1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
|
--
-- exercises for the hash join code
--
begin;
set local min_parallel_table_scan_size = 0;
set local parallel_setup_cost = 0;
set local enable_hashjoin = on;
-- Extract bucket and batch counts from an explain analyze plan. In
-- general we can't make assertions about how many batches (or
-- buckets) will be required because it can vary, but we can in some
-- special cases and we can check for growth.
create or replace function find_hash(node json)
returns json language plpgsql
as
$$
declare
x json;
child json;
begin
if node->>'Node Type' = 'Hash' then
return node;
else
for child in select json_array_elements(node->'Plans')
loop
x := find_hash(child);
if x is not null then
return x;
end if;
end loop;
return null;
end if;
end;
$$;
create or replace function hash_join_batches(query text)
returns table (original int, final int) language plpgsql
as
$$
declare
whole_plan json;
hash_node json;
begin
for whole_plan in
execute 'explain (analyze, format ''json'') ' || query
loop
hash_node := find_hash(json_extract_path(whole_plan, '0', 'Plan'));
original := hash_node->>'Original Hash Batches';
final := hash_node->>'Hash Batches';
return next;
end loop;
end;
$$;
-- Make a simple relation with well distributed keys and correctly
-- estimated size.
create table simple as
select generate_series(1, 20000) AS id, 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa';
alter table simple set (parallel_workers = 2);
analyze simple;
-- Make a relation whose size we will under-estimate. We want stats
-- to say 1000 rows, but actually there are 20,000 rows.
create table bigger_than_it_looks as
select generate_series(1, 20000) as id, 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa';
alter table bigger_than_it_looks set (autovacuum_enabled = 'false');
alter table bigger_than_it_looks set (parallel_workers = 2);
analyze bigger_than_it_looks;
update pg_class set reltuples = 1000 where relname = 'bigger_than_it_looks';
-- Make a relation whose size we underestimate and that also has a
-- kind of skew that breaks our batching scheme. We want stats to say
-- 2 rows, but actually there are 20,000 rows with the same key.
create table extremely_skewed (id int, t text);
alter table extremely_skewed set (autovacuum_enabled = 'false');
alter table extremely_skewed set (parallel_workers = 2);
analyze extremely_skewed;
insert into extremely_skewed
select 42 as id, 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'
from generate_series(1, 20000);
update pg_class
set reltuples = 2, relpages = pg_relation_size('extremely_skewed') / 8192
where relname = 'extremely_skewed';
-- Make a relation with a couple of enormous tuples.
create table wide as select generate_series(1, 2) as id, rpad('', 320000, 'x') as t;
alter table wide set (parallel_workers = 2);
-- The "optimal" case: the hash table fits in memory; we plan for 1
-- batch, we stick to that number, and peak memory usage stays within
-- our work_mem budget
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
set local work_mem = '4MB';
explain (costs off)
select count(*) from simple r join simple s using (id);
select count(*) from simple r join simple s using (id);
select original > 1 as initially_multibatch, final > original as increased_batches
from hash_join_batches(
$$
select count(*) from simple r join simple s using (id);
$$);
rollback to settings;
-- parallel with parallel-oblivious hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '4MB';
set local enable_parallel_hash = off;
explain (costs off)
select count(*) from simple r join simple s using (id);
select count(*) from simple r join simple s using (id);
select original > 1 as initially_multibatch, final > original as increased_batches
from hash_join_batches(
$$
select count(*) from simple r join simple s using (id);
$$);
rollback to settings;
-- parallel with parallel-aware hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '4MB';
set local enable_parallel_hash = on;
explain (costs off)
select count(*) from simple r join simple s using (id);
select count(*) from simple r join simple s using (id);
select original > 1 as initially_multibatch, final > original as increased_batches
from hash_join_batches(
$$
select count(*) from simple r join simple s using (id);
$$);
rollback to settings;
-- The "good" case: batches required, but we plan the right number; we
-- plan for some number of batches, and we stick to that number, and
-- peak memory usage says within our work_mem budget
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
set local work_mem = '128kB';
explain (costs off)
select count(*) from simple r join simple s using (id);
select count(*) from simple r join simple s using (id);
select original > 1 as initially_multibatch, final > original as increased_batches
from hash_join_batches(
$$
select count(*) from simple r join simple s using (id);
$$);
rollback to settings;
-- parallel with parallel-oblivious hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '128kB';
set local enable_parallel_hash = off;
explain (costs off)
select count(*) from simple r join simple s using (id);
select count(*) from simple r join simple s using (id);
select original > 1 as initially_multibatch, final > original as increased_batches
from hash_join_batches(
$$
select count(*) from simple r join simple s using (id);
$$);
rollback to settings;
-- parallel with parallel-aware hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '192kB';
set local enable_parallel_hash = on;
explain (costs off)
select count(*) from simple r join simple s using (id);
select count(*) from simple r join simple s using (id);
select original > 1 as initially_multibatch, final > original as increased_batches
from hash_join_batches(
$$
select count(*) from simple r join simple s using (id);
$$);
rollback to settings;
-- The "bad" case: during execution we need to increase number of
-- batches; in this case we plan for 1 batch, and increase at least a
-- couple of times, and peak memory usage stays within our work_mem
-- budget
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
set local work_mem = '128kB';
explain (costs off)
select count(*) FROM simple r JOIN bigger_than_it_looks s USING (id);
select count(*) FROM simple r JOIN bigger_than_it_looks s USING (id);
select original > 1 as initially_multibatch, final > original as increased_batches
from hash_join_batches(
$$
select count(*) FROM simple r JOIN bigger_than_it_looks s USING (id);
$$);
rollback to settings;
-- parallel with parallel-oblivious hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '128kB';
set local enable_parallel_hash = off;
explain (costs off)
select count(*) from simple r join bigger_than_it_looks s using (id);
select count(*) from simple r join bigger_than_it_looks s using (id);
select original > 1 as initially_multibatch, final > original as increased_batches
from hash_join_batches(
$$
select count(*) from simple r join bigger_than_it_looks s using (id);
$$);
rollback to settings;
-- parallel with parallel-aware hash join
savepoint settings;
set local max_parallel_workers_per_gather = 1;
set local work_mem = '192kB';
set local enable_parallel_hash = on;
explain (costs off)
select count(*) from simple r join bigger_than_it_looks s using (id);
select count(*) from simple r join bigger_than_it_looks s using (id);
select original > 1 as initially_multibatch, final > original as increased_batches
from hash_join_batches(
$$
select count(*) from simple r join bigger_than_it_looks s using (id);
$$);
rollback to settings;
-- The "ugly" case: increasing the number of batches during execution
-- doesn't help, so stop trying to fit in work_mem and hope for the
-- best; in this case we plan for 1 batch, increases just once and
-- then stop increasing because that didn't help at all, so we blow
-- right through the work_mem budget and hope for the best...
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
set local work_mem = '128kB';
explain (costs off)
select count(*) from simple r join extremely_skewed s using (id);
select count(*) from simple r join extremely_skewed s using (id);
select * from hash_join_batches(
$$
select count(*) from simple r join extremely_skewed s using (id);
$$);
rollback to settings;
-- parallel with parallel-oblivious hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '128kB';
set local enable_parallel_hash = off;
explain (costs off)
select count(*) from simple r join extremely_skewed s using (id);
select count(*) from simple r join extremely_skewed s using (id);
select * from hash_join_batches(
$$
select count(*) from simple r join extremely_skewed s using (id);
$$);
rollback to settings;
-- parallel with parallel-aware hash join
savepoint settings;
set local max_parallel_workers_per_gather = 1;
set local work_mem = '128kB';
set local enable_parallel_hash = on;
explain (costs off)
select count(*) from simple r join extremely_skewed s using (id);
select count(*) from simple r join extremely_skewed s using (id);
select * from hash_join_batches(
$$
select count(*) from simple r join extremely_skewed s using (id);
$$);
rollback to settings;
-- A couple of other hash join tests unrelated to work_mem management.
-- Check that EXPLAIN ANALYZE has data even if the leader doesn't participate
savepoint settings;
set local max_parallel_workers_per_gather = 2;
set local work_mem = '4MB';
set local parallel_leader_participation = off;
select * from hash_join_batches(
$$
select count(*) from simple r join simple s using (id);
$$);
rollback to settings;
-- Exercise rescans. We'll turn off parallel_leader_participation so
-- that we can check that instrumentation comes back correctly.
create table join_foo as select generate_series(1, 3) as id, 'xxxxx'::text as t;
alter table join_foo set (parallel_workers = 0);
create table join_bar as select generate_series(1, 10000) as id, 'xxxxx'::text as t;
alter table join_bar set (parallel_workers = 2);
-- multi-batch with rescan, parallel-oblivious
savepoint settings;
set enable_parallel_hash = off;
set parallel_leader_participation = off;
set min_parallel_table_scan_size = 0;
set parallel_setup_cost = 0;
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
set enable_material = off;
set enable_mergejoin = off;
set work_mem = '64kB';
explain (costs off)
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
select final > 1 as multibatch
from hash_join_batches(
$$
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
$$);
rollback to settings;
-- single-batch with rescan, parallel-oblivious
savepoint settings;
set enable_parallel_hash = off;
set parallel_leader_participation = off;
set min_parallel_table_scan_size = 0;
set parallel_setup_cost = 0;
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
set enable_material = off;
set enable_mergejoin = off;
set work_mem = '4MB';
explain (costs off)
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
select final > 1 as multibatch
from hash_join_batches(
$$
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
$$);
rollback to settings;
-- multi-batch with rescan, parallel-aware
savepoint settings;
set enable_parallel_hash = on;
set parallel_leader_participation = off;
set min_parallel_table_scan_size = 0;
set parallel_setup_cost = 0;
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
set enable_material = off;
set enable_mergejoin = off;
set work_mem = '64kB';
explain (costs off)
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
select final > 1 as multibatch
from hash_join_batches(
$$
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
$$);
rollback to settings;
-- single-batch with rescan, parallel-aware
savepoint settings;
set enable_parallel_hash = on;
set parallel_leader_participation = off;
set min_parallel_table_scan_size = 0;
set parallel_setup_cost = 0;
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
set enable_material = off;
set enable_mergejoin = off;
set work_mem = '4MB';
explain (costs off)
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
select final > 1 as multibatch
from hash_join_batches(
$$
select count(*) from join_foo
left join (select b1.id, b1.t from join_bar b1 join join_bar b2 using (id)) ss
on join_foo.id < ss.id + 1 and join_foo.id > ss.id - 1;
$$);
rollback to settings;
-- A full outer join where every record is matched.
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
explain (costs off)
select count(*) from simple r full outer join simple s using (id);
select count(*) from simple r full outer join simple s using (id);
rollback to settings;
-- parallelism not possible with parallel-oblivious outer hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
explain (costs off)
select count(*) from simple r full outer join simple s using (id);
select count(*) from simple r full outer join simple s using (id);
rollback to settings;
-- An full outer join where every record is not matched.
-- non-parallel
savepoint settings;
set local max_parallel_workers_per_gather = 0;
explain (costs off)
select count(*) from simple r full outer join simple s on (r.id = 0 - s.id);
select count(*) from simple r full outer join simple s on (r.id = 0 - s.id);
rollback to settings;
-- parallelism not possible with parallel-oblivious outer hash join
savepoint settings;
set local max_parallel_workers_per_gather = 2;
explain (costs off)
select count(*) from simple r full outer join simple s on (r.id = 0 - s.id);
select count(*) from simple r full outer join simple s on (r.id = 0 - s.id);
rollback to settings;
-- exercise special code paths for huge tuples (note use of non-strict
-- expression and left join required to get the detoasted tuple into
-- the hash table)
-- parallel with parallel-aware hash join (hits ExecParallelHashLoadTuple and
-- sts_puttuple oversized tuple cases because it's multi-batch)
savepoint settings;
set max_parallel_workers_per_gather = 2;
set enable_parallel_hash = on;
set work_mem = '128kB';
explain (costs off)
select length(max(s.t))
from wide left join (select id, coalesce(t, '') || '' as t from wide) s using (id);
select length(max(s.t))
from wide left join (select id, coalesce(t, '') || '' as t from wide) s using (id);
select final > 1 as multibatch
from hash_join_batches(
$$
select length(max(s.t))
from wide left join (select id, coalesce(t, '') || '' as t from wide) s using (id);
$$);
rollback to settings;
rollback;
-- Verify that hash key expressions reference the correct
-- nodes. Hashjoin's hashkeys need to reference its outer plan, Hash's
-- need to reference Hash's outer plan (which is below HashJoin's
-- inner plan). It's not trivial to verify that the references are
-- correct (we don't display the hashkeys themselves), but if the
-- hashkeys contain subplan references, those will be displayed. Force
-- subplans to appear just about everywhere.
--
-- Bug report:
-- https://www.postgresql.org/message-id/CAPpHfdvGVegF_TKKRiBrSmatJL2dR9uwFCuR%2BteQ_8tEXU8mxg%40mail.gmail.com
--
BEGIN;
SET LOCAL enable_sort = OFF; -- avoid mergejoins
SET LOCAL from_collapse_limit = 1; -- allows easy changing of join order
CREATE TABLE hjtest_1 (a text, b int, id int, c bool);
CREATE TABLE hjtest_2 (a bool, id int, b text, c int);
INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 2, 1, false); -- matches
INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 1, 2, false); -- fails id join condition
INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 20, 1, false); -- fails < 50
INSERT INTO hjtest_1(a, b, id, c) VALUES ('text', 1, 1, false); -- fails (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'another', 2); -- matches
INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 3, 'another', 7); -- fails id join condition
INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'another', 90); -- fails < 55
INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'another', 3); -- fails (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
INSERT INTO hjtest_2(a, id, b, c) VALUES (true, 1, 'text', 1); -- fails hjtest_1.a <> hjtest_2.b;
EXPLAIN (COSTS OFF, VERBOSE)
SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2
FROM hjtest_1, hjtest_2
WHERE
hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1)
AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
AND (SELECT hjtest_1.b * 5) < 50
AND (SELECT hjtest_2.c * 5) < 55
AND hjtest_1.a <> hjtest_2.b;
SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2
FROM hjtest_1, hjtest_2
WHERE
hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1)
AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
AND (SELECT hjtest_1.b * 5) < 50
AND (SELECT hjtest_2.c * 5) < 55
AND hjtest_1.a <> hjtest_2.b;
EXPLAIN (COSTS OFF, VERBOSE)
SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2
FROM hjtest_2, hjtest_1
WHERE
hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1)
AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
AND (SELECT hjtest_1.b * 5) < 50
AND (SELECT hjtest_2.c * 5) < 55
AND hjtest_1.a <> hjtest_2.b;
SELECT hjtest_1.a a1, hjtest_2.a a2,hjtest_1.tableoid::regclass t1, hjtest_2.tableoid::regclass t2
FROM hjtest_2, hjtest_1
WHERE
hjtest_1.id = (SELECT 1 WHERE hjtest_2.id = 1)
AND (SELECT hjtest_1.b * 5) = (SELECT hjtest_2.c*5)
AND (SELECT hjtest_1.b * 5) < 50
AND (SELECT hjtest_2.c * 5) < 55
AND hjtest_1.a <> hjtest_2.b;
ROLLBACK;
|