1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
|
/*-------------------------------------------------------------------------
* unicode_norm.c
* Normalize a Unicode string
*
* This implements Unicode normalization, per the documentation at
* https://www.unicode.org/reports/tr15/.
*
* Portions Copyright (c) 2017-2020, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/common/unicode_norm.c
*
*-------------------------------------------------------------------------
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include "common/unicode_norm.h"
#include "common/unicode_norm_table.h"
#ifndef FRONTEND
#include "common/unicode_normprops_table.h"
#endif
#ifndef FRONTEND
#define ALLOC(size) palloc(size)
#define FREE(size) pfree(size)
#else
#define ALLOC(size) malloc(size)
#define FREE(size) free(size)
#endif
/* Constants for calculations with Hangul characters */
#define SBASE 0xAC00 /* U+AC00 */
#define LBASE 0x1100 /* U+1100 */
#define VBASE 0x1161 /* U+1161 */
#define TBASE 0x11A7 /* U+11A7 */
#define LCOUNT 19
#define VCOUNT 21
#define TCOUNT 28
#define NCOUNT VCOUNT * TCOUNT
#define SCOUNT LCOUNT * NCOUNT
/* comparison routine for bsearch() of decomposition lookup table. */
static int
conv_compare(const void *p1, const void *p2)
{
uint32 v1,
v2;
v1 = *(const uint32 *) p1;
v2 = ((const pg_unicode_decomposition *) p2)->codepoint;
return (v1 > v2) ? 1 : ((v1 == v2) ? 0 : -1);
}
/*
* Get the entry corresponding to code in the decomposition lookup table.
*/
static pg_unicode_decomposition *
get_code_entry(pg_wchar code)
{
return bsearch(&(code),
UnicodeDecompMain,
lengthof(UnicodeDecompMain),
sizeof(pg_unicode_decomposition),
conv_compare);
}
/*
* Given a decomposition entry looked up earlier, get the decomposed
* characters.
*
* Note: the returned pointer can point to statically allocated buffer, and
* is only valid until next call to this function!
*/
static const pg_wchar *
get_code_decomposition(pg_unicode_decomposition *entry, int *dec_size)
{
static pg_wchar x;
if (DECOMPOSITION_IS_INLINE(entry))
{
Assert(DECOMPOSITION_SIZE(entry) == 1);
x = (pg_wchar) entry->dec_index;
*dec_size = 1;
return &x;
}
else
{
*dec_size = DECOMPOSITION_SIZE(entry);
return &UnicodeDecomp_codepoints[entry->dec_index];
}
}
/*
* Calculate how many characters a given character will decompose to.
*
* This needs to recurse, if the character decomposes into characters that
* are, in turn, decomposable.
*/
static int
get_decomposed_size(pg_wchar code, bool compat)
{
pg_unicode_decomposition *entry;
int size = 0;
int i;
const uint32 *decomp;
int dec_size;
/*
* Fast path for Hangul characters not stored in tables to save memory as
* decomposition is algorithmic. See
* https://www.unicode.org/reports/tr15/tr15-18.html, annex 10 for details
* on the matter.
*/
if (code >= SBASE && code < SBASE + SCOUNT)
{
uint32 tindex,
sindex;
sindex = code - SBASE;
tindex = sindex % TCOUNT;
if (tindex != 0)
return 3;
return 2;
}
entry = get_code_entry(code);
/*
* Just count current code if no other decompositions. A NULL entry is
* equivalent to a character with class 0 and no decompositions.
*/
if (entry == NULL || DECOMPOSITION_SIZE(entry) == 0 ||
(!compat && DECOMPOSITION_IS_COMPAT(entry)))
return 1;
/*
* If this entry has other decomposition codes look at them as well. First
* get its decomposition in the list of tables available.
*/
decomp = get_code_decomposition(entry, &dec_size);
for (i = 0; i < dec_size; i++)
{
uint32 lcode = decomp[i];
size += get_decomposed_size(lcode, compat);
}
return size;
}
/*
* Recompose a set of characters. For hangul characters, the calculation
* is algorithmic. For others, an inverse lookup at the decomposition
* table is necessary. Returns true if a recomposition can be done, and
* false otherwise.
*/
static bool
recompose_code(uint32 start, uint32 code, uint32 *result)
{
/*
* Handle Hangul characters algorithmically, per the Unicode spec.
*
* Check if two current characters are L and V.
*/
if (start >= LBASE && start < LBASE + LCOUNT &&
code >= VBASE && code < VBASE + VCOUNT)
{
/* make syllable of form LV */
uint32 lindex = start - LBASE;
uint32 vindex = code - VBASE;
*result = SBASE + (lindex * VCOUNT + vindex) * TCOUNT;
return true;
}
/* Check if two current characters are LV and T */
else if (start >= SBASE && start < (SBASE + SCOUNT) &&
((start - SBASE) % TCOUNT) == 0 &&
code >= TBASE && code < (TBASE + TCOUNT))
{
/* make syllable of form LVT */
uint32 tindex = code - TBASE;
*result = start + tindex;
return true;
}
else
{
int i;
/*
* Do an inverse lookup of the decomposition tables to see if anything
* matches. The comparison just needs to be a perfect match on the
* sub-table of size two, because the start character has already been
* recomposed partially.
*/
for (i = 0; i < lengthof(UnicodeDecompMain); i++)
{
const pg_unicode_decomposition *entry = &UnicodeDecompMain[i];
if (DECOMPOSITION_SIZE(entry) != 2)
continue;
if (DECOMPOSITION_NO_COMPOSE(entry))
continue;
if (start == UnicodeDecomp_codepoints[entry->dec_index] &&
code == UnicodeDecomp_codepoints[entry->dec_index + 1])
{
*result = entry->codepoint;
return true;
}
}
}
return false;
}
/*
* Decompose the given code into the array given by caller. The
* decomposition begins at the position given by caller, saving one
* lookup on the decomposition table. The current position needs to be
* updated here to let the caller know from where to continue filling
* in the array result.
*/
static void
decompose_code(pg_wchar code, bool compat, pg_wchar **result, int *current)
{
pg_unicode_decomposition *entry;
int i;
const uint32 *decomp;
int dec_size;
/*
* Fast path for Hangul characters not stored in tables to save memory as
* decomposition is algorithmic. See
* https://www.unicode.org/reports/tr15/tr15-18.html, annex 10 for details
* on the matter.
*/
if (code >= SBASE && code < SBASE + SCOUNT)
{
uint32 l,
v,
tindex,
sindex;
pg_wchar *res = *result;
sindex = code - SBASE;
l = LBASE + sindex / (VCOUNT * TCOUNT);
v = VBASE + (sindex % (VCOUNT * TCOUNT)) / TCOUNT;
tindex = sindex % TCOUNT;
res[*current] = l;
(*current)++;
res[*current] = v;
(*current)++;
if (tindex != 0)
{
res[*current] = TBASE + tindex;
(*current)++;
}
return;
}
entry = get_code_entry(code);
/*
* Just fill in with the current decomposition if there are no
* decomposition codes to recurse to. A NULL entry is equivalent to a
* character with class 0 and no decompositions, so just leave also in
* this case.
*/
if (entry == NULL || DECOMPOSITION_SIZE(entry) == 0 ||
(!compat && DECOMPOSITION_IS_COMPAT(entry)))
{
pg_wchar *res = *result;
res[*current] = code;
(*current)++;
return;
}
/*
* If this entry has other decomposition codes look at them as well.
*/
decomp = get_code_decomposition(entry, &dec_size);
for (i = 0; i < dec_size; i++)
{
pg_wchar lcode = (pg_wchar) decomp[i];
/* Leave if no more decompositions */
decompose_code(lcode, compat, result, current);
}
}
/*
* unicode_normalize - Normalize a Unicode string to the specified form.
*
* The input is a 0-terminated array of codepoints.
*
* In frontend, returns a 0-terminated array of codepoints, allocated with
* malloc. Or NULL if we run out of memory. In backend, the returned
* string is palloc'd instead, and OOM is reported with ereport().
*/
pg_wchar *
unicode_normalize(UnicodeNormalizationForm form, const pg_wchar *input)
{
bool compat = (form == UNICODE_NFKC || form == UNICODE_NFKD);
bool recompose = (form == UNICODE_NFC || form == UNICODE_NFKC);
pg_wchar *decomp_chars;
pg_wchar *recomp_chars;
int decomp_size,
current_size;
int count;
const pg_wchar *p;
/* variables for recomposition */
int last_class;
int starter_pos;
int target_pos;
uint32 starter_ch;
/* First, do character decomposition */
/*
* Calculate how many characters long the decomposed version will be.
*/
decomp_size = 0;
for (p = input; *p; p++)
decomp_size += get_decomposed_size(*p, compat);
decomp_chars = (pg_wchar *) ALLOC((decomp_size + 1) * sizeof(pg_wchar));
if (decomp_chars == NULL)
return NULL;
/*
* Now fill in each entry recursively. This needs a second pass on the
* decomposition table.
*/
current_size = 0;
for (p = input; *p; p++)
decompose_code(*p, compat, &decomp_chars, ¤t_size);
decomp_chars[decomp_size] = '\0';
Assert(decomp_size == current_size);
/*
* Now apply canonical ordering.
*/
for (count = 1; count < decomp_size; count++)
{
pg_wchar prev = decomp_chars[count - 1];
pg_wchar next = decomp_chars[count];
pg_wchar tmp;
pg_unicode_decomposition *prevEntry = get_code_entry(prev);
pg_unicode_decomposition *nextEntry = get_code_entry(next);
/*
* If no entries are found, the character used is either an Hangul
* character or a character with a class of 0 and no decompositions,
* so move to next result.
*/
if (prevEntry == NULL || nextEntry == NULL)
continue;
/*
* Per Unicode (https://www.unicode.org/reports/tr15/tr15-18.html)
* annex 4, a sequence of two adjacent characters in a string is an
* exchangeable pair if the combining class (from the Unicode
* Character Database) for the first character is greater than the
* combining class for the second, and the second is not a starter. A
* character is a starter if its combining class is 0.
*/
if (nextEntry->comb_class == 0x0 || prevEntry->comb_class == 0x0)
continue;
if (prevEntry->comb_class <= nextEntry->comb_class)
continue;
/* exchange can happen */
tmp = decomp_chars[count - 1];
decomp_chars[count - 1] = decomp_chars[count];
decomp_chars[count] = tmp;
/* backtrack to check again */
if (count > 1)
count -= 2;
}
if (!recompose)
return decomp_chars;
/*
* The last phase of NFC and NFKC is the recomposition of the reordered
* Unicode string using combining classes. The recomposed string cannot be
* longer than the decomposed one, so make the allocation of the output
* string based on that assumption.
*/
recomp_chars = (pg_wchar *) ALLOC((decomp_size + 1) * sizeof(pg_wchar));
if (!recomp_chars)
{
FREE(decomp_chars);
return NULL;
}
last_class = -1; /* this eliminates a special check */
starter_pos = 0;
target_pos = 1;
starter_ch = recomp_chars[0] = decomp_chars[0];
for (count = 1; count < decomp_size; count++)
{
pg_wchar ch = decomp_chars[count];
pg_unicode_decomposition *ch_entry = get_code_entry(ch);
int ch_class = (ch_entry == NULL) ? 0 : ch_entry->comb_class;
pg_wchar composite;
if (last_class < ch_class &&
recompose_code(starter_ch, ch, &composite))
{
recomp_chars[starter_pos] = composite;
starter_ch = composite;
}
else if (ch_class == 0)
{
starter_pos = target_pos;
starter_ch = ch;
last_class = -1;
recomp_chars[target_pos++] = ch;
}
else
{
last_class = ch_class;
recomp_chars[target_pos++] = ch;
}
}
recomp_chars[target_pos] = (pg_wchar) '\0';
FREE(decomp_chars);
return recomp_chars;
}
/*
* Normalization "quick check" algorithm; see
* <http://www.unicode.org/reports/tr15/#Detecting_Normalization_Forms>
*/
/* We only need this in the backend. */
#ifndef FRONTEND
static uint8
get_canonical_class(pg_wchar ch)
{
pg_unicode_decomposition *entry = get_code_entry(ch);
if (!entry)
return 0;
else
return entry->comb_class;
}
static int
qc_compare(const void *p1, const void *p2)
{
uint32 v1,
v2;
v1 = ((const pg_unicode_normprops *) p1)->codepoint;
v2 = ((const pg_unicode_normprops *) p2)->codepoint;
return (v1 - v2);
}
/*
* Look up the normalization quick check character property
*/
static UnicodeNormalizationQC
qc_is_allowed(UnicodeNormalizationForm form, pg_wchar ch)
{
pg_unicode_normprops key;
pg_unicode_normprops *found = NULL;
key.codepoint = ch;
switch (form)
{
case UNICODE_NFC:
found = bsearch(&key,
UnicodeNormProps_NFC_QC,
lengthof(UnicodeNormProps_NFC_QC),
sizeof(pg_unicode_normprops),
qc_compare);
break;
case UNICODE_NFKC:
found = bsearch(&key,
UnicodeNormProps_NFKC_QC,
lengthof(UnicodeNormProps_NFKC_QC),
sizeof(pg_unicode_normprops),
qc_compare);
break;
default:
Assert(false);
break;
}
if (found)
return found->quickcheck;
else
return UNICODE_NORM_QC_YES;
}
UnicodeNormalizationQC
unicode_is_normalized_quickcheck(UnicodeNormalizationForm form, const pg_wchar *input)
{
uint8 lastCanonicalClass = 0;
UnicodeNormalizationQC result = UNICODE_NORM_QC_YES;
/*
* For the "D" forms, we don't run the quickcheck. We don't include the
* lookup tables for those because they are huge, checking for these
* particular forms is less common, and running the slow path is faster
* for the "D" forms than the "C" forms because you don't need to
* recompose, which is slow.
*/
if (form == UNICODE_NFD || form == UNICODE_NFKD)
return UNICODE_NORM_QC_MAYBE;
for (const pg_wchar *p = input; *p; p++)
{
pg_wchar ch = *p;
uint8 canonicalClass;
UnicodeNormalizationQC check;
canonicalClass = get_canonical_class(ch);
if (lastCanonicalClass > canonicalClass && canonicalClass != 0)
return UNICODE_NORM_QC_NO;
check = qc_is_allowed(form, ch);
if (check == UNICODE_NORM_QC_NO)
return UNICODE_NORM_QC_NO;
else if (check == UNICODE_NORM_QC_MAYBE)
result = UNICODE_NORM_QC_MAYBE;
lastCanonicalClass = canonicalClass;
}
return result;
}
#endif /* !FRONTEND */
|