (head + nxids > pArray->maxKnownAssignedXids)
{
/* must hold lock to compress */
if (!exclusive_lock)
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
KnownAssignedXidsCompress(true);
head = pArray->headKnownAssignedXids;
/* note: we no longer care about the tail pointer */
if (!exclusive_lock)
LWLockRelease(ProcArrayLock);
/*
* If it still won't fit then we're out of memory
*/
if (head + nxids > pArray->maxKnownAssignedXids)
elog(ERROR, "too many KnownAssignedXids");
}
/* Now we can insert the xids into the space starting at head */
next_xid = from_xid;
for (i = 0; i < nxids; i++)
{
KnownAssignedXids[head] = next_xid;
KnownAssignedXidsValid[head] = true;
TransactionIdAdvance(next_xid);
head++;
}
/* Adjust count of number of valid entries */
pArray->numKnownAssignedXids += nxids;
/*
* Now update the head pointer. We use a spinlock to protect this
* pointer, not because the update is likely to be non-atomic, but to
* ensure that other processors see the above array updates before they
* see the head pointer change.
*
* If we're holding ProcArrayLock exclusively, there's no need to take the
* spinlock.
*/
if (exclusive_lock)
pArray->headKnownAssignedXids = head;
else
{
SpinLockAcquire(&pArray->known_assigned_xids_lck);
pArray->headKnownAssignedXids = head;
SpinLockRelease(&pArray->known_assigned_xids_lck);
}
}
/*
* KnownAssignedXidsSearch
*
* Searches KnownAssignedXids for a specific xid and optionally removes it.
* Returns true if it was found, false if not.
*
* Caller must hold ProcArrayLock in shared or exclusive mode.
* Exclusive lock must be held for remove = true.
*/
static bool
KnownAssignedXidsSearch(TransactionId xid, bool remove)
{
ProcArrayStruct *pArray = procArray;
int first,
last;
int head;
int tail;
int result_index = -1;
if (remove)
{
/* we hold ProcArrayLock exclusively, so no need for spinlock */
tail = pArray->tailKnownAssignedXids;
head = pArray->headKnownAssignedXids;
}
else
{
/* take spinlock to ensure we see up-to-date array contents */
SpinLockAcquire(&pArray->known_assigned_xids_lck);
tail = pArray->tailKnownAssignedXids;
head = pArray->headKnownAssignedXids;
SpinLockRelease(&pArray->known_assigned_xids_lck);
}
/*
* Standard binary search. Note we can ignore the KnownAssignedXidsValid
* array here, since even invalid entries will contain sorted XIDs.
*/
first = tail;
last = head - 1;
while (first <= last)
{
int mid_index;
TransactionId mid_xid;
mid_index = (first + last) / 2;
mid_xid = KnownAssignedXids[mid_index];
if (xid == mid_xid)
{
result_index = mid_index;
break;
}
else if (TransactionIdPrecedes(xid, mid_xid))
last = mid_index - 1;
else
first = mid_index + 1;
}
if (result_index < 0)
return false; /* not in array */
if (!KnownAssignedXidsValid[result_index])
return false; /* in array, but invalid */
if (remove)
{
KnownAssignedXidsValid[result_index] = false;
pArray->numKnownAssignedXids--;
Assert(pArray->numKnownAssignedXids >= 0);
/*
* If we're removing the tail element then advance tail pointer over
* any invalid elements. This will speed future searches.
*/
if (result_index == tail)
{
tail++;
while (tail < head && !KnownAssignedXidsValid[tail])
tail++;
if (tail >= head)
{
/* Array is empty, so we can reset both pointers */
pArray->headKnownAssignedXids = 0;
pArray->tailKnownAssignedXids = 0;
}
else
{
pArray->tailKnownAssignedXids = tail;
}
}
}
return true;
}
/*
* Is the specified XID present in KnownAssignedXids[]?
*
* Caller must hold ProcArrayLock in shared or exclusive mode.
*/
static bool
KnownAssignedXidExists(TransactionId xid)
{
Assert(TransactionIdIsValid(xid));
return KnownAssignedXidsSearch(xid, false);
}
/*
* Remove the specified XID from KnownAssignedXids[].
*
* Caller must hold ProcArrayLock in exclusive mode.
*/
static void
KnownAssignedXidsRemove(TransactionId xid)
{
Assert(TransactionIdIsValid(xid));
elog(trace_recovery(DEBUG4), "remove KnownAssignedXid %u", xid);
/*
* Note: we cannot consider it an error to remove an XID that's not
* present. We intentionally remove subxact IDs while processing
* XLOG_XACT_ASSIGNMENT, to avoid array overflow. Then those XIDs will be
* removed again when the top-level xact commits or aborts.
*
* It might be possible to track such XIDs to distinguish this case from
* actual errors, but it would be complicated and probably not worth it.
* So, just ignore the search result.
*/
(void) KnownAssignedXidsSearch(xid, true);
}
/*
* KnownAssignedXidsRemoveTree
* Remove xid (if it's not InvalidTransactionId) and all the subxids.
*
* Caller must hold ProcArrayLock in exclusive mode.
*/
static void
KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids,
TransactionId *subxids)
{
int i;
if (TransactionIdIsValid(xid))
KnownAssignedXidsRemove(xid);
for (i = 0; i < nsubxids; i++)
KnownAssignedXidsRemove(subxids[i]);
/* Opportunistically compress the array */
KnownAssignedXidsCompress(false);
}
/*
* Prune KnownAssignedXids up to, but *not* including xid. If xid is invalid
* then clear the whole table.
*
* Caller must hold ProcArrayLock in exclusive mode.
*/
static void
KnownAssignedXidsRemovePreceding(TransactionId removeXid)
{
ProcArrayStruct *pArray = procArray;
int count = 0;
int head,
tail,
i;
if (!TransactionIdIsValid(removeXid))
{
elog(trace_recovery(DEBUG4), "removing all KnownAssignedXids");
pArray->numKnownAssignedXids = 0;
pArray->headKnownAssignedXids = pArray->tailKnownAssignedXids = 0;
return;
}
elog(trace_recovery(DEBUG4), "prune KnownAssignedXids to %u", removeXid);
/*
* Mark entries invalid starting at the tail. Since array is sorted, we
* can stop as soon as we reach an entry >= removeXid.
*/
tail = pArray->tailKnownAssignedXids;
head = pArray->headKnownAssignedXids;
for (i = tail; i < head; i++)
{
if (KnownAssignedXidsValid[i])
{
TransactionId knownXid = KnownAssignedXids[i];
if (TransactionIdFollowsOrEquals(knownXid, removeXid))
break;
if (!StandbyTransactionIdIsPrepared(knownXid))
{
KnownAssignedXidsValid[i] = false;
count++;
}
}
}
pArray->numKnownAssignedXids -= count;
Assert(pArray->numKnownAssignedXids >= 0);
/*
* Advance the tail pointer if we've marked the tail item invalid.
*/
for (i = tail; i < head; i++)
{
if (KnownAssignedXidsValid[i])
break;
}
if (i >= head)
{
/* Array is empty, so we can reset both pointers */
pArray->headKnownAssignedXids = 0;
pArray->tailKnownAssignedXids = 0;
}
else
{
pArray->tailKnownAssignedXids = i;
}
/* Opportunistically compress the array */
KnownAssignedXidsCompress(false);
}
/*
* KnownAssignedXidsGet - Get an array of xids by scanning KnownAssignedXids.
* We filter out anything >= xmax.
*
* Returns the number of XIDs stored into xarray[]. Caller is responsible
* that array is large enough.
*
* Caller must hold ProcArrayLock in (at least) shared mode.
*/
static int
KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax)
{
TransactionId xtmp = InvalidTransactionId;
return KnownAssignedXidsGetAndSetXmin(xarray, &xtmp, xmax);
}
/*
* KnownAssignedXidsGetAndSetXmin - as KnownAssignedXidsGet, plus
* we reduce *xmin to the lowest xid value seen if not already lower.
*
* Caller must hold ProcArrayLock in (at least) shared mode.
*/
static int
KnownAssignedXidsGetAndSetXmin(TransactionId *xarray, TransactionId *xmin,
TransactionId xmax)
{
int count = 0;
int head,
tail;
int i;
/*
* Fetch head just once, since it may change while we loop. We can stop
* once we reach the initially seen head, since we are certain that an xid
* cannot enter and then leave the array while we hold ProcArrayLock. We
* might miss newly-added xids, but they should be >= xmax so irrelevant
* anyway.
*
* Must take spinlock to ensure we see up-to-date array contents.
*/
SpinLockAcquire(&procArray->known_assigned_xids_lck);
tail = procArray->tailKnownAssignedXids;
head = procArray->headKnownAssignedXids;
SpinLockRelease(&procArray->known_assigned_xids_lck);
for (i = tail; i < head; i++)
{
/* Skip any gaps in the array */
if (KnownAssignedXidsValid[i])
{
TransactionId knownXid = KnownAssignedXids[i];
/*
* Update xmin if required. Only the first XID need be checked,
* since the array is sorted.
*/
if (count == 0 &&
TransactionIdPrecedes(knownXid, *xmin))
*xmin = knownXid;
/*
* Filter out anything >= xmax, again relying on sorted property
* of array.
*/
if (TransactionIdIsValid(xmax) &&
TransactionIdFollowsOrEquals(knownXid, xmax))
break;
/* Add knownXid into output array */
xarray[count++] = knownXid;
}
}
return count;
}
/*
* Get oldest XID in the KnownAssignedXids array, or InvalidTransactionId
* if nothing there.
*/
static TransactionId
KnownAssignedXidsGetOldestXmin(void)
{
int head,
tail;
int i;
/*
* Fetch head just once, since it may change while we loop.
*/
SpinLockAcquire(&procArray->known_assigned_xids_lck);
tail = procArray->tailKnownAssignedXids;
head = procArray->headKnownAssignedXids;
SpinLockRelease(&procArray->known_assigned_xids_lck);
for (i = tail; i < head; i++)
{
/* Skip any gaps in the array */
if (KnownAssignedXidsValid[i])
return KnownAssignedXids[i];
}
return InvalidTransactionId;
}
/*
* Display KnownAssignedXids to provide debug trail
*
* Currently this is only called within startup process, so we need no
* special locking.
*
* Note this is pretty expensive, and much of the expense will be incurred
* even if the elog message will get discarded. It's not currently called
* in any performance-critical places, however, so no need to be tenser.
*/
static void
KnownAssignedXidsDisplay(int trace_level)
{
ProcArrayStruct *pArray = procArray;
StringInfoData buf;
int head,
tail,
i;
int nxids = 0;
tail = pArray->tailKnownAssignedXids;
head = pArray->headKnownAssignedXids;
initStringInfo(&buf);
for (i = tail; i < head; i++)
{
if (KnownAssignedXidsValid[i])
{
nxids++;
appendStringInfo(&buf, "[%d]=%u ", i, KnownAssignedXids[i]);
}
}
elog(trace_level, "%d KnownAssignedXids (num=%d tail=%d head=%d) %s",
nxids,
pArray->numKnownAssignedXids,
pArray->tailKnownAssignedXids,
pArray->headKnownAssignedXids,
buf.data);
pfree(buf.data);
}
/*
* KnownAssignedXidsReset
* Resets KnownAssignedXids to be empty
*/
static void
KnownAssignedXidsReset(void)
{
ProcArrayStruct *pArray = procArray;
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
pArray->numKnownAssignedXids = 0;
pArray->tailKnownAssignedXids = 0;
pArray->headKnownAssignedXids = 0;
LWLockRelease(ProcArrayLock);
}
|