diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:15:05 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:15:05 +0000 |
commit | 46651ce6fe013220ed397add242004d764fc0153 (patch) | |
tree | 6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/lib/hyperloglog.c | |
parent | Initial commit. (diff) | |
download | postgresql-14-upstream.tar.xz postgresql-14-upstream.zip |
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/lib/hyperloglog.c')
-rw-r--r-- | src/backend/lib/hyperloglog.c | 255 |
1 files changed, 255 insertions, 0 deletions
diff --git a/src/backend/lib/hyperloglog.c b/src/backend/lib/hyperloglog.c new file mode 100644 index 0000000..f4e0241 --- /dev/null +++ b/src/backend/lib/hyperloglog.c @@ -0,0 +1,255 @@ +/*------------------------------------------------------------------------- + * + * hyperloglog.c + * HyperLogLog cardinality estimator + * + * Portions Copyright (c) 2014-2021, PostgreSQL Global Development Group + * + * Based on Hideaki Ohno's C++ implementation. This is probably not ideally + * suited to estimating the cardinality of very large sets; in particular, we + * have not attempted to further optimize the implementation as described in + * the Heule, Nunkesser and Hall paper "HyperLogLog in Practice: Algorithmic + * Engineering of a State of The Art Cardinality Estimation Algorithm". + * + * A sparse representation of HyperLogLog state is used, with fixed space + * overhead. + * + * The copyright terms of Ohno's original version (the MIT license) follow. + * + * IDENTIFICATION + * src/backend/lib/hyperloglog.c + * + *------------------------------------------------------------------------- + */ + +/* + * Copyright (c) 2013 Hideaki Ohno <hide.o.j55{at}gmail.com> + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the 'Software'), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + */ + +#include "postgres.h" + +#include <math.h> + +#include "lib/hyperloglog.h" +#include "port/pg_bitutils.h" + +#define POW_2_32 (4294967296.0) +#define NEG_POW_2_32 (-4294967296.0) + +static inline uint8 rho(uint32 x, uint8 b); + +/* + * Initialize HyperLogLog track state, by bit width + * + * bwidth is bit width (so register size will be 2 to the power of bwidth). + * Must be between 4 and 16 inclusive. + */ +void +initHyperLogLog(hyperLogLogState *cState, uint8 bwidth) +{ + double alpha; + + if (bwidth < 4 || bwidth > 16) + elog(ERROR, "bit width must be between 4 and 16 inclusive"); + + cState->registerWidth = bwidth; + cState->nRegisters = (Size) 1 << bwidth; + cState->arrSize = sizeof(uint8) * cState->nRegisters + 1; + + /* + * Initialize hashes array to zero, not negative infinity, per discussion + * of the coupon collector problem in the HyperLogLog paper + */ + cState->hashesArr = palloc0(cState->arrSize); + + /* + * "alpha" is a value that for each possible number of registers (m) is + * used to correct a systematic multiplicative bias present in m ^ 2 Z (Z + * is "the indicator function" through which we finally compute E, + * estimated cardinality). + */ + switch (cState->nRegisters) + { + case 16: + alpha = 0.673; + break; + case 32: + alpha = 0.697; + break; + case 64: + alpha = 0.709; + break; + default: + alpha = 0.7213 / (1.0 + 1.079 / cState->nRegisters); + } + + /* + * Precalculate alpha m ^ 2, later used to generate "raw" HyperLogLog + * estimate E + */ + cState->alphaMM = alpha * cState->nRegisters * cState->nRegisters; +} + +/* + * Initialize HyperLogLog track state, by error rate + * + * Instead of specifying bwidth (number of bits used for addressing the + * register), this method allows sizing the counter for particular error + * rate using a simple formula from the paper: + * + * e = 1.04 / sqrt(m) + * + * where 'm' is the number of registers, i.e. (2^bwidth). The method + * finds the lowest bwidth with 'e' below the requested error rate, and + * then uses it to initialize the counter. + * + * As bwidth has to be between 4 and 16, the worst possible error rate + * is between ~25% (bwidth=4) and 0.4% (bwidth=16). + */ +void +initHyperLogLogError(hyperLogLogState *cState, double error) +{ + uint8 bwidth = 4; + + while (bwidth < 16) + { + double m = (Size) 1 << bwidth; + + if (1.04 / sqrt(m) < error) + break; + bwidth++; + } + + initHyperLogLog(cState, bwidth); +} + +/* + * Free HyperLogLog track state + * + * Releases allocated resources, but not the state itself (in case it's not + * allocated by palloc). + */ +void +freeHyperLogLog(hyperLogLogState *cState) +{ + Assert(cState->hashesArr != NULL); + pfree(cState->hashesArr); +} + +/* + * Adds element to the estimator, from caller-supplied hash. + * + * It is critical that the hash value passed be an actual hash value, typically + * generated using hash_any(). The algorithm relies on a specific bit-pattern + * observable in conjunction with stochastic averaging. There must be a + * uniform distribution of bits in hash values for each distinct original value + * observed. + */ +void +addHyperLogLog(hyperLogLogState *cState, uint32 hash) +{ + uint8 count; + uint32 index; + + /* Use the first "k" (registerWidth) bits as a zero based index */ + index = hash >> (BITS_PER_BYTE * sizeof(uint32) - cState->registerWidth); + + /* Compute the rank of the remaining 32 - "k" (registerWidth) bits */ + count = rho(hash << cState->registerWidth, + BITS_PER_BYTE * sizeof(uint32) - cState->registerWidth); + + cState->hashesArr[index] = Max(count, cState->hashesArr[index]); +} + +/* + * Estimates cardinality, based on elements added so far + */ +double +estimateHyperLogLog(hyperLogLogState *cState) +{ + double result; + double sum = 0.0; + int i; + + for (i = 0; i < cState->nRegisters; i++) + { + sum += 1.0 / pow(2.0, cState->hashesArr[i]); + } + + /* result set to "raw" HyperLogLog estimate (E in the HyperLogLog paper) */ + result = cState->alphaMM / sum; + + if (result <= (5.0 / 2.0) * cState->nRegisters) + { + /* Small range correction */ + int zero_count = 0; + + for (i = 0; i < cState->nRegisters; i++) + { + if (cState->hashesArr[i] == 0) + zero_count++; + } + + if (zero_count != 0) + result = cState->nRegisters * log((double) cState->nRegisters / + zero_count); + } + else if (result > (1.0 / 30.0) * POW_2_32) + { + /* Large range correction */ + result = NEG_POW_2_32 * log(1.0 - (result / POW_2_32)); + } + + return result; +} + +/* + * Worker for addHyperLogLog(). + * + * Calculates the position of the first set bit in first b bits of x argument + * starting from the first, reading from most significant to least significant + * bits. + * + * Example (when considering fist 10 bits of x): + * + * rho(x = 0b1000000000) returns 1 + * rho(x = 0b0010000000) returns 3 + * rho(x = 0b0000000000) returns b + 1 + * + * "The binary address determined by the first b bits of x" + * + * Return value "j" used to index bit pattern to watch. + */ +static inline uint8 +rho(uint32 x, uint8 b) +{ + uint8 j = 1; + + if (x == 0) + return b + 1; + + j = 32 - pg_leftmost_one_pos32(x); + + if (j > b) + return b + 1; + + return j; +} |