summaryrefslogtreecommitdiffstats
path: root/src/backend/optimizer/plan
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/optimizer/plan
parentInitial commit. (diff)
downloadpostgresql-14-upstream.tar.xz
postgresql-14-upstream.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/optimizer/plan')
-rw-r--r--src/backend/optimizer/plan/Makefile25
-rw-r--r--src/backend/optimizer/plan/README158
-rw-r--r--src/backend/optimizer/plan/analyzejoins.c1120
-rw-r--r--src/backend/optimizer/plan/createplan.c7160
-rw-r--r--src/backend/optimizer/plan/initsplan.c2751
-rw-r--r--src/backend/optimizer/plan/planagg.c513
-rw-r--r--src/backend/optimizer/plan/planmain.c284
-rw-r--r--src/backend/optimizer/plan/planner.c7260
-rw-r--r--src/backend/optimizer/plan/setrefs.c3178
-rw-r--r--src/backend/optimizer/plan/subselect.c2993
10 files changed, 25442 insertions, 0 deletions
diff --git a/src/backend/optimizer/plan/Makefile b/src/backend/optimizer/plan/Makefile
new file mode 100644
index 0000000..80ef162
--- /dev/null
+++ b/src/backend/optimizer/plan/Makefile
@@ -0,0 +1,25 @@
+#-------------------------------------------------------------------------
+#
+# Makefile--
+# Makefile for optimizer/plan
+#
+# IDENTIFICATION
+# src/backend/optimizer/plan/Makefile
+#
+#-------------------------------------------------------------------------
+
+subdir = src/backend/optimizer/plan
+top_builddir = ../../../..
+include $(top_builddir)/src/Makefile.global
+
+OBJS = \
+ analyzejoins.o \
+ createplan.o \
+ initsplan.o \
+ planagg.o \
+ planmain.o \
+ planner.o \
+ setrefs.o \
+ subselect.o
+
+include $(top_srcdir)/src/backend/common.mk
diff --git a/src/backend/optimizer/plan/README b/src/backend/optimizer/plan/README
new file mode 100644
index 0000000..013c0f9
--- /dev/null
+++ b/src/backend/optimizer/plan/README
@@ -0,0 +1,158 @@
+src/backend/optimizer/plan/README
+
+Subselects
+==========
+
+Vadim B. Mikheev
+
+
+From owner-pgsql-hackers@hub.org Fri Feb 13 09:01:19 1998
+Received: from renoir.op.net (root@renoir.op.net [209.152.193.4])
+ by candle.pha.pa.us (8.8.5/8.8.5) with ESMTP id JAA11576
+ for <maillist@candle.pha.pa.us>; Fri, 13 Feb 1998 09:01:17 -0500 (EST)
+Received: from hub.org (hub.org [209.47.148.200]) by renoir.op.net (o1/$Revision: 1.14 $) with ESMTP id IAA09761 for <maillist@candle.pha.pa.us>; Fri, 13 Feb 1998 08:41:22 -0500 (EST)
+Received: from localhost (majordom@localhost) by hub.org (8.8.8/8.7.5) with SMTP id IAA08135; Fri, 13 Feb 1998 08:40:17 -0500 (EST)
+Received: by hub.org (TLB v0.10a (1.23 tibbs 1997/01/09 00:29:32)); Fri, 13 Feb 1998 08:38:42 -0500 (EST)
+Received: (from majordom@localhost) by hub.org (8.8.8/8.7.5) id IAA06646 for pgsql-hackers-outgoing; Fri, 13 Feb 1998 08:38:35 -0500 (EST)
+Received: from dune.krasnet.ru (dune.krasnet.ru [193.125.44.86]) by hub.org (8.8.8/8.7.5) with ESMTP id IAA04568 for <hackers@postgreSQL.org>; Fri, 13 Feb 1998 08:37:16 -0500 (EST)
+Received: from sable.krasnoyarsk.su (dune.krasnet.ru [193.125.44.86])
+ by dune.krasnet.ru (8.8.7/8.8.7) with ESMTP id UAA13717
+ for <hackers@postgreSQL.org>; Fri, 13 Feb 1998 20:51:03 +0700 (KRS)
+ (envelope-from vadim@sable.krasnoyarsk.su)
+Message-ID: <34E44FBA.D64E7997@sable.krasnoyarsk.su>
+Date: Fri, 13 Feb 1998 20:50:50 +0700
+From: "Vadim B. Mikheev" <vadim@sable.krasnoyarsk.su>
+Organization: ITTS (Krasnoyarsk)
+X-Mailer: Mozilla 4.04 [en] (X11; I; FreeBSD 2.2.5-RELEASE i386)
+MIME-Version: 1.0
+To: PostgreSQL Developers List <hackers@postgreSQL.org>
+Subject: [HACKERS] Subselects are in CVS...
+Content-Type: text/plain; charset=us-ascii
+Content-Transfer-Encoding: 7bit
+Sender: owner-pgsql-hackers@hub.org
+Precedence: bulk
+Status: OR
+
+This is some implementation notes and opened issues...
+
+First, implementation uses new type of parameters - PARAM_EXEC - to deal
+with correlation Vars. When query_planner() is called, it first tries to
+replace all upper queries Var referenced in current query with Param of
+this type. Some global variables are used to keep mapping of Vars to
+Params and Params to Vars.
+
+After this, all current query' SubLinks are processed: for each SubLink
+found in query' qual union_planner() (old planner() function) will be
+called to plan corresponding subselect (union_planner() calls
+query_planner() for "simple" query and supports UNIONs). After subselect
+are planned, optimizer knows about is this correlated, un-correlated or
+_undirect_ correlated (references some grand-parent Vars but no parent
+ones: uncorrelated from the parent' point of view) query.
+
+For uncorrelated and undirect correlated subqueries of EXPRession or
+EXISTS type SubLinks will be replaced with "normal" clauses from
+SubLink->Oper list (I changed this list to be list of EXPR nodes,
+not just Oper ones). Right sides of these nodes are replaced with
+PARAM_EXEC parameters. This is second use of new parameter type.
+At run-time these parameters get value from result of subquery
+evaluation (i.e. - from target list of subquery). Execution plan of
+subquery itself becomes init plan of parent query. InitPlan knows
+what parameters are to get values from subquery' results and will be
+executed "on-demand" (for query select * from table where x > 0 and
+y > (select max(a) from table_a) subquery will not be executed at all
+if there are no tuples with x > 0 _and_ y is not used in index scan).
+
+SubLinks for subqueries of all other types are transformed into
+new type of Expr node - SUBPLAN_EXPR. Expr->args are just correlation
+variables from _parent_ query. Expr->oper is new SubPlan node.
+
+This node is used for InitPlan too. It keeps subquery range table,
+indices of Params which are to get value from _parent_ query Vars
+(i.e. - from Expr->args), indices of Params into which subquery'
+results are to be substituted (this is for InitPlans), SubLink
+and subquery' execution plan.
+
+Plan node was changed to know about dependencies on Params from
+parent queries and InitPlans, to keep list of changed Params
+(from the above) and so be re-scanned if this list is not NULL.
+Also, added list of InitPlans (actually, all of them for current
+query are in topmost plan node now) and other SubPlans (from
+plan->qual) - to initialize them and let them know about changed
+Params (from the list of their "interests").
+
+After all SubLinks are processed, query_planner() calls qual'
+canonificator and does "normal" work. By using Params optimizer
+is mostly unchanged.
+
+Well, Executor. To get subplans re-evaluated without ExecutorStart()
+and ExecutorEnd() (without opening and closing relations and indices
+and without many palloc() and pfree() - this is what SQL-funcs does
+on each call) ExecReScan() now supports most of Plan types...
+
+Explanation of EXPLAIN.
+
+vac=> explain select * from tmp where x >= (select max(x2) from test2
+where y2 = y and exists (select * from tempx where tx = x));
+NOTICE: QUERY PLAN:
+
+Seq Scan on tmp (cost=40.03 size=101 width=8)
+ SubPlan
+ ^^^^^^^ subquery is in Seq Scan' qual, its plan is below
+ -> Aggregate (cost=2.05 size=0 width=0)
+ InitPlan
+ ^^^^^^^^ EXISTS subsubquery is InitPlan of subquery
+ -> Seq Scan on tempx (cost=4.33 size=1 width=4)
+ -> Result (cost=2.05 size=0 width=0)
+ ^^^^^^ EXISTS subsubquery was transformed into Param
+ and so we have Result node here
+ -> Index Scan on test2 (cost=2.05 size=1 width=4)
+
+
+Opened issues.
+
+1. No read permissions checking (easy, just not done yet).
+2. readfuncs.c can't read subplan-s (easy, not critical, because of
+ we currently nowhere use ascii representation of execution plans).
+3. ExecReScan() doesn't support all plan types. At least support for
+ MergeJoin has to be implemented.
+4. Memory leaks in ExecReScan().
+5. I need in advice: if subquery introduced with NOT IN doesn't return
+ any tuples then qualification is failed, yes ?
+6. Regression tests !!!!!!!!!!!!!!!!!!!!
+ (Could we use data/queries from MySQL' crash.me ?
+ Copyright-ed ? Could they give us rights ?)
+7. Performance.
+ - Should be good when subquery is transformed into InitPlan.
+ - Something should be done for uncorrelated subqueries introduced
+ with ANY/ALL - keep thinking. Currently, subplan will be re-scanned
+ for each parent tuple - very slow...
+
+Results of some test. TMP is table with x,y (int4-s), x in 0-9,
+y = 100 - x, 1000 tuples (10 duplicates of each tuple). TEST2 is table
+with x2, y2 (int4-s), x2 in 1-99, y2 = 100 -x2, 10000 tuples (100 dups).
+
+ Trying
+
+select * from tmp where x >= (select max(x2) from test2 where y2 = y);
+
+ and
+
+begin;
+select y as ty, max(x2) as mx into table tsub from test2, tmp
+where y2 = y group by ty;
+vacuum tsub;
+select x, y from tmp, tsub where x >= mx and y = ty;
+drop table tsub;
+end;
+
+ Without index on test2(y2):
+
+SubSelect -> 320 sec
+Using temp table -> 32 sec
+
+ Having index
+
+SubSelect -> 17 sec (2M of memory)
+Using temp table -> 32 sec (12M of memory: -S 8192)
+
+Vadim
diff --git a/src/backend/optimizer/plan/analyzejoins.c b/src/backend/optimizer/plan/analyzejoins.c
new file mode 100644
index 0000000..37eb64b
--- /dev/null
+++ b/src/backend/optimizer/plan/analyzejoins.c
@@ -0,0 +1,1120 @@
+/*-------------------------------------------------------------------------
+ *
+ * analyzejoins.c
+ * Routines for simplifying joins after initial query analysis
+ *
+ * While we do a great deal of join simplification in prep/prepjointree.c,
+ * certain optimizations cannot be performed at that stage for lack of
+ * detailed information about the query. The routines here are invoked
+ * after initsplan.c has done its work, and can do additional join removal
+ * and simplification steps based on the information extracted. The penalty
+ * is that we have to work harder to clean up after ourselves when we modify
+ * the query, since the derived data structures have to be updated too.
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/plan/analyzejoins.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "optimizer/joininfo.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/pathnode.h"
+#include "optimizer/paths.h"
+#include "optimizer/planmain.h"
+#include "optimizer/tlist.h"
+#include "utils/lsyscache.h"
+
+/* local functions */
+static bool join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo);
+static void remove_rel_from_query(PlannerInfo *root, int relid,
+ Relids joinrelids);
+static List *remove_rel_from_joinlist(List *joinlist, int relid, int *nremoved);
+static bool rel_supports_distinctness(PlannerInfo *root, RelOptInfo *rel);
+static bool rel_is_distinct_for(PlannerInfo *root, RelOptInfo *rel,
+ List *clause_list);
+static Oid distinct_col_search(int colno, List *colnos, List *opids);
+static bool is_innerrel_unique_for(PlannerInfo *root,
+ Relids joinrelids,
+ Relids outerrelids,
+ RelOptInfo *innerrel,
+ JoinType jointype,
+ List *restrictlist);
+
+
+/*
+ * remove_useless_joins
+ * Check for relations that don't actually need to be joined at all,
+ * and remove them from the query.
+ *
+ * We are passed the current joinlist and return the updated list. Other
+ * data structures that have to be updated are accessible via "root".
+ */
+List *
+remove_useless_joins(PlannerInfo *root, List *joinlist)
+{
+ ListCell *lc;
+
+ /*
+ * We are only interested in relations that are left-joined to, so we can
+ * scan the join_info_list to find them easily.
+ */
+restart:
+ foreach(lc, root->join_info_list)
+ {
+ SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
+ int innerrelid;
+ int nremoved;
+
+ /* Skip if not removable */
+ if (!join_is_removable(root, sjinfo))
+ continue;
+
+ /*
+ * Currently, join_is_removable can only succeed when the sjinfo's
+ * righthand is a single baserel. Remove that rel from the query and
+ * joinlist.
+ */
+ innerrelid = bms_singleton_member(sjinfo->min_righthand);
+
+ remove_rel_from_query(root, innerrelid,
+ bms_union(sjinfo->min_lefthand,
+ sjinfo->min_righthand));
+
+ /* We verify that exactly one reference gets removed from joinlist */
+ nremoved = 0;
+ joinlist = remove_rel_from_joinlist(joinlist, innerrelid, &nremoved);
+ if (nremoved != 1)
+ elog(ERROR, "failed to find relation %d in joinlist", innerrelid);
+
+ /*
+ * We can delete this SpecialJoinInfo from the list too, since it's no
+ * longer of interest. (Since we'll restart the foreach loop
+ * immediately, we don't bother with foreach_delete_current.)
+ */
+ root->join_info_list = list_delete_cell(root->join_info_list, lc);
+
+ /*
+ * Restart the scan. This is necessary to ensure we find all
+ * removable joins independently of ordering of the join_info_list
+ * (note that removal of attr_needed bits may make a join appear
+ * removable that did not before).
+ */
+ goto restart;
+ }
+
+ return joinlist;
+}
+
+/*
+ * clause_sides_match_join
+ * Determine whether a join clause is of the right form to use in this join.
+ *
+ * We already know that the clause is a binary opclause referencing only the
+ * rels in the current join. The point here is to check whether it has the
+ * form "outerrel_expr op innerrel_expr" or "innerrel_expr op outerrel_expr",
+ * rather than mixing outer and inner vars on either side. If it matches,
+ * we set the transient flag outer_is_left to identify which side is which.
+ */
+static inline bool
+clause_sides_match_join(RestrictInfo *rinfo, Relids outerrelids,
+ Relids innerrelids)
+{
+ if (bms_is_subset(rinfo->left_relids, outerrelids) &&
+ bms_is_subset(rinfo->right_relids, innerrelids))
+ {
+ /* lefthand side is outer */
+ rinfo->outer_is_left = true;
+ return true;
+ }
+ else if (bms_is_subset(rinfo->left_relids, innerrelids) &&
+ bms_is_subset(rinfo->right_relids, outerrelids))
+ {
+ /* righthand side is outer */
+ rinfo->outer_is_left = false;
+ return true;
+ }
+ return false; /* no good for these input relations */
+}
+
+/*
+ * join_is_removable
+ * Check whether we need not perform this special join at all, because
+ * it will just duplicate its left input.
+ *
+ * This is true for a left join for which the join condition cannot match
+ * more than one inner-side row. (There are other possibly interesting
+ * cases, but we don't have the infrastructure to prove them.) We also
+ * have to check that the inner side doesn't generate any variables needed
+ * above the join.
+ */
+static bool
+join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo)
+{
+ int innerrelid;
+ RelOptInfo *innerrel;
+ Relids joinrelids;
+ List *clause_list = NIL;
+ ListCell *l;
+ int attroff;
+
+ /*
+ * Must be a non-delaying left join to a single baserel, else we aren't
+ * going to be able to do anything with it.
+ */
+ if (sjinfo->jointype != JOIN_LEFT ||
+ sjinfo->delay_upper_joins)
+ return false;
+
+ if (!bms_get_singleton_member(sjinfo->min_righthand, &innerrelid))
+ return false;
+
+ innerrel = find_base_rel(root, innerrelid);
+
+ /*
+ * Before we go to the effort of checking whether any innerrel variables
+ * are needed above the join, make a quick check to eliminate cases in
+ * which we will surely be unable to prove uniqueness of the innerrel.
+ */
+ if (!rel_supports_distinctness(root, innerrel))
+ return false;
+
+ /* Compute the relid set for the join we are considering */
+ joinrelids = bms_union(sjinfo->min_lefthand, sjinfo->min_righthand);
+
+ /*
+ * We can't remove the join if any inner-rel attributes are used above the
+ * join.
+ *
+ * Note that this test only detects use of inner-rel attributes in higher
+ * join conditions and the target list. There might be such attributes in
+ * pushed-down conditions at this join, too. We check that case below.
+ *
+ * As a micro-optimization, it seems better to start with max_attr and
+ * count down rather than starting with min_attr and counting up, on the
+ * theory that the system attributes are somewhat less likely to be wanted
+ * and should be tested last.
+ */
+ for (attroff = innerrel->max_attr - innerrel->min_attr;
+ attroff >= 0;
+ attroff--)
+ {
+ if (!bms_is_subset(innerrel->attr_needed[attroff], joinrelids))
+ return false;
+ }
+
+ /*
+ * Similarly check that the inner rel isn't needed by any PlaceHolderVars
+ * that will be used above the join. We only need to fail if such a PHV
+ * actually references some inner-rel attributes; but the correct check
+ * for that is relatively expensive, so we first check against ph_eval_at,
+ * which must mention the inner rel if the PHV uses any inner-rel attrs as
+ * non-lateral references. Note that if the PHV's syntactic scope is just
+ * the inner rel, we can't drop the rel even if the PHV is variable-free.
+ */
+ foreach(l, root->placeholder_list)
+ {
+ PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
+
+ if (bms_overlap(phinfo->ph_lateral, innerrel->relids))
+ return false; /* it references innerrel laterally */
+ if (bms_is_subset(phinfo->ph_needed, joinrelids))
+ continue; /* PHV is not used above the join */
+ if (!bms_overlap(phinfo->ph_eval_at, innerrel->relids))
+ continue; /* it definitely doesn't reference innerrel */
+ if (bms_is_subset(phinfo->ph_eval_at, innerrel->relids))
+ return false; /* there isn't any other place to eval PHV */
+ if (bms_overlap(pull_varnos(root, (Node *) phinfo->ph_var->phexpr),
+ innerrel->relids))
+ return false; /* it does reference innerrel */
+ }
+
+ /*
+ * Search for mergejoinable clauses that constrain the inner rel against
+ * either the outer rel or a pseudoconstant. If an operator is
+ * mergejoinable then it behaves like equality for some btree opclass, so
+ * it's what we want. The mergejoinability test also eliminates clauses
+ * containing volatile functions, which we couldn't depend on.
+ */
+ foreach(l, innerrel->joininfo)
+ {
+ RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
+
+ /*
+ * If it's not a join clause for this outer join, we can't use it.
+ * Note that if the clause is pushed-down, then it is logically from
+ * above the outer join, even if it references no other rels (it might
+ * be from WHERE, for example).
+ */
+ if (RINFO_IS_PUSHED_DOWN(restrictinfo, joinrelids))
+ {
+ /*
+ * If such a clause actually references the inner rel then join
+ * removal has to be disallowed. We have to check this despite
+ * the previous attr_needed checks because of the possibility of
+ * pushed-down clauses referencing the rel.
+ */
+ if (bms_is_member(innerrelid, restrictinfo->clause_relids))
+ return false;
+ continue; /* else, ignore; not useful here */
+ }
+
+ /* Ignore if it's not a mergejoinable clause */
+ if (!restrictinfo->can_join ||
+ restrictinfo->mergeopfamilies == NIL)
+ continue; /* not mergejoinable */
+
+ /*
+ * Check if clause has the form "outer op inner" or "inner op outer",
+ * and if so mark which side is inner.
+ */
+ if (!clause_sides_match_join(restrictinfo, sjinfo->min_lefthand,
+ innerrel->relids))
+ continue; /* no good for these input relations */
+
+ /* OK, add to list */
+ clause_list = lappend(clause_list, restrictinfo);
+ }
+
+ /*
+ * Now that we have the relevant equality join clauses, try to prove the
+ * innerrel distinct.
+ */
+ if (rel_is_distinct_for(root, innerrel, clause_list))
+ return true;
+
+ /*
+ * Some day it would be nice to check for other methods of establishing
+ * distinctness.
+ */
+ return false;
+}
+
+
+/*
+ * Remove the target relid from the planner's data structures, having
+ * determined that there is no need to include it in the query.
+ *
+ * We are not terribly thorough here. We must make sure that the rel is
+ * no longer treated as a baserel, and that attributes of other baserels
+ * are no longer marked as being needed at joins involving this rel.
+ * Also, join quals involving the rel have to be removed from the joininfo
+ * lists, but only if they belong to the outer join identified by joinrelids.
+ */
+static void
+remove_rel_from_query(PlannerInfo *root, int relid, Relids joinrelids)
+{
+ RelOptInfo *rel = find_base_rel(root, relid);
+ List *joininfos;
+ Index rti;
+ ListCell *l;
+
+ /*
+ * Mark the rel as "dead" to show it is no longer part of the join tree.
+ * (Removing it from the baserel array altogether seems too risky.)
+ */
+ rel->reloptkind = RELOPT_DEADREL;
+
+ /*
+ * Remove references to the rel from other baserels' attr_needed arrays.
+ */
+ for (rti = 1; rti < root->simple_rel_array_size; rti++)
+ {
+ RelOptInfo *otherrel = root->simple_rel_array[rti];
+ int attroff;
+
+ /* there may be empty slots corresponding to non-baserel RTEs */
+ if (otherrel == NULL)
+ continue;
+
+ Assert(otherrel->relid == rti); /* sanity check on array */
+
+ /* no point in processing target rel itself */
+ if (otherrel == rel)
+ continue;
+
+ for (attroff = otherrel->max_attr - otherrel->min_attr;
+ attroff >= 0;
+ attroff--)
+ {
+ otherrel->attr_needed[attroff] =
+ bms_del_member(otherrel->attr_needed[attroff], relid);
+ }
+ }
+
+ /*
+ * Likewise remove references from SpecialJoinInfo data structures.
+ *
+ * This is relevant in case the outer join we're deleting is nested inside
+ * other outer joins: the upper joins' relid sets have to be adjusted. The
+ * RHS of the target outer join will be made empty here, but that's OK
+ * since caller will delete that SpecialJoinInfo entirely.
+ */
+ foreach(l, root->join_info_list)
+ {
+ SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
+
+ sjinfo->min_lefthand = bms_del_member(sjinfo->min_lefthand, relid);
+ sjinfo->min_righthand = bms_del_member(sjinfo->min_righthand, relid);
+ sjinfo->syn_lefthand = bms_del_member(sjinfo->syn_lefthand, relid);
+ sjinfo->syn_righthand = bms_del_member(sjinfo->syn_righthand, relid);
+ }
+
+ /*
+ * Likewise remove references from PlaceHolderVar data structures,
+ * removing any no-longer-needed placeholders entirely.
+ *
+ * Removal is a bit trickier than it might seem: we can remove PHVs that
+ * are used at the target rel and/or in the join qual, but not those that
+ * are used at join partner rels or above the join. It's not that easy to
+ * distinguish PHVs used at partner rels from those used in the join qual,
+ * since they will both have ph_needed sets that are subsets of
+ * joinrelids. However, a PHV used at a partner rel could not have the
+ * target rel in ph_eval_at, so we check that while deciding whether to
+ * remove or just update the PHV. There is no corresponding test in
+ * join_is_removable because it doesn't need to distinguish those cases.
+ */
+ foreach(l, root->placeholder_list)
+ {
+ PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
+
+ Assert(!bms_is_member(relid, phinfo->ph_lateral));
+ if (bms_is_subset(phinfo->ph_needed, joinrelids) &&
+ bms_is_member(relid, phinfo->ph_eval_at))
+ root->placeholder_list = foreach_delete_current(root->placeholder_list,
+ l);
+ else
+ {
+ phinfo->ph_eval_at = bms_del_member(phinfo->ph_eval_at, relid);
+ Assert(!bms_is_empty(phinfo->ph_eval_at));
+ phinfo->ph_needed = bms_del_member(phinfo->ph_needed, relid);
+ }
+ }
+
+ /*
+ * Remove any joinquals referencing the rel from the joininfo lists.
+ *
+ * In some cases, a joinqual has to be put back after deleting its
+ * reference to the target rel. This can occur for pseudoconstant and
+ * outerjoin-delayed quals, which can get marked as requiring the rel in
+ * order to force them to be evaluated at or above the join. We can't
+ * just discard them, though. Only quals that logically belonged to the
+ * outer join being discarded should be removed from the query.
+ *
+ * We must make a copy of the rel's old joininfo list before starting the
+ * loop, because otherwise remove_join_clause_from_rels would destroy the
+ * list while we're scanning it.
+ */
+ joininfos = list_copy(rel->joininfo);
+ foreach(l, joininfos)
+ {
+ RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
+
+ remove_join_clause_from_rels(root, rinfo, rinfo->required_relids);
+
+ if (RINFO_IS_PUSHED_DOWN(rinfo, joinrelids))
+ {
+ /* Recheck that qual doesn't actually reference the target rel */
+ Assert(!bms_is_member(relid, rinfo->clause_relids));
+
+ /*
+ * The required_relids probably aren't shared with anything else,
+ * but let's copy them just to be sure.
+ */
+ rinfo->required_relids = bms_copy(rinfo->required_relids);
+ rinfo->required_relids = bms_del_member(rinfo->required_relids,
+ relid);
+ distribute_restrictinfo_to_rels(root, rinfo);
+ }
+ }
+
+ /*
+ * There may be references to the rel in root->fkey_list, but if so,
+ * match_foreign_keys_to_quals() will get rid of them.
+ */
+}
+
+/*
+ * Remove any occurrences of the target relid from a joinlist structure.
+ *
+ * It's easiest to build a whole new list structure, so we handle it that
+ * way. Efficiency is not a big deal here.
+ *
+ * *nremoved is incremented by the number of occurrences removed (there
+ * should be exactly one, but the caller checks that).
+ */
+static List *
+remove_rel_from_joinlist(List *joinlist, int relid, int *nremoved)
+{
+ List *result = NIL;
+ ListCell *jl;
+
+ foreach(jl, joinlist)
+ {
+ Node *jlnode = (Node *) lfirst(jl);
+
+ if (IsA(jlnode, RangeTblRef))
+ {
+ int varno = ((RangeTblRef *) jlnode)->rtindex;
+
+ if (varno == relid)
+ (*nremoved)++;
+ else
+ result = lappend(result, jlnode);
+ }
+ else if (IsA(jlnode, List))
+ {
+ /* Recurse to handle subproblem */
+ List *sublist;
+
+ sublist = remove_rel_from_joinlist((List *) jlnode,
+ relid, nremoved);
+ /* Avoid including empty sub-lists in the result */
+ if (sublist)
+ result = lappend(result, sublist);
+ }
+ else
+ {
+ elog(ERROR, "unrecognized joinlist node type: %d",
+ (int) nodeTag(jlnode));
+ }
+ }
+
+ return result;
+}
+
+
+/*
+ * reduce_unique_semijoins
+ * Check for semijoins that can be simplified to plain inner joins
+ * because the inner relation is provably unique for the join clauses.
+ *
+ * Ideally this would happen during reduce_outer_joins, but we don't have
+ * enough information at that point.
+ *
+ * To perform the strength reduction when applicable, we need only delete
+ * the semijoin's SpecialJoinInfo from root->join_info_list. (We don't
+ * bother fixing the join type attributed to it in the query jointree,
+ * since that won't be consulted again.)
+ */
+void
+reduce_unique_semijoins(PlannerInfo *root)
+{
+ ListCell *lc;
+
+ /*
+ * Scan the join_info_list to find semijoins.
+ */
+ foreach(lc, root->join_info_list)
+ {
+ SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
+ int innerrelid;
+ RelOptInfo *innerrel;
+ Relids joinrelids;
+ List *restrictlist;
+
+ /*
+ * Must be a non-delaying semijoin to a single baserel, else we aren't
+ * going to be able to do anything with it. (It's probably not
+ * possible for delay_upper_joins to be set on a semijoin, but we
+ * might as well check.)
+ */
+ if (sjinfo->jointype != JOIN_SEMI ||
+ sjinfo->delay_upper_joins)
+ continue;
+
+ if (!bms_get_singleton_member(sjinfo->min_righthand, &innerrelid))
+ continue;
+
+ innerrel = find_base_rel(root, innerrelid);
+
+ /*
+ * Before we trouble to run generate_join_implied_equalities, make a
+ * quick check to eliminate cases in which we will surely be unable to
+ * prove uniqueness of the innerrel.
+ */
+ if (!rel_supports_distinctness(root, innerrel))
+ continue;
+
+ /* Compute the relid set for the join we are considering */
+ joinrelids = bms_union(sjinfo->min_lefthand, sjinfo->min_righthand);
+
+ /*
+ * Since we're only considering a single-rel RHS, any join clauses it
+ * has must be clauses linking it to the semijoin's min_lefthand. We
+ * can also consider EC-derived join clauses.
+ */
+ restrictlist =
+ list_concat(generate_join_implied_equalities(root,
+ joinrelids,
+ sjinfo->min_lefthand,
+ innerrel),
+ innerrel->joininfo);
+
+ /* Test whether the innerrel is unique for those clauses. */
+ if (!innerrel_is_unique(root,
+ joinrelids, sjinfo->min_lefthand, innerrel,
+ JOIN_SEMI, restrictlist, true))
+ continue;
+
+ /* OK, remove the SpecialJoinInfo from the list. */
+ root->join_info_list = foreach_delete_current(root->join_info_list, lc);
+ }
+}
+
+
+/*
+ * rel_supports_distinctness
+ * Could the relation possibly be proven distinct on some set of columns?
+ *
+ * This is effectively a pre-checking function for rel_is_distinct_for().
+ * It must return true if rel_is_distinct_for() could possibly return true
+ * with this rel, but it should not expend a lot of cycles. The idea is
+ * that callers can avoid doing possibly-expensive processing to compute
+ * rel_is_distinct_for()'s argument lists if the call could not possibly
+ * succeed.
+ */
+static bool
+rel_supports_distinctness(PlannerInfo *root, RelOptInfo *rel)
+{
+ /* We only know about baserels ... */
+ if (rel->reloptkind != RELOPT_BASEREL)
+ return false;
+ if (rel->rtekind == RTE_RELATION)
+ {
+ /*
+ * For a plain relation, we only know how to prove uniqueness by
+ * reference to unique indexes. Make sure there's at least one
+ * suitable unique index. It must be immediately enforced, and if
+ * it's a partial index, it must match the query. (Keep these
+ * conditions in sync with relation_has_unique_index_for!)
+ */
+ ListCell *lc;
+
+ foreach(lc, rel->indexlist)
+ {
+ IndexOptInfo *ind = (IndexOptInfo *) lfirst(lc);
+
+ if (ind->unique && ind->immediate &&
+ (ind->indpred == NIL || ind->predOK))
+ return true;
+ }
+ }
+ else if (rel->rtekind == RTE_SUBQUERY)
+ {
+ Query *subquery = root->simple_rte_array[rel->relid]->subquery;
+
+ /* Check if the subquery has any qualities that support distinctness */
+ if (query_supports_distinctness(subquery))
+ return true;
+ }
+ /* We have no proof rules for any other rtekinds. */
+ return false;
+}
+
+/*
+ * rel_is_distinct_for
+ * Does the relation return only distinct rows according to clause_list?
+ *
+ * clause_list is a list of join restriction clauses involving this rel and
+ * some other one. Return true if no two rows emitted by this rel could
+ * possibly join to the same row of the other rel.
+ *
+ * The caller must have already determined that each condition is a
+ * mergejoinable equality with an expression in this relation on one side, and
+ * an expression not involving this relation on the other. The transient
+ * outer_is_left flag is used to identify which side references this relation:
+ * left side if outer_is_left is false, right side if it is true.
+ *
+ * Note that the passed-in clause_list may be destructively modified! This
+ * is OK for current uses, because the clause_list is built by the caller for
+ * the sole purpose of passing to this function.
+ */
+static bool
+rel_is_distinct_for(PlannerInfo *root, RelOptInfo *rel, List *clause_list)
+{
+ /*
+ * We could skip a couple of tests here if we assume all callers checked
+ * rel_supports_distinctness first, but it doesn't seem worth taking any
+ * risk for.
+ */
+ if (rel->reloptkind != RELOPT_BASEREL)
+ return false;
+ if (rel->rtekind == RTE_RELATION)
+ {
+ /*
+ * Examine the indexes to see if we have a matching unique index.
+ * relation_has_unique_index_for automatically adds any usable
+ * restriction clauses for the rel, so we needn't do that here.
+ */
+ if (relation_has_unique_index_for(root, rel, clause_list, NIL, NIL))
+ return true;
+ }
+ else if (rel->rtekind == RTE_SUBQUERY)
+ {
+ Index relid = rel->relid;
+ Query *subquery = root->simple_rte_array[relid]->subquery;
+ List *colnos = NIL;
+ List *opids = NIL;
+ ListCell *l;
+
+ /*
+ * Build the argument lists for query_is_distinct_for: a list of
+ * output column numbers that the query needs to be distinct over, and
+ * a list of equality operators that the output columns need to be
+ * distinct according to.
+ *
+ * (XXX we are not considering restriction clauses attached to the
+ * subquery; is that worth doing?)
+ */
+ foreach(l, clause_list)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
+ Oid op;
+ Var *var;
+
+ /*
+ * Get the equality operator we need uniqueness according to.
+ * (This might be a cross-type operator and thus not exactly the
+ * same operator the subquery would consider; that's all right
+ * since query_is_distinct_for can resolve such cases.) The
+ * caller's mergejoinability test should have selected only
+ * OpExprs.
+ */
+ op = castNode(OpExpr, rinfo->clause)->opno;
+
+ /* caller identified the inner side for us */
+ if (rinfo->outer_is_left)
+ var = (Var *) get_rightop(rinfo->clause);
+ else
+ var = (Var *) get_leftop(rinfo->clause);
+
+ /*
+ * We may ignore any RelabelType node above the operand. (There
+ * won't be more than one, since eval_const_expressions() has been
+ * applied already.)
+ */
+ if (var && IsA(var, RelabelType))
+ var = (Var *) ((RelabelType *) var)->arg;
+
+ /*
+ * If inner side isn't a Var referencing a subquery output column,
+ * this clause doesn't help us.
+ */
+ if (!var || !IsA(var, Var) ||
+ var->varno != relid || var->varlevelsup != 0)
+ continue;
+
+ colnos = lappend_int(colnos, var->varattno);
+ opids = lappend_oid(opids, op);
+ }
+
+ if (query_is_distinct_for(subquery, colnos, opids))
+ return true;
+ }
+ return false;
+}
+
+
+/*
+ * query_supports_distinctness - could the query possibly be proven distinct
+ * on some set of output columns?
+ *
+ * This is effectively a pre-checking function for query_is_distinct_for().
+ * It must return true if query_is_distinct_for() could possibly return true
+ * with this query, but it should not expend a lot of cycles. The idea is
+ * that callers can avoid doing possibly-expensive processing to compute
+ * query_is_distinct_for()'s argument lists if the call could not possibly
+ * succeed.
+ */
+bool
+query_supports_distinctness(Query *query)
+{
+ /* SRFs break distinctness except with DISTINCT, see below */
+ if (query->hasTargetSRFs && query->distinctClause == NIL)
+ return false;
+
+ /* check for features we can prove distinctness with */
+ if (query->distinctClause != NIL ||
+ query->groupClause != NIL ||
+ query->groupingSets != NIL ||
+ query->hasAggs ||
+ query->havingQual ||
+ query->setOperations)
+ return true;
+
+ return false;
+}
+
+/*
+ * query_is_distinct_for - does query never return duplicates of the
+ * specified columns?
+ *
+ * query is a not-yet-planned subquery (in current usage, it's always from
+ * a subquery RTE, which the planner avoids scribbling on).
+ *
+ * colnos is an integer list of output column numbers (resno's). We are
+ * interested in whether rows consisting of just these columns are certain
+ * to be distinct. "Distinctness" is defined according to whether the
+ * corresponding upper-level equality operators listed in opids would think
+ * the values are distinct. (Note: the opids entries could be cross-type
+ * operators, and thus not exactly the equality operators that the subquery
+ * would use itself. We use equality_ops_are_compatible() to check
+ * compatibility. That looks at btree or hash opfamily membership, and so
+ * should give trustworthy answers for all operators that we might need
+ * to deal with here.)
+ */
+bool
+query_is_distinct_for(Query *query, List *colnos, List *opids)
+{
+ ListCell *l;
+ Oid opid;
+
+ Assert(list_length(colnos) == list_length(opids));
+
+ /*
+ * DISTINCT (including DISTINCT ON) guarantees uniqueness if all the
+ * columns in the DISTINCT clause appear in colnos and operator semantics
+ * match. This is true even if there are SRFs in the DISTINCT columns or
+ * elsewhere in the tlist.
+ */
+ if (query->distinctClause)
+ {
+ foreach(l, query->distinctClause)
+ {
+ SortGroupClause *sgc = (SortGroupClause *) lfirst(l);
+ TargetEntry *tle = get_sortgroupclause_tle(sgc,
+ query->targetList);
+
+ opid = distinct_col_search(tle->resno, colnos, opids);
+ if (!OidIsValid(opid) ||
+ !equality_ops_are_compatible(opid, sgc->eqop))
+ break; /* exit early if no match */
+ }
+ if (l == NULL) /* had matches for all? */
+ return true;
+ }
+
+ /*
+ * Otherwise, a set-returning function in the query's targetlist can
+ * result in returning duplicate rows, despite any grouping that might
+ * occur before tlist evaluation. (If all tlist SRFs are within GROUP BY
+ * columns, it would be safe because they'd be expanded before grouping.
+ * But it doesn't currently seem worth the effort to check for that.)
+ */
+ if (query->hasTargetSRFs)
+ return false;
+
+ /*
+ * Similarly, GROUP BY without GROUPING SETS guarantees uniqueness if all
+ * the grouped columns appear in colnos and operator semantics match.
+ */
+ if (query->groupClause && !query->groupingSets)
+ {
+ foreach(l, query->groupClause)
+ {
+ SortGroupClause *sgc = (SortGroupClause *) lfirst(l);
+ TargetEntry *tle = get_sortgroupclause_tle(sgc,
+ query->targetList);
+
+ opid = distinct_col_search(tle->resno, colnos, opids);
+ if (!OidIsValid(opid) ||
+ !equality_ops_are_compatible(opid, sgc->eqop))
+ break; /* exit early if no match */
+ }
+ if (l == NULL) /* had matches for all? */
+ return true;
+ }
+ else if (query->groupingSets)
+ {
+ /*
+ * If we have grouping sets with expressions, we probably don't have
+ * uniqueness and analysis would be hard. Punt.
+ */
+ if (query->groupClause)
+ return false;
+
+ /*
+ * If we have no groupClause (therefore no grouping expressions), we
+ * might have one or many empty grouping sets. If there's just one,
+ * then we're returning only one row and are certainly unique. But
+ * otherwise, we know we're certainly not unique.
+ */
+ if (list_length(query->groupingSets) == 1 &&
+ ((GroupingSet *) linitial(query->groupingSets))->kind == GROUPING_SET_EMPTY)
+ return true;
+ else
+ return false;
+ }
+ else
+ {
+ /*
+ * If we have no GROUP BY, but do have aggregates or HAVING, then the
+ * result is at most one row so it's surely unique, for any operators.
+ */
+ if (query->hasAggs || query->havingQual)
+ return true;
+ }
+
+ /*
+ * UNION, INTERSECT, EXCEPT guarantee uniqueness of the whole output row,
+ * except with ALL.
+ */
+ if (query->setOperations)
+ {
+ SetOperationStmt *topop = castNode(SetOperationStmt, query->setOperations);
+
+ Assert(topop->op != SETOP_NONE);
+
+ if (!topop->all)
+ {
+ ListCell *lg;
+
+ /* We're good if all the nonjunk output columns are in colnos */
+ lg = list_head(topop->groupClauses);
+ foreach(l, query->targetList)
+ {
+ TargetEntry *tle = (TargetEntry *) lfirst(l);
+ SortGroupClause *sgc;
+
+ if (tle->resjunk)
+ continue; /* ignore resjunk columns */
+
+ /* non-resjunk columns should have grouping clauses */
+ Assert(lg != NULL);
+ sgc = (SortGroupClause *) lfirst(lg);
+ lg = lnext(topop->groupClauses, lg);
+
+ opid = distinct_col_search(tle->resno, colnos, opids);
+ if (!OidIsValid(opid) ||
+ !equality_ops_are_compatible(opid, sgc->eqop))
+ break; /* exit early if no match */
+ }
+ if (l == NULL) /* had matches for all? */
+ return true;
+ }
+ }
+
+ /*
+ * XXX Are there any other cases in which we can easily see the result
+ * must be distinct?
+ *
+ * If you do add more smarts to this function, be sure to update
+ * query_supports_distinctness() to match.
+ */
+
+ return false;
+}
+
+/*
+ * distinct_col_search - subroutine for query_is_distinct_for
+ *
+ * If colno is in colnos, return the corresponding element of opids,
+ * else return InvalidOid. (Ordinarily colnos would not contain duplicates,
+ * but if it does, we arbitrarily select the first match.)
+ */
+static Oid
+distinct_col_search(int colno, List *colnos, List *opids)
+{
+ ListCell *lc1,
+ *lc2;
+
+ forboth(lc1, colnos, lc2, opids)
+ {
+ if (colno == lfirst_int(lc1))
+ return lfirst_oid(lc2);
+ }
+ return InvalidOid;
+}
+
+
+/*
+ * innerrel_is_unique
+ * Check if the innerrel provably contains at most one tuple matching any
+ * tuple from the outerrel, based on join clauses in the 'restrictlist'.
+ *
+ * We need an actual RelOptInfo for the innerrel, but it's sufficient to
+ * identify the outerrel by its Relids. This asymmetry supports use of this
+ * function before joinrels have been built. (The caller is expected to
+ * also supply the joinrelids, just to save recalculating that.)
+ *
+ * The proof must be made based only on clauses that will be "joinquals"
+ * rather than "otherquals" at execution. For an inner join there's no
+ * difference; but if the join is outer, we must ignore pushed-down quals,
+ * as those will become "otherquals". Note that this means the answer might
+ * vary depending on whether IS_OUTER_JOIN(jointype); since we cache the
+ * answer without regard to that, callers must take care not to call this
+ * with jointypes that would be classified differently by IS_OUTER_JOIN().
+ *
+ * The actual proof is undertaken by is_innerrel_unique_for(); this function
+ * is a frontend that is mainly concerned with caching the answers.
+ * In particular, the force_cache argument allows overriding the internal
+ * heuristic about whether to cache negative answers; it should be "true"
+ * if making an inquiry that is not part of the normal bottom-up join search
+ * sequence.
+ */
+bool
+innerrel_is_unique(PlannerInfo *root,
+ Relids joinrelids,
+ Relids outerrelids,
+ RelOptInfo *innerrel,
+ JoinType jointype,
+ List *restrictlist,
+ bool force_cache)
+{
+ MemoryContext old_context;
+ ListCell *lc;
+
+ /* Certainly can't prove uniqueness when there are no joinclauses */
+ if (restrictlist == NIL)
+ return false;
+
+ /*
+ * Make a quick check to eliminate cases in which we will surely be unable
+ * to prove uniqueness of the innerrel.
+ */
+ if (!rel_supports_distinctness(root, innerrel))
+ return false;
+
+ /*
+ * Query the cache to see if we've managed to prove that innerrel is
+ * unique for any subset of this outerrel. We don't need an exact match,
+ * as extra outerrels can't make the innerrel any less unique (or more
+ * formally, the restrictlist for a join to a superset outerrel must be a
+ * superset of the conditions we successfully used before).
+ */
+ foreach(lc, innerrel->unique_for_rels)
+ {
+ Relids unique_for_rels = (Relids) lfirst(lc);
+
+ if (bms_is_subset(unique_for_rels, outerrelids))
+ return true; /* Success! */
+ }
+
+ /*
+ * Conversely, we may have already determined that this outerrel, or some
+ * superset thereof, cannot prove this innerrel to be unique.
+ */
+ foreach(lc, innerrel->non_unique_for_rels)
+ {
+ Relids unique_for_rels = (Relids) lfirst(lc);
+
+ if (bms_is_subset(outerrelids, unique_for_rels))
+ return false;
+ }
+
+ /* No cached information, so try to make the proof. */
+ if (is_innerrel_unique_for(root, joinrelids, outerrelids, innerrel,
+ jointype, restrictlist))
+ {
+ /*
+ * Cache the positive result for future probes, being sure to keep it
+ * in the planner_cxt even if we are working in GEQO.
+ *
+ * Note: one might consider trying to isolate the minimal subset of
+ * the outerrels that proved the innerrel unique. But it's not worth
+ * the trouble, because the planner builds up joinrels incrementally
+ * and so we'll see the minimally sufficient outerrels before any
+ * supersets of them anyway.
+ */
+ old_context = MemoryContextSwitchTo(root->planner_cxt);
+ innerrel->unique_for_rels = lappend(innerrel->unique_for_rels,
+ bms_copy(outerrelids));
+ MemoryContextSwitchTo(old_context);
+
+ return true; /* Success! */
+ }
+ else
+ {
+ /*
+ * None of the join conditions for outerrel proved innerrel unique, so
+ * we can safely reject this outerrel or any subset of it in future
+ * checks.
+ *
+ * However, in normal planning mode, caching this knowledge is totally
+ * pointless; it won't be queried again, because we build up joinrels
+ * from smaller to larger. It is useful in GEQO mode, where the
+ * knowledge can be carried across successive planning attempts; and
+ * it's likely to be useful when using join-search plugins, too. Hence
+ * cache when join_search_private is non-NULL. (Yeah, that's a hack,
+ * but it seems reasonable.)
+ *
+ * Also, allow callers to override that heuristic and force caching;
+ * that's useful for reduce_unique_semijoins, which calls here before
+ * the normal join search starts.
+ */
+ if (force_cache || root->join_search_private)
+ {
+ old_context = MemoryContextSwitchTo(root->planner_cxt);
+ innerrel->non_unique_for_rels =
+ lappend(innerrel->non_unique_for_rels,
+ bms_copy(outerrelids));
+ MemoryContextSwitchTo(old_context);
+ }
+
+ return false;
+ }
+}
+
+/*
+ * is_innerrel_unique_for
+ * Check if the innerrel provably contains at most one tuple matching any
+ * tuple from the outerrel, based on join clauses in the 'restrictlist'.
+ */
+static bool
+is_innerrel_unique_for(PlannerInfo *root,
+ Relids joinrelids,
+ Relids outerrelids,
+ RelOptInfo *innerrel,
+ JoinType jointype,
+ List *restrictlist)
+{
+ List *clause_list = NIL;
+ ListCell *lc;
+
+ /*
+ * Search for mergejoinable clauses that constrain the inner rel against
+ * the outer rel. If an operator is mergejoinable then it behaves like
+ * equality for some btree opclass, so it's what we want. The
+ * mergejoinability test also eliminates clauses containing volatile
+ * functions, which we couldn't depend on.
+ */
+ foreach(lc, restrictlist)
+ {
+ RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(lc);
+
+ /*
+ * As noted above, if it's a pushed-down clause and we're at an outer
+ * join, we can't use it.
+ */
+ if (IS_OUTER_JOIN(jointype) &&
+ RINFO_IS_PUSHED_DOWN(restrictinfo, joinrelids))
+ continue;
+
+ /* Ignore if it's not a mergejoinable clause */
+ if (!restrictinfo->can_join ||
+ restrictinfo->mergeopfamilies == NIL)
+ continue; /* not mergejoinable */
+
+ /*
+ * Check if clause has the form "outer op inner" or "inner op outer",
+ * and if so mark which side is inner.
+ */
+ if (!clause_sides_match_join(restrictinfo, outerrelids,
+ innerrel->relids))
+ continue; /* no good for these input relations */
+
+ /* OK, add to list */
+ clause_list = lappend(clause_list, restrictinfo);
+ }
+
+ /* Let rel_is_distinct_for() do the hard work */
+ return rel_is_distinct_for(root, innerrel, clause_list);
+}
diff --git a/src/backend/optimizer/plan/createplan.c b/src/backend/optimizer/plan/createplan.c
new file mode 100644
index 0000000..0ed858f
--- /dev/null
+++ b/src/backend/optimizer/plan/createplan.c
@@ -0,0 +1,7160 @@
+/*-------------------------------------------------------------------------
+ *
+ * createplan.c
+ * Routines to create the desired plan for processing a query.
+ * Planning is complete, we just need to convert the selected
+ * Path into a Plan.
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/plan/createplan.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include <limits.h>
+#include <math.h>
+
+#include "access/sysattr.h"
+#include "catalog/pg_class.h"
+#include "foreign/fdwapi.h"
+#include "miscadmin.h"
+#include "nodes/extensible.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "optimizer/cost.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/paramassign.h"
+#include "optimizer/paths.h"
+#include "optimizer/placeholder.h"
+#include "optimizer/plancat.h"
+#include "optimizer/planmain.h"
+#include "optimizer/prep.h"
+#include "optimizer/restrictinfo.h"
+#include "optimizer/subselect.h"
+#include "optimizer/tlist.h"
+#include "parser/parse_clause.h"
+#include "parser/parsetree.h"
+#include "partitioning/partprune.h"
+#include "utils/lsyscache.h"
+
+
+/*
+ * Flag bits that can appear in the flags argument of create_plan_recurse().
+ * These can be OR-ed together.
+ *
+ * CP_EXACT_TLIST specifies that the generated plan node must return exactly
+ * the tlist specified by the path's pathtarget (this overrides both
+ * CP_SMALL_TLIST and CP_LABEL_TLIST, if those are set). Otherwise, the
+ * plan node is allowed to return just the Vars and PlaceHolderVars needed
+ * to evaluate the pathtarget.
+ *
+ * CP_SMALL_TLIST specifies that a narrower tlist is preferred. This is
+ * passed down by parent nodes such as Sort and Hash, which will have to
+ * store the returned tuples.
+ *
+ * CP_LABEL_TLIST specifies that the plan node must return columns matching
+ * any sortgrouprefs specified in its pathtarget, with appropriate
+ * ressortgroupref labels. This is passed down by parent nodes such as Sort
+ * and Group, which need these values to be available in their inputs.
+ *
+ * CP_IGNORE_TLIST specifies that the caller plans to replace the targetlist,
+ * and therefore it doesn't matter a bit what target list gets generated.
+ */
+#define CP_EXACT_TLIST 0x0001 /* Plan must return specified tlist */
+#define CP_SMALL_TLIST 0x0002 /* Prefer narrower tlists */
+#define CP_LABEL_TLIST 0x0004 /* tlist must contain sortgrouprefs */
+#define CP_IGNORE_TLIST 0x0008 /* caller will replace tlist */
+
+
+static Plan *create_plan_recurse(PlannerInfo *root, Path *best_path,
+ int flags);
+static Plan *create_scan_plan(PlannerInfo *root, Path *best_path,
+ int flags);
+static List *build_path_tlist(PlannerInfo *root, Path *path);
+static bool use_physical_tlist(PlannerInfo *root, Path *path, int flags);
+static List *get_gating_quals(PlannerInfo *root, List *quals);
+static Plan *create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
+ List *gating_quals);
+static Plan *create_join_plan(PlannerInfo *root, JoinPath *best_path);
+static bool is_async_capable_plan(Plan *plan, Path *path);
+static Plan *create_append_plan(PlannerInfo *root, AppendPath *best_path,
+ int flags);
+static Plan *create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
+ int flags);
+static Result *create_group_result_plan(PlannerInfo *root,
+ GroupResultPath *best_path);
+static ProjectSet *create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path);
+static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path,
+ int flags);
+static Memoize *create_memoize_plan(PlannerInfo *root, MemoizePath *best_path,
+ int flags);
+static Plan *create_unique_plan(PlannerInfo *root, UniquePath *best_path,
+ int flags);
+static Gather *create_gather_plan(PlannerInfo *root, GatherPath *best_path);
+static Plan *create_projection_plan(PlannerInfo *root,
+ ProjectionPath *best_path,
+ int flags);
+static Plan *inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe);
+static Sort *create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags);
+static IncrementalSort *create_incrementalsort_plan(PlannerInfo *root,
+ IncrementalSortPath *best_path, int flags);
+static Group *create_group_plan(PlannerInfo *root, GroupPath *best_path);
+static Unique *create_upper_unique_plan(PlannerInfo *root, UpperUniquePath *best_path,
+ int flags);
+static Agg *create_agg_plan(PlannerInfo *root, AggPath *best_path);
+static Plan *create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path);
+static Result *create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path);
+static WindowAgg *create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path);
+static SetOp *create_setop_plan(PlannerInfo *root, SetOpPath *best_path,
+ int flags);
+static RecursiveUnion *create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path);
+static LockRows *create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
+ int flags);
+static ModifyTable *create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path);
+static Limit *create_limit_plan(PlannerInfo *root, LimitPath *best_path,
+ int flags);
+static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static SampleScan *create_samplescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static Scan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path,
+ List *tlist, List *scan_clauses, bool indexonly);
+static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root,
+ BitmapHeapPath *best_path,
+ List *tlist, List *scan_clauses);
+static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
+ List **qual, List **indexqual, List **indexECs);
+static void bitmap_subplan_mark_shared(Plan *plan);
+static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
+ List *tlist, List *scan_clauses);
+static TidRangeScan *create_tidrangescan_plan(PlannerInfo *root,
+ TidRangePath *best_path,
+ List *tlist,
+ List *scan_clauses);
+static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root,
+ SubqueryScanPath *best_path,
+ List *tlist, List *scan_clauses);
+static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static ValuesScan *create_valuesscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static TableFuncScan *create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static CteScan *create_ctescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static NamedTuplestoreScan *create_namedtuplestorescan_plan(PlannerInfo *root,
+ Path *best_path, List *tlist, List *scan_clauses);
+static Result *create_resultscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static WorkTableScan *create_worktablescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses);
+static ForeignScan *create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
+ List *tlist, List *scan_clauses);
+static CustomScan *create_customscan_plan(PlannerInfo *root,
+ CustomPath *best_path,
+ List *tlist, List *scan_clauses);
+static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path);
+static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path);
+static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path);
+static Node *replace_nestloop_params(PlannerInfo *root, Node *expr);
+static Node *replace_nestloop_params_mutator(Node *node, PlannerInfo *root);
+static void fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
+ List **stripped_indexquals_p,
+ List **fixed_indexquals_p);
+static List *fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path);
+static Node *fix_indexqual_clause(PlannerInfo *root,
+ IndexOptInfo *index, int indexcol,
+ Node *clause, List *indexcolnos);
+static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol);
+static List *get_switched_clauses(List *clauses, Relids outerrelids);
+static List *order_qual_clauses(PlannerInfo *root, List *clauses);
+static void copy_generic_path_info(Plan *dest, Path *src);
+static void copy_plan_costsize(Plan *dest, Plan *src);
+static void label_sort_with_costsize(PlannerInfo *root, Sort *plan,
+ double limit_tuples);
+static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
+static SampleScan *make_samplescan(List *qptlist, List *qpqual, Index scanrelid,
+ TableSampleClause *tsc);
+static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
+ Oid indexid, List *indexqual, List *indexqualorig,
+ List *indexorderby, List *indexorderbyorig,
+ List *indexorderbyops,
+ ScanDirection indexscandir);
+static IndexOnlyScan *make_indexonlyscan(List *qptlist, List *qpqual,
+ Index scanrelid, Oid indexid,
+ List *indexqual, List *recheckqual,
+ List *indexorderby,
+ List *indextlist,
+ ScanDirection indexscandir);
+static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid,
+ List *indexqual,
+ List *indexqualorig);
+static BitmapHeapScan *make_bitmap_heapscan(List *qptlist,
+ List *qpqual,
+ Plan *lefttree,
+ List *bitmapqualorig,
+ Index scanrelid);
+static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
+ List *tidquals);
+static TidRangeScan *make_tidrangescan(List *qptlist, List *qpqual,
+ Index scanrelid, List *tidrangequals);
+static SubqueryScan *make_subqueryscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ Plan *subplan);
+static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
+ Index scanrelid, List *functions, bool funcordinality);
+static ValuesScan *make_valuesscan(List *qptlist, List *qpqual,
+ Index scanrelid, List *values_lists);
+static TableFuncScan *make_tablefuncscan(List *qptlist, List *qpqual,
+ Index scanrelid, TableFunc *tablefunc);
+static CteScan *make_ctescan(List *qptlist, List *qpqual,
+ Index scanrelid, int ctePlanId, int cteParam);
+static NamedTuplestoreScan *make_namedtuplestorescan(List *qptlist, List *qpqual,
+ Index scanrelid, char *enrname);
+static WorkTableScan *make_worktablescan(List *qptlist, List *qpqual,
+ Index scanrelid, int wtParam);
+static RecursiveUnion *make_recursive_union(List *tlist,
+ Plan *lefttree,
+ Plan *righttree,
+ int wtParam,
+ List *distinctList,
+ long numGroups);
+static BitmapAnd *make_bitmap_and(List *bitmapplans);
+static BitmapOr *make_bitmap_or(List *bitmapplans);
+static NestLoop *make_nestloop(List *tlist,
+ List *joinclauses, List *otherclauses, List *nestParams,
+ Plan *lefttree, Plan *righttree,
+ JoinType jointype, bool inner_unique);
+static HashJoin *make_hashjoin(List *tlist,
+ List *joinclauses, List *otherclauses,
+ List *hashclauses,
+ List *hashoperators, List *hashcollations,
+ List *hashkeys,
+ Plan *lefttree, Plan *righttree,
+ JoinType jointype, bool inner_unique);
+static Hash *make_hash(Plan *lefttree,
+ List *hashkeys,
+ Oid skewTable,
+ AttrNumber skewColumn,
+ bool skewInherit);
+static MergeJoin *make_mergejoin(List *tlist,
+ List *joinclauses, List *otherclauses,
+ List *mergeclauses,
+ Oid *mergefamilies,
+ Oid *mergecollations,
+ int *mergestrategies,
+ bool *mergenullsfirst,
+ Plan *lefttree, Plan *righttree,
+ JoinType jointype, bool inner_unique,
+ bool skip_mark_restore);
+static Sort *make_sort(Plan *lefttree, int numCols,
+ AttrNumber *sortColIdx, Oid *sortOperators,
+ Oid *collations, bool *nullsFirst);
+static IncrementalSort *make_incrementalsort(Plan *lefttree,
+ int numCols, int nPresortedCols,
+ AttrNumber *sortColIdx, Oid *sortOperators,
+ Oid *collations, bool *nullsFirst);
+static Plan *prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
+ Relids relids,
+ const AttrNumber *reqColIdx,
+ bool adjust_tlist_in_place,
+ int *p_numsortkeys,
+ AttrNumber **p_sortColIdx,
+ Oid **p_sortOperators,
+ Oid **p_collations,
+ bool **p_nullsFirst);
+static Sort *make_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
+ Relids relids);
+static IncrementalSort *make_incrementalsort_from_pathkeys(Plan *lefttree,
+ List *pathkeys, Relids relids, int nPresortedCols);
+static Sort *make_sort_from_groupcols(List *groupcls,
+ AttrNumber *grpColIdx,
+ Plan *lefttree);
+static Material *make_material(Plan *lefttree);
+static Memoize *make_memoize(Plan *lefttree, Oid *hashoperators,
+ Oid *collations, List *param_exprs,
+ bool singlerow, bool binary_mode,
+ uint32 est_entries, Bitmapset *keyparamids);
+static WindowAgg *make_windowagg(List *tlist, Index winref,
+ int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
+ int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
+ int frameOptions, Node *startOffset, Node *endOffset,
+ Oid startInRangeFunc, Oid endInRangeFunc,
+ Oid inRangeColl, bool inRangeAsc, bool inRangeNullsFirst,
+ Plan *lefttree);
+static Group *make_group(List *tlist, List *qual, int numGroupCols,
+ AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
+ Plan *lefttree);
+static Unique *make_unique_from_sortclauses(Plan *lefttree, List *distinctList);
+static Unique *make_unique_from_pathkeys(Plan *lefttree,
+ List *pathkeys, int numCols);
+static Gather *make_gather(List *qptlist, List *qpqual,
+ int nworkers, int rescan_param, bool single_copy, Plan *subplan);
+static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree,
+ List *distinctList, AttrNumber flagColIdx, int firstFlag,
+ long numGroups);
+static LockRows *make_lockrows(Plan *lefttree, List *rowMarks, int epqParam);
+static Result *make_result(List *tlist, Node *resconstantqual, Plan *subplan);
+static ProjectSet *make_project_set(List *tlist, Plan *subplan);
+static ModifyTable *make_modifytable(PlannerInfo *root, Plan *subplan,
+ CmdType operation, bool canSetTag,
+ Index nominalRelation, Index rootRelation,
+ bool partColsUpdated,
+ List *resultRelations,
+ List *updateColnosLists,
+ List *withCheckOptionLists, List *returningLists,
+ List *rowMarks, OnConflictExpr *onconflict, int epqParam);
+static GatherMerge *create_gather_merge_plan(PlannerInfo *root,
+ GatherMergePath *best_path);
+
+
+/*
+ * create_plan
+ * Creates the access plan for a query by recursively processing the
+ * desired tree of pathnodes, starting at the node 'best_path'. For
+ * every pathnode found, we create a corresponding plan node containing
+ * appropriate id, target list, and qualification information.
+ *
+ * The tlists and quals in the plan tree are still in planner format,
+ * ie, Vars still correspond to the parser's numbering. This will be
+ * fixed later by setrefs.c.
+ *
+ * best_path is the best access path
+ *
+ * Returns a Plan tree.
+ */
+Plan *
+create_plan(PlannerInfo *root, Path *best_path)
+{
+ Plan *plan;
+
+ /* plan_params should not be in use in current query level */
+ Assert(root->plan_params == NIL);
+
+ /* Initialize this module's workspace in PlannerInfo */
+ root->curOuterRels = NULL;
+ root->curOuterParams = NIL;
+
+ /* Recursively process the path tree, demanding the correct tlist result */
+ plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST);
+
+ /*
+ * Make sure the topmost plan node's targetlist exposes the original
+ * column names and other decorative info. Targetlists generated within
+ * the planner don't bother with that stuff, but we must have it on the
+ * top-level tlist seen at execution time. However, ModifyTable plan
+ * nodes don't have a tlist matching the querytree targetlist.
+ */
+ if (!IsA(plan, ModifyTable))
+ apply_tlist_labeling(plan->targetlist, root->processed_tlist);
+
+ /*
+ * Attach any initPlans created in this query level to the topmost plan
+ * node. (In principle the initplans could go in any plan node at or
+ * above where they're referenced, but there seems no reason to put them
+ * any lower than the topmost node for the query level. Also, see
+ * comments for SS_finalize_plan before you try to change this.)
+ */
+ SS_attach_initplans(root, plan);
+
+ /* Check we successfully assigned all NestLoopParams to plan nodes */
+ if (root->curOuterParams != NIL)
+ elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
+
+ /*
+ * Reset plan_params to ensure param IDs used for nestloop params are not
+ * re-used later
+ */
+ root->plan_params = NIL;
+
+ return plan;
+}
+
+/*
+ * create_plan_recurse
+ * Recursive guts of create_plan().
+ */
+static Plan *
+create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
+{
+ Plan *plan;
+
+ /* Guard against stack overflow due to overly complex plans */
+ check_stack_depth();
+
+ switch (best_path->pathtype)
+ {
+ case T_SeqScan:
+ case T_SampleScan:
+ case T_IndexScan:
+ case T_IndexOnlyScan:
+ case T_BitmapHeapScan:
+ case T_TidScan:
+ case T_TidRangeScan:
+ case T_SubqueryScan:
+ case T_FunctionScan:
+ case T_TableFuncScan:
+ case T_ValuesScan:
+ case T_CteScan:
+ case T_WorkTableScan:
+ case T_NamedTuplestoreScan:
+ case T_ForeignScan:
+ case T_CustomScan:
+ plan = create_scan_plan(root, best_path, flags);
+ break;
+ case T_HashJoin:
+ case T_MergeJoin:
+ case T_NestLoop:
+ plan = create_join_plan(root,
+ (JoinPath *) best_path);
+ break;
+ case T_Append:
+ plan = create_append_plan(root,
+ (AppendPath *) best_path,
+ flags);
+ break;
+ case T_MergeAppend:
+ plan = create_merge_append_plan(root,
+ (MergeAppendPath *) best_path,
+ flags);
+ break;
+ case T_Result:
+ if (IsA(best_path, ProjectionPath))
+ {
+ plan = create_projection_plan(root,
+ (ProjectionPath *) best_path,
+ flags);
+ }
+ else if (IsA(best_path, MinMaxAggPath))
+ {
+ plan = (Plan *) create_minmaxagg_plan(root,
+ (MinMaxAggPath *) best_path);
+ }
+ else if (IsA(best_path, GroupResultPath))
+ {
+ plan = (Plan *) create_group_result_plan(root,
+ (GroupResultPath *) best_path);
+ }
+ else
+ {
+ /* Simple RTE_RESULT base relation */
+ Assert(IsA(best_path, Path));
+ plan = create_scan_plan(root, best_path, flags);
+ }
+ break;
+ case T_ProjectSet:
+ plan = (Plan *) create_project_set_plan(root,
+ (ProjectSetPath *) best_path);
+ break;
+ case T_Material:
+ plan = (Plan *) create_material_plan(root,
+ (MaterialPath *) best_path,
+ flags);
+ break;
+ case T_Memoize:
+ plan = (Plan *) create_memoize_plan(root,
+ (MemoizePath *) best_path,
+ flags);
+ break;
+ case T_Unique:
+ if (IsA(best_path, UpperUniquePath))
+ {
+ plan = (Plan *) create_upper_unique_plan(root,
+ (UpperUniquePath *) best_path,
+ flags);
+ }
+ else
+ {
+ Assert(IsA(best_path, UniquePath));
+ plan = create_unique_plan(root,
+ (UniquePath *) best_path,
+ flags);
+ }
+ break;
+ case T_Gather:
+ plan = (Plan *) create_gather_plan(root,
+ (GatherPath *) best_path);
+ break;
+ case T_Sort:
+ plan = (Plan *) create_sort_plan(root,
+ (SortPath *) best_path,
+ flags);
+ break;
+ case T_IncrementalSort:
+ plan = (Plan *) create_incrementalsort_plan(root,
+ (IncrementalSortPath *) best_path,
+ flags);
+ break;
+ case T_Group:
+ plan = (Plan *) create_group_plan(root,
+ (GroupPath *) best_path);
+ break;
+ case T_Agg:
+ if (IsA(best_path, GroupingSetsPath))
+ plan = create_groupingsets_plan(root,
+ (GroupingSetsPath *) best_path);
+ else
+ {
+ Assert(IsA(best_path, AggPath));
+ plan = (Plan *) create_agg_plan(root,
+ (AggPath *) best_path);
+ }
+ break;
+ case T_WindowAgg:
+ plan = (Plan *) create_windowagg_plan(root,
+ (WindowAggPath *) best_path);
+ break;
+ case T_SetOp:
+ plan = (Plan *) create_setop_plan(root,
+ (SetOpPath *) best_path,
+ flags);
+ break;
+ case T_RecursiveUnion:
+ plan = (Plan *) create_recursiveunion_plan(root,
+ (RecursiveUnionPath *) best_path);
+ break;
+ case T_LockRows:
+ plan = (Plan *) create_lockrows_plan(root,
+ (LockRowsPath *) best_path,
+ flags);
+ break;
+ case T_ModifyTable:
+ plan = (Plan *) create_modifytable_plan(root,
+ (ModifyTablePath *) best_path);
+ break;
+ case T_Limit:
+ plan = (Plan *) create_limit_plan(root,
+ (LimitPath *) best_path,
+ flags);
+ break;
+ case T_GatherMerge:
+ plan = (Plan *) create_gather_merge_plan(root,
+ (GatherMergePath *) best_path);
+ break;
+ default:
+ elog(ERROR, "unrecognized node type: %d",
+ (int) best_path->pathtype);
+ plan = NULL; /* keep compiler quiet */
+ break;
+ }
+
+ return plan;
+}
+
+/*
+ * create_scan_plan
+ * Create a scan plan for the parent relation of 'best_path'.
+ */
+static Plan *
+create_scan_plan(PlannerInfo *root, Path *best_path, int flags)
+{
+ RelOptInfo *rel = best_path->parent;
+ List *scan_clauses;
+ List *gating_clauses;
+ List *tlist;
+ Plan *plan;
+
+ /*
+ * Extract the relevant restriction clauses from the parent relation. The
+ * executor must apply all these restrictions during the scan, except for
+ * pseudoconstants which we'll take care of below.
+ *
+ * If this is a plain indexscan or index-only scan, we need not consider
+ * restriction clauses that are implied by the index's predicate, so use
+ * indrestrictinfo not baserestrictinfo. Note that we can't do that for
+ * bitmap indexscans, since there's not necessarily a single index
+ * involved; but it doesn't matter since create_bitmap_scan_plan() will be
+ * able to get rid of such clauses anyway via predicate proof.
+ */
+ switch (best_path->pathtype)
+ {
+ case T_IndexScan:
+ case T_IndexOnlyScan:
+ scan_clauses = castNode(IndexPath, best_path)->indexinfo->indrestrictinfo;
+ break;
+ default:
+ scan_clauses = rel->baserestrictinfo;
+ break;
+ }
+
+ /*
+ * If this is a parameterized scan, we also need to enforce all the join
+ * clauses available from the outer relation(s).
+ *
+ * For paranoia's sake, don't modify the stored baserestrictinfo list.
+ */
+ if (best_path->param_info)
+ scan_clauses = list_concat_copy(scan_clauses,
+ best_path->param_info->ppi_clauses);
+
+ /*
+ * Detect whether we have any pseudoconstant quals to deal with. Then, if
+ * we'll need a gating Result node, it will be able to project, so there
+ * are no requirements on the child's tlist.
+ */
+ gating_clauses = get_gating_quals(root, scan_clauses);
+ if (gating_clauses)
+ flags = 0;
+
+ /*
+ * For table scans, rather than using the relation targetlist (which is
+ * only those Vars actually needed by the query), we prefer to generate a
+ * tlist containing all Vars in order. This will allow the executor to
+ * optimize away projection of the table tuples, if possible.
+ *
+ * But if the caller is going to ignore our tlist anyway, then don't
+ * bother generating one at all. We use an exact equality test here, so
+ * that this only applies when CP_IGNORE_TLIST is the only flag set.
+ */
+ if (flags == CP_IGNORE_TLIST)
+ {
+ tlist = NULL;
+ }
+ else if (use_physical_tlist(root, best_path, flags))
+ {
+ if (best_path->pathtype == T_IndexOnlyScan)
+ {
+ /* For index-only scan, the preferred tlist is the index's */
+ tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist);
+
+ /*
+ * Transfer sortgroupref data to the replacement tlist, if
+ * requested (use_physical_tlist checked that this will work).
+ */
+ if (flags & CP_LABEL_TLIST)
+ apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
+ }
+ else
+ {
+ tlist = build_physical_tlist(root, rel);
+ if (tlist == NIL)
+ {
+ /* Failed because of dropped cols, so use regular method */
+ tlist = build_path_tlist(root, best_path);
+ }
+ else
+ {
+ /* As above, transfer sortgroupref data to replacement tlist */
+ if (flags & CP_LABEL_TLIST)
+ apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
+ }
+ }
+ }
+ else
+ {
+ tlist = build_path_tlist(root, best_path);
+ }
+
+ switch (best_path->pathtype)
+ {
+ case T_SeqScan:
+ plan = (Plan *) create_seqscan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_SampleScan:
+ plan = (Plan *) create_samplescan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_IndexScan:
+ plan = (Plan *) create_indexscan_plan(root,
+ (IndexPath *) best_path,
+ tlist,
+ scan_clauses,
+ false);
+ break;
+
+ case T_IndexOnlyScan:
+ plan = (Plan *) create_indexscan_plan(root,
+ (IndexPath *) best_path,
+ tlist,
+ scan_clauses,
+ true);
+ break;
+
+ case T_BitmapHeapScan:
+ plan = (Plan *) create_bitmap_scan_plan(root,
+ (BitmapHeapPath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_TidScan:
+ plan = (Plan *) create_tidscan_plan(root,
+ (TidPath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_TidRangeScan:
+ plan = (Plan *) create_tidrangescan_plan(root,
+ (TidRangePath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_SubqueryScan:
+ plan = (Plan *) create_subqueryscan_plan(root,
+ (SubqueryScanPath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_FunctionScan:
+ plan = (Plan *) create_functionscan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_TableFuncScan:
+ plan = (Plan *) create_tablefuncscan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_ValuesScan:
+ plan = (Plan *) create_valuesscan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_CteScan:
+ plan = (Plan *) create_ctescan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_NamedTuplestoreScan:
+ plan = (Plan *) create_namedtuplestorescan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_Result:
+ plan = (Plan *) create_resultscan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_WorkTableScan:
+ plan = (Plan *) create_worktablescan_plan(root,
+ best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_ForeignScan:
+ plan = (Plan *) create_foreignscan_plan(root,
+ (ForeignPath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ case T_CustomScan:
+ plan = (Plan *) create_customscan_plan(root,
+ (CustomPath *) best_path,
+ tlist,
+ scan_clauses);
+ break;
+
+ default:
+ elog(ERROR, "unrecognized node type: %d",
+ (int) best_path->pathtype);
+ plan = NULL; /* keep compiler quiet */
+ break;
+ }
+
+ /*
+ * If there are any pseudoconstant clauses attached to this node, insert a
+ * gating Result node that evaluates the pseudoconstants as one-time
+ * quals.
+ */
+ if (gating_clauses)
+ plan = create_gating_plan(root, best_path, plan, gating_clauses);
+
+ return plan;
+}
+
+/*
+ * Build a target list (ie, a list of TargetEntry) for the Path's output.
+ *
+ * This is almost just make_tlist_from_pathtarget(), but we also have to
+ * deal with replacing nestloop params.
+ */
+static List *
+build_path_tlist(PlannerInfo *root, Path *path)
+{
+ List *tlist = NIL;
+ Index *sortgrouprefs = path->pathtarget->sortgrouprefs;
+ int resno = 1;
+ ListCell *v;
+
+ foreach(v, path->pathtarget->exprs)
+ {
+ Node *node = (Node *) lfirst(v);
+ TargetEntry *tle;
+
+ /*
+ * If it's a parameterized path, there might be lateral references in
+ * the tlist, which need to be replaced with Params. There's no need
+ * to remake the TargetEntry nodes, so apply this to each list item
+ * separately.
+ */
+ if (path->param_info)
+ node = replace_nestloop_params(root, node);
+
+ tle = makeTargetEntry((Expr *) node,
+ resno,
+ NULL,
+ false);
+ if (sortgrouprefs)
+ tle->ressortgroupref = sortgrouprefs[resno - 1];
+
+ tlist = lappend(tlist, tle);
+ resno++;
+ }
+ return tlist;
+}
+
+/*
+ * use_physical_tlist
+ * Decide whether to use a tlist matching relation structure,
+ * rather than only those Vars actually referenced.
+ */
+static bool
+use_physical_tlist(PlannerInfo *root, Path *path, int flags)
+{
+ RelOptInfo *rel = path->parent;
+ int i;
+ ListCell *lc;
+
+ /*
+ * Forget it if either exact tlist or small tlist is demanded.
+ */
+ if (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST))
+ return false;
+
+ /*
+ * We can do this for real relation scans, subquery scans, function scans,
+ * tablefunc scans, values scans, and CTE scans (but not for, eg, joins).
+ */
+ if (rel->rtekind != RTE_RELATION &&
+ rel->rtekind != RTE_SUBQUERY &&
+ rel->rtekind != RTE_FUNCTION &&
+ rel->rtekind != RTE_TABLEFUNC &&
+ rel->rtekind != RTE_VALUES &&
+ rel->rtekind != RTE_CTE)
+ return false;
+
+ /*
+ * Can't do it with inheritance cases either (mainly because Append
+ * doesn't project; this test may be unnecessary now that
+ * create_append_plan instructs its children to return an exact tlist).
+ */
+ if (rel->reloptkind != RELOPT_BASEREL)
+ return false;
+
+ /*
+ * Also, don't do it to a CustomPath; the premise that we're extracting
+ * columns from a simple physical tuple is unlikely to hold for those.
+ * (When it does make sense, the custom path creator can set up the path's
+ * pathtarget that way.)
+ */
+ if (IsA(path, CustomPath))
+ return false;
+
+ /*
+ * If a bitmap scan's tlist is empty, keep it as-is. This may allow the
+ * executor to skip heap page fetches, and in any case, the benefit of
+ * using a physical tlist instead would be minimal.
+ */
+ if (IsA(path, BitmapHeapPath) &&
+ path->pathtarget->exprs == NIL)
+ return false;
+
+ /*
+ * Can't do it if any system columns or whole-row Vars are requested.
+ * (This could possibly be fixed but would take some fragile assumptions
+ * in setrefs.c, I think.)
+ */
+ for (i = rel->min_attr; i <= 0; i++)
+ {
+ if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
+ return false;
+ }
+
+ /*
+ * Can't do it if the rel is required to emit any placeholder expressions,
+ * either.
+ */
+ foreach(lc, root->placeholder_list)
+ {
+ PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
+
+ if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) &&
+ bms_is_subset(phinfo->ph_eval_at, rel->relids))
+ return false;
+ }
+
+ /*
+ * For an index-only scan, the "physical tlist" is the index's indextlist.
+ * We can only return that without a projection if all the index's columns
+ * are returnable.
+ */
+ if (path->pathtype == T_IndexOnlyScan)
+ {
+ IndexOptInfo *indexinfo = ((IndexPath *) path)->indexinfo;
+
+ for (i = 0; i < indexinfo->ncolumns; i++)
+ {
+ if (!indexinfo->canreturn[i])
+ return false;
+ }
+ }
+
+ /*
+ * Also, can't do it if CP_LABEL_TLIST is specified and path is requested
+ * to emit any sort/group columns that are not simple Vars. (If they are
+ * simple Vars, they should appear in the physical tlist, and
+ * apply_pathtarget_labeling_to_tlist will take care of getting them
+ * labeled again.) We also have to check that no two sort/group columns
+ * are the same Var, else that element of the physical tlist would need
+ * conflicting ressortgroupref labels.
+ */
+ if ((flags & CP_LABEL_TLIST) && path->pathtarget->sortgrouprefs)
+ {
+ Bitmapset *sortgroupatts = NULL;
+
+ i = 0;
+ foreach(lc, path->pathtarget->exprs)
+ {
+ Expr *expr = (Expr *) lfirst(lc);
+
+ if (path->pathtarget->sortgrouprefs[i])
+ {
+ if (expr && IsA(expr, Var))
+ {
+ int attno = ((Var *) expr)->varattno;
+
+ attno -= FirstLowInvalidHeapAttributeNumber;
+ if (bms_is_member(attno, sortgroupatts))
+ return false;
+ sortgroupatts = bms_add_member(sortgroupatts, attno);
+ }
+ else
+ return false;
+ }
+ i++;
+ }
+ }
+
+ return true;
+}
+
+/*
+ * get_gating_quals
+ * See if there are pseudoconstant quals in a node's quals list
+ *
+ * If the node's quals list includes any pseudoconstant quals,
+ * return just those quals.
+ */
+static List *
+get_gating_quals(PlannerInfo *root, List *quals)
+{
+ /* No need to look if we know there are no pseudoconstants */
+ if (!root->hasPseudoConstantQuals)
+ return NIL;
+
+ /* Sort into desirable execution order while still in RestrictInfo form */
+ quals = order_qual_clauses(root, quals);
+
+ /* Pull out any pseudoconstant quals from the RestrictInfo list */
+ return extract_actual_clauses(quals, true);
+}
+
+/*
+ * create_gating_plan
+ * Deal with pseudoconstant qual clauses
+ *
+ * Add a gating Result node atop the already-built plan.
+ */
+static Plan *
+create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
+ List *gating_quals)
+{
+ Plan *gplan;
+ Plan *splan;
+
+ Assert(gating_quals);
+
+ /*
+ * We might have a trivial Result plan already. Stacking one Result atop
+ * another is silly, so if that applies, just discard the input plan.
+ * (We're assuming its targetlist is uninteresting; it should be either
+ * the same as the result of build_path_tlist, or a simplified version.)
+ */
+ splan = plan;
+ if (IsA(plan, Result))
+ {
+ Result *rplan = (Result *) plan;
+
+ if (rplan->plan.lefttree == NULL &&
+ rplan->resconstantqual == NULL)
+ splan = NULL;
+ }
+
+ /*
+ * Since we need a Result node anyway, always return the path's requested
+ * tlist; that's never a wrong choice, even if the parent node didn't ask
+ * for CP_EXACT_TLIST.
+ */
+ gplan = (Plan *) make_result(build_path_tlist(root, path),
+ (Node *) gating_quals,
+ splan);
+
+ /*
+ * Notice that we don't change cost or size estimates when doing gating.
+ * The costs of qual eval were already included in the subplan's cost.
+ * Leaving the size alone amounts to assuming that the gating qual will
+ * succeed, which is the conservative estimate for planning upper queries.
+ * We certainly don't want to assume the output size is zero (unless the
+ * gating qual is actually constant FALSE, and that case is dealt with in
+ * clausesel.c). Interpolating between the two cases is silly, because it
+ * doesn't reflect what will really happen at runtime, and besides which
+ * in most cases we have only a very bad idea of the probability of the
+ * gating qual being true.
+ */
+ copy_plan_costsize(gplan, plan);
+
+ /* Gating quals could be unsafe, so better use the Path's safety flag */
+ gplan->parallel_safe = path->parallel_safe;
+
+ return gplan;
+}
+
+/*
+ * create_join_plan
+ * Create a join plan for 'best_path' and (recursively) plans for its
+ * inner and outer paths.
+ */
+static Plan *
+create_join_plan(PlannerInfo *root, JoinPath *best_path)
+{
+ Plan *plan;
+ List *gating_clauses;
+
+ switch (best_path->path.pathtype)
+ {
+ case T_MergeJoin:
+ plan = (Plan *) create_mergejoin_plan(root,
+ (MergePath *) best_path);
+ break;
+ case T_HashJoin:
+ plan = (Plan *) create_hashjoin_plan(root,
+ (HashPath *) best_path);
+ break;
+ case T_NestLoop:
+ plan = (Plan *) create_nestloop_plan(root,
+ (NestPath *) best_path);
+ break;
+ default:
+ elog(ERROR, "unrecognized node type: %d",
+ (int) best_path->path.pathtype);
+ plan = NULL; /* keep compiler quiet */
+ break;
+ }
+
+ /*
+ * If there are any pseudoconstant clauses attached to this node, insert a
+ * gating Result node that evaluates the pseudoconstants as one-time
+ * quals.
+ */
+ gating_clauses = get_gating_quals(root, best_path->joinrestrictinfo);
+ if (gating_clauses)
+ plan = create_gating_plan(root, (Path *) best_path, plan,
+ gating_clauses);
+
+#ifdef NOT_USED
+
+ /*
+ * * Expensive function pullups may have pulled local predicates * into
+ * this path node. Put them in the qpqual of the plan node. * JMH,
+ * 6/15/92
+ */
+ if (get_loc_restrictinfo(best_path) != NIL)
+ set_qpqual((Plan) plan,
+ list_concat(get_qpqual((Plan) plan),
+ get_actual_clauses(get_loc_restrictinfo(best_path))));
+#endif
+
+ return plan;
+}
+
+/*
+ * is_async_capable_plan
+ * Check whether the Plan node created from a Path node is async-capable.
+ */
+static bool
+is_async_capable_plan(Plan *plan, Path *path)
+{
+ switch (nodeTag(path))
+ {
+ case T_ForeignPath:
+ {
+ FdwRoutine *fdwroutine = path->parent->fdwroutine;
+
+ /*
+ * If the generated plan node includes a gating Result node,
+ * we can't execute it asynchronously.
+ */
+ if (IsA(plan, Result))
+ return false;
+
+ Assert(fdwroutine != NULL);
+ if (fdwroutine->IsForeignPathAsyncCapable != NULL &&
+ fdwroutine->IsForeignPathAsyncCapable((ForeignPath *) path))
+ return true;
+ }
+ break;
+ default:
+ break;
+ }
+ return false;
+}
+
+/*
+ * create_append_plan
+ * Create an Append plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ *
+ * Returns a Plan node.
+ */
+static Plan *
+create_append_plan(PlannerInfo *root, AppendPath *best_path, int flags)
+{
+ Append *plan;
+ List *tlist = build_path_tlist(root, &best_path->path);
+ int orig_tlist_length = list_length(tlist);
+ bool tlist_was_changed = false;
+ List *pathkeys = best_path->path.pathkeys;
+ List *subplans = NIL;
+ ListCell *subpaths;
+ int nasyncplans = 0;
+ RelOptInfo *rel = best_path->path.parent;
+ PartitionPruneInfo *partpruneinfo = NULL;
+ int nodenumsortkeys = 0;
+ AttrNumber *nodeSortColIdx = NULL;
+ Oid *nodeSortOperators = NULL;
+ Oid *nodeCollations = NULL;
+ bool *nodeNullsFirst = NULL;
+ bool consider_async = false;
+
+ /*
+ * The subpaths list could be empty, if every child was proven empty by
+ * constraint exclusion. In that case generate a dummy plan that returns
+ * no rows.
+ *
+ * Note that an AppendPath with no members is also generated in certain
+ * cases where there was no appending construct at all, but we know the
+ * relation is empty (see set_dummy_rel_pathlist and mark_dummy_rel).
+ */
+ if (best_path->subpaths == NIL)
+ {
+ /* Generate a Result plan with constant-FALSE gating qual */
+ Plan *plan;
+
+ plan = (Plan *) make_result(tlist,
+ (Node *) list_make1(makeBoolConst(false,
+ false)),
+ NULL);
+
+ copy_generic_path_info(plan, (Path *) best_path);
+
+ return plan;
+ }
+
+ /*
+ * Otherwise build an Append plan. Note that if there's just one child,
+ * the Append is pretty useless; but we wait till setrefs.c to get rid of
+ * it. Doing so here doesn't work because the varno of the child scan
+ * plan won't match the parent-rel Vars it'll be asked to emit.
+ *
+ * We don't have the actual creation of the Append node split out into a
+ * separate make_xxx function. This is because we want to run
+ * prepare_sort_from_pathkeys on it before we do so on the individual
+ * child plans, to make cross-checking the sort info easier.
+ */
+ plan = makeNode(Append);
+ plan->plan.targetlist = tlist;
+ plan->plan.qual = NIL;
+ plan->plan.lefttree = NULL;
+ plan->plan.righttree = NULL;
+ plan->apprelids = rel->relids;
+
+ if (pathkeys != NIL)
+ {
+ /*
+ * Compute sort column info, and adjust the Append's tlist as needed.
+ * Because we pass adjust_tlist_in_place = true, we may ignore the
+ * function result; it must be the same plan node. However, we then
+ * need to detect whether any tlist entries were added.
+ */
+ (void) prepare_sort_from_pathkeys((Plan *) plan, pathkeys,
+ best_path->path.parent->relids,
+ NULL,
+ true,
+ &nodenumsortkeys,
+ &nodeSortColIdx,
+ &nodeSortOperators,
+ &nodeCollations,
+ &nodeNullsFirst);
+ tlist_was_changed = (orig_tlist_length != list_length(plan->plan.targetlist));
+ }
+
+ /* If appropriate, consider async append */
+ consider_async = (enable_async_append && pathkeys == NIL &&
+ !best_path->path.parallel_safe &&
+ list_length(best_path->subpaths) > 1);
+
+ /* Build the plan for each child */
+ foreach(subpaths, best_path->subpaths)
+ {
+ Path *subpath = (Path *) lfirst(subpaths);
+ Plan *subplan;
+
+ /* Must insist that all children return the same tlist */
+ subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
+
+ /*
+ * For ordered Appends, we must insert a Sort node if subplan isn't
+ * sufficiently ordered.
+ */
+ if (pathkeys != NIL)
+ {
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /*
+ * Compute sort column info, and adjust subplan's tlist as needed.
+ * We must apply prepare_sort_from_pathkeys even to subplans that
+ * don't need an explicit sort, to make sure they are returning
+ * the same sort key columns the Append expects.
+ */
+ subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
+ subpath->parent->relids,
+ nodeSortColIdx,
+ false,
+ &numsortkeys,
+ &sortColIdx,
+ &sortOperators,
+ &collations,
+ &nullsFirst);
+
+ /*
+ * Check that we got the same sort key information. We just
+ * Assert that the sortops match, since those depend only on the
+ * pathkeys; but it seems like a good idea to check the sort
+ * column numbers explicitly, to ensure the tlists match up.
+ */
+ Assert(numsortkeys == nodenumsortkeys);
+ if (memcmp(sortColIdx, nodeSortColIdx,
+ numsortkeys * sizeof(AttrNumber)) != 0)
+ elog(ERROR, "Append child's targetlist doesn't match Append");
+ Assert(memcmp(sortOperators, nodeSortOperators,
+ numsortkeys * sizeof(Oid)) == 0);
+ Assert(memcmp(collations, nodeCollations,
+ numsortkeys * sizeof(Oid)) == 0);
+ Assert(memcmp(nullsFirst, nodeNullsFirst,
+ numsortkeys * sizeof(bool)) == 0);
+
+ /* Now, insert a Sort node if subplan isn't sufficiently ordered */
+ if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
+ {
+ Sort *sort = make_sort(subplan, numsortkeys,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+
+ label_sort_with_costsize(root, sort, best_path->limit_tuples);
+ subplan = (Plan *) sort;
+ }
+ }
+
+ subplans = lappend(subplans, subplan);
+
+ /* If needed, check to see if subplan can be executed asynchronously */
+ if (consider_async && is_async_capable_plan(subplan, subpath))
+ {
+ subplan->async_capable = true;
+ ++nasyncplans;
+ }
+ }
+
+ /*
+ * If any quals exist, they may be useful to perform further partition
+ * pruning during execution. Gather information needed by the executor to
+ * do partition pruning.
+ */
+ if (enable_partition_pruning)
+ {
+ List *prunequal;
+
+ prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
+
+ if (best_path->path.param_info)
+ {
+ List *prmquals = best_path->path.param_info->ppi_clauses;
+
+ prmquals = extract_actual_clauses(prmquals, false);
+ prmquals = (List *) replace_nestloop_params(root,
+ (Node *) prmquals);
+
+ prunequal = list_concat(prunequal, prmquals);
+ }
+
+ if (prunequal != NIL)
+ partpruneinfo =
+ make_partition_pruneinfo(root, rel,
+ best_path->subpaths,
+ prunequal);
+ }
+
+ plan->appendplans = subplans;
+ plan->nasyncplans = nasyncplans;
+ plan->first_partial_plan = best_path->first_partial_path;
+ plan->part_prune_info = partpruneinfo;
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ /*
+ * If prepare_sort_from_pathkeys added sort columns, but we were told to
+ * produce either the exact tlist or a narrow tlist, we should get rid of
+ * the sort columns again. We must inject a projection node to do so.
+ */
+ if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
+ {
+ tlist = list_truncate(list_copy(plan->plan.targetlist),
+ orig_tlist_length);
+ return inject_projection_plan((Plan *) plan, tlist,
+ plan->plan.parallel_safe);
+ }
+ else
+ return (Plan *) plan;
+}
+
+/*
+ * create_merge_append_plan
+ * Create a MergeAppend plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ *
+ * Returns a Plan node.
+ */
+static Plan *
+create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
+ int flags)
+{
+ MergeAppend *node = makeNode(MergeAppend);
+ Plan *plan = &node->plan;
+ List *tlist = build_path_tlist(root, &best_path->path);
+ int orig_tlist_length = list_length(tlist);
+ bool tlist_was_changed;
+ List *pathkeys = best_path->path.pathkeys;
+ List *subplans = NIL;
+ ListCell *subpaths;
+ RelOptInfo *rel = best_path->path.parent;
+ PartitionPruneInfo *partpruneinfo = NULL;
+
+ /*
+ * We don't have the actual creation of the MergeAppend node split out
+ * into a separate make_xxx function. This is because we want to run
+ * prepare_sort_from_pathkeys on it before we do so on the individual
+ * child plans, to make cross-checking the sort info easier.
+ */
+ copy_generic_path_info(plan, (Path *) best_path);
+ plan->targetlist = tlist;
+ plan->qual = NIL;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->apprelids = rel->relids;
+
+ /*
+ * Compute sort column info, and adjust MergeAppend's tlist as needed.
+ * Because we pass adjust_tlist_in_place = true, we may ignore the
+ * function result; it must be the same plan node. However, we then need
+ * to detect whether any tlist entries were added.
+ */
+ (void) prepare_sort_from_pathkeys(plan, pathkeys,
+ best_path->path.parent->relids,
+ NULL,
+ true,
+ &node->numCols,
+ &node->sortColIdx,
+ &node->sortOperators,
+ &node->collations,
+ &node->nullsFirst);
+ tlist_was_changed = (orig_tlist_length != list_length(plan->targetlist));
+
+ /*
+ * Now prepare the child plans. We must apply prepare_sort_from_pathkeys
+ * even to subplans that don't need an explicit sort, to make sure they
+ * are returning the same sort key columns the MergeAppend expects.
+ */
+ foreach(subpaths, best_path->subpaths)
+ {
+ Path *subpath = (Path *) lfirst(subpaths);
+ Plan *subplan;
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /* Build the child plan */
+ /* Must insist that all children return the same tlist */
+ subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
+
+ /* Compute sort column info, and adjust subplan's tlist as needed */
+ subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
+ subpath->parent->relids,
+ node->sortColIdx,
+ false,
+ &numsortkeys,
+ &sortColIdx,
+ &sortOperators,
+ &collations,
+ &nullsFirst);
+
+ /*
+ * Check that we got the same sort key information. We just Assert
+ * that the sortops match, since those depend only on the pathkeys;
+ * but it seems like a good idea to check the sort column numbers
+ * explicitly, to ensure the tlists really do match up.
+ */
+ Assert(numsortkeys == node->numCols);
+ if (memcmp(sortColIdx, node->sortColIdx,
+ numsortkeys * sizeof(AttrNumber)) != 0)
+ elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend");
+ Assert(memcmp(sortOperators, node->sortOperators,
+ numsortkeys * sizeof(Oid)) == 0);
+ Assert(memcmp(collations, node->collations,
+ numsortkeys * sizeof(Oid)) == 0);
+ Assert(memcmp(nullsFirst, node->nullsFirst,
+ numsortkeys * sizeof(bool)) == 0);
+
+ /* Now, insert a Sort node if subplan isn't sufficiently ordered */
+ if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
+ {
+ Sort *sort = make_sort(subplan, numsortkeys,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+
+ label_sort_with_costsize(root, sort, best_path->limit_tuples);
+ subplan = (Plan *) sort;
+ }
+
+ subplans = lappend(subplans, subplan);
+ }
+
+ /*
+ * If any quals exist, they may be useful to perform further partition
+ * pruning during execution. Gather information needed by the executor to
+ * do partition pruning.
+ */
+ if (enable_partition_pruning)
+ {
+ List *prunequal;
+
+ prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
+
+ if (best_path->path.param_info)
+ {
+ List *prmquals = best_path->path.param_info->ppi_clauses;
+
+ prmquals = extract_actual_clauses(prmquals, false);
+ prmquals = (List *) replace_nestloop_params(root,
+ (Node *) prmquals);
+
+ prunequal = list_concat(prunequal, prmquals);
+ }
+
+ if (prunequal != NIL)
+ partpruneinfo = make_partition_pruneinfo(root, rel,
+ best_path->subpaths,
+ prunequal);
+ }
+
+ node->mergeplans = subplans;
+ node->part_prune_info = partpruneinfo;
+
+ /*
+ * If prepare_sort_from_pathkeys added sort columns, but we were told to
+ * produce either the exact tlist or a narrow tlist, we should get rid of
+ * the sort columns again. We must inject a projection node to do so.
+ */
+ if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
+ {
+ tlist = list_truncate(list_copy(plan->targetlist), orig_tlist_length);
+ return inject_projection_plan(plan, tlist, plan->parallel_safe);
+ }
+ else
+ return plan;
+}
+
+/*
+ * create_group_result_plan
+ * Create a Result plan for 'best_path'.
+ * This is only used for degenerate grouping cases.
+ *
+ * Returns a Plan node.
+ */
+static Result *
+create_group_result_plan(PlannerInfo *root, GroupResultPath *best_path)
+{
+ Result *plan;
+ List *tlist;
+ List *quals;
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ /* best_path->quals is just bare clauses */
+ quals = order_qual_clauses(root, best_path->quals);
+
+ plan = make_result(tlist, (Node *) quals, NULL);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_project_set_plan
+ * Create a ProjectSet plan for 'best_path'.
+ *
+ * Returns a Plan node.
+ */
+static ProjectSet *
+create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path)
+{
+ ProjectSet *plan;
+ Plan *subplan;
+ List *tlist;
+
+ /* Since we intend to project, we don't need to constrain child tlist */
+ subplan = create_plan_recurse(root, best_path->subpath, 0);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ plan = make_project_set(tlist, subplan);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_material_plan
+ * Create a Material plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ *
+ * Returns a Plan node.
+ */
+static Material *
+create_material_plan(PlannerInfo *root, MaterialPath *best_path, int flags)
+{
+ Material *plan;
+ Plan *subplan;
+
+ /*
+ * We don't want any excess columns in the materialized tuples, so request
+ * a smaller tlist. Otherwise, since Material doesn't project, tlist
+ * requirements pass through.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ flags | CP_SMALL_TLIST);
+
+ plan = make_material(subplan);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_memoize_plan
+ * Create a Memoize plan for 'best_path' and (recursively) plans for its
+ * subpaths.
+ *
+ * Returns a Plan node.
+ */
+static Memoize *
+create_memoize_plan(PlannerInfo *root, MemoizePath *best_path, int flags)
+{
+ Memoize *plan;
+ Bitmapset *keyparamids;
+ Plan *subplan;
+ Oid *operators;
+ Oid *collations;
+ List *param_exprs = NIL;
+ ListCell *lc;
+ ListCell *lc2;
+ int nkeys;
+ int i;
+
+ subplan = create_plan_recurse(root, best_path->subpath,
+ flags | CP_SMALL_TLIST);
+
+ param_exprs = (List *) replace_nestloop_params(root, (Node *)
+ best_path->param_exprs);
+
+ nkeys = list_length(param_exprs);
+ Assert(nkeys > 0);
+ operators = palloc(nkeys * sizeof(Oid));
+ collations = palloc(nkeys * sizeof(Oid));
+
+ i = 0;
+ forboth(lc, param_exprs, lc2, best_path->hash_operators)
+ {
+ Expr *param_expr = (Expr *) lfirst(lc);
+ Oid opno = lfirst_oid(lc2);
+
+ operators[i] = opno;
+ collations[i] = exprCollation((Node *) param_expr);
+ i++;
+ }
+
+ keyparamids = pull_paramids((Expr *) param_exprs);
+
+ plan = make_memoize(subplan, operators, collations, param_exprs,
+ best_path->singlerow, best_path->binary_mode,
+ best_path->est_entries, keyparamids);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_unique_plan
+ * Create a Unique plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ *
+ * Returns a Plan node.
+ */
+static Plan *
+create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags)
+{
+ Plan *plan;
+ Plan *subplan;
+ List *in_operators;
+ List *uniq_exprs;
+ List *newtlist;
+ int nextresno;
+ bool newitems;
+ int numGroupCols;
+ AttrNumber *groupColIdx;
+ Oid *groupCollations;
+ int groupColPos;
+ ListCell *l;
+
+ /* Unique doesn't project, so tlist requirements pass through */
+ subplan = create_plan_recurse(root, best_path->subpath, flags);
+
+ /* Done if we don't need to do any actual unique-ifying */
+ if (best_path->umethod == UNIQUE_PATH_NOOP)
+ return subplan;
+
+ /*
+ * As constructed, the subplan has a "flat" tlist containing just the Vars
+ * needed here and at upper levels. The values we are supposed to
+ * unique-ify may be expressions in these variables. We have to add any
+ * such expressions to the subplan's tlist.
+ *
+ * The subplan may have a "physical" tlist if it is a simple scan plan. If
+ * we're going to sort, this should be reduced to the regular tlist, so
+ * that we don't sort more data than we need to. For hashing, the tlist
+ * should be left as-is if we don't need to add any expressions; but if we
+ * do have to add expressions, then a projection step will be needed at
+ * runtime anyway, so we may as well remove unneeded items. Therefore
+ * newtlist starts from build_path_tlist() not just a copy of the
+ * subplan's tlist; and we don't install it into the subplan unless we are
+ * sorting or stuff has to be added.
+ */
+ in_operators = best_path->in_operators;
+ uniq_exprs = best_path->uniq_exprs;
+
+ /* initialize modified subplan tlist as just the "required" vars */
+ newtlist = build_path_tlist(root, &best_path->path);
+ nextresno = list_length(newtlist) + 1;
+ newitems = false;
+
+ foreach(l, uniq_exprs)
+ {
+ Expr *uniqexpr = lfirst(l);
+ TargetEntry *tle;
+
+ tle = tlist_member(uniqexpr, newtlist);
+ if (!tle)
+ {
+ tle = makeTargetEntry((Expr *) uniqexpr,
+ nextresno,
+ NULL,
+ false);
+ newtlist = lappend(newtlist, tle);
+ nextresno++;
+ newitems = true;
+ }
+ }
+
+ /* Use change_plan_targetlist in case we need to insert a Result node */
+ if (newitems || best_path->umethod == UNIQUE_PATH_SORT)
+ subplan = change_plan_targetlist(subplan, newtlist,
+ best_path->path.parallel_safe);
+
+ /*
+ * Build control information showing which subplan output columns are to
+ * be examined by the grouping step. Unfortunately we can't merge this
+ * with the previous loop, since we didn't then know which version of the
+ * subplan tlist we'd end up using.
+ */
+ newtlist = subplan->targetlist;
+ numGroupCols = list_length(uniq_exprs);
+ groupColIdx = (AttrNumber *) palloc(numGroupCols * sizeof(AttrNumber));
+ groupCollations = (Oid *) palloc(numGroupCols * sizeof(Oid));
+
+ groupColPos = 0;
+ foreach(l, uniq_exprs)
+ {
+ Expr *uniqexpr = lfirst(l);
+ TargetEntry *tle;
+
+ tle = tlist_member(uniqexpr, newtlist);
+ if (!tle) /* shouldn't happen */
+ elog(ERROR, "failed to find unique expression in subplan tlist");
+ groupColIdx[groupColPos] = tle->resno;
+ groupCollations[groupColPos] = exprCollation((Node *) tle->expr);
+ groupColPos++;
+ }
+
+ if (best_path->umethod == UNIQUE_PATH_HASH)
+ {
+ Oid *groupOperators;
+
+ /*
+ * Get the hashable equality operators for the Agg node to use.
+ * Normally these are the same as the IN clause operators, but if
+ * those are cross-type operators then the equality operators are the
+ * ones for the IN clause operators' RHS datatype.
+ */
+ groupOperators = (Oid *) palloc(numGroupCols * sizeof(Oid));
+ groupColPos = 0;
+ foreach(l, in_operators)
+ {
+ Oid in_oper = lfirst_oid(l);
+ Oid eq_oper;
+
+ if (!get_compatible_hash_operators(in_oper, NULL, &eq_oper))
+ elog(ERROR, "could not find compatible hash operator for operator %u",
+ in_oper);
+ groupOperators[groupColPos++] = eq_oper;
+ }
+
+ /*
+ * Since the Agg node is going to project anyway, we can give it the
+ * minimum output tlist, without any stuff we might have added to the
+ * subplan tlist.
+ */
+ plan = (Plan *) make_agg(build_path_tlist(root, &best_path->path),
+ NIL,
+ AGG_HASHED,
+ AGGSPLIT_SIMPLE,
+ numGroupCols,
+ groupColIdx,
+ groupOperators,
+ groupCollations,
+ NIL,
+ NIL,
+ best_path->path.rows,
+ 0,
+ subplan);
+ }
+ else
+ {
+ List *sortList = NIL;
+ Sort *sort;
+
+ /* Create an ORDER BY list to sort the input compatibly */
+ groupColPos = 0;
+ foreach(l, in_operators)
+ {
+ Oid in_oper = lfirst_oid(l);
+ Oid sortop;
+ Oid eqop;
+ TargetEntry *tle;
+ SortGroupClause *sortcl;
+
+ sortop = get_ordering_op_for_equality_op(in_oper, false);
+ if (!OidIsValid(sortop)) /* shouldn't happen */
+ elog(ERROR, "could not find ordering operator for equality operator %u",
+ in_oper);
+
+ /*
+ * The Unique node will need equality operators. Normally these
+ * are the same as the IN clause operators, but if those are
+ * cross-type operators then the equality operators are the ones
+ * for the IN clause operators' RHS datatype.
+ */
+ eqop = get_equality_op_for_ordering_op(sortop, NULL);
+ if (!OidIsValid(eqop)) /* shouldn't happen */
+ elog(ERROR, "could not find equality operator for ordering operator %u",
+ sortop);
+
+ tle = get_tle_by_resno(subplan->targetlist,
+ groupColIdx[groupColPos]);
+ Assert(tle != NULL);
+
+ sortcl = makeNode(SortGroupClause);
+ sortcl->tleSortGroupRef = assignSortGroupRef(tle,
+ subplan->targetlist);
+ sortcl->eqop = eqop;
+ sortcl->sortop = sortop;
+ sortcl->nulls_first = false;
+ sortcl->hashable = false; /* no need to make this accurate */
+ sortList = lappend(sortList, sortcl);
+ groupColPos++;
+ }
+ sort = make_sort_from_sortclauses(sortList, subplan);
+ label_sort_with_costsize(root, sort, -1.0);
+ plan = (Plan *) make_unique_from_sortclauses((Plan *) sort, sortList);
+ }
+
+ /* Copy cost data from Path to Plan */
+ copy_generic_path_info(plan, &best_path->path);
+
+ return plan;
+}
+
+/*
+ * create_gather_plan
+ *
+ * Create a Gather plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Gather *
+create_gather_plan(PlannerInfo *root, GatherPath *best_path)
+{
+ Gather *gather_plan;
+ Plan *subplan;
+ List *tlist;
+
+ /*
+ * Push projection down to the child node. That way, the projection work
+ * is parallelized, and there can be no system columns in the result (they
+ * can't travel through a tuple queue because it uses MinimalTuple
+ * representation).
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ gather_plan = make_gather(tlist,
+ NIL,
+ best_path->num_workers,
+ assign_special_exec_param(root),
+ best_path->single_copy,
+ subplan);
+
+ copy_generic_path_info(&gather_plan->plan, &best_path->path);
+
+ /* use parallel mode for parallel plans. */
+ root->glob->parallelModeNeeded = true;
+
+ return gather_plan;
+}
+
+/*
+ * create_gather_merge_plan
+ *
+ * Create a Gather Merge plan for 'best_path' and (recursively)
+ * plans for its subpaths.
+ */
+static GatherMerge *
+create_gather_merge_plan(PlannerInfo *root, GatherMergePath *best_path)
+{
+ GatherMerge *gm_plan;
+ Plan *subplan;
+ List *pathkeys = best_path->path.pathkeys;
+ List *tlist = build_path_tlist(root, &best_path->path);
+
+ /* As with Gather, project away columns in the workers. */
+ subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
+
+ /* Create a shell for a GatherMerge plan. */
+ gm_plan = makeNode(GatherMerge);
+ gm_plan->plan.targetlist = tlist;
+ gm_plan->num_workers = best_path->num_workers;
+ copy_generic_path_info(&gm_plan->plan, &best_path->path);
+
+ /* Assign the rescan Param. */
+ gm_plan->rescan_param = assign_special_exec_param(root);
+
+ /* Gather Merge is pointless with no pathkeys; use Gather instead. */
+ Assert(pathkeys != NIL);
+
+ /* Compute sort column info, and adjust subplan's tlist as needed */
+ subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
+ best_path->subpath->parent->relids,
+ gm_plan->sortColIdx,
+ false,
+ &gm_plan->numCols,
+ &gm_plan->sortColIdx,
+ &gm_plan->sortOperators,
+ &gm_plan->collations,
+ &gm_plan->nullsFirst);
+
+
+ /*
+ * All gather merge paths should have already guaranteed the necessary
+ * sort order either by adding an explicit sort node or by using presorted
+ * input. We can't simply add a sort here on additional pathkeys, because
+ * we can't guarantee the sort would be safe. For example, expressions may
+ * be volatile or otherwise parallel unsafe.
+ */
+ if (!pathkeys_contained_in(pathkeys, best_path->subpath->pathkeys))
+ elog(ERROR, "gather merge input not sufficiently sorted");
+
+ /* Now insert the subplan under GatherMerge. */
+ gm_plan->plan.lefttree = subplan;
+
+ /* use parallel mode for parallel plans. */
+ root->glob->parallelModeNeeded = true;
+
+ return gm_plan;
+}
+
+/*
+ * create_projection_plan
+ *
+ * Create a plan tree to do a projection step and (recursively) plans
+ * for its subpaths. We may need a Result node for the projection,
+ * but sometimes we can just let the subplan do the work.
+ */
+static Plan *
+create_projection_plan(PlannerInfo *root, ProjectionPath *best_path, int flags)
+{
+ Plan *plan;
+ Plan *subplan;
+ List *tlist;
+ bool needs_result_node = false;
+
+ /*
+ * Convert our subpath to a Plan and determine whether we need a Result
+ * node.
+ *
+ * In most cases where we don't need to project, creation_projection_path
+ * will have set dummypp, but not always. First, some createplan.c
+ * routines change the tlists of their nodes. (An example is that
+ * create_merge_append_plan might add resjunk sort columns to a
+ * MergeAppend.) Second, create_projection_path has no way of knowing
+ * what path node will be placed on top of the projection path and
+ * therefore can't predict whether it will require an exact tlist. For
+ * both of these reasons, we have to recheck here.
+ */
+ if (use_physical_tlist(root, &best_path->path, flags))
+ {
+ /*
+ * Our caller doesn't really care what tlist we return, so we don't
+ * actually need to project. However, we may still need to ensure
+ * proper sortgroupref labels, if the caller cares about those.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, 0);
+ tlist = subplan->targetlist;
+ if (flags & CP_LABEL_TLIST)
+ apply_pathtarget_labeling_to_tlist(tlist,
+ best_path->path.pathtarget);
+ }
+ else if (is_projection_capable_path(best_path->subpath))
+ {
+ /*
+ * Our caller requires that we return the exact tlist, but no separate
+ * result node is needed because the subpath is projection-capable.
+ * Tell create_plan_recurse that we're going to ignore the tlist it
+ * produces.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ CP_IGNORE_TLIST);
+ Assert(is_projection_capable_plan(subplan));
+ tlist = build_path_tlist(root, &best_path->path);
+ }
+ else
+ {
+ /*
+ * It looks like we need a result node, unless by good fortune the
+ * requested tlist is exactly the one the child wants to produce.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, 0);
+ tlist = build_path_tlist(root, &best_path->path);
+ needs_result_node = !tlist_same_exprs(tlist, subplan->targetlist);
+ }
+
+ /*
+ * If we make a different decision about whether to include a Result node
+ * than create_projection_path did, we'll have made slightly wrong cost
+ * estimates; but label the plan with the cost estimates we actually used,
+ * not "corrected" ones. (XXX this could be cleaned up if we moved more
+ * of the sortcolumn setup logic into Path creation, but that would add
+ * expense to creating Paths we might end up not using.)
+ */
+ if (!needs_result_node)
+ {
+ /* Don't need a separate Result, just assign tlist to subplan */
+ plan = subplan;
+ plan->targetlist = tlist;
+
+ /* Label plan with the estimated costs we actually used */
+ plan->startup_cost = best_path->path.startup_cost;
+ plan->total_cost = best_path->path.total_cost;
+ plan->plan_rows = best_path->path.rows;
+ plan->plan_width = best_path->path.pathtarget->width;
+ plan->parallel_safe = best_path->path.parallel_safe;
+ /* ... but don't change subplan's parallel_aware flag */
+ }
+ else
+ {
+ /* We need a Result node */
+ plan = (Plan *) make_result(tlist, NULL, subplan);
+
+ copy_generic_path_info(plan, (Path *) best_path);
+ }
+
+ return plan;
+}
+
+/*
+ * inject_projection_plan
+ * Insert a Result node to do a projection step.
+ *
+ * This is used in a few places where we decide on-the-fly that we need a
+ * projection step as part of the tree generated for some Path node.
+ * We should try to get rid of this in favor of doing it more honestly.
+ *
+ * One reason it's ugly is we have to be told the right parallel_safe marking
+ * to apply (since the tlist might be unsafe even if the child plan is safe).
+ */
+static Plan *
+inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
+{
+ Plan *plan;
+
+ plan = (Plan *) make_result(tlist, NULL, subplan);
+
+ /*
+ * In principle, we should charge tlist eval cost plus cpu_per_tuple per
+ * row for the Result node. But the former has probably been factored in
+ * already and the latter was not accounted for during Path construction,
+ * so being formally correct might just make the EXPLAIN output look less
+ * consistent not more so. Hence, just copy the subplan's cost.
+ */
+ copy_plan_costsize(plan, subplan);
+ plan->parallel_safe = parallel_safe;
+
+ return plan;
+}
+
+/*
+ * change_plan_targetlist
+ * Externally available wrapper for inject_projection_plan.
+ *
+ * This is meant for use by FDW plan-generation functions, which might
+ * want to adjust the tlist computed by some subplan tree. In general,
+ * a Result node is needed to compute the new tlist, but we can optimize
+ * some cases.
+ *
+ * In most cases, tlist_parallel_safe can just be passed as the parallel_safe
+ * flag of the FDW's own Path node.
+ */
+Plan *
+change_plan_targetlist(Plan *subplan, List *tlist, bool tlist_parallel_safe)
+{
+ /*
+ * If the top plan node can't do projections and its existing target list
+ * isn't already what we need, we need to add a Result node to help it
+ * along.
+ */
+ if (!is_projection_capable_plan(subplan) &&
+ !tlist_same_exprs(tlist, subplan->targetlist))
+ subplan = inject_projection_plan(subplan, tlist,
+ subplan->parallel_safe &&
+ tlist_parallel_safe);
+ else
+ {
+ /* Else we can just replace the plan node's tlist */
+ subplan->targetlist = tlist;
+ subplan->parallel_safe &= tlist_parallel_safe;
+ }
+ return subplan;
+}
+
+/*
+ * create_sort_plan
+ *
+ * Create a Sort plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Sort *
+create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags)
+{
+ Sort *plan;
+ Plan *subplan;
+
+ /*
+ * We don't want any excess columns in the sorted tuples, so request a
+ * smaller tlist. Otherwise, since Sort doesn't project, tlist
+ * requirements pass through.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ flags | CP_SMALL_TLIST);
+
+ /*
+ * make_sort_from_pathkeys indirectly calls find_ec_member_matching_expr,
+ * which will ignore any child EC members that don't belong to the given
+ * relids. Thus, if this sort path is based on a child relation, we must
+ * pass its relids.
+ */
+ plan = make_sort_from_pathkeys(subplan, best_path->path.pathkeys,
+ IS_OTHER_REL(best_path->subpath->parent) ?
+ best_path->path.parent->relids : NULL);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_incrementalsort_plan
+ *
+ * Do the same as create_sort_plan, but create IncrementalSort plan.
+ */
+static IncrementalSort *
+create_incrementalsort_plan(PlannerInfo *root, IncrementalSortPath *best_path,
+ int flags)
+{
+ IncrementalSort *plan;
+ Plan *subplan;
+
+ /* See comments in create_sort_plan() above */
+ subplan = create_plan_recurse(root, best_path->spath.subpath,
+ flags | CP_SMALL_TLIST);
+ plan = make_incrementalsort_from_pathkeys(subplan,
+ best_path->spath.path.pathkeys,
+ IS_OTHER_REL(best_path->spath.subpath->parent) ?
+ best_path->spath.path.parent->relids : NULL,
+ best_path->nPresortedCols);
+
+ copy_generic_path_info(&plan->sort.plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_group_plan
+ *
+ * Create a Group plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Group *
+create_group_plan(PlannerInfo *root, GroupPath *best_path)
+{
+ Group *plan;
+ Plan *subplan;
+ List *tlist;
+ List *quals;
+
+ /*
+ * Group can project, so no need to be terribly picky about child tlist,
+ * but we do need grouping columns to be available
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ quals = order_qual_clauses(root, best_path->qual);
+
+ plan = make_group(tlist,
+ quals,
+ list_length(best_path->groupClause),
+ extract_grouping_cols(best_path->groupClause,
+ subplan->targetlist),
+ extract_grouping_ops(best_path->groupClause),
+ extract_grouping_collations(best_path->groupClause,
+ subplan->targetlist),
+ subplan);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_upper_unique_plan
+ *
+ * Create a Unique plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Unique *
+create_upper_unique_plan(PlannerInfo *root, UpperUniquePath *best_path, int flags)
+{
+ Unique *plan;
+ Plan *subplan;
+
+ /*
+ * Unique doesn't project, so tlist requirements pass through; moreover we
+ * need grouping columns to be labeled.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ flags | CP_LABEL_TLIST);
+
+ plan = make_unique_from_pathkeys(subplan,
+ best_path->path.pathkeys,
+ best_path->numkeys);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_agg_plan
+ *
+ * Create an Agg plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Agg *
+create_agg_plan(PlannerInfo *root, AggPath *best_path)
+{
+ Agg *plan;
+ Plan *subplan;
+ List *tlist;
+ List *quals;
+
+ /*
+ * Agg can project, so no need to be terribly picky about child tlist, but
+ * we do need grouping columns to be available
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ quals = order_qual_clauses(root, best_path->qual);
+
+ plan = make_agg(tlist, quals,
+ best_path->aggstrategy,
+ best_path->aggsplit,
+ list_length(best_path->groupClause),
+ extract_grouping_cols(best_path->groupClause,
+ subplan->targetlist),
+ extract_grouping_ops(best_path->groupClause),
+ extract_grouping_collations(best_path->groupClause,
+ subplan->targetlist),
+ NIL,
+ NIL,
+ best_path->numGroups,
+ best_path->transitionSpace,
+ subplan);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * Given a groupclause for a collection of grouping sets, produce the
+ * corresponding groupColIdx.
+ *
+ * root->grouping_map maps the tleSortGroupRef to the actual column position in
+ * the input tuple. So we get the ref from the entries in the groupclause and
+ * look them up there.
+ */
+static AttrNumber *
+remap_groupColIdx(PlannerInfo *root, List *groupClause)
+{
+ AttrNumber *grouping_map = root->grouping_map;
+ AttrNumber *new_grpColIdx;
+ ListCell *lc;
+ int i;
+
+ Assert(grouping_map);
+
+ new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));
+
+ i = 0;
+ foreach(lc, groupClause)
+ {
+ SortGroupClause *clause = lfirst(lc);
+
+ new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
+ }
+
+ return new_grpColIdx;
+}
+
+/*
+ * create_groupingsets_plan
+ * Create a plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ *
+ * What we emit is an Agg plan with some vestigial Agg and Sort nodes
+ * hanging off the side. The top Agg implements the last grouping set
+ * specified in the GroupingSetsPath, and any additional grouping sets
+ * each give rise to a subsidiary Agg and Sort node in the top Agg's
+ * "chain" list. These nodes don't participate in the plan directly,
+ * but they are a convenient way to represent the required data for
+ * the extra steps.
+ *
+ * Returns a Plan node.
+ */
+static Plan *
+create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path)
+{
+ Agg *plan;
+ Plan *subplan;
+ List *rollups = best_path->rollups;
+ AttrNumber *grouping_map;
+ int maxref;
+ List *chain;
+ ListCell *lc;
+
+ /* Shouldn't get here without grouping sets */
+ Assert(root->parse->groupingSets);
+ Assert(rollups != NIL);
+
+ /*
+ * Agg can project, so no need to be terribly picky about child tlist, but
+ * we do need grouping columns to be available
+ */
+ subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
+
+ /*
+ * Compute the mapping from tleSortGroupRef to column index in the child's
+ * tlist. First, identify max SortGroupRef in groupClause, for array
+ * sizing.
+ */
+ maxref = 0;
+ foreach(lc, root->parse->groupClause)
+ {
+ SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
+
+ if (gc->tleSortGroupRef > maxref)
+ maxref = gc->tleSortGroupRef;
+ }
+
+ grouping_map = (AttrNumber *) palloc0((maxref + 1) * sizeof(AttrNumber));
+
+ /* Now look up the column numbers in the child's tlist */
+ foreach(lc, root->parse->groupClause)
+ {
+ SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
+ TargetEntry *tle = get_sortgroupclause_tle(gc, subplan->targetlist);
+
+ grouping_map[gc->tleSortGroupRef] = tle->resno;
+ }
+
+ /*
+ * During setrefs.c, we'll need the grouping_map to fix up the cols lists
+ * in GroupingFunc nodes. Save it for setrefs.c to use.
+ */
+ Assert(root->grouping_map == NULL);
+ root->grouping_map = grouping_map;
+
+ /*
+ * Generate the side nodes that describe the other sort and group
+ * operations besides the top one. Note that we don't worry about putting
+ * accurate cost estimates in the side nodes; only the topmost Agg node's
+ * costs will be shown by EXPLAIN.
+ */
+ chain = NIL;
+ if (list_length(rollups) > 1)
+ {
+ bool is_first_sort = ((RollupData *) linitial(rollups))->is_hashed;
+
+ for_each_from(lc, rollups, 1)
+ {
+ RollupData *rollup = lfirst(lc);
+ AttrNumber *new_grpColIdx;
+ Plan *sort_plan = NULL;
+ Plan *agg_plan;
+ AggStrategy strat;
+
+ new_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
+
+ if (!rollup->is_hashed && !is_first_sort)
+ {
+ sort_plan = (Plan *)
+ make_sort_from_groupcols(rollup->groupClause,
+ new_grpColIdx,
+ subplan);
+ }
+
+ if (!rollup->is_hashed)
+ is_first_sort = false;
+
+ if (rollup->is_hashed)
+ strat = AGG_HASHED;
+ else if (list_length(linitial(rollup->gsets)) == 0)
+ strat = AGG_PLAIN;
+ else
+ strat = AGG_SORTED;
+
+ agg_plan = (Plan *) make_agg(NIL,
+ NIL,
+ strat,
+ AGGSPLIT_SIMPLE,
+ list_length((List *) linitial(rollup->gsets)),
+ new_grpColIdx,
+ extract_grouping_ops(rollup->groupClause),
+ extract_grouping_collations(rollup->groupClause, subplan->targetlist),
+ rollup->gsets,
+ NIL,
+ rollup->numGroups,
+ best_path->transitionSpace,
+ sort_plan);
+
+ /*
+ * Remove stuff we don't need to avoid bloating debug output.
+ */
+ if (sort_plan)
+ {
+ sort_plan->targetlist = NIL;
+ sort_plan->lefttree = NULL;
+ }
+
+ chain = lappend(chain, agg_plan);
+ }
+ }
+
+ /*
+ * Now make the real Agg node
+ */
+ {
+ RollupData *rollup = linitial(rollups);
+ AttrNumber *top_grpColIdx;
+ int numGroupCols;
+
+ top_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
+
+ numGroupCols = list_length((List *) linitial(rollup->gsets));
+
+ plan = make_agg(build_path_tlist(root, &best_path->path),
+ best_path->qual,
+ best_path->aggstrategy,
+ AGGSPLIT_SIMPLE,
+ numGroupCols,
+ top_grpColIdx,
+ extract_grouping_ops(rollup->groupClause),
+ extract_grouping_collations(rollup->groupClause, subplan->targetlist),
+ rollup->gsets,
+ chain,
+ rollup->numGroups,
+ best_path->transitionSpace,
+ subplan);
+
+ /* Copy cost data from Path to Plan */
+ copy_generic_path_info(&plan->plan, &best_path->path);
+ }
+
+ return (Plan *) plan;
+}
+
+/*
+ * create_minmaxagg_plan
+ *
+ * Create a Result plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Result *
+create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path)
+{
+ Result *plan;
+ List *tlist;
+ ListCell *lc;
+
+ /* Prepare an InitPlan for each aggregate's subquery. */
+ foreach(lc, best_path->mmaggregates)
+ {
+ MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
+ PlannerInfo *subroot = mminfo->subroot;
+ Query *subparse = subroot->parse;
+ Plan *plan;
+
+ /*
+ * Generate the plan for the subquery. We already have a Path, but we
+ * have to convert it to a Plan and attach a LIMIT node above it.
+ * Since we are entering a different planner context (subroot),
+ * recurse to create_plan not create_plan_recurse.
+ */
+ plan = create_plan(subroot, mminfo->path);
+
+ plan = (Plan *) make_limit(plan,
+ subparse->limitOffset,
+ subparse->limitCount,
+ subparse->limitOption,
+ 0, NULL, NULL, NULL);
+
+ /* Must apply correct cost/width data to Limit node */
+ plan->startup_cost = mminfo->path->startup_cost;
+ plan->total_cost = mminfo->pathcost;
+ plan->plan_rows = 1;
+ plan->plan_width = mminfo->path->pathtarget->width;
+ plan->parallel_aware = false;
+ plan->parallel_safe = mminfo->path->parallel_safe;
+
+ /* Convert the plan into an InitPlan in the outer query. */
+ SS_make_initplan_from_plan(root, subroot, plan, mminfo->param);
+ }
+
+ /* Generate the output plan --- basically just a Result */
+ tlist = build_path_tlist(root, &best_path->path);
+
+ plan = make_result(tlist, (Node *) best_path->quals, NULL);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ /*
+ * During setrefs.c, we'll need to replace references to the Agg nodes
+ * with InitPlan output params. (We can't just do that locally in the
+ * MinMaxAgg node, because path nodes above here may have Agg references
+ * as well.) Save the mmaggregates list to tell setrefs.c to do that.
+ */
+ Assert(root->minmax_aggs == NIL);
+ root->minmax_aggs = best_path->mmaggregates;
+
+ return plan;
+}
+
+/*
+ * create_windowagg_plan
+ *
+ * Create a WindowAgg plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static WindowAgg *
+create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path)
+{
+ WindowAgg *plan;
+ WindowClause *wc = best_path->winclause;
+ int numPart = list_length(wc->partitionClause);
+ int numOrder = list_length(wc->orderClause);
+ Plan *subplan;
+ List *tlist;
+ int partNumCols;
+ AttrNumber *partColIdx;
+ Oid *partOperators;
+ Oid *partCollations;
+ int ordNumCols;
+ AttrNumber *ordColIdx;
+ Oid *ordOperators;
+ Oid *ordCollations;
+ ListCell *lc;
+
+ /*
+ * Choice of tlist here is motivated by the fact that WindowAgg will be
+ * storing the input rows of window frames in a tuplestore; it therefore
+ * behooves us to request a small tlist to avoid wasting space. We do of
+ * course need grouping columns to be available.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ CP_LABEL_TLIST | CP_SMALL_TLIST);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ /*
+ * Convert SortGroupClause lists into arrays of attr indexes and equality
+ * operators, as wanted by executor. (Note: in principle, it's possible
+ * to drop some of the sort columns, if they were proved redundant by
+ * pathkey logic. However, it doesn't seem worth going out of our way to
+ * optimize such cases. In any case, we must *not* remove the ordering
+ * column for RANGE OFFSET cases, as the executor needs that for in_range
+ * tests even if it's known to be equal to some partitioning column.)
+ */
+ partColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numPart);
+ partOperators = (Oid *) palloc(sizeof(Oid) * numPart);
+ partCollations = (Oid *) palloc(sizeof(Oid) * numPart);
+
+ partNumCols = 0;
+ foreach(lc, wc->partitionClause)
+ {
+ SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
+ TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
+
+ Assert(OidIsValid(sgc->eqop));
+ partColIdx[partNumCols] = tle->resno;
+ partOperators[partNumCols] = sgc->eqop;
+ partCollations[partNumCols] = exprCollation((Node *) tle->expr);
+ partNumCols++;
+ }
+
+ ordColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numOrder);
+ ordOperators = (Oid *) palloc(sizeof(Oid) * numOrder);
+ ordCollations = (Oid *) palloc(sizeof(Oid) * numOrder);
+
+ ordNumCols = 0;
+ foreach(lc, wc->orderClause)
+ {
+ SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
+ TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
+
+ Assert(OidIsValid(sgc->eqop));
+ ordColIdx[ordNumCols] = tle->resno;
+ ordOperators[ordNumCols] = sgc->eqop;
+ ordCollations[ordNumCols] = exprCollation((Node *) tle->expr);
+ ordNumCols++;
+ }
+
+ /* And finally we can make the WindowAgg node */
+ plan = make_windowagg(tlist,
+ wc->winref,
+ partNumCols,
+ partColIdx,
+ partOperators,
+ partCollations,
+ ordNumCols,
+ ordColIdx,
+ ordOperators,
+ ordCollations,
+ wc->frameOptions,
+ wc->startOffset,
+ wc->endOffset,
+ wc->startInRangeFunc,
+ wc->endInRangeFunc,
+ wc->inRangeColl,
+ wc->inRangeAsc,
+ wc->inRangeNullsFirst,
+ subplan);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_setop_plan
+ *
+ * Create a SetOp plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static SetOp *
+create_setop_plan(PlannerInfo *root, SetOpPath *best_path, int flags)
+{
+ SetOp *plan;
+ Plan *subplan;
+ long numGroups;
+
+ /*
+ * SetOp doesn't project, so tlist requirements pass through; moreover we
+ * need grouping columns to be labeled.
+ */
+ subplan = create_plan_recurse(root, best_path->subpath,
+ flags | CP_LABEL_TLIST);
+
+ /* Convert numGroups to long int --- but 'ware overflow! */
+ numGroups = (long) Min(best_path->numGroups, (double) LONG_MAX);
+
+ plan = make_setop(best_path->cmd,
+ best_path->strategy,
+ subplan,
+ best_path->distinctList,
+ best_path->flagColIdx,
+ best_path->firstFlag,
+ numGroups);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_recursiveunion_plan
+ *
+ * Create a RecursiveUnion plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static RecursiveUnion *
+create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path)
+{
+ RecursiveUnion *plan;
+ Plan *leftplan;
+ Plan *rightplan;
+ List *tlist;
+ long numGroups;
+
+ /* Need both children to produce same tlist, so force it */
+ leftplan = create_plan_recurse(root, best_path->leftpath, CP_EXACT_TLIST);
+ rightplan = create_plan_recurse(root, best_path->rightpath, CP_EXACT_TLIST);
+
+ tlist = build_path_tlist(root, &best_path->path);
+
+ /* Convert numGroups to long int --- but 'ware overflow! */
+ numGroups = (long) Min(best_path->numGroups, (double) LONG_MAX);
+
+ plan = make_recursive_union(tlist,
+ leftplan,
+ rightplan,
+ best_path->wtParam,
+ best_path->distinctList,
+ numGroups);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_lockrows_plan
+ *
+ * Create a LockRows plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static LockRows *
+create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
+ int flags)
+{
+ LockRows *plan;
+ Plan *subplan;
+
+ /* LockRows doesn't project, so tlist requirements pass through */
+ subplan = create_plan_recurse(root, best_path->subpath, flags);
+
+ plan = make_lockrows(subplan, best_path->rowMarks, best_path->epqParam);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+/*
+ * create_modifytable_plan
+ * Create a ModifyTable plan for 'best_path'.
+ *
+ * Returns a Plan node.
+ */
+static ModifyTable *
+create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path)
+{
+ ModifyTable *plan;
+ Path *subpath = best_path->subpath;
+ Plan *subplan;
+
+ /* Subplan must produce exactly the specified tlist */
+ subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
+
+ /* Transfer resname/resjunk labeling, too, to keep executor happy */
+ apply_tlist_labeling(subplan->targetlist, root->processed_tlist);
+
+ plan = make_modifytable(root,
+ subplan,
+ best_path->operation,
+ best_path->canSetTag,
+ best_path->nominalRelation,
+ best_path->rootRelation,
+ best_path->partColsUpdated,
+ best_path->resultRelations,
+ best_path->updateColnosLists,
+ best_path->withCheckOptionLists,
+ best_path->returningLists,
+ best_path->rowMarks,
+ best_path->onconflict,
+ best_path->epqParam);
+
+ copy_generic_path_info(&plan->plan, &best_path->path);
+
+ return plan;
+}
+
+/*
+ * create_limit_plan
+ *
+ * Create a Limit plan for 'best_path' and (recursively) plans
+ * for its subpaths.
+ */
+static Limit *
+create_limit_plan(PlannerInfo *root, LimitPath *best_path, int flags)
+{
+ Limit *plan;
+ Plan *subplan;
+ int numUniqkeys = 0;
+ AttrNumber *uniqColIdx = NULL;
+ Oid *uniqOperators = NULL;
+ Oid *uniqCollations = NULL;
+
+ /* Limit doesn't project, so tlist requirements pass through */
+ subplan = create_plan_recurse(root, best_path->subpath, flags);
+
+ /* Extract information necessary for comparing rows for WITH TIES. */
+ if (best_path->limitOption == LIMIT_OPTION_WITH_TIES)
+ {
+ Query *parse = root->parse;
+ ListCell *l;
+
+ numUniqkeys = list_length(parse->sortClause);
+ uniqColIdx = (AttrNumber *) palloc(numUniqkeys * sizeof(AttrNumber));
+ uniqOperators = (Oid *) palloc(numUniqkeys * sizeof(Oid));
+ uniqCollations = (Oid *) palloc(numUniqkeys * sizeof(Oid));
+
+ numUniqkeys = 0;
+ foreach(l, parse->sortClause)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
+ TargetEntry *tle = get_sortgroupclause_tle(sortcl, parse->targetList);
+
+ uniqColIdx[numUniqkeys] = tle->resno;
+ uniqOperators[numUniqkeys] = sortcl->eqop;
+ uniqCollations[numUniqkeys] = exprCollation((Node *) tle->expr);
+ numUniqkeys++;
+ }
+ }
+
+ plan = make_limit(subplan,
+ best_path->limitOffset,
+ best_path->limitCount,
+ best_path->limitOption,
+ numUniqkeys, uniqColIdx, uniqOperators, uniqCollations);
+
+ copy_generic_path_info(&plan->plan, (Path *) best_path);
+
+ return plan;
+}
+
+
+/*****************************************************************************
+ *
+ * BASE-RELATION SCAN METHODS
+ *
+ *****************************************************************************/
+
+
+/*
+ * create_seqscan_plan
+ * Returns a seqscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static SeqScan *
+create_seqscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ SeqScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+
+ /* it should be a base rel... */
+ Assert(scan_relid > 0);
+ Assert(best_path->parent->rtekind == RTE_RELATION);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_seqscan(tlist,
+ scan_clauses,
+ scan_relid);
+
+ copy_generic_path_info(&scan_plan->plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_samplescan_plan
+ * Returns a samplescan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static SampleScan *
+create_samplescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ SampleScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ TableSampleClause *tsc;
+
+ /* it should be a base rel with a tablesample clause... */
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_RELATION);
+ tsc = rte->tablesample;
+ Assert(tsc != NULL);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ tsc = (TableSampleClause *)
+ replace_nestloop_params(root, (Node *) tsc);
+ }
+
+ scan_plan = make_samplescan(tlist,
+ scan_clauses,
+ scan_relid,
+ tsc);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_indexscan_plan
+ * Returns an indexscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ *
+ * We use this for both plain IndexScans and IndexOnlyScans, because the
+ * qual preprocessing work is the same for both. Note that the caller tells
+ * us which to build --- we don't look at best_path->path.pathtype, because
+ * create_bitmap_subplan needs to be able to override the prior decision.
+ */
+static Scan *
+create_indexscan_plan(PlannerInfo *root,
+ IndexPath *best_path,
+ List *tlist,
+ List *scan_clauses,
+ bool indexonly)
+{
+ Scan *scan_plan;
+ List *indexclauses = best_path->indexclauses;
+ List *indexorderbys = best_path->indexorderbys;
+ Index baserelid = best_path->path.parent->relid;
+ IndexOptInfo *indexinfo = best_path->indexinfo;
+ Oid indexoid = indexinfo->indexoid;
+ List *qpqual;
+ List *stripped_indexquals;
+ List *fixed_indexquals;
+ List *fixed_indexorderbys;
+ List *indexorderbyops = NIL;
+ ListCell *l;
+
+ /* it should be a base rel... */
+ Assert(baserelid > 0);
+ Assert(best_path->path.parent->rtekind == RTE_RELATION);
+
+ /*
+ * Extract the index qual expressions (stripped of RestrictInfos) from the
+ * IndexClauses list, and prepare a copy with index Vars substituted for
+ * table Vars. (This step also does replace_nestloop_params on the
+ * fixed_indexquals.)
+ */
+ fix_indexqual_references(root, best_path,
+ &stripped_indexquals,
+ &fixed_indexquals);
+
+ /*
+ * Likewise fix up index attr references in the ORDER BY expressions.
+ */
+ fixed_indexorderbys = fix_indexorderby_references(root, best_path);
+
+ /*
+ * The qpqual list must contain all restrictions not automatically handled
+ * by the index, other than pseudoconstant clauses which will be handled
+ * by a separate gating plan node. All the predicates in the indexquals
+ * will be checked (either by the index itself, or by nodeIndexscan.c),
+ * but if there are any "special" operators involved then they must be
+ * included in qpqual. The upshot is that qpqual must contain
+ * scan_clauses minus whatever appears in indexquals.
+ *
+ * is_redundant_with_indexclauses() detects cases where a scan clause is
+ * present in the indexclauses list or is generated from the same
+ * EquivalenceClass as some indexclause, and is therefore redundant with
+ * it, though not equal. (The latter happens when indxpath.c prefers a
+ * different derived equality than what generate_join_implied_equalities
+ * picked for a parameterized scan's ppi_clauses.) Note that it will not
+ * match to lossy index clauses, which is critical because we have to
+ * include the original clause in qpqual in that case.
+ *
+ * In some situations (particularly with OR'd index conditions) we may
+ * have scan_clauses that are not equal to, but are logically implied by,
+ * the index quals; so we also try a predicate_implied_by() check to see
+ * if we can discard quals that way. (predicate_implied_by assumes its
+ * first input contains only immutable functions, so we have to check
+ * that.)
+ *
+ * Note: if you change this bit of code you should also look at
+ * extract_nonindex_conditions() in costsize.c.
+ */
+ qpqual = NIL;
+ foreach(l, scan_clauses)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
+
+ if (rinfo->pseudoconstant)
+ continue; /* we may drop pseudoconstants here */
+ if (is_redundant_with_indexclauses(rinfo, indexclauses))
+ continue; /* dup or derived from same EquivalenceClass */
+ if (!contain_mutable_functions((Node *) rinfo->clause) &&
+ predicate_implied_by(list_make1(rinfo->clause), stripped_indexquals,
+ false))
+ continue; /* provably implied by indexquals */
+ qpqual = lappend(qpqual, rinfo);
+ }
+
+ /* Sort clauses into best execution order */
+ qpqual = order_qual_clauses(root, qpqual);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ qpqual = extract_actual_clauses(qpqual, false);
+
+ /*
+ * We have to replace any outer-relation variables with nestloop params in
+ * the indexqualorig, qpqual, and indexorderbyorig expressions. A bit
+ * annoying to have to do this separately from the processing in
+ * fix_indexqual_references --- rethink this when generalizing the inner
+ * indexscan support. But note we can't really do this earlier because
+ * it'd break the comparisons to predicates above ... (or would it? Those
+ * wouldn't have outer refs)
+ */
+ if (best_path->path.param_info)
+ {
+ stripped_indexquals = (List *)
+ replace_nestloop_params(root, (Node *) stripped_indexquals);
+ qpqual = (List *)
+ replace_nestloop_params(root, (Node *) qpqual);
+ indexorderbys = (List *)
+ replace_nestloop_params(root, (Node *) indexorderbys);
+ }
+
+ /*
+ * If there are ORDER BY expressions, look up the sort operators for their
+ * result datatypes.
+ */
+ if (indexorderbys)
+ {
+ ListCell *pathkeyCell,
+ *exprCell;
+
+ /*
+ * PathKey contains OID of the btree opfamily we're sorting by, but
+ * that's not quite enough because we need the expression's datatype
+ * to look up the sort operator in the operator family.
+ */
+ Assert(list_length(best_path->path.pathkeys) == list_length(indexorderbys));
+ forboth(pathkeyCell, best_path->path.pathkeys, exprCell, indexorderbys)
+ {
+ PathKey *pathkey = (PathKey *) lfirst(pathkeyCell);
+ Node *expr = (Node *) lfirst(exprCell);
+ Oid exprtype = exprType(expr);
+ Oid sortop;
+
+ /* Get sort operator from opfamily */
+ sortop = get_opfamily_member(pathkey->pk_opfamily,
+ exprtype,
+ exprtype,
+ pathkey->pk_strategy);
+ if (!OidIsValid(sortop))
+ elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
+ pathkey->pk_strategy, exprtype, exprtype, pathkey->pk_opfamily);
+ indexorderbyops = lappend_oid(indexorderbyops, sortop);
+ }
+ }
+
+ /*
+ * For an index-only scan, we must mark indextlist entries as resjunk if
+ * they are columns that the index AM can't return; this cues setrefs.c to
+ * not generate references to those columns.
+ */
+ if (indexonly)
+ {
+ int i = 0;
+
+ foreach(l, indexinfo->indextlist)
+ {
+ TargetEntry *indextle = (TargetEntry *) lfirst(l);
+
+ indextle->resjunk = !indexinfo->canreturn[i];
+ i++;
+ }
+ }
+
+ /* Finally ready to build the plan node */
+ if (indexonly)
+ scan_plan = (Scan *) make_indexonlyscan(tlist,
+ qpqual,
+ baserelid,
+ indexoid,
+ fixed_indexquals,
+ stripped_indexquals,
+ fixed_indexorderbys,
+ indexinfo->indextlist,
+ best_path->indexscandir);
+ else
+ scan_plan = (Scan *) make_indexscan(tlist,
+ qpqual,
+ baserelid,
+ indexoid,
+ fixed_indexquals,
+ stripped_indexquals,
+ fixed_indexorderbys,
+ indexorderbys,
+ indexorderbyops,
+ best_path->indexscandir);
+
+ copy_generic_path_info(&scan_plan->plan, &best_path->path);
+
+ return scan_plan;
+}
+
+/*
+ * create_bitmap_scan_plan
+ * Returns a bitmap scan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static BitmapHeapScan *
+create_bitmap_scan_plan(PlannerInfo *root,
+ BitmapHeapPath *best_path,
+ List *tlist,
+ List *scan_clauses)
+{
+ Index baserelid = best_path->path.parent->relid;
+ Plan *bitmapqualplan;
+ List *bitmapqualorig;
+ List *indexquals;
+ List *indexECs;
+ List *qpqual;
+ ListCell *l;
+ BitmapHeapScan *scan_plan;
+
+ /* it should be a base rel... */
+ Assert(baserelid > 0);
+ Assert(best_path->path.parent->rtekind == RTE_RELATION);
+
+ /* Process the bitmapqual tree into a Plan tree and qual lists */
+ bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual,
+ &bitmapqualorig, &indexquals,
+ &indexECs);
+
+ if (best_path->path.parallel_aware)
+ bitmap_subplan_mark_shared(bitmapqualplan);
+
+ /*
+ * The qpqual list must contain all restrictions not automatically handled
+ * by the index, other than pseudoconstant clauses which will be handled
+ * by a separate gating plan node. All the predicates in the indexquals
+ * will be checked (either by the index itself, or by
+ * nodeBitmapHeapscan.c), but if there are any "special" operators
+ * involved then they must be added to qpqual. The upshot is that qpqual
+ * must contain scan_clauses minus whatever appears in indexquals.
+ *
+ * This loop is similar to the comparable code in create_indexscan_plan(),
+ * but with some differences because it has to compare the scan clauses to
+ * stripped (no RestrictInfos) indexquals. See comments there for more
+ * info.
+ *
+ * In normal cases simple equal() checks will be enough to spot duplicate
+ * clauses, so we try that first. We next see if the scan clause is
+ * redundant with any top-level indexqual by virtue of being generated
+ * from the same EC. After that, try predicate_implied_by().
+ *
+ * Unlike create_indexscan_plan(), the predicate_implied_by() test here is
+ * useful for getting rid of qpquals that are implied by index predicates,
+ * because the predicate conditions are included in the "indexquals"
+ * returned by create_bitmap_subplan(). Bitmap scans have to do it that
+ * way because predicate conditions need to be rechecked if the scan
+ * becomes lossy, so they have to be included in bitmapqualorig.
+ */
+ qpqual = NIL;
+ foreach(l, scan_clauses)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
+ Node *clause = (Node *) rinfo->clause;
+
+ if (rinfo->pseudoconstant)
+ continue; /* we may drop pseudoconstants here */
+ if (list_member(indexquals, clause))
+ continue; /* simple duplicate */
+ if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec))
+ continue; /* derived from same EquivalenceClass */
+ if (!contain_mutable_functions(clause) &&
+ predicate_implied_by(list_make1(clause), indexquals, false))
+ continue; /* provably implied by indexquals */
+ qpqual = lappend(qpqual, rinfo);
+ }
+
+ /* Sort clauses into best execution order */
+ qpqual = order_qual_clauses(root, qpqual);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ qpqual = extract_actual_clauses(qpqual, false);
+
+ /*
+ * When dealing with special operators, we will at this point have
+ * duplicate clauses in qpqual and bitmapqualorig. We may as well drop
+ * 'em from bitmapqualorig, since there's no point in making the tests
+ * twice.
+ */
+ bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual);
+
+ /*
+ * We have to replace any outer-relation variables with nestloop params in
+ * the qpqual and bitmapqualorig expressions. (This was already done for
+ * expressions attached to plan nodes in the bitmapqualplan tree.)
+ */
+ if (best_path->path.param_info)
+ {
+ qpqual = (List *)
+ replace_nestloop_params(root, (Node *) qpqual);
+ bitmapqualorig = (List *)
+ replace_nestloop_params(root, (Node *) bitmapqualorig);
+ }
+
+ /* Finally ready to build the plan node */
+ scan_plan = make_bitmap_heapscan(tlist,
+ qpqual,
+ bitmapqualplan,
+ bitmapqualorig,
+ baserelid);
+
+ copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
+
+ return scan_plan;
+}
+
+/*
+ * Given a bitmapqual tree, generate the Plan tree that implements it
+ *
+ * As byproducts, we also return in *qual and *indexqual the qual lists
+ * (in implicit-AND form, without RestrictInfos) describing the original index
+ * conditions and the generated indexqual conditions. (These are the same in
+ * simple cases, but when special index operators are involved, the former
+ * list includes the special conditions while the latter includes the actual
+ * indexable conditions derived from them.) Both lists include partial-index
+ * predicates, because we have to recheck predicates as well as index
+ * conditions if the bitmap scan becomes lossy.
+ *
+ * In addition, we return a list of EquivalenceClass pointers for all the
+ * top-level indexquals that were possibly-redundantly derived from ECs.
+ * This allows removal of scan_clauses that are redundant with such quals.
+ * (We do not attempt to detect such redundancies for quals that are within
+ * OR subtrees. This could be done in a less hacky way if we returned the
+ * indexquals in RestrictInfo form, but that would be slower and still pretty
+ * messy, since we'd have to build new RestrictInfos in many cases.)
+ */
+static Plan *
+create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
+ List **qual, List **indexqual, List **indexECs)
+{
+ Plan *plan;
+
+ if (IsA(bitmapqual, BitmapAndPath))
+ {
+ BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
+ List *subplans = NIL;
+ List *subquals = NIL;
+ List *subindexquals = NIL;
+ List *subindexECs = NIL;
+ ListCell *l;
+
+ /*
+ * There may well be redundant quals among the subplans, since a
+ * top-level WHERE qual might have gotten used to form several
+ * different index quals. We don't try exceedingly hard to eliminate
+ * redundancies, but we do eliminate obvious duplicates by using
+ * list_concat_unique.
+ */
+ foreach(l, apath->bitmapquals)
+ {
+ Plan *subplan;
+ List *subqual;
+ List *subindexqual;
+ List *subindexEC;
+
+ subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
+ &subqual, &subindexqual,
+ &subindexEC);
+ subplans = lappend(subplans, subplan);
+ subquals = list_concat_unique(subquals, subqual);
+ subindexquals = list_concat_unique(subindexquals, subindexqual);
+ /* Duplicates in indexECs aren't worth getting rid of */
+ subindexECs = list_concat(subindexECs, subindexEC);
+ }
+ plan = (Plan *) make_bitmap_and(subplans);
+ plan->startup_cost = apath->path.startup_cost;
+ plan->total_cost = apath->path.total_cost;
+ plan->plan_rows =
+ clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples);
+ plan->plan_width = 0; /* meaningless */
+ plan->parallel_aware = false;
+ plan->parallel_safe = apath->path.parallel_safe;
+ *qual = subquals;
+ *indexqual = subindexquals;
+ *indexECs = subindexECs;
+ }
+ else if (IsA(bitmapqual, BitmapOrPath))
+ {
+ BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
+ List *subplans = NIL;
+ List *subquals = NIL;
+ List *subindexquals = NIL;
+ bool const_true_subqual = false;
+ bool const_true_subindexqual = false;
+ ListCell *l;
+
+ /*
+ * Here, we only detect qual-free subplans. A qual-free subplan would
+ * cause us to generate "... OR true ..." which we may as well reduce
+ * to just "true". We do not try to eliminate redundant subclauses
+ * because (a) it's not as likely as in the AND case, and (b) we might
+ * well be working with hundreds or even thousands of OR conditions,
+ * perhaps from a long IN list. The performance of list_append_unique
+ * would be unacceptable.
+ */
+ foreach(l, opath->bitmapquals)
+ {
+ Plan *subplan;
+ List *subqual;
+ List *subindexqual;
+ List *subindexEC;
+
+ subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
+ &subqual, &subindexqual,
+ &subindexEC);
+ subplans = lappend(subplans, subplan);
+ if (subqual == NIL)
+ const_true_subqual = true;
+ else if (!const_true_subqual)
+ subquals = lappend(subquals,
+ make_ands_explicit(subqual));
+ if (subindexqual == NIL)
+ const_true_subindexqual = true;
+ else if (!const_true_subindexqual)
+ subindexquals = lappend(subindexquals,
+ make_ands_explicit(subindexqual));
+ }
+
+ /*
+ * In the presence of ScalarArrayOpExpr quals, we might have built
+ * BitmapOrPaths with just one subpath; don't add an OR step.
+ */
+ if (list_length(subplans) == 1)
+ {
+ plan = (Plan *) linitial(subplans);
+ }
+ else
+ {
+ plan = (Plan *) make_bitmap_or(subplans);
+ plan->startup_cost = opath->path.startup_cost;
+ plan->total_cost = opath->path.total_cost;
+ plan->plan_rows =
+ clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples);
+ plan->plan_width = 0; /* meaningless */
+ plan->parallel_aware = false;
+ plan->parallel_safe = opath->path.parallel_safe;
+ }
+
+ /*
+ * If there were constant-TRUE subquals, the OR reduces to constant
+ * TRUE. Also, avoid generating one-element ORs, which could happen
+ * due to redundancy elimination or ScalarArrayOpExpr quals.
+ */
+ if (const_true_subqual)
+ *qual = NIL;
+ else if (list_length(subquals) <= 1)
+ *qual = subquals;
+ else
+ *qual = list_make1(make_orclause(subquals));
+ if (const_true_subindexqual)
+ *indexqual = NIL;
+ else if (list_length(subindexquals) <= 1)
+ *indexqual = subindexquals;
+ else
+ *indexqual = list_make1(make_orclause(subindexquals));
+ *indexECs = NIL;
+ }
+ else if (IsA(bitmapqual, IndexPath))
+ {
+ IndexPath *ipath = (IndexPath *) bitmapqual;
+ IndexScan *iscan;
+ List *subquals;
+ List *subindexquals;
+ List *subindexECs;
+ ListCell *l;
+
+ /* Use the regular indexscan plan build machinery... */
+ iscan = castNode(IndexScan,
+ create_indexscan_plan(root, ipath,
+ NIL, NIL, false));
+ /* then convert to a bitmap indexscan */
+ plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid,
+ iscan->indexid,
+ iscan->indexqual,
+ iscan->indexqualorig);
+ /* and set its cost/width fields appropriately */
+ plan->startup_cost = 0.0;
+ plan->total_cost = ipath->indextotalcost;
+ plan->plan_rows =
+ clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples);
+ plan->plan_width = 0; /* meaningless */
+ plan->parallel_aware = false;
+ plan->parallel_safe = ipath->path.parallel_safe;
+ /* Extract original index clauses, actual index quals, relevant ECs */
+ subquals = NIL;
+ subindexquals = NIL;
+ subindexECs = NIL;
+ foreach(l, ipath->indexclauses)
+ {
+ IndexClause *iclause = (IndexClause *) lfirst(l);
+ RestrictInfo *rinfo = iclause->rinfo;
+
+ Assert(!rinfo->pseudoconstant);
+ subquals = lappend(subquals, rinfo->clause);
+ subindexquals = list_concat(subindexquals,
+ get_actual_clauses(iclause->indexquals));
+ if (rinfo->parent_ec)
+ subindexECs = lappend(subindexECs, rinfo->parent_ec);
+ }
+ /* We can add any index predicate conditions, too */
+ foreach(l, ipath->indexinfo->indpred)
+ {
+ Expr *pred = (Expr *) lfirst(l);
+
+ /*
+ * We know that the index predicate must have been implied by the
+ * query condition as a whole, but it may or may not be implied by
+ * the conditions that got pushed into the bitmapqual. Avoid
+ * generating redundant conditions.
+ */
+ if (!predicate_implied_by(list_make1(pred), subquals, false))
+ {
+ subquals = lappend(subquals, pred);
+ subindexquals = lappend(subindexquals, pred);
+ }
+ }
+ *qual = subquals;
+ *indexqual = subindexquals;
+ *indexECs = subindexECs;
+ }
+ else
+ {
+ elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
+ plan = NULL; /* keep compiler quiet */
+ }
+
+ return plan;
+}
+
+/*
+ * create_tidscan_plan
+ * Returns a tidscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static TidScan *
+create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
+ List *tlist, List *scan_clauses)
+{
+ TidScan *scan_plan;
+ Index scan_relid = best_path->path.parent->relid;
+ List *tidquals = best_path->tidquals;
+
+ /* it should be a base rel... */
+ Assert(scan_relid > 0);
+ Assert(best_path->path.parent->rtekind == RTE_RELATION);
+
+ /*
+ * The qpqual list must contain all restrictions not enforced by the
+ * tidquals list. Since tidquals has OR semantics, we have to be careful
+ * about matching it up to scan_clauses. It's convenient to handle the
+ * single-tidqual case separately from the multiple-tidqual case. In the
+ * single-tidqual case, we look through the scan_clauses while they are
+ * still in RestrictInfo form, and drop any that are redundant with the
+ * tidqual.
+ *
+ * In normal cases simple pointer equality checks will be enough to spot
+ * duplicate RestrictInfos, so we try that first.
+ *
+ * Another common case is that a scan_clauses entry is generated from the
+ * same EquivalenceClass as some tidqual, and is therefore redundant with
+ * it, though not equal.
+ *
+ * Unlike indexpaths, we don't bother with predicate_implied_by(); the
+ * number of cases where it could win are pretty small.
+ */
+ if (list_length(tidquals) == 1)
+ {
+ List *qpqual = NIL;
+ ListCell *l;
+
+ foreach(l, scan_clauses)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
+
+ if (rinfo->pseudoconstant)
+ continue; /* we may drop pseudoconstants here */
+ if (list_member_ptr(tidquals, rinfo))
+ continue; /* simple duplicate */
+ if (is_redundant_derived_clause(rinfo, tidquals))
+ continue; /* derived from same EquivalenceClass */
+ qpqual = lappend(qpqual, rinfo);
+ }
+ scan_clauses = qpqual;
+ }
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
+ tidquals = extract_actual_clauses(tidquals, false);
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /*
+ * If we have multiple tidquals, it's more convenient to remove duplicate
+ * scan_clauses after stripping the RestrictInfos. In this situation,
+ * because the tidquals represent OR sub-clauses, they could not have come
+ * from EquivalenceClasses so we don't have to worry about matching up
+ * non-identical clauses. On the other hand, because tidpath.c will have
+ * extracted those sub-clauses from some OR clause and built its own list,
+ * we will certainly not have pointer equality to any scan clause. So
+ * convert the tidquals list to an explicit OR clause and see if we can
+ * match it via equal() to any scan clause.
+ */
+ if (list_length(tidquals) > 1)
+ scan_clauses = list_difference(scan_clauses,
+ list_make1(make_orclause(tidquals)));
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->path.param_info)
+ {
+ tidquals = (List *)
+ replace_nestloop_params(root, (Node *) tidquals);
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_tidscan(tlist,
+ scan_clauses,
+ scan_relid,
+ tidquals);
+
+ copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
+
+ return scan_plan;
+}
+
+/*
+ * create_tidrangescan_plan
+ * Returns a tidrangescan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static TidRangeScan *
+create_tidrangescan_plan(PlannerInfo *root, TidRangePath *best_path,
+ List *tlist, List *scan_clauses)
+{
+ TidRangeScan *scan_plan;
+ Index scan_relid = best_path->path.parent->relid;
+ List *tidrangequals = best_path->tidrangequals;
+
+ /* it should be a base rel... */
+ Assert(scan_relid > 0);
+ Assert(best_path->path.parent->rtekind == RTE_RELATION);
+
+ /*
+ * The qpqual list must contain all restrictions not enforced by the
+ * tidrangequals list. tidrangequals has AND semantics, so we can simply
+ * remove any qual that appears in it.
+ */
+ {
+ List *qpqual = NIL;
+ ListCell *l;
+
+ foreach(l, scan_clauses)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
+
+ if (rinfo->pseudoconstant)
+ continue; /* we may drop pseudoconstants here */
+ if (list_member_ptr(tidrangequals, rinfo))
+ continue; /* simple duplicate */
+ qpqual = lappend(qpqual, rinfo);
+ }
+ scan_clauses = qpqual;
+ }
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
+ tidrangequals = extract_actual_clauses(tidrangequals, false);
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->path.param_info)
+ {
+ tidrangequals = (List *)
+ replace_nestloop_params(root, (Node *) tidrangequals);
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_tidrangescan(tlist,
+ scan_clauses,
+ scan_relid,
+ tidrangequals);
+
+ copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
+
+ return scan_plan;
+}
+
+/*
+ * create_subqueryscan_plan
+ * Returns a subqueryscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static SubqueryScan *
+create_subqueryscan_plan(PlannerInfo *root, SubqueryScanPath *best_path,
+ List *tlist, List *scan_clauses)
+{
+ SubqueryScan *scan_plan;
+ RelOptInfo *rel = best_path->path.parent;
+ Index scan_relid = rel->relid;
+ Plan *subplan;
+
+ /* it should be a subquery base rel... */
+ Assert(scan_relid > 0);
+ Assert(rel->rtekind == RTE_SUBQUERY);
+
+ /*
+ * Recursively create Plan from Path for subquery. Since we are entering
+ * a different planner context (subroot), recurse to create_plan not
+ * create_plan_recurse.
+ */
+ subplan = create_plan(rel->subroot, best_path->subpath);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->path.param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ process_subquery_nestloop_params(root,
+ rel->subplan_params);
+ }
+
+ scan_plan = make_subqueryscan(tlist,
+ scan_clauses,
+ scan_relid,
+ subplan);
+
+ copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
+
+ return scan_plan;
+}
+
+/*
+ * create_functionscan_plan
+ * Returns a functionscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static FunctionScan *
+create_functionscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ FunctionScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ List *functions;
+
+ /* it should be a function base rel... */
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_FUNCTION);
+ functions = rte->functions;
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ /* The function expressions could contain nestloop params, too */
+ functions = (List *) replace_nestloop_params(root, (Node *) functions);
+ }
+
+ scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
+ functions, rte->funcordinality);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_tablefuncscan_plan
+ * Returns a tablefuncscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static TableFuncScan *
+create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ TableFuncScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ TableFunc *tablefunc;
+
+ /* it should be a function base rel... */
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_TABLEFUNC);
+ tablefunc = rte->tablefunc;
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ /* The function expressions could contain nestloop params, too */
+ tablefunc = (TableFunc *) replace_nestloop_params(root, (Node *) tablefunc);
+ }
+
+ scan_plan = make_tablefuncscan(tlist, scan_clauses, scan_relid,
+ tablefunc);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_valuesscan_plan
+ * Returns a valuesscan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static ValuesScan *
+create_valuesscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ ValuesScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ List *values_lists;
+
+ /* it should be a values base rel... */
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_VALUES);
+ values_lists = rte->values_lists;
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ /* The values lists could contain nestloop params, too */
+ values_lists = (List *)
+ replace_nestloop_params(root, (Node *) values_lists);
+ }
+
+ scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid,
+ values_lists);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_ctescan_plan
+ * Returns a ctescan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static CteScan *
+create_ctescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ CteScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ SubPlan *ctesplan = NULL;
+ int plan_id;
+ int cte_param_id;
+ PlannerInfo *cteroot;
+ Index levelsup;
+ int ndx;
+ ListCell *lc;
+
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_CTE);
+ Assert(!rte->self_reference);
+
+ /*
+ * Find the referenced CTE, and locate the SubPlan previously made for it.
+ */
+ levelsup = rte->ctelevelsup;
+ cteroot = root;
+ while (levelsup-- > 0)
+ {
+ cteroot = cteroot->parent_root;
+ if (!cteroot) /* shouldn't happen */
+ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
+ }
+
+ /*
+ * Note: cte_plan_ids can be shorter than cteList, if we are still working
+ * on planning the CTEs (ie, this is a side-reference from another CTE).
+ * So we mustn't use forboth here.
+ */
+ ndx = 0;
+ foreach(lc, cteroot->parse->cteList)
+ {
+ CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
+
+ if (strcmp(cte->ctename, rte->ctename) == 0)
+ break;
+ ndx++;
+ }
+ if (lc == NULL) /* shouldn't happen */
+ elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
+ if (ndx >= list_length(cteroot->cte_plan_ids))
+ elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
+ plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
+ if (plan_id <= 0)
+ elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
+ foreach(lc, cteroot->init_plans)
+ {
+ ctesplan = (SubPlan *) lfirst(lc);
+ if (ctesplan->plan_id == plan_id)
+ break;
+ }
+ if (lc == NULL) /* shouldn't happen */
+ elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
+
+ /*
+ * We need the CTE param ID, which is the sole member of the SubPlan's
+ * setParam list.
+ */
+ cte_param_id = linitial_int(ctesplan->setParam);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_ctescan(tlist, scan_clauses, scan_relid,
+ plan_id, cte_param_id);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_namedtuplestorescan_plan
+ * Returns a tuplestorescan plan for the base relation scanned by
+ * 'best_path' with restriction clauses 'scan_clauses' and targetlist
+ * 'tlist'.
+ */
+static NamedTuplestoreScan *
+create_namedtuplestorescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ NamedTuplestoreScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_namedtuplestorescan(tlist, scan_clauses, scan_relid,
+ rte->enrname);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_resultscan_plan
+ * Returns a Result plan for the RTE_RESULT base relation scanned by
+ * 'best_path' with restriction clauses 'scan_clauses' and targetlist
+ * 'tlist'.
+ */
+static Result *
+create_resultscan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ Result *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY;
+
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_RESULT);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_result(tlist, (Node *) scan_clauses, NULL);
+
+ copy_generic_path_info(&scan_plan->plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_worktablescan_plan
+ * Returns a worktablescan plan for the base relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static WorkTableScan *
+create_worktablescan_plan(PlannerInfo *root, Path *best_path,
+ List *tlist, List *scan_clauses)
+{
+ WorkTableScan *scan_plan;
+ Index scan_relid = best_path->parent->relid;
+ RangeTblEntry *rte;
+ Index levelsup;
+ PlannerInfo *cteroot;
+
+ Assert(scan_relid > 0);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_CTE);
+ Assert(rte->self_reference);
+
+ /*
+ * We need to find the worktable param ID, which is in the plan level
+ * that's processing the recursive UNION, which is one level *below* where
+ * the CTE comes from.
+ */
+ levelsup = rte->ctelevelsup;
+ if (levelsup == 0) /* shouldn't happen */
+ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
+ levelsup--;
+ cteroot = root;
+ while (levelsup-- > 0)
+ {
+ cteroot = cteroot->parent_root;
+ if (!cteroot) /* shouldn't happen */
+ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
+ }
+ if (cteroot->wt_param_id < 0) /* shouldn't happen */
+ elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename);
+
+ /* Sort clauses into best execution order */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
+ scan_clauses = extract_actual_clauses(scan_clauses, false);
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->param_info)
+ {
+ scan_clauses = (List *)
+ replace_nestloop_params(root, (Node *) scan_clauses);
+ }
+
+ scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid,
+ cteroot->wt_param_id);
+
+ copy_generic_path_info(&scan_plan->scan.plan, best_path);
+
+ return scan_plan;
+}
+
+/*
+ * create_foreignscan_plan
+ * Returns a foreignscan plan for the relation scanned by 'best_path'
+ * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
+ */
+static ForeignScan *
+create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
+ List *tlist, List *scan_clauses)
+{
+ ForeignScan *scan_plan;
+ RelOptInfo *rel = best_path->path.parent;
+ Index scan_relid = rel->relid;
+ Oid rel_oid = InvalidOid;
+ Plan *outer_plan = NULL;
+
+ Assert(rel->fdwroutine != NULL);
+
+ /* transform the child path if any */
+ if (best_path->fdw_outerpath)
+ outer_plan = create_plan_recurse(root, best_path->fdw_outerpath,
+ CP_EXACT_TLIST);
+
+ /*
+ * If we're scanning a base relation, fetch its OID. (Irrelevant if
+ * scanning a join relation.)
+ */
+ if (scan_relid > 0)
+ {
+ RangeTblEntry *rte;
+
+ Assert(rel->rtekind == RTE_RELATION);
+ rte = planner_rt_fetch(scan_relid, root);
+ Assert(rte->rtekind == RTE_RELATION);
+ rel_oid = rte->relid;
+ }
+
+ /*
+ * Sort clauses into best execution order. We do this first since the FDW
+ * might have more info than we do and wish to adjust the ordering.
+ */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /*
+ * Let the FDW perform its processing on the restriction clauses and
+ * generate the plan node. Note that the FDW might remove restriction
+ * clauses that it intends to execute remotely, or even add more (if it
+ * has selected some join clauses for remote use but also wants them
+ * rechecked locally).
+ */
+ scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rel_oid,
+ best_path,
+ tlist, scan_clauses,
+ outer_plan);
+
+ /* Copy cost data from Path to Plan; no need to make FDW do this */
+ copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
+
+ /* Copy foreign server OID; likewise, no need to make FDW do this */
+ scan_plan->fs_server = rel->serverid;
+
+ /*
+ * Likewise, copy the relids that are represented by this foreign scan. An
+ * upper rel doesn't have relids set, but it covers all the base relations
+ * participating in the underlying scan, so use root's all_baserels.
+ */
+ if (rel->reloptkind == RELOPT_UPPER_REL)
+ scan_plan->fs_relids = root->all_baserels;
+ else
+ scan_plan->fs_relids = best_path->path.parent->relids;
+
+ /*
+ * If this is a foreign join, and to make it valid to push down we had to
+ * assume that the current user is the same as some user explicitly named
+ * in the query, mark the finished plan as depending on the current user.
+ */
+ if (rel->useridiscurrent)
+ root->glob->dependsOnRole = true;
+
+ /*
+ * Replace any outer-relation variables with nestloop params in the qual,
+ * fdw_exprs and fdw_recheck_quals expressions. We do this last so that
+ * the FDW doesn't have to be involved. (Note that parts of fdw_exprs or
+ * fdw_recheck_quals could have come from join clauses, so doing this
+ * beforehand on the scan_clauses wouldn't work.) We assume
+ * fdw_scan_tlist contains no such variables.
+ */
+ if (best_path->path.param_info)
+ {
+ scan_plan->scan.plan.qual = (List *)
+ replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual);
+ scan_plan->fdw_exprs = (List *)
+ replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs);
+ scan_plan->fdw_recheck_quals = (List *)
+ replace_nestloop_params(root,
+ (Node *) scan_plan->fdw_recheck_quals);
+ }
+
+ /*
+ * If rel is a base relation, detect whether any system columns are
+ * requested from the rel. (If rel is a join relation, rel->relid will be
+ * 0, but there can be no Var with relid 0 in the rel's targetlist or the
+ * restriction clauses, so we skip this in that case. Note that any such
+ * columns in base relations that were joined are assumed to be contained
+ * in fdw_scan_tlist.) This is a bit of a kluge and might go away
+ * someday, so we intentionally leave it out of the API presented to FDWs.
+ */
+ scan_plan->fsSystemCol = false;
+ if (scan_relid > 0)
+ {
+ Bitmapset *attrs_used = NULL;
+ ListCell *lc;
+ int i;
+
+ /*
+ * First, examine all the attributes needed for joins or final output.
+ * Note: we must look at rel's targetlist, not the attr_needed data,
+ * because attr_needed isn't computed for inheritance child rels.
+ */
+ pull_varattnos((Node *) rel->reltarget->exprs, scan_relid, &attrs_used);
+
+ /* Add all the attributes used by restriction clauses. */
+ foreach(lc, rel->baserestrictinfo)
+ {
+ RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
+
+ pull_varattnos((Node *) rinfo->clause, scan_relid, &attrs_used);
+ }
+
+ /* Now, are any system columns requested from rel? */
+ for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
+ {
+ if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used))
+ {
+ scan_plan->fsSystemCol = true;
+ break;
+ }
+ }
+
+ bms_free(attrs_used);
+ }
+
+ return scan_plan;
+}
+
+/*
+ * create_customscan_plan
+ *
+ * Transform a CustomPath into a Plan.
+ */
+static CustomScan *
+create_customscan_plan(PlannerInfo *root, CustomPath *best_path,
+ List *tlist, List *scan_clauses)
+{
+ CustomScan *cplan;
+ RelOptInfo *rel = best_path->path.parent;
+ List *custom_plans = NIL;
+ ListCell *lc;
+
+ /* Recursively transform child paths. */
+ foreach(lc, best_path->custom_paths)
+ {
+ Plan *plan = create_plan_recurse(root, (Path *) lfirst(lc),
+ CP_EXACT_TLIST);
+
+ custom_plans = lappend(custom_plans, plan);
+ }
+
+ /*
+ * Sort clauses into the best execution order, although custom-scan
+ * provider can reorder them again.
+ */
+ scan_clauses = order_qual_clauses(root, scan_clauses);
+
+ /*
+ * Invoke custom plan provider to create the Plan node represented by the
+ * CustomPath.
+ */
+ cplan = castNode(CustomScan,
+ best_path->methods->PlanCustomPath(root,
+ rel,
+ best_path,
+ tlist,
+ scan_clauses,
+ custom_plans));
+
+ /*
+ * Copy cost data from Path to Plan; no need to make custom-plan providers
+ * do this
+ */
+ copy_generic_path_info(&cplan->scan.plan, &best_path->path);
+
+ /* Likewise, copy the relids that are represented by this custom scan */
+ cplan->custom_relids = best_path->path.parent->relids;
+
+ /*
+ * Replace any outer-relation variables with nestloop params in the qual
+ * and custom_exprs expressions. We do this last so that the custom-plan
+ * provider doesn't have to be involved. (Note that parts of custom_exprs
+ * could have come from join clauses, so doing this beforehand on the
+ * scan_clauses wouldn't work.) We assume custom_scan_tlist contains no
+ * such variables.
+ */
+ if (best_path->path.param_info)
+ {
+ cplan->scan.plan.qual = (List *)
+ replace_nestloop_params(root, (Node *) cplan->scan.plan.qual);
+ cplan->custom_exprs = (List *)
+ replace_nestloop_params(root, (Node *) cplan->custom_exprs);
+ }
+
+ return cplan;
+}
+
+
+/*****************************************************************************
+ *
+ * JOIN METHODS
+ *
+ *****************************************************************************/
+
+static NestLoop *
+create_nestloop_plan(PlannerInfo *root,
+ NestPath *best_path)
+{
+ NestLoop *join_plan;
+ Plan *outer_plan;
+ Plan *inner_plan;
+ List *tlist = build_path_tlist(root, &best_path->path);
+ List *joinrestrictclauses = best_path->joinrestrictinfo;
+ List *joinclauses;
+ List *otherclauses;
+ Relids outerrelids;
+ List *nestParams;
+ Relids saveOuterRels = root->curOuterRels;
+
+ /* NestLoop can project, so no need to be picky about child tlists */
+ outer_plan = create_plan_recurse(root, best_path->outerjoinpath, 0);
+
+ /* For a nestloop, include outer relids in curOuterRels for inner side */
+ root->curOuterRels = bms_union(root->curOuterRels,
+ best_path->outerjoinpath->parent->relids);
+
+ inner_plan = create_plan_recurse(root, best_path->innerjoinpath, 0);
+
+ /* Restore curOuterRels */
+ bms_free(root->curOuterRels);
+ root->curOuterRels = saveOuterRels;
+
+ /* Sort join qual clauses into best execution order */
+ joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses);
+
+ /* Get the join qual clauses (in plain expression form) */
+ /* Any pseudoconstant clauses are ignored here */
+ if (IS_OUTER_JOIN(best_path->jointype))
+ {
+ extract_actual_join_clauses(joinrestrictclauses,
+ best_path->path.parent->relids,
+ &joinclauses, &otherclauses);
+ }
+ else
+ {
+ /* We can treat all clauses alike for an inner join */
+ joinclauses = extract_actual_clauses(joinrestrictclauses, false);
+ otherclauses = NIL;
+ }
+
+ /* Replace any outer-relation variables with nestloop params */
+ if (best_path->path.param_info)
+ {
+ joinclauses = (List *)
+ replace_nestloop_params(root, (Node *) joinclauses);
+ otherclauses = (List *)
+ replace_nestloop_params(root, (Node *) otherclauses);
+ }
+
+ /*
+ * Identify any nestloop parameters that should be supplied by this join
+ * node, and remove them from root->curOuterParams.
+ */
+ outerrelids = best_path->outerjoinpath->parent->relids;
+ nestParams = identify_current_nestloop_params(root, outerrelids);
+
+ join_plan = make_nestloop(tlist,
+ joinclauses,
+ otherclauses,
+ nestParams,
+ outer_plan,
+ inner_plan,
+ best_path->jointype,
+ best_path->inner_unique);
+
+ copy_generic_path_info(&join_plan->join.plan, &best_path->path);
+
+ return join_plan;
+}
+
+static MergeJoin *
+create_mergejoin_plan(PlannerInfo *root,
+ MergePath *best_path)
+{
+ MergeJoin *join_plan;
+ Plan *outer_plan;
+ Plan *inner_plan;
+ List *tlist = build_path_tlist(root, &best_path->jpath.path);
+ List *joinclauses;
+ List *otherclauses;
+ List *mergeclauses;
+ List *outerpathkeys;
+ List *innerpathkeys;
+ int nClauses;
+ Oid *mergefamilies;
+ Oid *mergecollations;
+ int *mergestrategies;
+ bool *mergenullsfirst;
+ PathKey *opathkey;
+ EquivalenceClass *opeclass;
+ int i;
+ ListCell *lc;
+ ListCell *lop;
+ ListCell *lip;
+ Path *outer_path = best_path->jpath.outerjoinpath;
+ Path *inner_path = best_path->jpath.innerjoinpath;
+
+ /*
+ * MergeJoin can project, so we don't have to demand exact tlists from the
+ * inputs. However, if we're intending to sort an input's result, it's
+ * best to request a small tlist so we aren't sorting more data than
+ * necessary.
+ */
+ outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
+ (best_path->outersortkeys != NIL) ? CP_SMALL_TLIST : 0);
+
+ inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
+ (best_path->innersortkeys != NIL) ? CP_SMALL_TLIST : 0);
+
+ /* Sort join qual clauses into best execution order */
+ /* NB: do NOT reorder the mergeclauses */
+ joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
+
+ /* Get the join qual clauses (in plain expression form) */
+ /* Any pseudoconstant clauses are ignored here */
+ if (IS_OUTER_JOIN(best_path->jpath.jointype))
+ {
+ extract_actual_join_clauses(joinclauses,
+ best_path->jpath.path.parent->relids,
+ &joinclauses, &otherclauses);
+ }
+ else
+ {
+ /* We can treat all clauses alike for an inner join */
+ joinclauses = extract_actual_clauses(joinclauses, false);
+ otherclauses = NIL;
+ }
+
+ /*
+ * Remove the mergeclauses from the list of join qual clauses, leaving the
+ * list of quals that must be checked as qpquals.
+ */
+ mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
+ joinclauses = list_difference(joinclauses, mergeclauses);
+
+ /*
+ * Replace any outer-relation variables with nestloop params. There
+ * should not be any in the mergeclauses.
+ */
+ if (best_path->jpath.path.param_info)
+ {
+ joinclauses = (List *)
+ replace_nestloop_params(root, (Node *) joinclauses);
+ otherclauses = (List *)
+ replace_nestloop_params(root, (Node *) otherclauses);
+ }
+
+ /*
+ * Rearrange mergeclauses, if needed, so that the outer variable is always
+ * on the left; mark the mergeclause restrictinfos with correct
+ * outer_is_left status.
+ */
+ mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
+ best_path->jpath.outerjoinpath->parent->relids);
+
+ /*
+ * Create explicit sort nodes for the outer and inner paths if necessary.
+ */
+ if (best_path->outersortkeys)
+ {
+ Relids outer_relids = outer_path->parent->relids;
+ Sort *sort = make_sort_from_pathkeys(outer_plan,
+ best_path->outersortkeys,
+ outer_relids);
+
+ label_sort_with_costsize(root, sort, -1.0);
+ outer_plan = (Plan *) sort;
+ outerpathkeys = best_path->outersortkeys;
+ }
+ else
+ outerpathkeys = best_path->jpath.outerjoinpath->pathkeys;
+
+ if (best_path->innersortkeys)
+ {
+ Relids inner_relids = inner_path->parent->relids;
+ Sort *sort = make_sort_from_pathkeys(inner_plan,
+ best_path->innersortkeys,
+ inner_relids);
+
+ label_sort_with_costsize(root, sort, -1.0);
+ inner_plan = (Plan *) sort;
+ innerpathkeys = best_path->innersortkeys;
+ }
+ else
+ innerpathkeys = best_path->jpath.innerjoinpath->pathkeys;
+
+ /*
+ * If specified, add a materialize node to shield the inner plan from the
+ * need to handle mark/restore.
+ */
+ if (best_path->materialize_inner)
+ {
+ Plan *matplan = (Plan *) make_material(inner_plan);
+
+ /*
+ * We assume the materialize will not spill to disk, and therefore
+ * charge just cpu_operator_cost per tuple. (Keep this estimate in
+ * sync with final_cost_mergejoin.)
+ */
+ copy_plan_costsize(matplan, inner_plan);
+ matplan->total_cost += cpu_operator_cost * matplan->plan_rows;
+
+ inner_plan = matplan;
+ }
+
+ /*
+ * Compute the opfamily/collation/strategy/nullsfirst arrays needed by the
+ * executor. The information is in the pathkeys for the two inputs, but
+ * we need to be careful about the possibility of mergeclauses sharing a
+ * pathkey, as well as the possibility that the inner pathkeys are not in
+ * an order matching the mergeclauses.
+ */
+ nClauses = list_length(mergeclauses);
+ Assert(nClauses == list_length(best_path->path_mergeclauses));
+ mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid));
+ mergecollations = (Oid *) palloc(nClauses * sizeof(Oid));
+ mergestrategies = (int *) palloc(nClauses * sizeof(int));
+ mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool));
+
+ opathkey = NULL;
+ opeclass = NULL;
+ lop = list_head(outerpathkeys);
+ lip = list_head(innerpathkeys);
+ i = 0;
+ foreach(lc, best_path->path_mergeclauses)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
+ EquivalenceClass *oeclass;
+ EquivalenceClass *ieclass;
+ PathKey *ipathkey = NULL;
+ EquivalenceClass *ipeclass = NULL;
+ bool first_inner_match = false;
+
+ /* fetch outer/inner eclass from mergeclause */
+ if (rinfo->outer_is_left)
+ {
+ oeclass = rinfo->left_ec;
+ ieclass = rinfo->right_ec;
+ }
+ else
+ {
+ oeclass = rinfo->right_ec;
+ ieclass = rinfo->left_ec;
+ }
+ Assert(oeclass != NULL);
+ Assert(ieclass != NULL);
+
+ /*
+ * We must identify the pathkey elements associated with this clause
+ * by matching the eclasses (which should give a unique match, since
+ * the pathkey lists should be canonical). In typical cases the merge
+ * clauses are one-to-one with the pathkeys, but when dealing with
+ * partially redundant query conditions, things are more complicated.
+ *
+ * lop and lip reference the first as-yet-unmatched pathkey elements.
+ * If they're NULL then all pathkey elements have been matched.
+ *
+ * The ordering of the outer pathkeys should match the mergeclauses,
+ * by construction (see find_mergeclauses_for_outer_pathkeys()). There
+ * could be more than one mergeclause for the same outer pathkey, but
+ * no pathkey may be entirely skipped over.
+ */
+ if (oeclass != opeclass) /* multiple matches are not interesting */
+ {
+ /* doesn't match the current opathkey, so must match the next */
+ if (lop == NULL)
+ elog(ERROR, "outer pathkeys do not match mergeclauses");
+ opathkey = (PathKey *) lfirst(lop);
+ opeclass = opathkey->pk_eclass;
+ lop = lnext(outerpathkeys, lop);
+ if (oeclass != opeclass)
+ elog(ERROR, "outer pathkeys do not match mergeclauses");
+ }
+
+ /*
+ * The inner pathkeys likewise should not have skipped-over keys, but
+ * it's possible for a mergeclause to reference some earlier inner
+ * pathkey if we had redundant pathkeys. For example we might have
+ * mergeclauses like "o.a = i.x AND o.b = i.y AND o.c = i.x". The
+ * implied inner ordering is then "ORDER BY x, y, x", but the pathkey
+ * mechanism drops the second sort by x as redundant, and this code
+ * must cope.
+ *
+ * It's also possible for the implied inner-rel ordering to be like
+ * "ORDER BY x, y, x DESC". We still drop the second instance of x as
+ * redundant; but this means that the sort ordering of a redundant
+ * inner pathkey should not be considered significant. So we must
+ * detect whether this is the first clause matching an inner pathkey.
+ */
+ if (lip)
+ {
+ ipathkey = (PathKey *) lfirst(lip);
+ ipeclass = ipathkey->pk_eclass;
+ if (ieclass == ipeclass)
+ {
+ /* successful first match to this inner pathkey */
+ lip = lnext(innerpathkeys, lip);
+ first_inner_match = true;
+ }
+ }
+ if (!first_inner_match)
+ {
+ /* redundant clause ... must match something before lip */
+ ListCell *l2;
+
+ foreach(l2, innerpathkeys)
+ {
+ if (l2 == lip)
+ break;
+ ipathkey = (PathKey *) lfirst(l2);
+ ipeclass = ipathkey->pk_eclass;
+ if (ieclass == ipeclass)
+ break;
+ }
+ if (ieclass != ipeclass)
+ elog(ERROR, "inner pathkeys do not match mergeclauses");
+ }
+
+ /*
+ * The pathkeys should always match each other as to opfamily and
+ * collation (which affect equality), but if we're considering a
+ * redundant inner pathkey, its sort ordering might not match. In
+ * such cases we may ignore the inner pathkey's sort ordering and use
+ * the outer's. (In effect, we're lying to the executor about the
+ * sort direction of this inner column, but it does not matter since
+ * the run-time row comparisons would only reach this column when
+ * there's equality for the earlier column containing the same eclass.
+ * There could be only one value in this column for the range of inner
+ * rows having a given value in the earlier column, so it does not
+ * matter which way we imagine this column to be ordered.) But a
+ * non-redundant inner pathkey had better match outer's ordering too.
+ */
+ if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
+ opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation)
+ elog(ERROR, "left and right pathkeys do not match in mergejoin");
+ if (first_inner_match &&
+ (opathkey->pk_strategy != ipathkey->pk_strategy ||
+ opathkey->pk_nulls_first != ipathkey->pk_nulls_first))
+ elog(ERROR, "left and right pathkeys do not match in mergejoin");
+
+ /* OK, save info for executor */
+ mergefamilies[i] = opathkey->pk_opfamily;
+ mergecollations[i] = opathkey->pk_eclass->ec_collation;
+ mergestrategies[i] = opathkey->pk_strategy;
+ mergenullsfirst[i] = opathkey->pk_nulls_first;
+ i++;
+ }
+
+ /*
+ * Note: it is not an error if we have additional pathkey elements (i.e.,
+ * lop or lip isn't NULL here). The input paths might be better-sorted
+ * than we need for the current mergejoin.
+ */
+
+ /*
+ * Now we can build the mergejoin node.
+ */
+ join_plan = make_mergejoin(tlist,
+ joinclauses,
+ otherclauses,
+ mergeclauses,
+ mergefamilies,
+ mergecollations,
+ mergestrategies,
+ mergenullsfirst,
+ outer_plan,
+ inner_plan,
+ best_path->jpath.jointype,
+ best_path->jpath.inner_unique,
+ best_path->skip_mark_restore);
+
+ /* Costs of sort and material steps are included in path cost already */
+ copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
+
+ return join_plan;
+}
+
+static HashJoin *
+create_hashjoin_plan(PlannerInfo *root,
+ HashPath *best_path)
+{
+ HashJoin *join_plan;
+ Hash *hash_plan;
+ Plan *outer_plan;
+ Plan *inner_plan;
+ List *tlist = build_path_tlist(root, &best_path->jpath.path);
+ List *joinclauses;
+ List *otherclauses;
+ List *hashclauses;
+ List *hashoperators = NIL;
+ List *hashcollations = NIL;
+ List *inner_hashkeys = NIL;
+ List *outer_hashkeys = NIL;
+ Oid skewTable = InvalidOid;
+ AttrNumber skewColumn = InvalidAttrNumber;
+ bool skewInherit = false;
+ ListCell *lc;
+
+ /*
+ * HashJoin can project, so we don't have to demand exact tlists from the
+ * inputs. However, it's best to request a small tlist from the inner
+ * side, so that we aren't storing more data than necessary. Likewise, if
+ * we anticipate batching, request a small tlist from the outer side so
+ * that we don't put extra data in the outer batch files.
+ */
+ outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
+ (best_path->num_batches > 1) ? CP_SMALL_TLIST : 0);
+
+ inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
+ CP_SMALL_TLIST);
+
+ /* Sort join qual clauses into best execution order */
+ joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
+ /* There's no point in sorting the hash clauses ... */
+
+ /* Get the join qual clauses (in plain expression form) */
+ /* Any pseudoconstant clauses are ignored here */
+ if (IS_OUTER_JOIN(best_path->jpath.jointype))
+ {
+ extract_actual_join_clauses(joinclauses,
+ best_path->jpath.path.parent->relids,
+ &joinclauses, &otherclauses);
+ }
+ else
+ {
+ /* We can treat all clauses alike for an inner join */
+ joinclauses = extract_actual_clauses(joinclauses, false);
+ otherclauses = NIL;
+ }
+
+ /*
+ * Remove the hashclauses from the list of join qual clauses, leaving the
+ * list of quals that must be checked as qpquals.
+ */
+ hashclauses = get_actual_clauses(best_path->path_hashclauses);
+ joinclauses = list_difference(joinclauses, hashclauses);
+
+ /*
+ * Replace any outer-relation variables with nestloop params. There
+ * should not be any in the hashclauses.
+ */
+ if (best_path->jpath.path.param_info)
+ {
+ joinclauses = (List *)
+ replace_nestloop_params(root, (Node *) joinclauses);
+ otherclauses = (List *)
+ replace_nestloop_params(root, (Node *) otherclauses);
+ }
+
+ /*
+ * Rearrange hashclauses, if needed, so that the outer variable is always
+ * on the left.
+ */
+ hashclauses = get_switched_clauses(best_path->path_hashclauses,
+ best_path->jpath.outerjoinpath->parent->relids);
+
+ /*
+ * If there is a single join clause and we can identify the outer variable
+ * as a simple column reference, supply its identity for possible use in
+ * skew optimization. (Note: in principle we could do skew optimization
+ * with multiple join clauses, but we'd have to be able to determine the
+ * most common combinations of outer values, which we don't currently have
+ * enough stats for.)
+ */
+ if (list_length(hashclauses) == 1)
+ {
+ OpExpr *clause = (OpExpr *) linitial(hashclauses);
+ Node *node;
+
+ Assert(is_opclause(clause));
+ node = (Node *) linitial(clause->args);
+ if (IsA(node, RelabelType))
+ node = (Node *) ((RelabelType *) node)->arg;
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+ RangeTblEntry *rte;
+
+ rte = root->simple_rte_array[var->varno];
+ if (rte->rtekind == RTE_RELATION)
+ {
+ skewTable = rte->relid;
+ skewColumn = var->varattno;
+ skewInherit = rte->inh;
+ }
+ }
+ }
+
+ /*
+ * Collect hash related information. The hashed expressions are
+ * deconstructed into outer/inner expressions, so they can be computed
+ * separately (inner expressions are used to build the hashtable via Hash,
+ * outer expressions to perform lookups of tuples from HashJoin's outer
+ * plan in the hashtable). Also collect operator information necessary to
+ * build the hashtable.
+ */
+ foreach(lc, hashclauses)
+ {
+ OpExpr *hclause = lfirst_node(OpExpr, lc);
+
+ hashoperators = lappend_oid(hashoperators, hclause->opno);
+ hashcollations = lappend_oid(hashcollations, hclause->inputcollid);
+ outer_hashkeys = lappend(outer_hashkeys, linitial(hclause->args));
+ inner_hashkeys = lappend(inner_hashkeys, lsecond(hclause->args));
+ }
+
+ /*
+ * Build the hash node and hash join node.
+ */
+ hash_plan = make_hash(inner_plan,
+ inner_hashkeys,
+ skewTable,
+ skewColumn,
+ skewInherit);
+
+ /*
+ * Set Hash node's startup & total costs equal to total cost of input
+ * plan; this only affects EXPLAIN display not decisions.
+ */
+ copy_plan_costsize(&hash_plan->plan, inner_plan);
+ hash_plan->plan.startup_cost = hash_plan->plan.total_cost;
+
+ /*
+ * If parallel-aware, the executor will also need an estimate of the total
+ * number of rows expected from all participants so that it can size the
+ * shared hash table.
+ */
+ if (best_path->jpath.path.parallel_aware)
+ {
+ hash_plan->plan.parallel_aware = true;
+ hash_plan->rows_total = best_path->inner_rows_total;
+ }
+
+ join_plan = make_hashjoin(tlist,
+ joinclauses,
+ otherclauses,
+ hashclauses,
+ hashoperators,
+ hashcollations,
+ outer_hashkeys,
+ outer_plan,
+ (Plan *) hash_plan,
+ best_path->jpath.jointype,
+ best_path->jpath.inner_unique);
+
+ copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
+
+ return join_plan;
+}
+
+
+/*****************************************************************************
+ *
+ * SUPPORTING ROUTINES
+ *
+ *****************************************************************************/
+
+/*
+ * replace_nestloop_params
+ * Replace outer-relation Vars and PlaceHolderVars in the given expression
+ * with nestloop Params
+ *
+ * All Vars and PlaceHolderVars belonging to the relation(s) identified by
+ * root->curOuterRels are replaced by Params, and entries are added to
+ * root->curOuterParams if not already present.
+ */
+static Node *
+replace_nestloop_params(PlannerInfo *root, Node *expr)
+{
+ /* No setup needed for tree walk, so away we go */
+ return replace_nestloop_params_mutator(expr, root);
+}
+
+static Node *
+replace_nestloop_params_mutator(Node *node, PlannerInfo *root)
+{
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+
+ /* Upper-level Vars should be long gone at this point */
+ Assert(var->varlevelsup == 0);
+ /* If not to be replaced, we can just return the Var unmodified */
+ if (!bms_is_member(var->varno, root->curOuterRels))
+ return node;
+ /* Replace the Var with a nestloop Param */
+ return (Node *) replace_nestloop_param_var(root, var);
+ }
+ if (IsA(node, PlaceHolderVar))
+ {
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+
+ /* Upper-level PlaceHolderVars should be long gone at this point */
+ Assert(phv->phlevelsup == 0);
+
+ /*
+ * Check whether we need to replace the PHV. We use bms_overlap as a
+ * cheap/quick test to see if the PHV might be evaluated in the outer
+ * rels, and then grab its PlaceHolderInfo to tell for sure.
+ */
+ if (!bms_overlap(phv->phrels, root->curOuterRels) ||
+ !bms_is_subset(find_placeholder_info(root, phv, false)->ph_eval_at,
+ root->curOuterRels))
+ {
+ /*
+ * We can't replace the whole PHV, but we might still need to
+ * replace Vars or PHVs within its expression, in case it ends up
+ * actually getting evaluated here. (It might get evaluated in
+ * this plan node, or some child node; in the latter case we don't
+ * really need to process the expression here, but we haven't got
+ * enough info to tell if that's the case.) Flat-copy the PHV
+ * node and then recurse on its expression.
+ *
+ * Note that after doing this, we might have different
+ * representations of the contents of the same PHV in different
+ * parts of the plan tree. This is OK because equal() will just
+ * match on phid/phlevelsup, so setrefs.c will still recognize an
+ * upper-level reference to a lower-level copy of the same PHV.
+ */
+ PlaceHolderVar *newphv = makeNode(PlaceHolderVar);
+
+ memcpy(newphv, phv, sizeof(PlaceHolderVar));
+ newphv->phexpr = (Expr *)
+ replace_nestloop_params_mutator((Node *) phv->phexpr,
+ root);
+ return (Node *) newphv;
+ }
+ /* Replace the PlaceHolderVar with a nestloop Param */
+ return (Node *) replace_nestloop_param_placeholdervar(root, phv);
+ }
+ return expression_tree_mutator(node,
+ replace_nestloop_params_mutator,
+ (void *) root);
+}
+
+/*
+ * fix_indexqual_references
+ * Adjust indexqual clauses to the form the executor's indexqual
+ * machinery needs.
+ *
+ * We have three tasks here:
+ * * Select the actual qual clauses out of the input IndexClause list,
+ * and remove RestrictInfo nodes from the qual clauses.
+ * * Replace any outer-relation Var or PHV nodes with nestloop Params.
+ * (XXX eventually, that responsibility should go elsewhere?)
+ * * Index keys must be represented by Var nodes with varattno set to the
+ * index's attribute number, not the attribute number in the original rel.
+ *
+ * *stripped_indexquals_p receives a list of the actual qual clauses.
+ *
+ * *fixed_indexquals_p receives a list of the adjusted quals. This is a copy
+ * that shares no substructure with the original; this is needed in case there
+ * are subplans in it (we need two separate copies of the subplan tree, or
+ * things will go awry).
+ */
+static void
+fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
+ List **stripped_indexquals_p, List **fixed_indexquals_p)
+{
+ IndexOptInfo *index = index_path->indexinfo;
+ List *stripped_indexquals;
+ List *fixed_indexquals;
+ ListCell *lc;
+
+ stripped_indexquals = fixed_indexquals = NIL;
+
+ foreach(lc, index_path->indexclauses)
+ {
+ IndexClause *iclause = lfirst_node(IndexClause, lc);
+ int indexcol = iclause->indexcol;
+ ListCell *lc2;
+
+ foreach(lc2, iclause->indexquals)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
+ Node *clause = (Node *) rinfo->clause;
+
+ stripped_indexquals = lappend(stripped_indexquals, clause);
+ clause = fix_indexqual_clause(root, index, indexcol,
+ clause, iclause->indexcols);
+ fixed_indexquals = lappend(fixed_indexquals, clause);
+ }
+ }
+
+ *stripped_indexquals_p = stripped_indexquals;
+ *fixed_indexquals_p = fixed_indexquals;
+}
+
+/*
+ * fix_indexorderby_references
+ * Adjust indexorderby clauses to the form the executor's index
+ * machinery needs.
+ *
+ * This is a simplified version of fix_indexqual_references. The input is
+ * bare clauses and a separate indexcol list, instead of IndexClauses.
+ */
+static List *
+fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path)
+{
+ IndexOptInfo *index = index_path->indexinfo;
+ List *fixed_indexorderbys;
+ ListCell *lcc,
+ *lci;
+
+ fixed_indexorderbys = NIL;
+
+ forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols)
+ {
+ Node *clause = (Node *) lfirst(lcc);
+ int indexcol = lfirst_int(lci);
+
+ clause = fix_indexqual_clause(root, index, indexcol, clause, NIL);
+ fixed_indexorderbys = lappend(fixed_indexorderbys, clause);
+ }
+
+ return fixed_indexorderbys;
+}
+
+/*
+ * fix_indexqual_clause
+ * Convert a single indexqual clause to the form needed by the executor.
+ *
+ * We replace nestloop params here, and replace the index key variables
+ * or expressions by index Var nodes.
+ */
+static Node *
+fix_indexqual_clause(PlannerInfo *root, IndexOptInfo *index, int indexcol,
+ Node *clause, List *indexcolnos)
+{
+ /*
+ * Replace any outer-relation variables with nestloop params.
+ *
+ * This also makes a copy of the clause, so it's safe to modify it
+ * in-place below.
+ */
+ clause = replace_nestloop_params(root, clause);
+
+ if (IsA(clause, OpExpr))
+ {
+ OpExpr *op = (OpExpr *) clause;
+
+ /* Replace the indexkey expression with an index Var. */
+ linitial(op->args) = fix_indexqual_operand(linitial(op->args),
+ index,
+ indexcol);
+ }
+ else if (IsA(clause, RowCompareExpr))
+ {
+ RowCompareExpr *rc = (RowCompareExpr *) clause;
+ ListCell *lca,
+ *lcai;
+
+ /* Replace the indexkey expressions with index Vars. */
+ Assert(list_length(rc->largs) == list_length(indexcolnos));
+ forboth(lca, rc->largs, lcai, indexcolnos)
+ {
+ lfirst(lca) = fix_indexqual_operand(lfirst(lca),
+ index,
+ lfirst_int(lcai));
+ }
+ }
+ else if (IsA(clause, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
+
+ /* Replace the indexkey expression with an index Var. */
+ linitial(saop->args) = fix_indexqual_operand(linitial(saop->args),
+ index,
+ indexcol);
+ }
+ else if (IsA(clause, NullTest))
+ {
+ NullTest *nt = (NullTest *) clause;
+
+ /* Replace the indexkey expression with an index Var. */
+ nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg,
+ index,
+ indexcol);
+ }
+ else
+ elog(ERROR, "unsupported indexqual type: %d",
+ (int) nodeTag(clause));
+
+ return clause;
+}
+
+/*
+ * fix_indexqual_operand
+ * Convert an indexqual expression to a Var referencing the index column.
+ *
+ * We represent index keys by Var nodes having varno == INDEX_VAR and varattno
+ * equal to the index's attribute number (index column position).
+ *
+ * Most of the code here is just for sanity cross-checking that the given
+ * expression actually matches the index column it's claimed to.
+ */
+static Node *
+fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol)
+{
+ Var *result;
+ int pos;
+ ListCell *indexpr_item;
+
+ /*
+ * Remove any binary-compatible relabeling of the indexkey
+ */
+ if (IsA(node, RelabelType))
+ node = (Node *) ((RelabelType *) node)->arg;
+
+ Assert(indexcol >= 0 && indexcol < index->ncolumns);
+
+ if (index->indexkeys[indexcol] != 0)
+ {
+ /* It's a simple index column */
+ if (IsA(node, Var) &&
+ ((Var *) node)->varno == index->rel->relid &&
+ ((Var *) node)->varattno == index->indexkeys[indexcol])
+ {
+ result = (Var *) copyObject(node);
+ result->varno = INDEX_VAR;
+ result->varattno = indexcol + 1;
+ return (Node *) result;
+ }
+ else
+ elog(ERROR, "index key does not match expected index column");
+ }
+
+ /* It's an index expression, so find and cross-check the expression */
+ indexpr_item = list_head(index->indexprs);
+ for (pos = 0; pos < index->ncolumns; pos++)
+ {
+ if (index->indexkeys[pos] == 0)
+ {
+ if (indexpr_item == NULL)
+ elog(ERROR, "too few entries in indexprs list");
+ if (pos == indexcol)
+ {
+ Node *indexkey;
+
+ indexkey = (Node *) lfirst(indexpr_item);
+ if (indexkey && IsA(indexkey, RelabelType))
+ indexkey = (Node *) ((RelabelType *) indexkey)->arg;
+ if (equal(node, indexkey))
+ {
+ result = makeVar(INDEX_VAR, indexcol + 1,
+ exprType(lfirst(indexpr_item)), -1,
+ exprCollation(lfirst(indexpr_item)),
+ 0);
+ return (Node *) result;
+ }
+ else
+ elog(ERROR, "index key does not match expected index column");
+ }
+ indexpr_item = lnext(index->indexprs, indexpr_item);
+ }
+ }
+
+ /* Oops... */
+ elog(ERROR, "index key does not match expected index column");
+ return NULL; /* keep compiler quiet */
+}
+
+/*
+ * get_switched_clauses
+ * Given a list of merge or hash joinclauses (as RestrictInfo nodes),
+ * extract the bare clauses, and rearrange the elements within the
+ * clauses, if needed, so the outer join variable is on the left and
+ * the inner is on the right. The original clause data structure is not
+ * touched; a modified list is returned. We do, however, set the transient
+ * outer_is_left field in each RestrictInfo to show which side was which.
+ */
+static List *
+get_switched_clauses(List *clauses, Relids outerrelids)
+{
+ List *t_list = NIL;
+ ListCell *l;
+
+ foreach(l, clauses)
+ {
+ RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
+ OpExpr *clause = (OpExpr *) restrictinfo->clause;
+
+ Assert(is_opclause(clause));
+ if (bms_is_subset(restrictinfo->right_relids, outerrelids))
+ {
+ /*
+ * Duplicate just enough of the structure to allow commuting the
+ * clause without changing the original list. Could use
+ * copyObject, but a complete deep copy is overkill.
+ */
+ OpExpr *temp = makeNode(OpExpr);
+
+ temp->opno = clause->opno;
+ temp->opfuncid = InvalidOid;
+ temp->opresulttype = clause->opresulttype;
+ temp->opretset = clause->opretset;
+ temp->opcollid = clause->opcollid;
+ temp->inputcollid = clause->inputcollid;
+ temp->args = list_copy(clause->args);
+ temp->location = clause->location;
+ /* Commute it --- note this modifies the temp node in-place. */
+ CommuteOpExpr(temp);
+ t_list = lappend(t_list, temp);
+ restrictinfo->outer_is_left = false;
+ }
+ else
+ {
+ Assert(bms_is_subset(restrictinfo->left_relids, outerrelids));
+ t_list = lappend(t_list, clause);
+ restrictinfo->outer_is_left = true;
+ }
+ }
+ return t_list;
+}
+
+/*
+ * order_qual_clauses
+ * Given a list of qual clauses that will all be evaluated at the same
+ * plan node, sort the list into the order we want to check the quals
+ * in at runtime.
+ *
+ * When security barrier quals are used in the query, we may have quals with
+ * different security levels in the list. Quals of lower security_level
+ * must go before quals of higher security_level, except that we can grant
+ * exceptions to move up quals that are leakproof. When security level
+ * doesn't force the decision, we prefer to order clauses by estimated
+ * execution cost, cheapest first.
+ *
+ * Ideally the order should be driven by a combination of execution cost and
+ * selectivity, but it's not immediately clear how to account for both,
+ * and given the uncertainty of the estimates the reliability of the decisions
+ * would be doubtful anyway. So we just order by security level then
+ * estimated per-tuple cost, being careful not to change the order when
+ * (as is often the case) the estimates are identical.
+ *
+ * Although this will work on either bare clauses or RestrictInfos, it's
+ * much faster to apply it to RestrictInfos, since it can re-use cost
+ * information that is cached in RestrictInfos. XXX in the bare-clause
+ * case, we are also not able to apply security considerations. That is
+ * all right for the moment, because the bare-clause case doesn't occur
+ * anywhere that barrier quals could be present, but it would be better to
+ * get rid of it.
+ *
+ * Note: some callers pass lists that contain entries that will later be
+ * removed; this is the easiest way to let this routine see RestrictInfos
+ * instead of bare clauses. This is another reason why trying to consider
+ * selectivity in the ordering would likely do the wrong thing.
+ */
+static List *
+order_qual_clauses(PlannerInfo *root, List *clauses)
+{
+ typedef struct
+ {
+ Node *clause;
+ Cost cost;
+ Index security_level;
+ } QualItem;
+ int nitems = list_length(clauses);
+ QualItem *items;
+ ListCell *lc;
+ int i;
+ List *result;
+
+ /* No need to work hard for 0 or 1 clause */
+ if (nitems <= 1)
+ return clauses;
+
+ /*
+ * Collect the items and costs into an array. This is to avoid repeated
+ * cost_qual_eval work if the inputs aren't RestrictInfos.
+ */
+ items = (QualItem *) palloc(nitems * sizeof(QualItem));
+ i = 0;
+ foreach(lc, clauses)
+ {
+ Node *clause = (Node *) lfirst(lc);
+ QualCost qcost;
+
+ cost_qual_eval_node(&qcost, clause, root);
+ items[i].clause = clause;
+ items[i].cost = qcost.per_tuple;
+ if (IsA(clause, RestrictInfo))
+ {
+ RestrictInfo *rinfo = (RestrictInfo *) clause;
+
+ /*
+ * If a clause is leakproof, it doesn't have to be constrained by
+ * its nominal security level. If it's also reasonably cheap
+ * (here defined as 10X cpu_operator_cost), pretend it has
+ * security_level 0, which will allow it to go in front of
+ * more-expensive quals of lower security levels. Of course, that
+ * will also force it to go in front of cheaper quals of its own
+ * security level, which is not so great, but we can alleviate
+ * that risk by applying the cost limit cutoff.
+ */
+ if (rinfo->leakproof && items[i].cost < 10 * cpu_operator_cost)
+ items[i].security_level = 0;
+ else
+ items[i].security_level = rinfo->security_level;
+ }
+ else
+ items[i].security_level = 0;
+ i++;
+ }
+
+ /*
+ * Sort. We don't use qsort() because it's not guaranteed stable for
+ * equal keys. The expected number of entries is small enough that a
+ * simple insertion sort should be good enough.
+ */
+ for (i = 1; i < nitems; i++)
+ {
+ QualItem newitem = items[i];
+ int j;
+
+ /* insert newitem into the already-sorted subarray */
+ for (j = i; j > 0; j--)
+ {
+ QualItem *olditem = &items[j - 1];
+
+ if (newitem.security_level > olditem->security_level ||
+ (newitem.security_level == olditem->security_level &&
+ newitem.cost >= olditem->cost))
+ break;
+ items[j] = *olditem;
+ }
+ items[j] = newitem;
+ }
+
+ /* Convert back to a list */
+ result = NIL;
+ for (i = 0; i < nitems; i++)
+ result = lappend(result, items[i].clause);
+
+ return result;
+}
+
+/*
+ * Copy cost and size info from a Path node to the Plan node created from it.
+ * The executor usually won't use this info, but it's needed by EXPLAIN.
+ * Also copy the parallel-related flags, which the executor *will* use.
+ */
+static void
+copy_generic_path_info(Plan *dest, Path *src)
+{
+ dest->startup_cost = src->startup_cost;
+ dest->total_cost = src->total_cost;
+ dest->plan_rows = src->rows;
+ dest->plan_width = src->pathtarget->width;
+ dest->parallel_aware = src->parallel_aware;
+ dest->parallel_safe = src->parallel_safe;
+}
+
+/*
+ * Copy cost and size info from a lower plan node to an inserted node.
+ * (Most callers alter the info after copying it.)
+ */
+static void
+copy_plan_costsize(Plan *dest, Plan *src)
+{
+ dest->startup_cost = src->startup_cost;
+ dest->total_cost = src->total_cost;
+ dest->plan_rows = src->plan_rows;
+ dest->plan_width = src->plan_width;
+ /* Assume the inserted node is not parallel-aware. */
+ dest->parallel_aware = false;
+ /* Assume the inserted node is parallel-safe, if child plan is. */
+ dest->parallel_safe = src->parallel_safe;
+}
+
+/*
+ * Some places in this file build Sort nodes that don't have a directly
+ * corresponding Path node. The cost of the sort is, or should have been,
+ * included in the cost of the Path node we're working from, but since it's
+ * not split out, we have to re-figure it using cost_sort(). This is just
+ * to label the Sort node nicely for EXPLAIN.
+ *
+ * limit_tuples is as for cost_sort (in particular, pass -1 if no limit)
+ */
+static void
+label_sort_with_costsize(PlannerInfo *root, Sort *plan, double limit_tuples)
+{
+ Plan *lefttree = plan->plan.lefttree;
+ Path sort_path; /* dummy for result of cost_sort */
+
+ /*
+ * This function shouldn't have to deal with IncrementalSort plans because
+ * they are only created from corresponding Path nodes.
+ */
+ Assert(IsA(plan, Sort));
+
+ cost_sort(&sort_path, root, NIL,
+ lefttree->total_cost,
+ lefttree->plan_rows,
+ lefttree->plan_width,
+ 0.0,
+ work_mem,
+ limit_tuples);
+ plan->plan.startup_cost = sort_path.startup_cost;
+ plan->plan.total_cost = sort_path.total_cost;
+ plan->plan.plan_rows = lefttree->plan_rows;
+ plan->plan.plan_width = lefttree->plan_width;
+ plan->plan.parallel_aware = false;
+ plan->plan.parallel_safe = lefttree->parallel_safe;
+}
+
+/*
+ * bitmap_subplan_mark_shared
+ * Set isshared flag in bitmap subplan so that it will be created in
+ * shared memory.
+ */
+static void
+bitmap_subplan_mark_shared(Plan *plan)
+{
+ if (IsA(plan, BitmapAnd))
+ bitmap_subplan_mark_shared(linitial(((BitmapAnd *) plan)->bitmapplans));
+ else if (IsA(plan, BitmapOr))
+ {
+ ((BitmapOr *) plan)->isshared = true;
+ bitmap_subplan_mark_shared(linitial(((BitmapOr *) plan)->bitmapplans));
+ }
+ else if (IsA(plan, BitmapIndexScan))
+ ((BitmapIndexScan *) plan)->isshared = true;
+ else
+ elog(ERROR, "unrecognized node type: %d", nodeTag(plan));
+}
+
+/*****************************************************************************
+ *
+ * PLAN NODE BUILDING ROUTINES
+ *
+ * In general, these functions are not passed the original Path and therefore
+ * leave it to the caller to fill in the cost/width fields from the Path,
+ * typically by calling copy_generic_path_info(). This convention is
+ * somewhat historical, but it does support a few places above where we build
+ * a plan node without having an exactly corresponding Path node. Under no
+ * circumstances should one of these functions do its own cost calculations,
+ * as that would be redundant with calculations done while building Paths.
+ *
+ *****************************************************************************/
+
+static SeqScan *
+make_seqscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid)
+{
+ SeqScan *node = makeNode(SeqScan);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scanrelid = scanrelid;
+
+ return node;
+}
+
+static SampleScan *
+make_samplescan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ TableSampleClause *tsc)
+{
+ SampleScan *node = makeNode(SampleScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->tablesample = tsc;
+
+ return node;
+}
+
+static IndexScan *
+make_indexscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ Oid indexid,
+ List *indexqual,
+ List *indexqualorig,
+ List *indexorderby,
+ List *indexorderbyorig,
+ List *indexorderbyops,
+ ScanDirection indexscandir)
+{
+ IndexScan *node = makeNode(IndexScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->indexid = indexid;
+ node->indexqual = indexqual;
+ node->indexqualorig = indexqualorig;
+ node->indexorderby = indexorderby;
+ node->indexorderbyorig = indexorderbyorig;
+ node->indexorderbyops = indexorderbyops;
+ node->indexorderdir = indexscandir;
+
+ return node;
+}
+
+static IndexOnlyScan *
+make_indexonlyscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ Oid indexid,
+ List *indexqual,
+ List *recheckqual,
+ List *indexorderby,
+ List *indextlist,
+ ScanDirection indexscandir)
+{
+ IndexOnlyScan *node = makeNode(IndexOnlyScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->indexid = indexid;
+ node->indexqual = indexqual;
+ node->recheckqual = recheckqual;
+ node->indexorderby = indexorderby;
+ node->indextlist = indextlist;
+ node->indexorderdir = indexscandir;
+
+ return node;
+}
+
+static BitmapIndexScan *
+make_bitmap_indexscan(Index scanrelid,
+ Oid indexid,
+ List *indexqual,
+ List *indexqualorig)
+{
+ BitmapIndexScan *node = makeNode(BitmapIndexScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = NIL; /* not used */
+ plan->qual = NIL; /* not used */
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->indexid = indexid;
+ node->indexqual = indexqual;
+ node->indexqualorig = indexqualorig;
+
+ return node;
+}
+
+static BitmapHeapScan *
+make_bitmap_heapscan(List *qptlist,
+ List *qpqual,
+ Plan *lefttree,
+ List *bitmapqualorig,
+ Index scanrelid)
+{
+ BitmapHeapScan *node = makeNode(BitmapHeapScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->bitmapqualorig = bitmapqualorig;
+
+ return node;
+}
+
+static TidScan *
+make_tidscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ List *tidquals)
+{
+ TidScan *node = makeNode(TidScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->tidquals = tidquals;
+
+ return node;
+}
+
+static TidRangeScan *
+make_tidrangescan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ List *tidrangequals)
+{
+ TidRangeScan *node = makeNode(TidRangeScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->tidrangequals = tidrangequals;
+
+ return node;
+}
+
+static SubqueryScan *
+make_subqueryscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ Plan *subplan)
+{
+ SubqueryScan *node = makeNode(SubqueryScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->subplan = subplan;
+
+ return node;
+}
+
+static FunctionScan *
+make_functionscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ List *functions,
+ bool funcordinality)
+{
+ FunctionScan *node = makeNode(FunctionScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->functions = functions;
+ node->funcordinality = funcordinality;
+
+ return node;
+}
+
+static TableFuncScan *
+make_tablefuncscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ TableFunc *tablefunc)
+{
+ TableFuncScan *node = makeNode(TableFuncScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->tablefunc = tablefunc;
+
+ return node;
+}
+
+static ValuesScan *
+make_valuesscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ List *values_lists)
+{
+ ValuesScan *node = makeNode(ValuesScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->values_lists = values_lists;
+
+ return node;
+}
+
+static CteScan *
+make_ctescan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ int ctePlanId,
+ int cteParam)
+{
+ CteScan *node = makeNode(CteScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->ctePlanId = ctePlanId;
+ node->cteParam = cteParam;
+
+ return node;
+}
+
+static NamedTuplestoreScan *
+make_namedtuplestorescan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ char *enrname)
+{
+ NamedTuplestoreScan *node = makeNode(NamedTuplestoreScan);
+ Plan *plan = &node->scan.plan;
+
+ /* cost should be inserted by caller */
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->enrname = enrname;
+
+ return node;
+}
+
+static WorkTableScan *
+make_worktablescan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ int wtParam)
+{
+ WorkTableScan *node = makeNode(WorkTableScan);
+ Plan *plan = &node->scan.plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+ node->wtParam = wtParam;
+
+ return node;
+}
+
+ForeignScan *
+make_foreignscan(List *qptlist,
+ List *qpqual,
+ Index scanrelid,
+ List *fdw_exprs,
+ List *fdw_private,
+ List *fdw_scan_tlist,
+ List *fdw_recheck_quals,
+ Plan *outer_plan)
+{
+ ForeignScan *node = makeNode(ForeignScan);
+ Plan *plan = &node->scan.plan;
+
+ /* cost will be filled in by create_foreignscan_plan */
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = outer_plan;
+ plan->righttree = NULL;
+ node->scan.scanrelid = scanrelid;
+
+ /* these may be overridden by the FDW's PlanDirectModify callback. */
+ node->operation = CMD_SELECT;
+ node->resultRelation = 0;
+
+ /* fs_server will be filled in by create_foreignscan_plan */
+ node->fs_server = InvalidOid;
+ node->fdw_exprs = fdw_exprs;
+ node->fdw_private = fdw_private;
+ node->fdw_scan_tlist = fdw_scan_tlist;
+ node->fdw_recheck_quals = fdw_recheck_quals;
+ /* fs_relids will be filled in by create_foreignscan_plan */
+ node->fs_relids = NULL;
+ /* fsSystemCol will be filled in by create_foreignscan_plan */
+ node->fsSystemCol = false;
+
+ return node;
+}
+
+static RecursiveUnion *
+make_recursive_union(List *tlist,
+ Plan *lefttree,
+ Plan *righttree,
+ int wtParam,
+ List *distinctList,
+ long numGroups)
+{
+ RecursiveUnion *node = makeNode(RecursiveUnion);
+ Plan *plan = &node->plan;
+ int numCols = list_length(distinctList);
+
+ plan->targetlist = tlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = righttree;
+ node->wtParam = wtParam;
+
+ /*
+ * convert SortGroupClause list into arrays of attr indexes and equality
+ * operators, as wanted by executor
+ */
+ node->numCols = numCols;
+ if (numCols > 0)
+ {
+ int keyno = 0;
+ AttrNumber *dupColIdx;
+ Oid *dupOperators;
+ Oid *dupCollations;
+ ListCell *slitem;
+
+ dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
+ dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
+ dupCollations = (Oid *) palloc(sizeof(Oid) * numCols);
+
+ foreach(slitem, distinctList)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
+ TargetEntry *tle = get_sortgroupclause_tle(sortcl,
+ plan->targetlist);
+
+ dupColIdx[keyno] = tle->resno;
+ dupOperators[keyno] = sortcl->eqop;
+ dupCollations[keyno] = exprCollation((Node *) tle->expr);
+ Assert(OidIsValid(dupOperators[keyno]));
+ keyno++;
+ }
+ node->dupColIdx = dupColIdx;
+ node->dupOperators = dupOperators;
+ node->dupCollations = dupCollations;
+ }
+ node->numGroups = numGroups;
+
+ return node;
+}
+
+static BitmapAnd *
+make_bitmap_and(List *bitmapplans)
+{
+ BitmapAnd *node = makeNode(BitmapAnd);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = NIL;
+ plan->qual = NIL;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->bitmapplans = bitmapplans;
+
+ return node;
+}
+
+static BitmapOr *
+make_bitmap_or(List *bitmapplans)
+{
+ BitmapOr *node = makeNode(BitmapOr);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = NIL;
+ plan->qual = NIL;
+ plan->lefttree = NULL;
+ plan->righttree = NULL;
+ node->bitmapplans = bitmapplans;
+
+ return node;
+}
+
+static NestLoop *
+make_nestloop(List *tlist,
+ List *joinclauses,
+ List *otherclauses,
+ List *nestParams,
+ Plan *lefttree,
+ Plan *righttree,
+ JoinType jointype,
+ bool inner_unique)
+{
+ NestLoop *node = makeNode(NestLoop);
+ Plan *plan = &node->join.plan;
+
+ plan->targetlist = tlist;
+ plan->qual = otherclauses;
+ plan->lefttree = lefttree;
+ plan->righttree = righttree;
+ node->join.jointype = jointype;
+ node->join.inner_unique = inner_unique;
+ node->join.joinqual = joinclauses;
+ node->nestParams = nestParams;
+
+ return node;
+}
+
+static HashJoin *
+make_hashjoin(List *tlist,
+ List *joinclauses,
+ List *otherclauses,
+ List *hashclauses,
+ List *hashoperators,
+ List *hashcollations,
+ List *hashkeys,
+ Plan *lefttree,
+ Plan *righttree,
+ JoinType jointype,
+ bool inner_unique)
+{
+ HashJoin *node = makeNode(HashJoin);
+ Plan *plan = &node->join.plan;
+
+ plan->targetlist = tlist;
+ plan->qual = otherclauses;
+ plan->lefttree = lefttree;
+ plan->righttree = righttree;
+ node->hashclauses = hashclauses;
+ node->hashoperators = hashoperators;
+ node->hashcollations = hashcollations;
+ node->hashkeys = hashkeys;
+ node->join.jointype = jointype;
+ node->join.inner_unique = inner_unique;
+ node->join.joinqual = joinclauses;
+
+ return node;
+}
+
+static Hash *
+make_hash(Plan *lefttree,
+ List *hashkeys,
+ Oid skewTable,
+ AttrNumber skewColumn,
+ bool skewInherit)
+{
+ Hash *node = makeNode(Hash);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ node->hashkeys = hashkeys;
+ node->skewTable = skewTable;
+ node->skewColumn = skewColumn;
+ node->skewInherit = skewInherit;
+
+ return node;
+}
+
+static MergeJoin *
+make_mergejoin(List *tlist,
+ List *joinclauses,
+ List *otherclauses,
+ List *mergeclauses,
+ Oid *mergefamilies,
+ Oid *mergecollations,
+ int *mergestrategies,
+ bool *mergenullsfirst,
+ Plan *lefttree,
+ Plan *righttree,
+ JoinType jointype,
+ bool inner_unique,
+ bool skip_mark_restore)
+{
+ MergeJoin *node = makeNode(MergeJoin);
+ Plan *plan = &node->join.plan;
+
+ plan->targetlist = tlist;
+ plan->qual = otherclauses;
+ plan->lefttree = lefttree;
+ plan->righttree = righttree;
+ node->skip_mark_restore = skip_mark_restore;
+ node->mergeclauses = mergeclauses;
+ node->mergeFamilies = mergefamilies;
+ node->mergeCollations = mergecollations;
+ node->mergeStrategies = mergestrategies;
+ node->mergeNullsFirst = mergenullsfirst;
+ node->join.jointype = jointype;
+ node->join.inner_unique = inner_unique;
+ node->join.joinqual = joinclauses;
+
+ return node;
+}
+
+/*
+ * make_sort --- basic routine to build a Sort plan node
+ *
+ * Caller must have built the sortColIdx, sortOperators, collations, and
+ * nullsFirst arrays already.
+ */
+static Sort *
+make_sort(Plan *lefttree, int numCols,
+ AttrNumber *sortColIdx, Oid *sortOperators,
+ Oid *collations, bool *nullsFirst)
+{
+ Sort *node;
+ Plan *plan;
+
+ node = makeNode(Sort);
+
+ plan = &node->plan;
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+ node->numCols = numCols;
+ node->sortColIdx = sortColIdx;
+ node->sortOperators = sortOperators;
+ node->collations = collations;
+ node->nullsFirst = nullsFirst;
+
+ return node;
+}
+
+/*
+ * make_incrementalsort --- basic routine to build an IncrementalSort plan node
+ *
+ * Caller must have built the sortColIdx, sortOperators, collations, and
+ * nullsFirst arrays already.
+ */
+static IncrementalSort *
+make_incrementalsort(Plan *lefttree, int numCols, int nPresortedCols,
+ AttrNumber *sortColIdx, Oid *sortOperators,
+ Oid *collations, bool *nullsFirst)
+{
+ IncrementalSort *node;
+ Plan *plan;
+
+ node = makeNode(IncrementalSort);
+
+ plan = &node->sort.plan;
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+ node->nPresortedCols = nPresortedCols;
+ node->sort.numCols = numCols;
+ node->sort.sortColIdx = sortColIdx;
+ node->sort.sortOperators = sortOperators;
+ node->sort.collations = collations;
+ node->sort.nullsFirst = nullsFirst;
+
+ return node;
+}
+
+/*
+ * prepare_sort_from_pathkeys
+ * Prepare to sort according to given pathkeys
+ *
+ * This is used to set up for Sort, MergeAppend, and Gather Merge nodes. It
+ * calculates the executor's representation of the sort key information, and
+ * adjusts the plan targetlist if needed to add resjunk sort columns.
+ *
+ * Input parameters:
+ * 'lefttree' is the plan node which yields input tuples
+ * 'pathkeys' is the list of pathkeys by which the result is to be sorted
+ * 'relids' identifies the child relation being sorted, if any
+ * 'reqColIdx' is NULL or an array of required sort key column numbers
+ * 'adjust_tlist_in_place' is true if lefttree must be modified in-place
+ *
+ * We must convert the pathkey information into arrays of sort key column
+ * numbers, sort operator OIDs, collation OIDs, and nulls-first flags,
+ * which is the representation the executor wants. These are returned into
+ * the output parameters *p_numsortkeys etc.
+ *
+ * When looking for matches to an EquivalenceClass's members, we will only
+ * consider child EC members if they belong to given 'relids'. This protects
+ * against possible incorrect matches to child expressions that contain no
+ * Vars.
+ *
+ * If reqColIdx isn't NULL then it contains sort key column numbers that
+ * we should match. This is used when making child plans for a MergeAppend;
+ * it's an error if we can't match the columns.
+ *
+ * If the pathkeys include expressions that aren't simple Vars, we will
+ * usually need to add resjunk items to the input plan's targetlist to
+ * compute these expressions, since a Sort or MergeAppend node itself won't
+ * do any such calculations. If the input plan type isn't one that can do
+ * projections, this means adding a Result node just to do the projection.
+ * However, the caller can pass adjust_tlist_in_place = true to force the
+ * lefttree tlist to be modified in-place regardless of whether the node type
+ * can project --- we use this for fixing the tlist of MergeAppend itself.
+ *
+ * Returns the node which is to be the input to the Sort (either lefttree,
+ * or a Result stacked atop lefttree).
+ */
+static Plan *
+prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
+ Relids relids,
+ const AttrNumber *reqColIdx,
+ bool adjust_tlist_in_place,
+ int *p_numsortkeys,
+ AttrNumber **p_sortColIdx,
+ Oid **p_sortOperators,
+ Oid **p_collations,
+ bool **p_nullsFirst)
+{
+ List *tlist = lefttree->targetlist;
+ ListCell *i;
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /*
+ * We will need at most list_length(pathkeys) sort columns; possibly less
+ */
+ numsortkeys = list_length(pathkeys);
+ sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
+ sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
+
+ numsortkeys = 0;
+
+ foreach(i, pathkeys)
+ {
+ PathKey *pathkey = (PathKey *) lfirst(i);
+ EquivalenceClass *ec = pathkey->pk_eclass;
+ EquivalenceMember *em;
+ TargetEntry *tle = NULL;
+ Oid pk_datatype = InvalidOid;
+ Oid sortop;
+ ListCell *j;
+
+ if (ec->ec_has_volatile)
+ {
+ /*
+ * If the pathkey's EquivalenceClass is volatile, then it must
+ * have come from an ORDER BY clause, and we have to match it to
+ * that same targetlist entry.
+ */
+ if (ec->ec_sortref == 0) /* can't happen */
+ elog(ERROR, "volatile EquivalenceClass has no sortref");
+ tle = get_sortgroupref_tle(ec->ec_sortref, tlist);
+ Assert(tle);
+ Assert(list_length(ec->ec_members) == 1);
+ pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
+ }
+ else if (reqColIdx != NULL)
+ {
+ /*
+ * If we are given a sort column number to match, only consider
+ * the single TLE at that position. It's possible that there is
+ * no such TLE, in which case fall through and generate a resjunk
+ * targetentry (we assume this must have happened in the parent
+ * plan as well). If there is a TLE but it doesn't match the
+ * pathkey's EC, we do the same, which is probably the wrong thing
+ * but we'll leave it to caller to complain about the mismatch.
+ */
+ tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]);
+ if (tle)
+ {
+ em = find_ec_member_matching_expr(ec, tle->expr, relids);
+ if (em)
+ {
+ /* found expr at right place in tlist */
+ pk_datatype = em->em_datatype;
+ }
+ else
+ tle = NULL;
+ }
+ }
+ else
+ {
+ /*
+ * Otherwise, we can sort by any non-constant expression listed in
+ * the pathkey's EquivalenceClass. For now, we take the first
+ * tlist item found in the EC. If there's no match, we'll generate
+ * a resjunk entry using the first EC member that is an expression
+ * in the input's vars. (The non-const restriction only matters
+ * if the EC is below_outer_join; but if it isn't, it won't
+ * contain consts anyway, else we'd have discarded the pathkey as
+ * redundant.)
+ *
+ * XXX if we have a choice, is there any way of figuring out which
+ * might be cheapest to execute? (For example, int4lt is likely
+ * much cheaper to execute than numericlt, but both might appear
+ * in the same equivalence class...) Not clear that we ever will
+ * have an interesting choice in practice, so it may not matter.
+ */
+ foreach(j, tlist)
+ {
+ tle = (TargetEntry *) lfirst(j);
+ em = find_ec_member_matching_expr(ec, tle->expr, relids);
+ if (em)
+ {
+ /* found expr already in tlist */
+ pk_datatype = em->em_datatype;
+ break;
+ }
+ tle = NULL;
+ }
+ }
+
+ if (!tle)
+ {
+ /*
+ * No matching tlist item; look for a computable expression.
+ */
+ em = find_computable_ec_member(NULL, ec, tlist, relids, false);
+ if (!em)
+ elog(ERROR, "could not find pathkey item to sort");
+ pk_datatype = em->em_datatype;
+
+ /*
+ * Do we need to insert a Result node?
+ */
+ if (!adjust_tlist_in_place &&
+ !is_projection_capable_plan(lefttree))
+ {
+ /* copy needed so we don't modify input's tlist below */
+ tlist = copyObject(tlist);
+ lefttree = inject_projection_plan(lefttree, tlist,
+ lefttree->parallel_safe);
+ }
+
+ /* Don't bother testing is_projection_capable_plan again */
+ adjust_tlist_in_place = true;
+
+ /*
+ * Add resjunk entry to input's tlist
+ */
+ tle = makeTargetEntry(copyObject(em->em_expr),
+ list_length(tlist) + 1,
+ NULL,
+ true);
+ tlist = lappend(tlist, tle);
+ lefttree->targetlist = tlist; /* just in case NIL before */
+ }
+
+ /*
+ * Look up the correct sort operator from the PathKey's slightly
+ * abstracted representation.
+ */
+ sortop = get_opfamily_member(pathkey->pk_opfamily,
+ pk_datatype,
+ pk_datatype,
+ pathkey->pk_strategy);
+ if (!OidIsValid(sortop)) /* should not happen */
+ elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
+ pathkey->pk_strategy, pk_datatype, pk_datatype,
+ pathkey->pk_opfamily);
+
+ /* Add the column to the sort arrays */
+ sortColIdx[numsortkeys] = tle->resno;
+ sortOperators[numsortkeys] = sortop;
+ collations[numsortkeys] = ec->ec_collation;
+ nullsFirst[numsortkeys] = pathkey->pk_nulls_first;
+ numsortkeys++;
+ }
+
+ /* Return results */
+ *p_numsortkeys = numsortkeys;
+ *p_sortColIdx = sortColIdx;
+ *p_sortOperators = sortOperators;
+ *p_collations = collations;
+ *p_nullsFirst = nullsFirst;
+
+ return lefttree;
+}
+
+/*
+ * make_sort_from_pathkeys
+ * Create sort plan to sort according to given pathkeys
+ *
+ * 'lefttree' is the node which yields input tuples
+ * 'pathkeys' is the list of pathkeys by which the result is to be sorted
+ * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
+ */
+static Sort *
+make_sort_from_pathkeys(Plan *lefttree, List *pathkeys, Relids relids)
+{
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /* Compute sort column info, and adjust lefttree as needed */
+ lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
+ relids,
+ NULL,
+ false,
+ &numsortkeys,
+ &sortColIdx,
+ &sortOperators,
+ &collations,
+ &nullsFirst);
+
+ /* Now build the Sort node */
+ return make_sort(lefttree, numsortkeys,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+}
+
+/*
+ * make_incrementalsort_from_pathkeys
+ * Create sort plan to sort according to given pathkeys
+ *
+ * 'lefttree' is the node which yields input tuples
+ * 'pathkeys' is the list of pathkeys by which the result is to be sorted
+ * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
+ * 'nPresortedCols' is the number of presorted columns in input tuples
+ */
+static IncrementalSort *
+make_incrementalsort_from_pathkeys(Plan *lefttree, List *pathkeys,
+ Relids relids, int nPresortedCols)
+{
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /* Compute sort column info, and adjust lefttree as needed */
+ lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
+ relids,
+ NULL,
+ false,
+ &numsortkeys,
+ &sortColIdx,
+ &sortOperators,
+ &collations,
+ &nullsFirst);
+
+ /* Now build the Sort node */
+ return make_incrementalsort(lefttree, numsortkeys, nPresortedCols,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+}
+
+/*
+ * make_sort_from_sortclauses
+ * Create sort plan to sort according to given sortclauses
+ *
+ * 'sortcls' is a list of SortGroupClauses
+ * 'lefttree' is the node which yields input tuples
+ */
+Sort *
+make_sort_from_sortclauses(List *sortcls, Plan *lefttree)
+{
+ List *sub_tlist = lefttree->targetlist;
+ ListCell *l;
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /* Convert list-ish representation to arrays wanted by executor */
+ numsortkeys = list_length(sortcls);
+ sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
+ sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
+
+ numsortkeys = 0;
+ foreach(l, sortcls)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
+ TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
+
+ sortColIdx[numsortkeys] = tle->resno;
+ sortOperators[numsortkeys] = sortcl->sortop;
+ collations[numsortkeys] = exprCollation((Node *) tle->expr);
+ nullsFirst[numsortkeys] = sortcl->nulls_first;
+ numsortkeys++;
+ }
+
+ return make_sort(lefttree, numsortkeys,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+}
+
+/*
+ * make_sort_from_groupcols
+ * Create sort plan to sort based on grouping columns
+ *
+ * 'groupcls' is the list of SortGroupClauses
+ * 'grpColIdx' gives the column numbers to use
+ *
+ * This might look like it could be merged with make_sort_from_sortclauses,
+ * but presently we *must* use the grpColIdx[] array to locate sort columns,
+ * because the child plan's tlist is not marked with ressortgroupref info
+ * appropriate to the grouping node. So, only the sort ordering info
+ * is used from the SortGroupClause entries.
+ */
+static Sort *
+make_sort_from_groupcols(List *groupcls,
+ AttrNumber *grpColIdx,
+ Plan *lefttree)
+{
+ List *sub_tlist = lefttree->targetlist;
+ ListCell *l;
+ int numsortkeys;
+ AttrNumber *sortColIdx;
+ Oid *sortOperators;
+ Oid *collations;
+ bool *nullsFirst;
+
+ /* Convert list-ish representation to arrays wanted by executor */
+ numsortkeys = list_length(groupcls);
+ sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
+ sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
+ nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
+
+ numsortkeys = 0;
+ foreach(l, groupcls)
+ {
+ SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
+ TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]);
+
+ if (!tle)
+ elog(ERROR, "could not retrieve tle for sort-from-groupcols");
+
+ sortColIdx[numsortkeys] = tle->resno;
+ sortOperators[numsortkeys] = grpcl->sortop;
+ collations[numsortkeys] = exprCollation((Node *) tle->expr);
+ nullsFirst[numsortkeys] = grpcl->nulls_first;
+ numsortkeys++;
+ }
+
+ return make_sort(lefttree, numsortkeys,
+ sortColIdx, sortOperators,
+ collations, nullsFirst);
+}
+
+static Material *
+make_material(Plan *lefttree)
+{
+ Material *node = makeNode(Material);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ return node;
+}
+
+/*
+ * materialize_finished_plan: stick a Material node atop a completed plan
+ *
+ * There are a couple of places where we want to attach a Material node
+ * after completion of create_plan(), without any MaterialPath path.
+ * Those places should probably be refactored someday to do this on the
+ * Path representation, but it's not worth the trouble yet.
+ */
+Plan *
+materialize_finished_plan(Plan *subplan)
+{
+ Plan *matplan;
+ Path matpath; /* dummy for result of cost_material */
+
+ matplan = (Plan *) make_material(subplan);
+
+ /*
+ * XXX horrid kluge: if there are any initPlans attached to the subplan,
+ * move them up to the Material node, which is now effectively the top
+ * plan node in its query level. This prevents failure in
+ * SS_finalize_plan(), which see for comments. We don't bother adjusting
+ * the subplan's cost estimate for this.
+ */
+ matplan->initPlan = subplan->initPlan;
+ subplan->initPlan = NIL;
+
+ /* Set cost data */
+ cost_material(&matpath,
+ subplan->startup_cost,
+ subplan->total_cost,
+ subplan->plan_rows,
+ subplan->plan_width);
+ matplan->startup_cost = matpath.startup_cost;
+ matplan->total_cost = matpath.total_cost;
+ matplan->plan_rows = subplan->plan_rows;
+ matplan->plan_width = subplan->plan_width;
+ matplan->parallel_aware = false;
+ matplan->parallel_safe = subplan->parallel_safe;
+
+ return matplan;
+}
+
+static Memoize *
+make_memoize(Plan *lefttree, Oid *hashoperators, Oid *collations,
+ List *param_exprs, bool singlerow, bool binary_mode,
+ uint32 est_entries, Bitmapset *keyparamids)
+{
+ Memoize *node = makeNode(Memoize);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ node->numKeys = list_length(param_exprs);
+ node->hashOperators = hashoperators;
+ node->collations = collations;
+ node->param_exprs = param_exprs;
+ node->singlerow = singlerow;
+ node->binary_mode = binary_mode;
+ node->est_entries = est_entries;
+ node->keyparamids = keyparamids;
+
+ return node;
+}
+
+Agg *
+make_agg(List *tlist, List *qual,
+ AggStrategy aggstrategy, AggSplit aggsplit,
+ int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
+ List *groupingSets, List *chain, double dNumGroups,
+ Size transitionSpace, Plan *lefttree)
+{
+ Agg *node = makeNode(Agg);
+ Plan *plan = &node->plan;
+ long numGroups;
+
+ /* Reduce to long, but 'ware overflow! */
+ numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
+
+ node->aggstrategy = aggstrategy;
+ node->aggsplit = aggsplit;
+ node->numCols = numGroupCols;
+ node->grpColIdx = grpColIdx;
+ node->grpOperators = grpOperators;
+ node->grpCollations = grpCollations;
+ node->numGroups = numGroups;
+ node->transitionSpace = transitionSpace;
+ node->aggParams = NULL; /* SS_finalize_plan() will fill this */
+ node->groupingSets = groupingSets;
+ node->chain = chain;
+
+ plan->qual = qual;
+ plan->targetlist = tlist;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ return node;
+}
+
+static WindowAgg *
+make_windowagg(List *tlist, Index winref,
+ int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
+ int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
+ int frameOptions, Node *startOffset, Node *endOffset,
+ Oid startInRangeFunc, Oid endInRangeFunc,
+ Oid inRangeColl, bool inRangeAsc, bool inRangeNullsFirst,
+ Plan *lefttree)
+{
+ WindowAgg *node = makeNode(WindowAgg);
+ Plan *plan = &node->plan;
+
+ node->winref = winref;
+ node->partNumCols = partNumCols;
+ node->partColIdx = partColIdx;
+ node->partOperators = partOperators;
+ node->partCollations = partCollations;
+ node->ordNumCols = ordNumCols;
+ node->ordColIdx = ordColIdx;
+ node->ordOperators = ordOperators;
+ node->ordCollations = ordCollations;
+ node->frameOptions = frameOptions;
+ node->startOffset = startOffset;
+ node->endOffset = endOffset;
+ node->startInRangeFunc = startInRangeFunc;
+ node->endInRangeFunc = endInRangeFunc;
+ node->inRangeColl = inRangeColl;
+ node->inRangeAsc = inRangeAsc;
+ node->inRangeNullsFirst = inRangeNullsFirst;
+
+ plan->targetlist = tlist;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+ /* WindowAgg nodes never have a qual clause */
+ plan->qual = NIL;
+
+ return node;
+}
+
+static Group *
+make_group(List *tlist,
+ List *qual,
+ int numGroupCols,
+ AttrNumber *grpColIdx,
+ Oid *grpOperators,
+ Oid *grpCollations,
+ Plan *lefttree)
+{
+ Group *node = makeNode(Group);
+ Plan *plan = &node->plan;
+
+ node->numCols = numGroupCols;
+ node->grpColIdx = grpColIdx;
+ node->grpOperators = grpOperators;
+ node->grpCollations = grpCollations;
+
+ plan->qual = qual;
+ plan->targetlist = tlist;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ return node;
+}
+
+/*
+ * distinctList is a list of SortGroupClauses, identifying the targetlist items
+ * that should be considered by the Unique filter. The input path must
+ * already be sorted accordingly.
+ */
+static Unique *
+make_unique_from_sortclauses(Plan *lefttree, List *distinctList)
+{
+ Unique *node = makeNode(Unique);
+ Plan *plan = &node->plan;
+ int numCols = list_length(distinctList);
+ int keyno = 0;
+ AttrNumber *uniqColIdx;
+ Oid *uniqOperators;
+ Oid *uniqCollations;
+ ListCell *slitem;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ /*
+ * convert SortGroupClause list into arrays of attr indexes and equality
+ * operators, as wanted by executor
+ */
+ Assert(numCols > 0);
+ uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
+ uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
+ uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);
+
+ foreach(slitem, distinctList)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
+ TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
+
+ uniqColIdx[keyno] = tle->resno;
+ uniqOperators[keyno] = sortcl->eqop;
+ uniqCollations[keyno] = exprCollation((Node *) tle->expr);
+ Assert(OidIsValid(uniqOperators[keyno]));
+ keyno++;
+ }
+
+ node->numCols = numCols;
+ node->uniqColIdx = uniqColIdx;
+ node->uniqOperators = uniqOperators;
+ node->uniqCollations = uniqCollations;
+
+ return node;
+}
+
+/*
+ * as above, but use pathkeys to identify the sort columns and semantics
+ */
+static Unique *
+make_unique_from_pathkeys(Plan *lefttree, List *pathkeys, int numCols)
+{
+ Unique *node = makeNode(Unique);
+ Plan *plan = &node->plan;
+ int keyno = 0;
+ AttrNumber *uniqColIdx;
+ Oid *uniqOperators;
+ Oid *uniqCollations;
+ ListCell *lc;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ /*
+ * Convert pathkeys list into arrays of attr indexes and equality
+ * operators, as wanted by executor. This has a lot in common with
+ * prepare_sort_from_pathkeys ... maybe unify sometime?
+ */
+ Assert(numCols >= 0 && numCols <= list_length(pathkeys));
+ uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
+ uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
+ uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);
+
+ foreach(lc, pathkeys)
+ {
+ PathKey *pathkey = (PathKey *) lfirst(lc);
+ EquivalenceClass *ec = pathkey->pk_eclass;
+ EquivalenceMember *em;
+ TargetEntry *tle = NULL;
+ Oid pk_datatype = InvalidOid;
+ Oid eqop;
+ ListCell *j;
+
+ /* Ignore pathkeys beyond the specified number of columns */
+ if (keyno >= numCols)
+ break;
+
+ if (ec->ec_has_volatile)
+ {
+ /*
+ * If the pathkey's EquivalenceClass is volatile, then it must
+ * have come from an ORDER BY clause, and we have to match it to
+ * that same targetlist entry.
+ */
+ if (ec->ec_sortref == 0) /* can't happen */
+ elog(ERROR, "volatile EquivalenceClass has no sortref");
+ tle = get_sortgroupref_tle(ec->ec_sortref, plan->targetlist);
+ Assert(tle);
+ Assert(list_length(ec->ec_members) == 1);
+ pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
+ }
+ else
+ {
+ /*
+ * Otherwise, we can use any non-constant expression listed in the
+ * pathkey's EquivalenceClass. For now, we take the first tlist
+ * item found in the EC.
+ */
+ foreach(j, plan->targetlist)
+ {
+ tle = (TargetEntry *) lfirst(j);
+ em = find_ec_member_matching_expr(ec, tle->expr, NULL);
+ if (em)
+ {
+ /* found expr already in tlist */
+ pk_datatype = em->em_datatype;
+ break;
+ }
+ tle = NULL;
+ }
+ }
+
+ if (!tle)
+ elog(ERROR, "could not find pathkey item to sort");
+
+ /*
+ * Look up the correct equality operator from the PathKey's slightly
+ * abstracted representation.
+ */
+ eqop = get_opfamily_member(pathkey->pk_opfamily,
+ pk_datatype,
+ pk_datatype,
+ BTEqualStrategyNumber);
+ if (!OidIsValid(eqop)) /* should not happen */
+ elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
+ BTEqualStrategyNumber, pk_datatype, pk_datatype,
+ pathkey->pk_opfamily);
+
+ uniqColIdx[keyno] = tle->resno;
+ uniqOperators[keyno] = eqop;
+ uniqCollations[keyno] = ec->ec_collation;
+
+ keyno++;
+ }
+
+ node->numCols = numCols;
+ node->uniqColIdx = uniqColIdx;
+ node->uniqOperators = uniqOperators;
+ node->uniqCollations = uniqCollations;
+
+ return node;
+}
+
+static Gather *
+make_gather(List *qptlist,
+ List *qpqual,
+ int nworkers,
+ int rescan_param,
+ bool single_copy,
+ Plan *subplan)
+{
+ Gather *node = makeNode(Gather);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = qptlist;
+ plan->qual = qpqual;
+ plan->lefttree = subplan;
+ plan->righttree = NULL;
+ node->num_workers = nworkers;
+ node->rescan_param = rescan_param;
+ node->single_copy = single_copy;
+ node->invisible = false;
+ node->initParam = NULL;
+
+ return node;
+}
+
+/*
+ * distinctList is a list of SortGroupClauses, identifying the targetlist
+ * items that should be considered by the SetOp filter. The input path must
+ * already be sorted accordingly.
+ */
+static SetOp *
+make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree,
+ List *distinctList, AttrNumber flagColIdx, int firstFlag,
+ long numGroups)
+{
+ SetOp *node = makeNode(SetOp);
+ Plan *plan = &node->plan;
+ int numCols = list_length(distinctList);
+ int keyno = 0;
+ AttrNumber *dupColIdx;
+ Oid *dupOperators;
+ Oid *dupCollations;
+ ListCell *slitem;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ /*
+ * convert SortGroupClause list into arrays of attr indexes and equality
+ * operators, as wanted by executor
+ */
+ dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
+ dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
+ dupCollations = (Oid *) palloc(sizeof(Oid) * numCols);
+
+ foreach(slitem, distinctList)
+ {
+ SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
+ TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
+
+ dupColIdx[keyno] = tle->resno;
+ dupOperators[keyno] = sortcl->eqop;
+ dupCollations[keyno] = exprCollation((Node *) tle->expr);
+ Assert(OidIsValid(dupOperators[keyno]));
+ keyno++;
+ }
+
+ node->cmd = cmd;
+ node->strategy = strategy;
+ node->numCols = numCols;
+ node->dupColIdx = dupColIdx;
+ node->dupOperators = dupOperators;
+ node->dupCollations = dupCollations;
+ node->flagColIdx = flagColIdx;
+ node->firstFlag = firstFlag;
+ node->numGroups = numGroups;
+
+ return node;
+}
+
+/*
+ * make_lockrows
+ * Build a LockRows plan node
+ */
+static LockRows *
+make_lockrows(Plan *lefttree, List *rowMarks, int epqParam)
+{
+ LockRows *node = makeNode(LockRows);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ node->rowMarks = rowMarks;
+ node->epqParam = epqParam;
+
+ return node;
+}
+
+/*
+ * make_limit
+ * Build a Limit plan node
+ */
+Limit *
+make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount,
+ LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx,
+ Oid *uniqOperators, Oid *uniqCollations)
+{
+ Limit *node = makeNode(Limit);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = lefttree->targetlist;
+ plan->qual = NIL;
+ plan->lefttree = lefttree;
+ plan->righttree = NULL;
+
+ node->limitOffset = limitOffset;
+ node->limitCount = limitCount;
+ node->limitOption = limitOption;
+ node->uniqNumCols = uniqNumCols;
+ node->uniqColIdx = uniqColIdx;
+ node->uniqOperators = uniqOperators;
+ node->uniqCollations = uniqCollations;
+
+ return node;
+}
+
+/*
+ * make_result
+ * Build a Result plan node
+ */
+static Result *
+make_result(List *tlist,
+ Node *resconstantqual,
+ Plan *subplan)
+{
+ Result *node = makeNode(Result);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = tlist;
+ plan->qual = NIL;
+ plan->lefttree = subplan;
+ plan->righttree = NULL;
+ node->resconstantqual = resconstantqual;
+
+ return node;
+}
+
+/*
+ * make_project_set
+ * Build a ProjectSet plan node
+ */
+static ProjectSet *
+make_project_set(List *tlist,
+ Plan *subplan)
+{
+ ProjectSet *node = makeNode(ProjectSet);
+ Plan *plan = &node->plan;
+
+ plan->targetlist = tlist;
+ plan->qual = NIL;
+ plan->lefttree = subplan;
+ plan->righttree = NULL;
+
+ return node;
+}
+
+/*
+ * make_modifytable
+ * Build a ModifyTable plan node
+ */
+static ModifyTable *
+make_modifytable(PlannerInfo *root, Plan *subplan,
+ CmdType operation, bool canSetTag,
+ Index nominalRelation, Index rootRelation,
+ bool partColsUpdated,
+ List *resultRelations,
+ List *updateColnosLists,
+ List *withCheckOptionLists, List *returningLists,
+ List *rowMarks, OnConflictExpr *onconflict, int epqParam)
+{
+ ModifyTable *node = makeNode(ModifyTable);
+ List *fdw_private_list;
+ Bitmapset *direct_modify_plans;
+ ListCell *lc;
+ int i;
+
+ Assert(operation == CMD_UPDATE ?
+ list_length(resultRelations) == list_length(updateColnosLists) :
+ updateColnosLists == NIL);
+ Assert(withCheckOptionLists == NIL ||
+ list_length(resultRelations) == list_length(withCheckOptionLists));
+ Assert(returningLists == NIL ||
+ list_length(resultRelations) == list_length(returningLists));
+
+ node->plan.lefttree = subplan;
+ node->plan.righttree = NULL;
+ node->plan.qual = NIL;
+ /* setrefs.c will fill in the targetlist, if needed */
+ node->plan.targetlist = NIL;
+
+ node->operation = operation;
+ node->canSetTag = canSetTag;
+ node->nominalRelation = nominalRelation;
+ node->rootRelation = rootRelation;
+ node->partColsUpdated = partColsUpdated;
+ node->resultRelations = resultRelations;
+ if (!onconflict)
+ {
+ node->onConflictAction = ONCONFLICT_NONE;
+ node->onConflictSet = NIL;
+ node->onConflictCols = NIL;
+ node->onConflictWhere = NULL;
+ node->arbiterIndexes = NIL;
+ node->exclRelRTI = 0;
+ node->exclRelTlist = NIL;
+ }
+ else
+ {
+ node->onConflictAction = onconflict->action;
+
+ /*
+ * Here we convert the ON CONFLICT UPDATE tlist, if any, to the
+ * executor's convention of having consecutive resno's. The actual
+ * target column numbers are saved in node->onConflictCols. (This
+ * could be done earlier, but there seems no need to.)
+ */
+ node->onConflictSet = onconflict->onConflictSet;
+ node->onConflictCols =
+ extract_update_targetlist_colnos(node->onConflictSet);
+ node->onConflictWhere = onconflict->onConflictWhere;
+
+ /*
+ * If a set of unique index inference elements was provided (an
+ * INSERT...ON CONFLICT "inference specification"), then infer
+ * appropriate unique indexes (or throw an error if none are
+ * available).
+ */
+ node->arbiterIndexes = infer_arbiter_indexes(root);
+
+ node->exclRelRTI = onconflict->exclRelIndex;
+ node->exclRelTlist = onconflict->exclRelTlist;
+ }
+ node->updateColnosLists = updateColnosLists;
+ node->withCheckOptionLists = withCheckOptionLists;
+ node->returningLists = returningLists;
+ node->rowMarks = rowMarks;
+ node->epqParam = epqParam;
+
+ /*
+ * For each result relation that is a foreign table, allow the FDW to
+ * construct private plan data, and accumulate it all into a list.
+ */
+ fdw_private_list = NIL;
+ direct_modify_plans = NULL;
+ i = 0;
+ foreach(lc, resultRelations)
+ {
+ Index rti = lfirst_int(lc);
+ FdwRoutine *fdwroutine;
+ List *fdw_private;
+ bool direct_modify;
+
+ /*
+ * If possible, we want to get the FdwRoutine from our RelOptInfo for
+ * the table. But sometimes we don't have a RelOptInfo and must get
+ * it the hard way. (In INSERT, the target relation is not scanned,
+ * so it's not a baserel; and there are also corner cases for
+ * updatable views where the target rel isn't a baserel.)
+ */
+ if (rti < root->simple_rel_array_size &&
+ root->simple_rel_array[rti] != NULL)
+ {
+ RelOptInfo *resultRel = root->simple_rel_array[rti];
+
+ fdwroutine = resultRel->fdwroutine;
+ }
+ else
+ {
+ RangeTblEntry *rte = planner_rt_fetch(rti, root);
+
+ Assert(rte->rtekind == RTE_RELATION);
+ if (rte->relkind == RELKIND_FOREIGN_TABLE)
+ fdwroutine = GetFdwRoutineByRelId(rte->relid);
+ else
+ fdwroutine = NULL;
+ }
+
+ /*
+ * Try to modify the foreign table directly if (1) the FDW provides
+ * callback functions needed for that and (2) there are no local
+ * structures that need to be run for each modified row: row-level
+ * triggers on the foreign table, stored generated columns, WITH CHECK
+ * OPTIONs from parent views.
+ */
+ direct_modify = false;
+ if (fdwroutine != NULL &&
+ fdwroutine->PlanDirectModify != NULL &&
+ fdwroutine->BeginDirectModify != NULL &&
+ fdwroutine->IterateDirectModify != NULL &&
+ fdwroutine->EndDirectModify != NULL &&
+ withCheckOptionLists == NIL &&
+ !has_row_triggers(root, rti, operation) &&
+ !has_stored_generated_columns(root, rti))
+ direct_modify = fdwroutine->PlanDirectModify(root, node, rti, i);
+ if (direct_modify)
+ direct_modify_plans = bms_add_member(direct_modify_plans, i);
+
+ if (!direct_modify &&
+ fdwroutine != NULL &&
+ fdwroutine->PlanForeignModify != NULL)
+ fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i);
+ else
+ fdw_private = NIL;
+ fdw_private_list = lappend(fdw_private_list, fdw_private);
+ i++;
+ }
+ node->fdwPrivLists = fdw_private_list;
+ node->fdwDirectModifyPlans = direct_modify_plans;
+
+ return node;
+}
+
+/*
+ * is_projection_capable_path
+ * Check whether a given Path node is able to do projection.
+ */
+bool
+is_projection_capable_path(Path *path)
+{
+ /* Most plan types can project, so just list the ones that can't */
+ switch (path->pathtype)
+ {
+ case T_Hash:
+ case T_Material:
+ case T_Memoize:
+ case T_Sort:
+ case T_IncrementalSort:
+ case T_Unique:
+ case T_SetOp:
+ case T_LockRows:
+ case T_Limit:
+ case T_ModifyTable:
+ case T_MergeAppend:
+ case T_RecursiveUnion:
+ return false;
+ case T_Append:
+
+ /*
+ * Append can't project, but if an AppendPath is being used to
+ * represent a dummy path, what will actually be generated is a
+ * Result which can project.
+ */
+ return IS_DUMMY_APPEND(path);
+ case T_ProjectSet:
+
+ /*
+ * Although ProjectSet certainly projects, say "no" because we
+ * don't want the planner to randomly replace its tlist with
+ * something else; the SRFs have to stay at top level. This might
+ * get relaxed later.
+ */
+ return false;
+ default:
+ break;
+ }
+ return true;
+}
+
+/*
+ * is_projection_capable_plan
+ * Check whether a given Plan node is able to do projection.
+ */
+bool
+is_projection_capable_plan(Plan *plan)
+{
+ /* Most plan types can project, so just list the ones that can't */
+ switch (nodeTag(plan))
+ {
+ case T_Hash:
+ case T_Material:
+ case T_Memoize:
+ case T_Sort:
+ case T_Unique:
+ case T_SetOp:
+ case T_LockRows:
+ case T_Limit:
+ case T_ModifyTable:
+ case T_Append:
+ case T_MergeAppend:
+ case T_RecursiveUnion:
+ return false;
+ case T_ProjectSet:
+
+ /*
+ * Although ProjectSet certainly projects, say "no" because we
+ * don't want the planner to randomly replace its tlist with
+ * something else; the SRFs have to stay at top level. This might
+ * get relaxed later.
+ */
+ return false;
+ default:
+ break;
+ }
+ return true;
+}
diff --git a/src/backend/optimizer/plan/initsplan.c b/src/backend/optimizer/plan/initsplan.c
new file mode 100644
index 0000000..276e62b
--- /dev/null
+++ b/src/backend/optimizer/plan/initsplan.c
@@ -0,0 +1,2751 @@
+/*-------------------------------------------------------------------------
+ *
+ * initsplan.c
+ * Target list, qualification, joininfo initialization routines
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/plan/initsplan.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "catalog/pg_class.h"
+#include "catalog/pg_type.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "optimizer/cost.h"
+#include "optimizer/inherit.h"
+#include "optimizer/joininfo.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/pathnode.h"
+#include "optimizer/paths.h"
+#include "optimizer/placeholder.h"
+#include "optimizer/planmain.h"
+#include "optimizer/planner.h"
+#include "optimizer/prep.h"
+#include "optimizer/restrictinfo.h"
+#include "parser/analyze.h"
+#include "rewrite/rewriteManip.h"
+#include "utils/lsyscache.h"
+#include "utils/typcache.h"
+
+/* These parameters are set by GUC */
+int from_collapse_limit;
+int join_collapse_limit;
+
+
+/* Elements of the postponed_qual_list used during deconstruct_recurse */
+typedef struct PostponedQual
+{
+ Node *qual; /* a qual clause waiting to be processed */
+ Relids relids; /* the set of baserels it references */
+} PostponedQual;
+
+
+static void extract_lateral_references(PlannerInfo *root, RelOptInfo *brel,
+ Index rtindex);
+static List *deconstruct_recurse(PlannerInfo *root, Node *jtnode,
+ bool below_outer_join,
+ Relids *qualscope, Relids *inner_join_rels,
+ List **postponed_qual_list);
+static void process_security_barrier_quals(PlannerInfo *root,
+ int rti, Relids qualscope,
+ bool below_outer_join);
+static SpecialJoinInfo *make_outerjoininfo(PlannerInfo *root,
+ Relids left_rels, Relids right_rels,
+ Relids inner_join_rels,
+ JoinType jointype, List *clause);
+static void compute_semijoin_info(PlannerInfo *root, SpecialJoinInfo *sjinfo,
+ List *clause);
+static void distribute_qual_to_rels(PlannerInfo *root, Node *clause,
+ bool below_outer_join,
+ JoinType jointype,
+ Index security_level,
+ Relids qualscope,
+ Relids ojscope,
+ Relids outerjoin_nonnullable,
+ List **postponed_qual_list);
+static bool check_outerjoin_delay(PlannerInfo *root, Relids *relids_p,
+ Relids *nullable_relids_p, bool is_pushed_down);
+static bool check_equivalence_delay(PlannerInfo *root,
+ RestrictInfo *restrictinfo);
+static bool check_redundant_nullability_qual(PlannerInfo *root, Node *clause);
+static void check_mergejoinable(RestrictInfo *restrictinfo);
+static void check_hashjoinable(RestrictInfo *restrictinfo);
+static void check_memoizable(RestrictInfo *restrictinfo);
+
+
+/*****************************************************************************
+ *
+ * JOIN TREES
+ *
+ *****************************************************************************/
+
+/*
+ * add_base_rels_to_query
+ *
+ * Scan the query's jointree and create baserel RelOptInfos for all
+ * the base relations (e.g., table, subquery, and function RTEs)
+ * appearing in the jointree.
+ *
+ * The initial invocation must pass root->parse->jointree as the value of
+ * jtnode. Internally, the function recurses through the jointree.
+ *
+ * At the end of this process, there should be one baserel RelOptInfo for
+ * every non-join RTE that is used in the query. Some of the baserels
+ * may be appendrel parents, which will require additional "otherrel"
+ * RelOptInfos for their member rels, but those are added later.
+ */
+void
+add_base_rels_to_query(PlannerInfo *root, Node *jtnode)
+{
+ if (jtnode == NULL)
+ return;
+ if (IsA(jtnode, RangeTblRef))
+ {
+ int varno = ((RangeTblRef *) jtnode)->rtindex;
+
+ (void) build_simple_rel(root, varno, NULL);
+ }
+ else if (IsA(jtnode, FromExpr))
+ {
+ FromExpr *f = (FromExpr *) jtnode;
+ ListCell *l;
+
+ foreach(l, f->fromlist)
+ add_base_rels_to_query(root, lfirst(l));
+ }
+ else if (IsA(jtnode, JoinExpr))
+ {
+ JoinExpr *j = (JoinExpr *) jtnode;
+
+ add_base_rels_to_query(root, j->larg);
+ add_base_rels_to_query(root, j->rarg);
+ }
+ else
+ elog(ERROR, "unrecognized node type: %d",
+ (int) nodeTag(jtnode));
+}
+
+/*
+ * add_other_rels_to_query
+ * create "otherrel" RelOptInfos for the children of appendrel baserels
+ *
+ * At the end of this process, there should be RelOptInfos for all relations
+ * that will be scanned by the query.
+ */
+void
+add_other_rels_to_query(PlannerInfo *root)
+{
+ int rti;
+
+ for (rti = 1; rti < root->simple_rel_array_size; rti++)
+ {
+ RelOptInfo *rel = root->simple_rel_array[rti];
+ RangeTblEntry *rte = root->simple_rte_array[rti];
+
+ /* there may be empty slots corresponding to non-baserel RTEs */
+ if (rel == NULL)
+ continue;
+
+ /* Ignore any "otherrels" that were already added. */
+ if (rel->reloptkind != RELOPT_BASEREL)
+ continue;
+
+ /* If it's marked as inheritable, look for children. */
+ if (rte->inh)
+ expand_inherited_rtentry(root, rel, rte, rti);
+ }
+}
+
+
+/*****************************************************************************
+ *
+ * TARGET LISTS
+ *
+ *****************************************************************************/
+
+/*
+ * build_base_rel_tlists
+ * Add targetlist entries for each var needed in the query's final tlist
+ * (and HAVING clause, if any) to the appropriate base relations.
+ *
+ * We mark such vars as needed by "relation 0" to ensure that they will
+ * propagate up through all join plan steps.
+ */
+void
+build_base_rel_tlists(PlannerInfo *root, List *final_tlist)
+{
+ List *tlist_vars = pull_var_clause((Node *) final_tlist,
+ PVC_RECURSE_AGGREGATES |
+ PVC_RECURSE_WINDOWFUNCS |
+ PVC_INCLUDE_PLACEHOLDERS);
+
+ if (tlist_vars != NIL)
+ {
+ add_vars_to_targetlist(root, tlist_vars, bms_make_singleton(0), true);
+ list_free(tlist_vars);
+ }
+
+ /*
+ * If there's a HAVING clause, we'll need the Vars it uses, too. Note
+ * that HAVING can contain Aggrefs but not WindowFuncs.
+ */
+ if (root->parse->havingQual)
+ {
+ List *having_vars = pull_var_clause(root->parse->havingQual,
+ PVC_RECURSE_AGGREGATES |
+ PVC_INCLUDE_PLACEHOLDERS);
+
+ if (having_vars != NIL)
+ {
+ add_vars_to_targetlist(root, having_vars,
+ bms_make_singleton(0), true);
+ list_free(having_vars);
+ }
+ }
+}
+
+/*
+ * add_vars_to_targetlist
+ * For each variable appearing in the list, add it to the owning
+ * relation's targetlist if not already present, and mark the variable
+ * as being needed for the indicated join (or for final output if
+ * where_needed includes "relation 0").
+ *
+ * The list may also contain PlaceHolderVars. These don't necessarily
+ * have a single owning relation; we keep their attr_needed info in
+ * root->placeholder_list instead. If create_new_ph is true, it's OK
+ * to create new PlaceHolderInfos; otherwise, the PlaceHolderInfos must
+ * already exist, and we should only update their ph_needed. (This should
+ * be true before deconstruct_jointree begins, and false after that.)
+ */
+void
+add_vars_to_targetlist(PlannerInfo *root, List *vars,
+ Relids where_needed, bool create_new_ph)
+{
+ ListCell *temp;
+
+ Assert(!bms_is_empty(where_needed));
+
+ foreach(temp, vars)
+ {
+ Node *node = (Node *) lfirst(temp);
+
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+ RelOptInfo *rel = find_base_rel(root, var->varno);
+ int attno = var->varattno;
+
+ if (bms_is_subset(where_needed, rel->relids))
+ continue;
+ Assert(attno >= rel->min_attr && attno <= rel->max_attr);
+ attno -= rel->min_attr;
+ if (rel->attr_needed[attno] == NULL)
+ {
+ /* Variable not yet requested, so add to rel's targetlist */
+ /* XXX is copyObject necessary here? */
+ rel->reltarget->exprs = lappend(rel->reltarget->exprs,
+ copyObject(var));
+ /* reltarget cost and width will be computed later */
+ }
+ rel->attr_needed[attno] = bms_add_members(rel->attr_needed[attno],
+ where_needed);
+ }
+ else if (IsA(node, PlaceHolderVar))
+ {
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+ PlaceHolderInfo *phinfo = find_placeholder_info(root, phv,
+ create_new_ph);
+
+ phinfo->ph_needed = bms_add_members(phinfo->ph_needed,
+ where_needed);
+ }
+ else
+ elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
+ }
+}
+
+
+/*****************************************************************************
+ *
+ * LATERAL REFERENCES
+ *
+ *****************************************************************************/
+
+/*
+ * find_lateral_references
+ * For each LATERAL subquery, extract all its references to Vars and
+ * PlaceHolderVars of the current query level, and make sure those values
+ * will be available for evaluation of the subquery.
+ *
+ * While later planning steps ensure that the Var/PHV source rels are on the
+ * outside of nestloops relative to the LATERAL subquery, we also need to
+ * ensure that the Vars/PHVs propagate up to the nestloop join level; this
+ * means setting suitable where_needed values for them.
+ *
+ * Note that this only deals with lateral references in unflattened LATERAL
+ * subqueries. When we flatten a LATERAL subquery, its lateral references
+ * become plain Vars in the parent query, but they may have to be wrapped in
+ * PlaceHolderVars if they need to be forced NULL by outer joins that don't
+ * also null the LATERAL subquery. That's all handled elsewhere.
+ *
+ * This has to run before deconstruct_jointree, since it might result in
+ * creation of PlaceHolderInfos.
+ */
+void
+find_lateral_references(PlannerInfo *root)
+{
+ Index rti;
+
+ /* We need do nothing if the query contains no LATERAL RTEs */
+ if (!root->hasLateralRTEs)
+ return;
+
+ /*
+ * Examine all baserels (the rel array has been set up by now).
+ */
+ for (rti = 1; rti < root->simple_rel_array_size; rti++)
+ {
+ RelOptInfo *brel = root->simple_rel_array[rti];
+
+ /* there may be empty slots corresponding to non-baserel RTEs */
+ if (brel == NULL)
+ continue;
+
+ Assert(brel->relid == rti); /* sanity check on array */
+
+ /*
+ * This bit is less obvious than it might look. We ignore appendrel
+ * otherrels and consider only their parent baserels. In a case where
+ * a LATERAL-containing UNION ALL subquery was pulled up, it is the
+ * otherrel that is actually going to be in the plan. However, we
+ * want to mark all its lateral references as needed by the parent,
+ * because it is the parent's relid that will be used for join
+ * planning purposes. And the parent's RTE will contain all the
+ * lateral references we need to know, since the pulled-up member is
+ * nothing but a copy of parts of the original RTE's subquery. We
+ * could visit the parent's children instead and transform their
+ * references back to the parent's relid, but it would be much more
+ * complicated for no real gain. (Important here is that the child
+ * members have not yet received any processing beyond being pulled
+ * up.) Similarly, in appendrels created by inheritance expansion,
+ * it's sufficient to look at the parent relation.
+ */
+
+ /* ignore RTEs that are "other rels" */
+ if (brel->reloptkind != RELOPT_BASEREL)
+ continue;
+
+ extract_lateral_references(root, brel, rti);
+ }
+}
+
+static void
+extract_lateral_references(PlannerInfo *root, RelOptInfo *brel, Index rtindex)
+{
+ RangeTblEntry *rte = root->simple_rte_array[rtindex];
+ List *vars;
+ List *newvars;
+ Relids where_needed;
+ ListCell *lc;
+
+ /* No cross-references are possible if it's not LATERAL */
+ if (!rte->lateral)
+ return;
+
+ /* Fetch the appropriate variables */
+ if (rte->rtekind == RTE_RELATION)
+ vars = pull_vars_of_level((Node *) rte->tablesample, 0);
+ else if (rte->rtekind == RTE_SUBQUERY)
+ vars = pull_vars_of_level((Node *) rte->subquery, 1);
+ else if (rte->rtekind == RTE_FUNCTION)
+ vars = pull_vars_of_level((Node *) rte->functions, 0);
+ else if (rte->rtekind == RTE_TABLEFUNC)
+ vars = pull_vars_of_level((Node *) rte->tablefunc, 0);
+ else if (rte->rtekind == RTE_VALUES)
+ vars = pull_vars_of_level((Node *) rte->values_lists, 0);
+ else
+ {
+ Assert(false);
+ return; /* keep compiler quiet */
+ }
+
+ if (vars == NIL)
+ return; /* nothing to do */
+
+ /* Copy each Var (or PlaceHolderVar) and adjust it to match our level */
+ newvars = NIL;
+ foreach(lc, vars)
+ {
+ Node *node = (Node *) lfirst(lc);
+
+ node = copyObject(node);
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+
+ /* Adjustment is easy since it's just one node */
+ var->varlevelsup = 0;
+ }
+ else if (IsA(node, PlaceHolderVar))
+ {
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+ int levelsup = phv->phlevelsup;
+
+ /* Have to work harder to adjust the contained expression too */
+ if (levelsup != 0)
+ IncrementVarSublevelsUp(node, -levelsup, 0);
+
+ /*
+ * If we pulled the PHV out of a subquery RTE, its expression
+ * needs to be preprocessed. subquery_planner() already did this
+ * for level-zero PHVs in function and values RTEs, though.
+ */
+ if (levelsup > 0)
+ phv->phexpr = preprocess_phv_expression(root, phv->phexpr);
+ }
+ else
+ Assert(false);
+ newvars = lappend(newvars, node);
+ }
+
+ list_free(vars);
+
+ /*
+ * We mark the Vars as being "needed" at the LATERAL RTE. This is a bit
+ * of a cheat: a more formal approach would be to mark each one as needed
+ * at the join of the LATERAL RTE with its source RTE. But it will work,
+ * and it's much less tedious than computing a separate where_needed for
+ * each Var.
+ */
+ where_needed = bms_make_singleton(rtindex);
+
+ /*
+ * Push Vars into their source relations' targetlists, and PHVs into
+ * root->placeholder_list.
+ */
+ add_vars_to_targetlist(root, newvars, where_needed, true);
+
+ /* Remember the lateral references for create_lateral_join_info */
+ brel->lateral_vars = newvars;
+}
+
+/*
+ * create_lateral_join_info
+ * Fill in the per-base-relation direct_lateral_relids, lateral_relids
+ * and lateral_referencers sets.
+ *
+ * This has to run after deconstruct_jointree, because we need to know the
+ * final ph_eval_at values for PlaceHolderVars.
+ */
+void
+create_lateral_join_info(PlannerInfo *root)
+{
+ bool found_laterals = false;
+ Index rti;
+ ListCell *lc;
+
+ /* We need do nothing if the query contains no LATERAL RTEs */
+ if (!root->hasLateralRTEs)
+ return;
+
+ /*
+ * Examine all baserels (the rel array has been set up by now).
+ */
+ for (rti = 1; rti < root->simple_rel_array_size; rti++)
+ {
+ RelOptInfo *brel = root->simple_rel_array[rti];
+ Relids lateral_relids;
+
+ /* there may be empty slots corresponding to non-baserel RTEs */
+ if (brel == NULL)
+ continue;
+
+ Assert(brel->relid == rti); /* sanity check on array */
+
+ /* ignore RTEs that are "other rels" */
+ if (brel->reloptkind != RELOPT_BASEREL)
+ continue;
+
+ lateral_relids = NULL;
+
+ /* consider each laterally-referenced Var or PHV */
+ foreach(lc, brel->lateral_vars)
+ {
+ Node *node = (Node *) lfirst(lc);
+
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+
+ found_laterals = true;
+ lateral_relids = bms_add_member(lateral_relids,
+ var->varno);
+ }
+ else if (IsA(node, PlaceHolderVar))
+ {
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+ PlaceHolderInfo *phinfo = find_placeholder_info(root, phv,
+ false);
+
+ found_laterals = true;
+ lateral_relids = bms_add_members(lateral_relids,
+ phinfo->ph_eval_at);
+ }
+ else
+ Assert(false);
+ }
+
+ /* We now have all the simple lateral refs from this rel */
+ brel->direct_lateral_relids = lateral_relids;
+ brel->lateral_relids = bms_copy(lateral_relids);
+ }
+
+ /*
+ * Now check for lateral references within PlaceHolderVars, and mark their
+ * eval_at rels as having lateral references to the source rels.
+ *
+ * For a PHV that is due to be evaluated at a baserel, mark its source(s)
+ * as direct lateral dependencies of the baserel (adding onto the ones
+ * recorded above). If it's due to be evaluated at a join, mark its
+ * source(s) as indirect lateral dependencies of each baserel in the join,
+ * ie put them into lateral_relids but not direct_lateral_relids. This is
+ * appropriate because we can't put any such baserel on the outside of a
+ * join to one of the PHV's lateral dependencies, but on the other hand we
+ * also can't yet join it directly to the dependency.
+ */
+ foreach(lc, root->placeholder_list)
+ {
+ PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
+ Relids eval_at = phinfo->ph_eval_at;
+ int varno;
+
+ if (phinfo->ph_lateral == NULL)
+ continue; /* PHV is uninteresting if no lateral refs */
+
+ found_laterals = true;
+
+ if (bms_get_singleton_member(eval_at, &varno))
+ {
+ /* Evaluation site is a baserel */
+ RelOptInfo *brel = find_base_rel(root, varno);
+
+ brel->direct_lateral_relids =
+ bms_add_members(brel->direct_lateral_relids,
+ phinfo->ph_lateral);
+ brel->lateral_relids =
+ bms_add_members(brel->lateral_relids,
+ phinfo->ph_lateral);
+ }
+ else
+ {
+ /* Evaluation site is a join */
+ varno = -1;
+ while ((varno = bms_next_member(eval_at, varno)) >= 0)
+ {
+ RelOptInfo *brel = find_base_rel(root, varno);
+
+ brel->lateral_relids = bms_add_members(brel->lateral_relids,
+ phinfo->ph_lateral);
+ }
+ }
+ }
+
+ /*
+ * If we found no actual lateral references, we're done; but reset the
+ * hasLateralRTEs flag to avoid useless work later.
+ */
+ if (!found_laterals)
+ {
+ root->hasLateralRTEs = false;
+ return;
+ }
+
+ /*
+ * Calculate the transitive closure of the lateral_relids sets, so that
+ * they describe both direct and indirect lateral references. If relation
+ * X references Y laterally, and Y references Z laterally, then we will
+ * have to scan X on the inside of a nestloop with Z, so for all intents
+ * and purposes X is laterally dependent on Z too.
+ *
+ * This code is essentially Warshall's algorithm for transitive closure.
+ * The outer loop considers each baserel, and propagates its lateral
+ * dependencies to those baserels that have a lateral dependency on it.
+ */
+ for (rti = 1; rti < root->simple_rel_array_size; rti++)
+ {
+ RelOptInfo *brel = root->simple_rel_array[rti];
+ Relids outer_lateral_relids;
+ Index rti2;
+
+ if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
+ continue;
+
+ /* need not consider baserel further if it has no lateral refs */
+ outer_lateral_relids = brel->lateral_relids;
+ if (outer_lateral_relids == NULL)
+ continue;
+
+ /* else scan all baserels */
+ for (rti2 = 1; rti2 < root->simple_rel_array_size; rti2++)
+ {
+ RelOptInfo *brel2 = root->simple_rel_array[rti2];
+
+ if (brel2 == NULL || brel2->reloptkind != RELOPT_BASEREL)
+ continue;
+
+ /* if brel2 has lateral ref to brel, propagate brel's refs */
+ if (bms_is_member(rti, brel2->lateral_relids))
+ brel2->lateral_relids = bms_add_members(brel2->lateral_relids,
+ outer_lateral_relids);
+ }
+ }
+
+ /*
+ * Now that we've identified all lateral references, mark each baserel
+ * with the set of relids of rels that reference it laterally (possibly
+ * indirectly) --- that is, the inverse mapping of lateral_relids.
+ */
+ for (rti = 1; rti < root->simple_rel_array_size; rti++)
+ {
+ RelOptInfo *brel = root->simple_rel_array[rti];
+ Relids lateral_relids;
+ int rti2;
+
+ if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
+ continue;
+
+ /* Nothing to do at rels with no lateral refs */
+ lateral_relids = brel->lateral_relids;
+ if (lateral_relids == NULL)
+ continue;
+
+ /*
+ * We should not have broken the invariant that lateral_relids is
+ * exactly NULL if empty.
+ */
+ Assert(!bms_is_empty(lateral_relids));
+
+ /* Also, no rel should have a lateral dependency on itself */
+ Assert(!bms_is_member(rti, lateral_relids));
+
+ /* Mark this rel's referencees */
+ rti2 = -1;
+ while ((rti2 = bms_next_member(lateral_relids, rti2)) >= 0)
+ {
+ RelOptInfo *brel2 = root->simple_rel_array[rti2];
+
+ Assert(brel2 != NULL && brel2->reloptkind == RELOPT_BASEREL);
+ brel2->lateral_referencers =
+ bms_add_member(brel2->lateral_referencers, rti);
+ }
+ }
+}
+
+
+/*****************************************************************************
+ *
+ * JOIN TREE PROCESSING
+ *
+ *****************************************************************************/
+
+/*
+ * deconstruct_jointree
+ * Recursively scan the query's join tree for WHERE and JOIN/ON qual
+ * clauses, and add these to the appropriate restrictinfo and joininfo
+ * lists belonging to base RelOptInfos. Also, add SpecialJoinInfo nodes
+ * to root->join_info_list for any outer joins appearing in the query tree.
+ * Return a "joinlist" data structure showing the join order decisions
+ * that need to be made by make_one_rel().
+ *
+ * The "joinlist" result is a list of items that are either RangeTblRef
+ * jointree nodes or sub-joinlists. All the items at the same level of
+ * joinlist must be joined in an order to be determined by make_one_rel()
+ * (note that legal orders may be constrained by SpecialJoinInfo nodes).
+ * A sub-joinlist represents a subproblem to be planned separately. Currently
+ * sub-joinlists arise only from FULL OUTER JOIN or when collapsing of
+ * subproblems is stopped by join_collapse_limit or from_collapse_limit.
+ *
+ * NOTE: when dealing with inner joins, it is appropriate to let a qual clause
+ * be evaluated at the lowest level where all the variables it mentions are
+ * available. However, we cannot push a qual down into the nullable side(s)
+ * of an outer join since the qual might eliminate matching rows and cause a
+ * NULL row to be incorrectly emitted by the join. Therefore, we artificially
+ * OR the minimum-relids of such an outer join into the required_relids of
+ * clauses appearing above it. This forces those clauses to be delayed until
+ * application of the outer join (or maybe even higher in the join tree).
+ */
+List *
+deconstruct_jointree(PlannerInfo *root)
+{
+ List *result;
+ Relids qualscope;
+ Relids inner_join_rels;
+ List *postponed_qual_list = NIL;
+
+ /* Start recursion at top of jointree */
+ Assert(root->parse->jointree != NULL &&
+ IsA(root->parse->jointree, FromExpr));
+
+ /* this is filled as we scan the jointree */
+ root->nullable_baserels = NULL;
+
+ result = deconstruct_recurse(root, (Node *) root->parse->jointree, false,
+ &qualscope, &inner_join_rels,
+ &postponed_qual_list);
+
+ /* Shouldn't be any leftover quals */
+ Assert(postponed_qual_list == NIL);
+
+ return result;
+}
+
+/*
+ * deconstruct_recurse
+ * One recursion level of deconstruct_jointree processing.
+ *
+ * Inputs:
+ * jtnode is the jointree node to examine
+ * below_outer_join is true if this node is within the nullable side of a
+ * higher-level outer join
+ * Outputs:
+ * *qualscope gets the set of base Relids syntactically included in this
+ * jointree node (do not modify or free this, as it may also be pointed
+ * to by RestrictInfo and SpecialJoinInfo nodes)
+ * *inner_join_rels gets the set of base Relids syntactically included in
+ * inner joins appearing at or below this jointree node (do not modify
+ * or free this, either)
+ * *postponed_qual_list is a list of PostponedQual structs, which we can
+ * add quals to if they turn out to belong to a higher join level
+ * Return value is the appropriate joinlist for this jointree node
+ *
+ * In addition, entries will be added to root->join_info_list for outer joins.
+ */
+static List *
+deconstruct_recurse(PlannerInfo *root, Node *jtnode, bool below_outer_join,
+ Relids *qualscope, Relids *inner_join_rels,
+ List **postponed_qual_list)
+{
+ List *joinlist;
+
+ if (jtnode == NULL)
+ {
+ *qualscope = NULL;
+ *inner_join_rels = NULL;
+ return NIL;
+ }
+ if (IsA(jtnode, RangeTblRef))
+ {
+ int varno = ((RangeTblRef *) jtnode)->rtindex;
+
+ /* qualscope is just the one RTE */
+ *qualscope = bms_make_singleton(varno);
+ /* Deal with any securityQuals attached to the RTE */
+ if (root->qual_security_level > 0)
+ process_security_barrier_quals(root,
+ varno,
+ *qualscope,
+ below_outer_join);
+ /* A single baserel does not create an inner join */
+ *inner_join_rels = NULL;
+ joinlist = list_make1(jtnode);
+ }
+ else if (IsA(jtnode, FromExpr))
+ {
+ FromExpr *f = (FromExpr *) jtnode;
+ List *child_postponed_quals = NIL;
+ int remaining;
+ ListCell *l;
+
+ /*
+ * First, recurse to handle child joins. We collapse subproblems into
+ * a single joinlist whenever the resulting joinlist wouldn't exceed
+ * from_collapse_limit members. Also, always collapse one-element
+ * subproblems, since that won't lengthen the joinlist anyway.
+ */
+ *qualscope = NULL;
+ *inner_join_rels = NULL;
+ joinlist = NIL;
+ remaining = list_length(f->fromlist);
+ foreach(l, f->fromlist)
+ {
+ Relids sub_qualscope;
+ List *sub_joinlist;
+ int sub_members;
+
+ sub_joinlist = deconstruct_recurse(root, lfirst(l),
+ below_outer_join,
+ &sub_qualscope,
+ inner_join_rels,
+ &child_postponed_quals);
+ *qualscope = bms_add_members(*qualscope, sub_qualscope);
+ sub_members = list_length(sub_joinlist);
+ remaining--;
+ if (sub_members <= 1 ||
+ list_length(joinlist) + sub_members + remaining <= from_collapse_limit)
+ joinlist = list_concat(joinlist, sub_joinlist);
+ else
+ joinlist = lappend(joinlist, sub_joinlist);
+ }
+
+ /*
+ * A FROM with more than one list element is an inner join subsuming
+ * all below it, so we should report inner_join_rels = qualscope. If
+ * there was exactly one element, we should (and already did) report
+ * whatever its inner_join_rels were. If there were no elements (is
+ * that still possible?) the initialization before the loop fixed it.
+ */
+ if (list_length(f->fromlist) > 1)
+ *inner_join_rels = *qualscope;
+
+ /*
+ * Try to process any quals postponed by children. If they need
+ * further postponement, add them to my output postponed_qual_list.
+ */
+ foreach(l, child_postponed_quals)
+ {
+ PostponedQual *pq = (PostponedQual *) lfirst(l);
+
+ if (bms_is_subset(pq->relids, *qualscope))
+ distribute_qual_to_rels(root, pq->qual,
+ below_outer_join, JOIN_INNER,
+ root->qual_security_level,
+ *qualscope, NULL, NULL,
+ NULL);
+ else
+ *postponed_qual_list = lappend(*postponed_qual_list, pq);
+ }
+
+ /*
+ * Now process the top-level quals.
+ */
+ foreach(l, (List *) f->quals)
+ {
+ Node *qual = (Node *) lfirst(l);
+
+ distribute_qual_to_rels(root, qual,
+ below_outer_join, JOIN_INNER,
+ root->qual_security_level,
+ *qualscope, NULL, NULL,
+ postponed_qual_list);
+ }
+ }
+ else if (IsA(jtnode, JoinExpr))
+ {
+ JoinExpr *j = (JoinExpr *) jtnode;
+ List *child_postponed_quals = NIL;
+ Relids leftids,
+ rightids,
+ left_inners,
+ right_inners,
+ nonnullable_rels,
+ nullable_rels,
+ ojscope;
+ List *leftjoinlist,
+ *rightjoinlist;
+ List *my_quals;
+ SpecialJoinInfo *sjinfo;
+ ListCell *l;
+
+ /*
+ * Order of operations here is subtle and critical. First we recurse
+ * to handle sub-JOINs. Their join quals will be placed without
+ * regard for whether this level is an outer join, which is correct.
+ * Then we place our own join quals, which are restricted by lower
+ * outer joins in any case, and are forced to this level if this is an
+ * outer join and they mention the outer side. Finally, if this is an
+ * outer join, we create a join_info_list entry for the join. This
+ * will prevent quals above us in the join tree that use those rels
+ * from being pushed down below this level. (It's okay for upper
+ * quals to be pushed down to the outer side, however.)
+ */
+ switch (j->jointype)
+ {
+ case JOIN_INNER:
+ leftjoinlist = deconstruct_recurse(root, j->larg,
+ below_outer_join,
+ &leftids, &left_inners,
+ &child_postponed_quals);
+ rightjoinlist = deconstruct_recurse(root, j->rarg,
+ below_outer_join,
+ &rightids, &right_inners,
+ &child_postponed_quals);
+ *qualscope = bms_union(leftids, rightids);
+ *inner_join_rels = *qualscope;
+ /* Inner join adds no restrictions for quals */
+ nonnullable_rels = NULL;
+ /* and it doesn't force anything to null, either */
+ nullable_rels = NULL;
+ break;
+ case JOIN_LEFT:
+ case JOIN_ANTI:
+ leftjoinlist = deconstruct_recurse(root, j->larg,
+ below_outer_join,
+ &leftids, &left_inners,
+ &child_postponed_quals);
+ rightjoinlist = deconstruct_recurse(root, j->rarg,
+ true,
+ &rightids, &right_inners,
+ &child_postponed_quals);
+ *qualscope = bms_union(leftids, rightids);
+ *inner_join_rels = bms_union(left_inners, right_inners);
+ nonnullable_rels = leftids;
+ nullable_rels = rightids;
+ break;
+ case JOIN_SEMI:
+ leftjoinlist = deconstruct_recurse(root, j->larg,
+ below_outer_join,
+ &leftids, &left_inners,
+ &child_postponed_quals);
+ rightjoinlist = deconstruct_recurse(root, j->rarg,
+ below_outer_join,
+ &rightids, &right_inners,
+ &child_postponed_quals);
+ *qualscope = bms_union(leftids, rightids);
+ *inner_join_rels = bms_union(left_inners, right_inners);
+ /* Semi join adds no restrictions for quals */
+ nonnullable_rels = NULL;
+
+ /*
+ * Theoretically, a semijoin would null the RHS; but since the
+ * RHS can't be accessed above the join, this is immaterial
+ * and we needn't account for it.
+ */
+ nullable_rels = NULL;
+ break;
+ case JOIN_FULL:
+ leftjoinlist = deconstruct_recurse(root, j->larg,
+ true,
+ &leftids, &left_inners,
+ &child_postponed_quals);
+ rightjoinlist = deconstruct_recurse(root, j->rarg,
+ true,
+ &rightids, &right_inners,
+ &child_postponed_quals);
+ *qualscope = bms_union(leftids, rightids);
+ *inner_join_rels = bms_union(left_inners, right_inners);
+ /* each side is both outer and inner */
+ nonnullable_rels = *qualscope;
+ nullable_rels = *qualscope;
+ break;
+ default:
+ /* JOIN_RIGHT was eliminated during reduce_outer_joins() */
+ elog(ERROR, "unrecognized join type: %d",
+ (int) j->jointype);
+ nonnullable_rels = NULL; /* keep compiler quiet */
+ nullable_rels = NULL;
+ leftjoinlist = rightjoinlist = NIL;
+ break;
+ }
+
+ /* Report all rels that will be nulled anywhere in the jointree */
+ root->nullable_baserels = bms_add_members(root->nullable_baserels,
+ nullable_rels);
+
+ /*
+ * Try to process any quals postponed by children. If they need
+ * further postponement, add them to my output postponed_qual_list.
+ * Quals that can be processed now must be included in my_quals, so
+ * that they'll be handled properly in make_outerjoininfo.
+ */
+ my_quals = NIL;
+ foreach(l, child_postponed_quals)
+ {
+ PostponedQual *pq = (PostponedQual *) lfirst(l);
+
+ if (bms_is_subset(pq->relids, *qualscope))
+ my_quals = lappend(my_quals, pq->qual);
+ else
+ {
+ /*
+ * We should not be postponing any quals past an outer join.
+ * If this Assert fires, pull_up_subqueries() messed up.
+ */
+ Assert(j->jointype == JOIN_INNER);
+ *postponed_qual_list = lappend(*postponed_qual_list, pq);
+ }
+ }
+ my_quals = list_concat(my_quals, (List *) j->quals);
+
+ /*
+ * For an OJ, form the SpecialJoinInfo now, because we need the OJ's
+ * semantic scope (ojscope) to pass to distribute_qual_to_rels. But
+ * we mustn't add it to join_info_list just yet, because we don't want
+ * distribute_qual_to_rels to think it is an outer join below us.
+ *
+ * Semijoins are a bit of a hybrid: we build a SpecialJoinInfo, but we
+ * want ojscope = NULL for distribute_qual_to_rels.
+ */
+ if (j->jointype != JOIN_INNER)
+ {
+ sjinfo = make_outerjoininfo(root,
+ leftids, rightids,
+ *inner_join_rels,
+ j->jointype,
+ my_quals);
+ if (j->jointype == JOIN_SEMI)
+ ojscope = NULL;
+ else
+ ojscope = bms_union(sjinfo->min_lefthand,
+ sjinfo->min_righthand);
+ }
+ else
+ {
+ sjinfo = NULL;
+ ojscope = NULL;
+ }
+
+ /* Process the JOIN's qual clauses */
+ foreach(l, my_quals)
+ {
+ Node *qual = (Node *) lfirst(l);
+
+ distribute_qual_to_rels(root, qual,
+ below_outer_join, j->jointype,
+ root->qual_security_level,
+ *qualscope,
+ ojscope, nonnullable_rels,
+ postponed_qual_list);
+ }
+
+ /* Now we can add the SpecialJoinInfo to join_info_list */
+ if (sjinfo)
+ {
+ root->join_info_list = lappend(root->join_info_list, sjinfo);
+ /* Each time we do that, recheck placeholder eval levels */
+ update_placeholder_eval_levels(root, sjinfo);
+ }
+
+ /*
+ * Finally, compute the output joinlist. We fold subproblems together
+ * except at a FULL JOIN or where join_collapse_limit would be
+ * exceeded.
+ */
+ if (j->jointype == JOIN_FULL)
+ {
+ /* force the join order exactly at this node */
+ joinlist = list_make1(list_make2(leftjoinlist, rightjoinlist));
+ }
+ else if (list_length(leftjoinlist) + list_length(rightjoinlist) <=
+ join_collapse_limit)
+ {
+ /* OK to combine subproblems */
+ joinlist = list_concat(leftjoinlist, rightjoinlist);
+ }
+ else
+ {
+ /* can't combine, but needn't force join order above here */
+ Node *leftpart,
+ *rightpart;
+
+ /* avoid creating useless 1-element sublists */
+ if (list_length(leftjoinlist) == 1)
+ leftpart = (Node *) linitial(leftjoinlist);
+ else
+ leftpart = (Node *) leftjoinlist;
+ if (list_length(rightjoinlist) == 1)
+ rightpart = (Node *) linitial(rightjoinlist);
+ else
+ rightpart = (Node *) rightjoinlist;
+ joinlist = list_make2(leftpart, rightpart);
+ }
+ }
+ else
+ {
+ elog(ERROR, "unrecognized node type: %d",
+ (int) nodeTag(jtnode));
+ joinlist = NIL; /* keep compiler quiet */
+ }
+ return joinlist;
+}
+
+/*
+ * process_security_barrier_quals
+ * Transfer security-barrier quals into relation's baserestrictinfo list.
+ *
+ * The rewriter put any relevant security-barrier conditions into the RTE's
+ * securityQuals field, but it's now time to copy them into the rel's
+ * baserestrictinfo.
+ *
+ * In inheritance cases, we only consider quals attached to the parent rel
+ * here; they will be valid for all children too, so it's okay to consider
+ * them for purposes like equivalence class creation. Quals attached to
+ * individual child rels will be dealt with during path creation.
+ */
+static void
+process_security_barrier_quals(PlannerInfo *root,
+ int rti, Relids qualscope,
+ bool below_outer_join)
+{
+ RangeTblEntry *rte = root->simple_rte_array[rti];
+ Index security_level = 0;
+ ListCell *lc;
+
+ /*
+ * Each element of the securityQuals list has been preprocessed into an
+ * implicitly-ANDed list of clauses. All the clauses in a given sublist
+ * should get the same security level, but successive sublists get higher
+ * levels.
+ */
+ foreach(lc, rte->securityQuals)
+ {
+ List *qualset = (List *) lfirst(lc);
+ ListCell *lc2;
+
+ foreach(lc2, qualset)
+ {
+ Node *qual = (Node *) lfirst(lc2);
+
+ /*
+ * We cheat to the extent of passing ojscope = qualscope rather
+ * than its more logical value of NULL. The only effect this has
+ * is to force a Var-free qual to be evaluated at the rel rather
+ * than being pushed up to top of tree, which we don't want.
+ */
+ distribute_qual_to_rels(root, qual,
+ below_outer_join,
+ JOIN_INNER,
+ security_level,
+ qualscope,
+ qualscope,
+ NULL,
+ NULL);
+ }
+ security_level++;
+ }
+
+ /* Assert that qual_security_level is higher than anything we just used */
+ Assert(security_level <= root->qual_security_level);
+}
+
+/*
+ * make_outerjoininfo
+ * Build a SpecialJoinInfo for the current outer join
+ *
+ * Inputs:
+ * left_rels: the base Relids syntactically on outer side of join
+ * right_rels: the base Relids syntactically on inner side of join
+ * inner_join_rels: base Relids participating in inner joins below this one
+ * jointype: what it says (must always be LEFT, FULL, SEMI, or ANTI)
+ * clause: the outer join's join condition (in implicit-AND format)
+ *
+ * The node should eventually be appended to root->join_info_list, but we
+ * do not do that here.
+ *
+ * Note: we assume that this function is invoked bottom-up, so that
+ * root->join_info_list already contains entries for all outer joins that are
+ * syntactically below this one.
+ */
+static SpecialJoinInfo *
+make_outerjoininfo(PlannerInfo *root,
+ Relids left_rels, Relids right_rels,
+ Relids inner_join_rels,
+ JoinType jointype, List *clause)
+{
+ SpecialJoinInfo *sjinfo = makeNode(SpecialJoinInfo);
+ Relids clause_relids;
+ Relids strict_relids;
+ Relids min_lefthand;
+ Relids min_righthand;
+ ListCell *l;
+
+ /*
+ * We should not see RIGHT JOIN here because left/right were switched
+ * earlier
+ */
+ Assert(jointype != JOIN_INNER);
+ Assert(jointype != JOIN_RIGHT);
+
+ /*
+ * Presently the executor cannot support FOR [KEY] UPDATE/SHARE marking of
+ * rels appearing on the nullable side of an outer join. (It's somewhat
+ * unclear what that would mean, anyway: what should we mark when a result
+ * row is generated from no element of the nullable relation?) So,
+ * complain if any nullable rel is FOR [KEY] UPDATE/SHARE.
+ *
+ * You might be wondering why this test isn't made far upstream in the
+ * parser. It's because the parser hasn't got enough info --- consider
+ * FOR UPDATE applied to a view. Only after rewriting and flattening do
+ * we know whether the view contains an outer join.
+ *
+ * We use the original RowMarkClause list here; the PlanRowMark list would
+ * list everything.
+ */
+ foreach(l, root->parse->rowMarks)
+ {
+ RowMarkClause *rc = (RowMarkClause *) lfirst(l);
+
+ if (bms_is_member(rc->rti, right_rels) ||
+ (jointype == JOIN_FULL && bms_is_member(rc->rti, left_rels)))
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ /*------
+ translator: %s is a SQL row locking clause such as FOR UPDATE */
+ errmsg("%s cannot be applied to the nullable side of an outer join",
+ LCS_asString(rc->strength))));
+ }
+
+ sjinfo->syn_lefthand = left_rels;
+ sjinfo->syn_righthand = right_rels;
+ sjinfo->jointype = jointype;
+ /* this always starts out false */
+ sjinfo->delay_upper_joins = false;
+
+ compute_semijoin_info(root, sjinfo, clause);
+
+ /* If it's a full join, no need to be very smart */
+ if (jointype == JOIN_FULL)
+ {
+ sjinfo->min_lefthand = bms_copy(left_rels);
+ sjinfo->min_righthand = bms_copy(right_rels);
+ sjinfo->lhs_strict = false; /* don't care about this */
+ return sjinfo;
+ }
+
+ /*
+ * Retrieve all relids mentioned within the join clause.
+ */
+ clause_relids = pull_varnos(root, (Node *) clause);
+
+ /*
+ * For which relids is the clause strict, ie, it cannot succeed if the
+ * rel's columns are all NULL?
+ */
+ strict_relids = find_nonnullable_rels((Node *) clause);
+
+ /* Remember whether the clause is strict for any LHS relations */
+ sjinfo->lhs_strict = bms_overlap(strict_relids, left_rels);
+
+ /*
+ * Required LHS always includes the LHS rels mentioned in the clause. We
+ * may have to add more rels based on lower outer joins; see below.
+ */
+ min_lefthand = bms_intersect(clause_relids, left_rels);
+
+ /*
+ * Similarly for required RHS. But here, we must also include any lower
+ * inner joins, to ensure we don't try to commute with any of them.
+ */
+ min_righthand = bms_int_members(bms_union(clause_relids, inner_join_rels),
+ right_rels);
+
+ /*
+ * Now check previous outer joins for ordering restrictions.
+ */
+ foreach(l, root->join_info_list)
+ {
+ SpecialJoinInfo *otherinfo = (SpecialJoinInfo *) lfirst(l);
+
+ /*
+ * A full join is an optimization barrier: we can't associate into or
+ * out of it. Hence, if it overlaps either LHS or RHS of the current
+ * rel, expand that side's min relset to cover the whole full join.
+ */
+ if (otherinfo->jointype == JOIN_FULL)
+ {
+ if (bms_overlap(left_rels, otherinfo->syn_lefthand) ||
+ bms_overlap(left_rels, otherinfo->syn_righthand))
+ {
+ min_lefthand = bms_add_members(min_lefthand,
+ otherinfo->syn_lefthand);
+ min_lefthand = bms_add_members(min_lefthand,
+ otherinfo->syn_righthand);
+ }
+ if (bms_overlap(right_rels, otherinfo->syn_lefthand) ||
+ bms_overlap(right_rels, otherinfo->syn_righthand))
+ {
+ min_righthand = bms_add_members(min_righthand,
+ otherinfo->syn_lefthand);
+ min_righthand = bms_add_members(min_righthand,
+ otherinfo->syn_righthand);
+ }
+ /* Needn't do anything else with the full join */
+ continue;
+ }
+
+ /*
+ * For a lower OJ in our LHS, if our join condition uses the lower
+ * join's RHS and is not strict for that rel, we must preserve the
+ * ordering of the two OJs, so add lower OJ's full syntactic relset to
+ * min_lefthand. (We must use its full syntactic relset, not just its
+ * min_lefthand + min_righthand. This is because there might be other
+ * OJs below this one that this one can commute with, but we cannot
+ * commute with them if we don't with this one.) Also, if the current
+ * join is a semijoin or antijoin, we must preserve ordering
+ * regardless of strictness.
+ *
+ * Note: I believe we have to insist on being strict for at least one
+ * rel in the lower OJ's min_righthand, not its whole syn_righthand.
+ */
+ if (bms_overlap(left_rels, otherinfo->syn_righthand))
+ {
+ if (bms_overlap(clause_relids, otherinfo->syn_righthand) &&
+ (jointype == JOIN_SEMI || jointype == JOIN_ANTI ||
+ !bms_overlap(strict_relids, otherinfo->min_righthand)))
+ {
+ min_lefthand = bms_add_members(min_lefthand,
+ otherinfo->syn_lefthand);
+ min_lefthand = bms_add_members(min_lefthand,
+ otherinfo->syn_righthand);
+ }
+ }
+
+ /*
+ * For a lower OJ in our RHS, if our join condition does not use the
+ * lower join's RHS and the lower OJ's join condition is strict, we
+ * can interchange the ordering of the two OJs; otherwise we must add
+ * the lower OJ's full syntactic relset to min_righthand.
+ *
+ * Also, if our join condition does not use the lower join's LHS
+ * either, force the ordering to be preserved. Otherwise we can end
+ * up with SpecialJoinInfos with identical min_righthands, which can
+ * confuse join_is_legal (see discussion in backend/optimizer/README).
+ *
+ * Also, we must preserve ordering anyway if either the current join
+ * or the lower OJ is either a semijoin or an antijoin.
+ *
+ * Here, we have to consider that "our join condition" includes any
+ * clauses that syntactically appeared above the lower OJ and below
+ * ours; those are equivalent to degenerate clauses in our OJ and must
+ * be treated as such. Such clauses obviously can't reference our
+ * LHS, and they must be non-strict for the lower OJ's RHS (else
+ * reduce_outer_joins would have reduced the lower OJ to a plain
+ * join). Hence the other ways in which we handle clauses within our
+ * join condition are not affected by them. The net effect is
+ * therefore sufficiently represented by the delay_upper_joins flag
+ * saved for us by check_outerjoin_delay.
+ */
+ if (bms_overlap(right_rels, otherinfo->syn_righthand))
+ {
+ if (bms_overlap(clause_relids, otherinfo->syn_righthand) ||
+ !bms_overlap(clause_relids, otherinfo->min_lefthand) ||
+ jointype == JOIN_SEMI ||
+ jointype == JOIN_ANTI ||
+ otherinfo->jointype == JOIN_SEMI ||
+ otherinfo->jointype == JOIN_ANTI ||
+ !otherinfo->lhs_strict || otherinfo->delay_upper_joins)
+ {
+ min_righthand = bms_add_members(min_righthand,
+ otherinfo->syn_lefthand);
+ min_righthand = bms_add_members(min_righthand,
+ otherinfo->syn_righthand);
+ }
+ }
+ }
+
+ /*
+ * Examine PlaceHolderVars. If a PHV is supposed to be evaluated within
+ * this join's nullable side, then ensure that min_righthand contains the
+ * full eval_at set of the PHV. This ensures that the PHV actually can be
+ * evaluated within the RHS. Note that this works only because we should
+ * already have determined the final eval_at level for any PHV
+ * syntactically within this join.
+ */
+ foreach(l, root->placeholder_list)
+ {
+ PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
+ Relids ph_syn_level = phinfo->ph_var->phrels;
+
+ /* Ignore placeholder if it didn't syntactically come from RHS */
+ if (!bms_is_subset(ph_syn_level, right_rels))
+ continue;
+
+ /* Else, prevent join from being formed before we eval the PHV */
+ min_righthand = bms_add_members(min_righthand, phinfo->ph_eval_at);
+ }
+
+ /*
+ * If we found nothing to put in min_lefthand, punt and make it the full
+ * LHS, to avoid having an empty min_lefthand which will confuse later
+ * processing. (We don't try to be smart about such cases, just correct.)
+ * Likewise for min_righthand.
+ */
+ if (bms_is_empty(min_lefthand))
+ min_lefthand = bms_copy(left_rels);
+ if (bms_is_empty(min_righthand))
+ min_righthand = bms_copy(right_rels);
+
+ /* Now they'd better be nonempty */
+ Assert(!bms_is_empty(min_lefthand));
+ Assert(!bms_is_empty(min_righthand));
+ /* Shouldn't overlap either */
+ Assert(!bms_overlap(min_lefthand, min_righthand));
+
+ sjinfo->min_lefthand = min_lefthand;
+ sjinfo->min_righthand = min_righthand;
+
+ return sjinfo;
+}
+
+/*
+ * compute_semijoin_info
+ * Fill semijoin-related fields of a new SpecialJoinInfo
+ *
+ * Note: this relies on only the jointype and syn_righthand fields of the
+ * SpecialJoinInfo; the rest may not be set yet.
+ */
+static void
+compute_semijoin_info(PlannerInfo *root, SpecialJoinInfo *sjinfo, List *clause)
+{
+ List *semi_operators;
+ List *semi_rhs_exprs;
+ bool all_btree;
+ bool all_hash;
+ ListCell *lc;
+
+ /* Initialize semijoin-related fields in case we can't unique-ify */
+ sjinfo->semi_can_btree = false;
+ sjinfo->semi_can_hash = false;
+ sjinfo->semi_operators = NIL;
+ sjinfo->semi_rhs_exprs = NIL;
+
+ /* Nothing more to do if it's not a semijoin */
+ if (sjinfo->jointype != JOIN_SEMI)
+ return;
+
+ /*
+ * Look to see whether the semijoin's join quals consist of AND'ed
+ * equality operators, with (only) RHS variables on only one side of each
+ * one. If so, we can figure out how to enforce uniqueness for the RHS.
+ *
+ * Note that the input clause list is the list of quals that are
+ * *syntactically* associated with the semijoin, which in practice means
+ * the synthesized comparison list for an IN or the WHERE of an EXISTS.
+ * Particularly in the latter case, it might contain clauses that aren't
+ * *semantically* associated with the join, but refer to just one side or
+ * the other. We can ignore such clauses here, as they will just drop
+ * down to be processed within one side or the other. (It is okay to
+ * consider only the syntactically-associated clauses here because for a
+ * semijoin, no higher-level quals could refer to the RHS, and so there
+ * can be no other quals that are semantically associated with this join.
+ * We do things this way because it is useful to have the set of potential
+ * unique-ification expressions before we can extract the list of quals
+ * that are actually semantically associated with the particular join.)
+ *
+ * Note that the semi_operators list consists of the joinqual operators
+ * themselves (but commuted if needed to put the RHS value on the right).
+ * These could be cross-type operators, in which case the operator
+ * actually needed for uniqueness is a related single-type operator. We
+ * assume here that that operator will be available from the btree or hash
+ * opclass when the time comes ... if not, create_unique_plan() will fail.
+ */
+ semi_operators = NIL;
+ semi_rhs_exprs = NIL;
+ all_btree = true;
+ all_hash = enable_hashagg; /* don't consider hash if not enabled */
+ foreach(lc, clause)
+ {
+ OpExpr *op = (OpExpr *) lfirst(lc);
+ Oid opno;
+ Node *left_expr;
+ Node *right_expr;
+ Relids left_varnos;
+ Relids right_varnos;
+ Relids all_varnos;
+ Oid opinputtype;
+
+ /* Is it a binary opclause? */
+ if (!IsA(op, OpExpr) ||
+ list_length(op->args) != 2)
+ {
+ /* No, but does it reference both sides? */
+ all_varnos = pull_varnos(root, (Node *) op);
+ if (!bms_overlap(all_varnos, sjinfo->syn_righthand) ||
+ bms_is_subset(all_varnos, sjinfo->syn_righthand))
+ {
+ /*
+ * Clause refers to only one rel, so ignore it --- unless it
+ * contains volatile functions, in which case we'd better
+ * punt.
+ */
+ if (contain_volatile_functions((Node *) op))
+ return;
+ continue;
+ }
+ /* Non-operator clause referencing both sides, must punt */
+ return;
+ }
+
+ /* Extract data from binary opclause */
+ opno = op->opno;
+ left_expr = linitial(op->args);
+ right_expr = lsecond(op->args);
+ left_varnos = pull_varnos(root, left_expr);
+ right_varnos = pull_varnos(root, right_expr);
+ all_varnos = bms_union(left_varnos, right_varnos);
+ opinputtype = exprType(left_expr);
+
+ /* Does it reference both sides? */
+ if (!bms_overlap(all_varnos, sjinfo->syn_righthand) ||
+ bms_is_subset(all_varnos, sjinfo->syn_righthand))
+ {
+ /*
+ * Clause refers to only one rel, so ignore it --- unless it
+ * contains volatile functions, in which case we'd better punt.
+ */
+ if (contain_volatile_functions((Node *) op))
+ return;
+ continue;
+ }
+
+ /* check rel membership of arguments */
+ if (!bms_is_empty(right_varnos) &&
+ bms_is_subset(right_varnos, sjinfo->syn_righthand) &&
+ !bms_overlap(left_varnos, sjinfo->syn_righthand))
+ {
+ /* typical case, right_expr is RHS variable */
+ }
+ else if (!bms_is_empty(left_varnos) &&
+ bms_is_subset(left_varnos, sjinfo->syn_righthand) &&
+ !bms_overlap(right_varnos, sjinfo->syn_righthand))
+ {
+ /* flipped case, left_expr is RHS variable */
+ opno = get_commutator(opno);
+ if (!OidIsValid(opno))
+ return;
+ right_expr = left_expr;
+ }
+ else
+ {
+ /* mixed membership of args, punt */
+ return;
+ }
+
+ /* all operators must be btree equality or hash equality */
+ if (all_btree)
+ {
+ /* oprcanmerge is considered a hint... */
+ if (!op_mergejoinable(opno, opinputtype) ||
+ get_mergejoin_opfamilies(opno) == NIL)
+ all_btree = false;
+ }
+ if (all_hash)
+ {
+ /* ... but oprcanhash had better be correct */
+ if (!op_hashjoinable(opno, opinputtype))
+ all_hash = false;
+ }
+ if (!(all_btree || all_hash))
+ return;
+
+ /* so far so good, keep building lists */
+ semi_operators = lappend_oid(semi_operators, opno);
+ semi_rhs_exprs = lappend(semi_rhs_exprs, copyObject(right_expr));
+ }
+
+ /* Punt if we didn't find at least one column to unique-ify */
+ if (semi_rhs_exprs == NIL)
+ return;
+
+ /*
+ * The expressions we'd need to unique-ify mustn't be volatile.
+ */
+ if (contain_volatile_functions((Node *) semi_rhs_exprs))
+ return;
+
+ /*
+ * If we get here, we can unique-ify the semijoin's RHS using at least one
+ * of sorting and hashing. Save the information about how to do that.
+ */
+ sjinfo->semi_can_btree = all_btree;
+ sjinfo->semi_can_hash = all_hash;
+ sjinfo->semi_operators = semi_operators;
+ sjinfo->semi_rhs_exprs = semi_rhs_exprs;
+}
+
+
+/*****************************************************************************
+ *
+ * QUALIFICATIONS
+ *
+ *****************************************************************************/
+
+/*
+ * distribute_qual_to_rels
+ * Add clause information to either the baserestrictinfo or joininfo list
+ * (depending on whether the clause is a join) of each base relation
+ * mentioned in the clause. A RestrictInfo node is created and added to
+ * the appropriate list for each rel. Alternatively, if the clause uses a
+ * mergejoinable operator and is not delayed by outer-join rules, enter
+ * the left- and right-side expressions into the query's list of
+ * EquivalenceClasses. Alternatively, if the clause needs to be treated
+ * as belonging to a higher join level, just add it to postponed_qual_list.
+ *
+ * 'clause': the qual clause to be distributed
+ * 'below_outer_join': true if the qual is from a JOIN/ON that is below the
+ * nullable side of a higher-level outer join
+ * 'jointype': type of join the qual is from (JOIN_INNER for a WHERE clause)
+ * 'security_level': security_level to assign to the qual
+ * 'qualscope': set of baserels the qual's syntactic scope covers
+ * 'ojscope': NULL if not an outer-join qual, else the minimum set of baserels
+ * needed to form this join
+ * 'outerjoin_nonnullable': NULL if not an outer-join qual, else the set of
+ * baserels appearing on the outer (nonnullable) side of the join
+ * (for FULL JOIN this includes both sides of the join, and must in fact
+ * equal qualscope)
+ * 'postponed_qual_list': list of PostponedQual structs, which we can add
+ * this qual to if it turns out to belong to a higher join level.
+ * Can be NULL if caller knows postponement is impossible.
+ *
+ * 'qualscope' identifies what level of JOIN the qual came from syntactically.
+ * 'ojscope' is needed if we decide to force the qual up to the outer-join
+ * level, which will be ojscope not necessarily qualscope.
+ *
+ * At the time this is called, root->join_info_list must contain entries for
+ * all and only those special joins that are syntactically below this qual.
+ */
+static void
+distribute_qual_to_rels(PlannerInfo *root, Node *clause,
+ bool below_outer_join,
+ JoinType jointype,
+ Index security_level,
+ Relids qualscope,
+ Relids ojscope,
+ Relids outerjoin_nonnullable,
+ List **postponed_qual_list)
+{
+ Relids relids;
+ bool is_pushed_down;
+ bool outerjoin_delayed;
+ bool pseudoconstant = false;
+ bool maybe_equivalence;
+ bool maybe_outer_join;
+ Relids nullable_relids;
+ RestrictInfo *restrictinfo;
+
+ /*
+ * Retrieve all relids mentioned within the clause.
+ */
+ relids = pull_varnos(root, clause);
+
+ /*
+ * In ordinary SQL, a WHERE or JOIN/ON clause can't reference any rels
+ * that aren't within its syntactic scope; however, if we pulled up a
+ * LATERAL subquery then we might find such references in quals that have
+ * been pulled up. We need to treat such quals as belonging to the join
+ * level that includes every rel they reference. Although we could make
+ * pull_up_subqueries() place such quals correctly to begin with, it's
+ * easier to handle it here. When we find a clause that contains Vars
+ * outside its syntactic scope, we add it to the postponed-quals list, and
+ * process it once we've recursed back up to the appropriate join level.
+ */
+ if (!bms_is_subset(relids, qualscope))
+ {
+ PostponedQual *pq = (PostponedQual *) palloc(sizeof(PostponedQual));
+
+ Assert(root->hasLateralRTEs); /* shouldn't happen otherwise */
+ Assert(jointype == JOIN_INNER); /* mustn't postpone past outer join */
+ pq->qual = clause;
+ pq->relids = relids;
+ *postponed_qual_list = lappend(*postponed_qual_list, pq);
+ return;
+ }
+
+ /*
+ * If it's an outer-join clause, also check that relids is a subset of
+ * ojscope. (This should not fail if the syntactic scope check passed.)
+ */
+ if (ojscope && !bms_is_subset(relids, ojscope))
+ elog(ERROR, "JOIN qualification cannot refer to other relations");
+
+ /*
+ * If the clause is variable-free, our normal heuristic for pushing it
+ * down to just the mentioned rels doesn't work, because there are none.
+ *
+ * If the clause is an outer-join clause, we must force it to the OJ's
+ * semantic level to preserve semantics.
+ *
+ * Otherwise, when the clause contains volatile functions, we force it to
+ * be evaluated at its original syntactic level. This preserves the
+ * expected semantics.
+ *
+ * When the clause contains no volatile functions either, it is actually a
+ * pseudoconstant clause that will not change value during any one
+ * execution of the plan, and hence can be used as a one-time qual in a
+ * gating Result plan node. We put such a clause into the regular
+ * RestrictInfo lists for the moment, but eventually createplan.c will
+ * pull it out and make a gating Result node immediately above whatever
+ * plan node the pseudoconstant clause is assigned to. It's usually best
+ * to put a gating node as high in the plan tree as possible. If we are
+ * not below an outer join, we can actually push the pseudoconstant qual
+ * all the way to the top of the tree. If we are below an outer join, we
+ * leave the qual at its original syntactic level (we could push it up to
+ * just below the outer join, but that seems more complex than it's
+ * worth).
+ */
+ if (bms_is_empty(relids))
+ {
+ if (ojscope)
+ {
+ /* clause is attached to outer join, eval it there */
+ relids = bms_copy(ojscope);
+ /* mustn't use as gating qual, so don't mark pseudoconstant */
+ }
+ else
+ {
+ /* eval at original syntactic level */
+ relids = bms_copy(qualscope);
+ if (!contain_volatile_functions(clause))
+ {
+ /* mark as gating qual */
+ pseudoconstant = true;
+ /* tell createplan.c to check for gating quals */
+ root->hasPseudoConstantQuals = true;
+ /* if not below outer join, push it to top of tree */
+ if (!below_outer_join)
+ {
+ relids =
+ get_relids_in_jointree((Node *) root->parse->jointree,
+ false);
+ qualscope = bms_copy(relids);
+ }
+ }
+ }
+ }
+
+ /*----------
+ * Check to see if clause application must be delayed by outer-join
+ * considerations.
+ *
+ * A word about is_pushed_down: we mark the qual as "pushed down" if
+ * it is (potentially) applicable at a level different from its original
+ * syntactic level. This flag is used to distinguish OUTER JOIN ON quals
+ * from other quals pushed down to the same joinrel. The rules are:
+ * WHERE quals and INNER JOIN quals: is_pushed_down = true.
+ * Non-degenerate OUTER JOIN quals: is_pushed_down = false.
+ * Degenerate OUTER JOIN quals: is_pushed_down = true.
+ * A "degenerate" OUTER JOIN qual is one that doesn't mention the
+ * non-nullable side, and hence can be pushed down into the nullable side
+ * without changing the join result. It is correct to treat it as a
+ * regular filter condition at the level where it is evaluated.
+ *
+ * Note: it is not immediately obvious that a simple boolean is enough
+ * for this: if for some reason we were to attach a degenerate qual to
+ * its original join level, it would need to be treated as an outer join
+ * qual there. However, this cannot happen, because all the rels the
+ * clause mentions must be in the outer join's min_righthand, therefore
+ * the join it needs must be formed before the outer join; and we always
+ * attach quals to the lowest level where they can be evaluated. But
+ * if we were ever to re-introduce a mechanism for delaying evaluation
+ * of "expensive" quals, this area would need work.
+ *
+ * Note: generally, use of is_pushed_down has to go through the macro
+ * RINFO_IS_PUSHED_DOWN, because that flag alone is not always sufficient
+ * to tell whether a clause must be treated as pushed-down in context.
+ * This seems like another reason why it should perhaps be rethought.
+ *----------
+ */
+ if (bms_overlap(relids, outerjoin_nonnullable))
+ {
+ /*
+ * The qual is attached to an outer join and mentions (some of the)
+ * rels on the nonnullable side, so it's not degenerate.
+ *
+ * We can't use such a clause to deduce equivalence (the left and
+ * right sides might be unequal above the join because one of them has
+ * gone to NULL) ... but we might be able to use it for more limited
+ * deductions, if it is mergejoinable. So consider adding it to the
+ * lists of set-aside outer-join clauses.
+ */
+ is_pushed_down = false;
+ maybe_equivalence = false;
+ maybe_outer_join = true;
+
+ /* Check to see if must be delayed by lower outer join */
+ outerjoin_delayed = check_outerjoin_delay(root,
+ &relids,
+ &nullable_relids,
+ false);
+
+ /*
+ * Now force the qual to be evaluated exactly at the level of joining
+ * corresponding to the outer join. We cannot let it get pushed down
+ * into the nonnullable side, since then we'd produce no output rows,
+ * rather than the intended single null-extended row, for any
+ * nonnullable-side rows failing the qual.
+ *
+ * (Do this step after calling check_outerjoin_delay, because that
+ * trashes relids.)
+ */
+ Assert(ojscope);
+ relids = ojscope;
+ Assert(!pseudoconstant);
+ }
+ else
+ {
+ /*
+ * Normal qual clause or degenerate outer-join clause. Either way, we
+ * can mark it as pushed-down.
+ */
+ is_pushed_down = true;
+
+ /* Check to see if must be delayed by lower outer join */
+ outerjoin_delayed = check_outerjoin_delay(root,
+ &relids,
+ &nullable_relids,
+ true);
+
+ if (outerjoin_delayed)
+ {
+ /* Should still be a subset of current scope ... */
+ Assert(root->hasLateralRTEs || bms_is_subset(relids, qualscope));
+ Assert(ojscope == NULL || bms_is_subset(relids, ojscope));
+
+ /*
+ * Because application of the qual will be delayed by outer join,
+ * we mustn't assume its vars are equal everywhere.
+ */
+ maybe_equivalence = false;
+
+ /*
+ * It's possible that this is an IS NULL clause that's redundant
+ * with a lower antijoin; if so we can just discard it. We need
+ * not test in any of the other cases, because this will only be
+ * possible for pushed-down, delayed clauses.
+ */
+ if (check_redundant_nullability_qual(root, clause))
+ return;
+ }
+ else
+ {
+ /*
+ * Qual is not delayed by any lower outer-join restriction, so we
+ * can consider feeding it to the equivalence machinery. However,
+ * if it's itself within an outer-join clause, treat it as though
+ * it appeared below that outer join (note that we can only get
+ * here when the clause references only nullable-side rels).
+ */
+ maybe_equivalence = true;
+ if (outerjoin_nonnullable != NULL)
+ below_outer_join = true;
+ }
+
+ /*
+ * Since it doesn't mention the LHS, it's certainly not useful as a
+ * set-aside OJ clause, even if it's in an OJ.
+ */
+ maybe_outer_join = false;
+ }
+
+ /*
+ * Build the RestrictInfo node itself.
+ */
+ restrictinfo = make_restrictinfo(root,
+ (Expr *) clause,
+ is_pushed_down,
+ outerjoin_delayed,
+ pseudoconstant,
+ security_level,
+ relids,
+ outerjoin_nonnullable,
+ nullable_relids);
+
+ /*
+ * If it's a join clause (either naturally, or because delayed by
+ * outer-join rules), add vars used in the clause to targetlists of their
+ * relations, so that they will be emitted by the plan nodes that scan
+ * those relations (else they won't be available at the join node!).
+ *
+ * Note: if the clause gets absorbed into an EquivalenceClass then this
+ * may be unnecessary, but for now we have to do it to cover the case
+ * where the EC becomes ec_broken and we end up reinserting the original
+ * clauses into the plan.
+ */
+ if (bms_membership(relids) == BMS_MULTIPLE)
+ {
+ List *vars = pull_var_clause(clause,
+ PVC_RECURSE_AGGREGATES |
+ PVC_RECURSE_WINDOWFUNCS |
+ PVC_INCLUDE_PLACEHOLDERS);
+
+ add_vars_to_targetlist(root, vars, relids, false);
+ list_free(vars);
+ }
+
+ /*
+ * We check "mergejoinability" of every clause, not only join clauses,
+ * because we want to know about equivalences between vars of the same
+ * relation, or between vars and consts.
+ */
+ check_mergejoinable(restrictinfo);
+
+ /*
+ * If it is a true equivalence clause, send it to the EquivalenceClass
+ * machinery. We do *not* attach it directly to any restriction or join
+ * lists. The EC code will propagate it to the appropriate places later.
+ *
+ * If the clause has a mergejoinable operator and is not
+ * outerjoin-delayed, yet isn't an equivalence because it is an outer-join
+ * clause, the EC code may yet be able to do something with it. We add it
+ * to appropriate lists for further consideration later. Specifically:
+ *
+ * If it is a left or right outer-join qualification that relates the two
+ * sides of the outer join (no funny business like leftvar1 = leftvar2 +
+ * rightvar), we add it to root->left_join_clauses or
+ * root->right_join_clauses according to which side the nonnullable
+ * variable appears on.
+ *
+ * If it is a full outer-join qualification, we add it to
+ * root->full_join_clauses. (Ideally we'd discard cases that aren't
+ * leftvar = rightvar, as we do for left/right joins, but this routine
+ * doesn't have the info needed to do that; and the current usage of the
+ * full_join_clauses list doesn't require that, so it's not currently
+ * worth complicating this routine's API to make it possible.)
+ *
+ * If none of the above hold, pass it off to
+ * distribute_restrictinfo_to_rels().
+ *
+ * In all cases, it's important to initialize the left_ec and right_ec
+ * fields of a mergejoinable clause, so that all possibly mergejoinable
+ * expressions have representations in EquivalenceClasses. If
+ * process_equivalence is successful, it will take care of that;
+ * otherwise, we have to call initialize_mergeclause_eclasses to do it.
+ */
+ if (restrictinfo->mergeopfamilies)
+ {
+ if (maybe_equivalence)
+ {
+ if (check_equivalence_delay(root, restrictinfo) &&
+ process_equivalence(root, &restrictinfo, below_outer_join))
+ return;
+ /* EC rejected it, so set left_ec/right_ec the hard way ... */
+ if (restrictinfo->mergeopfamilies) /* EC might have changed this */
+ initialize_mergeclause_eclasses(root, restrictinfo);
+ /* ... and fall through to distribute_restrictinfo_to_rels */
+ }
+ else if (maybe_outer_join && restrictinfo->can_join)
+ {
+ /* we need to set up left_ec/right_ec the hard way */
+ initialize_mergeclause_eclasses(root, restrictinfo);
+ /* now see if it should go to any outer-join lists */
+ if (bms_is_subset(restrictinfo->left_relids,
+ outerjoin_nonnullable) &&
+ !bms_overlap(restrictinfo->right_relids,
+ outerjoin_nonnullable))
+ {
+ /* we have outervar = innervar */
+ root->left_join_clauses = lappend(root->left_join_clauses,
+ restrictinfo);
+ return;
+ }
+ if (bms_is_subset(restrictinfo->right_relids,
+ outerjoin_nonnullable) &&
+ !bms_overlap(restrictinfo->left_relids,
+ outerjoin_nonnullable))
+ {
+ /* we have innervar = outervar */
+ root->right_join_clauses = lappend(root->right_join_clauses,
+ restrictinfo);
+ return;
+ }
+ if (jointype == JOIN_FULL)
+ {
+ /* FULL JOIN (above tests cannot match in this case) */
+ root->full_join_clauses = lappend(root->full_join_clauses,
+ restrictinfo);
+ return;
+ }
+ /* nope, so fall through to distribute_restrictinfo_to_rels */
+ }
+ else
+ {
+ /* we still need to set up left_ec/right_ec */
+ initialize_mergeclause_eclasses(root, restrictinfo);
+ }
+ }
+
+ /* No EC special case applies, so push it into the clause lists */
+ distribute_restrictinfo_to_rels(root, restrictinfo);
+}
+
+/*
+ * check_outerjoin_delay
+ * Detect whether a qual referencing the given relids must be delayed
+ * in application due to the presence of a lower outer join, and/or
+ * may force extra delay of higher-level outer joins.
+ *
+ * If the qual must be delayed, add relids to *relids_p to reflect the lowest
+ * safe level for evaluating the qual, and return true. Any extra delay for
+ * higher-level joins is reflected by setting delay_upper_joins to true in
+ * SpecialJoinInfo structs. We also compute nullable_relids, the set of
+ * referenced relids that are nullable by lower outer joins (note that this
+ * can be nonempty even for a non-delayed qual).
+ *
+ * For an is_pushed_down qual, we can evaluate the qual as soon as (1) we have
+ * all the rels it mentions, and (2) we are at or above any outer joins that
+ * can null any of these rels and are below the syntactic location of the
+ * given qual. We must enforce (2) because pushing down such a clause below
+ * the OJ might cause the OJ to emit null-extended rows that should not have
+ * been formed, or that should have been rejected by the clause. (This is
+ * only an issue for non-strict quals, since if we can prove a qual mentioning
+ * only nullable rels is strict, we'd have reduced the outer join to an inner
+ * join in reduce_outer_joins().)
+ *
+ * To enforce (2), scan the join_info_list and merge the required-relid sets of
+ * any such OJs into the clause's own reference list. At the time we are
+ * called, the join_info_list contains only outer joins below this qual. We
+ * have to repeat the scan until no new relids get added; this ensures that
+ * the qual is suitably delayed regardless of the order in which OJs get
+ * executed. As an example, if we have one OJ with LHS=A, RHS=B, and one with
+ * LHS=B, RHS=C, it is implied that these can be done in either order; if the
+ * B/C join is done first then the join to A can null C, so a qual actually
+ * mentioning only C cannot be applied below the join to A.
+ *
+ * For a non-pushed-down qual, this isn't going to determine where we place the
+ * qual, but we need to determine outerjoin_delayed and nullable_relids anyway
+ * for use later in the planning process.
+ *
+ * Lastly, a pushed-down qual that references the nullable side of any current
+ * join_info_list member and has to be evaluated above that OJ (because its
+ * required relids overlap the LHS too) causes that OJ's delay_upper_joins
+ * flag to be set true. This will prevent any higher-level OJs from
+ * being interchanged with that OJ, which would result in not having any
+ * correct place to evaluate the qual. (The case we care about here is a
+ * sub-select WHERE clause within the RHS of some outer join. The WHERE
+ * clause must effectively be treated as a degenerate clause of that outer
+ * join's condition. Rather than trying to match such clauses with joins
+ * directly, we set delay_upper_joins here, and when the upper outer join
+ * is processed by make_outerjoininfo, it will refrain from allowing the
+ * two OJs to commute.)
+ */
+static bool
+check_outerjoin_delay(PlannerInfo *root,
+ Relids *relids_p, /* in/out parameter */
+ Relids *nullable_relids_p, /* output parameter */
+ bool is_pushed_down)
+{
+ Relids relids;
+ Relids nullable_relids;
+ bool outerjoin_delayed;
+ bool found_some;
+
+ /* fast path if no special joins */
+ if (root->join_info_list == NIL)
+ {
+ *nullable_relids_p = NULL;
+ return false;
+ }
+
+ /* must copy relids because we need the original value at the end */
+ relids = bms_copy(*relids_p);
+ nullable_relids = NULL;
+ outerjoin_delayed = false;
+ do
+ {
+ ListCell *l;
+
+ found_some = false;
+ foreach(l, root->join_info_list)
+ {
+ SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
+
+ /* do we reference any nullable rels of this OJ? */
+ if (bms_overlap(relids, sjinfo->min_righthand) ||
+ (sjinfo->jointype == JOIN_FULL &&
+ bms_overlap(relids, sjinfo->min_lefthand)))
+ {
+ /* yes; have we included all its rels in relids? */
+ if (!bms_is_subset(sjinfo->min_lefthand, relids) ||
+ !bms_is_subset(sjinfo->min_righthand, relids))
+ {
+ /* no, so add them in */
+ relids = bms_add_members(relids, sjinfo->min_lefthand);
+ relids = bms_add_members(relids, sjinfo->min_righthand);
+ outerjoin_delayed = true;
+ /* we'll need another iteration */
+ found_some = true;
+ }
+ /* track all the nullable rels of relevant OJs */
+ nullable_relids = bms_add_members(nullable_relids,
+ sjinfo->min_righthand);
+ if (sjinfo->jointype == JOIN_FULL)
+ nullable_relids = bms_add_members(nullable_relids,
+ sjinfo->min_lefthand);
+ /* set delay_upper_joins if needed */
+ if (is_pushed_down && sjinfo->jointype != JOIN_FULL &&
+ bms_overlap(relids, sjinfo->min_lefthand))
+ sjinfo->delay_upper_joins = true;
+ }
+ }
+ } while (found_some);
+
+ /* identify just the actually-referenced nullable rels */
+ nullable_relids = bms_int_members(nullable_relids, *relids_p);
+
+ /* replace *relids_p, and return nullable_relids */
+ bms_free(*relids_p);
+ *relids_p = relids;
+ *nullable_relids_p = nullable_relids;
+ return outerjoin_delayed;
+}
+
+/*
+ * check_equivalence_delay
+ * Detect whether a potential equivalence clause is rendered unsafe
+ * by outer-join-delay considerations. Return true if it's safe.
+ *
+ * The initial tests in distribute_qual_to_rels will consider a mergejoinable
+ * clause to be a potential equivalence clause if it is not outerjoin_delayed.
+ * But since the point of equivalence processing is that we will recombine the
+ * two sides of the clause with others, we have to check that each side
+ * satisfies the not-outerjoin_delayed condition on its own; otherwise it might
+ * not be safe to evaluate everywhere we could place a derived equivalence
+ * condition.
+ */
+static bool
+check_equivalence_delay(PlannerInfo *root,
+ RestrictInfo *restrictinfo)
+{
+ Relids relids;
+ Relids nullable_relids;
+
+ /* fast path if no special joins */
+ if (root->join_info_list == NIL)
+ return true;
+
+ /* must copy restrictinfo's relids to avoid changing it */
+ relids = bms_copy(restrictinfo->left_relids);
+ /* check left side does not need delay */
+ if (check_outerjoin_delay(root, &relids, &nullable_relids, true))
+ return false;
+
+ /* and similarly for the right side */
+ relids = bms_copy(restrictinfo->right_relids);
+ if (check_outerjoin_delay(root, &relids, &nullable_relids, true))
+ return false;
+
+ return true;
+}
+
+/*
+ * check_redundant_nullability_qual
+ * Check to see if the qual is an IS NULL qual that is redundant with
+ * a lower JOIN_ANTI join.
+ *
+ * We want to suppress redundant IS NULL quals, not so much to save cycles
+ * as to avoid generating bogus selectivity estimates for them. So if
+ * redundancy is detected here, distribute_qual_to_rels() just throws away
+ * the qual.
+ */
+static bool
+check_redundant_nullability_qual(PlannerInfo *root, Node *clause)
+{
+ Var *forced_null_var;
+ Index forced_null_rel;
+ ListCell *lc;
+
+ /* Check for IS NULL, and identify the Var forced to NULL */
+ forced_null_var = find_forced_null_var(clause);
+ if (forced_null_var == NULL)
+ return false;
+ forced_null_rel = forced_null_var->varno;
+
+ /*
+ * If the Var comes from the nullable side of a lower antijoin, the IS
+ * NULL condition is necessarily true.
+ */
+ foreach(lc, root->join_info_list)
+ {
+ SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
+
+ if (sjinfo->jointype == JOIN_ANTI &&
+ bms_is_member(forced_null_rel, sjinfo->syn_righthand))
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * distribute_restrictinfo_to_rels
+ * Push a completed RestrictInfo into the proper restriction or join
+ * clause list(s).
+ *
+ * This is the last step of distribute_qual_to_rels() for ordinary qual
+ * clauses. Clauses that are interesting for equivalence-class processing
+ * are diverted to the EC machinery, but may ultimately get fed back here.
+ */
+void
+distribute_restrictinfo_to_rels(PlannerInfo *root,
+ RestrictInfo *restrictinfo)
+{
+ Relids relids = restrictinfo->required_relids;
+ RelOptInfo *rel;
+
+ switch (bms_membership(relids))
+ {
+ case BMS_SINGLETON:
+
+ /*
+ * There is only one relation participating in the clause, so it
+ * is a restriction clause for that relation.
+ */
+ rel = find_base_rel(root, bms_singleton_member(relids));
+
+ /* Add clause to rel's restriction list */
+ rel->baserestrictinfo = lappend(rel->baserestrictinfo,
+ restrictinfo);
+ /* Update security level info */
+ rel->baserestrict_min_security = Min(rel->baserestrict_min_security,
+ restrictinfo->security_level);
+ break;
+ case BMS_MULTIPLE:
+
+ /*
+ * The clause is a join clause, since there is more than one rel
+ * in its relid set.
+ */
+
+ /*
+ * Check for hashjoinable operators. (We don't bother setting the
+ * hashjoin info except in true join clauses.)
+ */
+ check_hashjoinable(restrictinfo);
+
+ /*
+ * Likewise, check if the clause is suitable to be used with a
+ * Memoize node to cache inner tuples during a parameterized
+ * nested loop.
+ */
+ check_memoizable(restrictinfo);
+
+ /*
+ * Add clause to the join lists of all the relevant relations.
+ */
+ add_join_clause_to_rels(root, restrictinfo, relids);
+ break;
+ default:
+
+ /*
+ * clause references no rels, and therefore we have no place to
+ * attach it. Shouldn't get here if callers are working properly.
+ */
+ elog(ERROR, "cannot cope with variable-free clause");
+ break;
+ }
+}
+
+/*
+ * process_implied_equality
+ * Create a restrictinfo item that says "item1 op item2", and push it
+ * into the appropriate lists. (In practice opno is always a btree
+ * equality operator.)
+ *
+ * "qualscope" is the nominal syntactic level to impute to the restrictinfo.
+ * This must contain at least all the rels used in the expressions, but it
+ * is used only to set the qual application level when both exprs are
+ * variable-free. Otherwise the qual is applied at the lowest join level
+ * that provides all its variables.
+ *
+ * "nullable_relids" is the set of relids used in the expressions that are
+ * potentially nullable below the expressions. (This has to be supplied by
+ * caller because this function is used after deconstruct_jointree, so we
+ * don't have knowledge of where the clause items came from.)
+ *
+ * "security_level" is the security level to assign to the new restrictinfo.
+ *
+ * "both_const" indicates whether both items are known pseudo-constant;
+ * in this case it is worth applying eval_const_expressions() in case we
+ * can produce constant TRUE or constant FALSE. (Otherwise it's not,
+ * because the expressions went through eval_const_expressions already.)
+ *
+ * Returns the generated RestrictInfo, if any. The result will be NULL
+ * if both_const is true and we successfully reduced the clause to
+ * constant TRUE.
+ *
+ * Note: this function will copy item1 and item2, but it is caller's
+ * responsibility to make sure that the Relids parameters are fresh copies
+ * not shared with other uses.
+ *
+ * Note: we do not do initialize_mergeclause_eclasses() here. It is
+ * caller's responsibility that left_ec/right_ec be set as necessary.
+ */
+RestrictInfo *
+process_implied_equality(PlannerInfo *root,
+ Oid opno,
+ Oid collation,
+ Expr *item1,
+ Expr *item2,
+ Relids qualscope,
+ Relids nullable_relids,
+ Index security_level,
+ bool below_outer_join,
+ bool both_const)
+{
+ RestrictInfo *restrictinfo;
+ Node *clause;
+ Relids relids;
+ bool pseudoconstant = false;
+
+ /*
+ * Build the new clause. Copy to ensure it shares no substructure with
+ * original (this is necessary in case there are subselects in there...)
+ */
+ clause = (Node *) make_opclause(opno,
+ BOOLOID, /* opresulttype */
+ false, /* opretset */
+ copyObject(item1),
+ copyObject(item2),
+ InvalidOid,
+ collation);
+
+ /* If both constant, try to reduce to a boolean constant. */
+ if (both_const)
+ {
+ clause = eval_const_expressions(root, clause);
+
+ /* If we produced const TRUE, just drop the clause */
+ if (clause && IsA(clause, Const))
+ {
+ Const *cclause = (Const *) clause;
+
+ Assert(cclause->consttype == BOOLOID);
+ if (!cclause->constisnull && DatumGetBool(cclause->constvalue))
+ return NULL;
+ }
+ }
+
+ /*
+ * The rest of this is a very cut-down version of distribute_qual_to_rels.
+ * We can skip most of the work therein, but there are a couple of special
+ * cases we still have to handle.
+ *
+ * Retrieve all relids mentioned within the possibly-simplified clause.
+ */
+ relids = pull_varnos(root, clause);
+ Assert(bms_is_subset(relids, qualscope));
+
+ /*
+ * If the clause is variable-free, our normal heuristic for pushing it
+ * down to just the mentioned rels doesn't work, because there are none.
+ * Apply at the given qualscope, or at the top of tree if it's nonvolatile
+ * (which it very likely is, but we'll check, just to be sure).
+ */
+ if (bms_is_empty(relids))
+ {
+ /* eval at original syntactic level */
+ relids = bms_copy(qualscope);
+ if (!contain_volatile_functions(clause))
+ {
+ /* mark as gating qual */
+ pseudoconstant = true;
+ /* tell createplan.c to check for gating quals */
+ root->hasPseudoConstantQuals = true;
+ /* if not below outer join, push it to top of tree */
+ if (!below_outer_join)
+ {
+ relids =
+ get_relids_in_jointree((Node *) root->parse->jointree,
+ false);
+ }
+ }
+ }
+
+ /*
+ * Build the RestrictInfo node itself.
+ */
+ restrictinfo = make_restrictinfo(root,
+ (Expr *) clause,
+ true, /* is_pushed_down */
+ false, /* outerjoin_delayed */
+ pseudoconstant,
+ security_level,
+ relids,
+ NULL, /* outer_relids */
+ nullable_relids);
+
+ /*
+ * If it's a join clause, add vars used in the clause to targetlists of
+ * their relations, so that they will be emitted by the plan nodes that
+ * scan those relations (else they won't be available at the join node!).
+ *
+ * Typically, we'd have already done this when the component expressions
+ * were first seen by distribute_qual_to_rels; but it is possible that
+ * some of the Vars could have missed having that done because they only
+ * appeared in single-relation clauses originally. So do it here for
+ * safety.
+ */
+ if (bms_membership(relids) == BMS_MULTIPLE)
+ {
+ List *vars = pull_var_clause(clause,
+ PVC_RECURSE_AGGREGATES |
+ PVC_RECURSE_WINDOWFUNCS |
+ PVC_INCLUDE_PLACEHOLDERS);
+
+ add_vars_to_targetlist(root, vars, relids, false);
+ list_free(vars);
+ }
+
+ /*
+ * Check mergejoinability. This will usually succeed, since the op came
+ * from an EquivalenceClass; but we could have reduced the original clause
+ * to a constant.
+ */
+ check_mergejoinable(restrictinfo);
+
+ /*
+ * Note we don't do initialize_mergeclause_eclasses(); the caller can
+ * handle that much more cheaply than we can. It's okay to call
+ * distribute_restrictinfo_to_rels() before that happens.
+ */
+
+ /*
+ * Push the new clause into all the appropriate restrictinfo lists.
+ */
+ distribute_restrictinfo_to_rels(root, restrictinfo);
+
+ return restrictinfo;
+}
+
+/*
+ * build_implied_join_equality --- build a RestrictInfo for a derived equality
+ *
+ * This overlaps the functionality of process_implied_equality(), but we
+ * must not push the RestrictInfo into the joininfo tree.
+ *
+ * Note: this function will copy item1 and item2, but it is caller's
+ * responsibility to make sure that the Relids parameters are fresh copies
+ * not shared with other uses.
+ *
+ * Note: we do not do initialize_mergeclause_eclasses() here. It is
+ * caller's responsibility that left_ec/right_ec be set as necessary.
+ */
+RestrictInfo *
+build_implied_join_equality(PlannerInfo *root,
+ Oid opno,
+ Oid collation,
+ Expr *item1,
+ Expr *item2,
+ Relids qualscope,
+ Relids nullable_relids,
+ Index security_level)
+{
+ RestrictInfo *restrictinfo;
+ Expr *clause;
+
+ /*
+ * Build the new clause. Copy to ensure it shares no substructure with
+ * original (this is necessary in case there are subselects in there...)
+ */
+ clause = make_opclause(opno,
+ BOOLOID, /* opresulttype */
+ false, /* opretset */
+ copyObject(item1),
+ copyObject(item2),
+ InvalidOid,
+ collation);
+
+ /*
+ * Build the RestrictInfo node itself.
+ */
+ restrictinfo = make_restrictinfo(root,
+ clause,
+ true, /* is_pushed_down */
+ false, /* outerjoin_delayed */
+ false, /* pseudoconstant */
+ security_level, /* security_level */
+ qualscope, /* required_relids */
+ NULL, /* outer_relids */
+ nullable_relids); /* nullable_relids */
+
+ /* Set mergejoinability/hashjoinability flags */
+ check_mergejoinable(restrictinfo);
+ check_hashjoinable(restrictinfo);
+ check_memoizable(restrictinfo);
+
+ return restrictinfo;
+}
+
+
+/*
+ * match_foreign_keys_to_quals
+ * Match foreign-key constraints to equivalence classes and join quals
+ *
+ * The idea here is to see which query join conditions match equality
+ * constraints of a foreign-key relationship. For such join conditions,
+ * we can use the FK semantics to make selectivity estimates that are more
+ * reliable than estimating from statistics, especially for multiple-column
+ * FKs, where the normal assumption of independent conditions tends to fail.
+ *
+ * In this function we annotate the ForeignKeyOptInfos in root->fkey_list
+ * with info about which eclasses and join qual clauses they match, and
+ * discard any ForeignKeyOptInfos that are irrelevant for the query.
+ */
+void
+match_foreign_keys_to_quals(PlannerInfo *root)
+{
+ List *newlist = NIL;
+ ListCell *lc;
+
+ foreach(lc, root->fkey_list)
+ {
+ ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
+ RelOptInfo *con_rel;
+ RelOptInfo *ref_rel;
+ int colno;
+
+ /*
+ * Either relid might identify a rel that is in the query's rtable but
+ * isn't referenced by the jointree so won't have a RelOptInfo. Hence
+ * don't use find_base_rel() here. We can ignore such FKs.
+ */
+ if (fkinfo->con_relid >= root->simple_rel_array_size ||
+ fkinfo->ref_relid >= root->simple_rel_array_size)
+ continue; /* just paranoia */
+ con_rel = root->simple_rel_array[fkinfo->con_relid];
+ if (con_rel == NULL)
+ continue;
+ ref_rel = root->simple_rel_array[fkinfo->ref_relid];
+ if (ref_rel == NULL)
+ continue;
+
+ /*
+ * Ignore FK unless both rels are baserels. This gets rid of FKs that
+ * link to inheritance child rels (otherrels) and those that link to
+ * rels removed by join removal (dead rels).
+ */
+ if (con_rel->reloptkind != RELOPT_BASEREL ||
+ ref_rel->reloptkind != RELOPT_BASEREL)
+ continue;
+
+ /*
+ * Scan the columns and try to match them to eclasses and quals.
+ *
+ * Note: for simple inner joins, any match should be in an eclass.
+ * "Loose" quals that syntactically match an FK equality must have
+ * been rejected for EC status because they are outer-join quals or
+ * similar. We can still consider them to match the FK if they are
+ * not outerjoin_delayed.
+ */
+ for (colno = 0; colno < fkinfo->nkeys; colno++)
+ {
+ EquivalenceClass *ec;
+ AttrNumber con_attno,
+ ref_attno;
+ Oid fpeqop;
+ ListCell *lc2;
+
+ ec = match_eclasses_to_foreign_key_col(root, fkinfo, colno);
+ /* Don't bother looking for loose quals if we got an EC match */
+ if (ec != NULL)
+ {
+ fkinfo->nmatched_ec++;
+ if (ec->ec_has_const)
+ fkinfo->nconst_ec++;
+ continue;
+ }
+
+ /*
+ * Scan joininfo list for relevant clauses. Either rel's joininfo
+ * list would do equally well; we use con_rel's.
+ */
+ con_attno = fkinfo->conkey[colno];
+ ref_attno = fkinfo->confkey[colno];
+ fpeqop = InvalidOid; /* we'll look this up only if needed */
+
+ foreach(lc2, con_rel->joininfo)
+ {
+ RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc2);
+ OpExpr *clause = (OpExpr *) rinfo->clause;
+ Var *leftvar;
+ Var *rightvar;
+
+ /* Ignore outerjoin-delayed clauses */
+ if (rinfo->outerjoin_delayed)
+ continue;
+
+ /* Only binary OpExprs are useful for consideration */
+ if (!IsA(clause, OpExpr) ||
+ list_length(clause->args) != 2)
+ continue;
+ leftvar = (Var *) get_leftop((Expr *) clause);
+ rightvar = (Var *) get_rightop((Expr *) clause);
+
+ /* Operands must be Vars, possibly with RelabelType */
+ while (leftvar && IsA(leftvar, RelabelType))
+ leftvar = (Var *) ((RelabelType *) leftvar)->arg;
+ if (!(leftvar && IsA(leftvar, Var)))
+ continue;
+ while (rightvar && IsA(rightvar, RelabelType))
+ rightvar = (Var *) ((RelabelType *) rightvar)->arg;
+ if (!(rightvar && IsA(rightvar, Var)))
+ continue;
+
+ /* Now try to match the vars to the current foreign key cols */
+ if (fkinfo->ref_relid == leftvar->varno &&
+ ref_attno == leftvar->varattno &&
+ fkinfo->con_relid == rightvar->varno &&
+ con_attno == rightvar->varattno)
+ {
+ /* Vars match, but is it the right operator? */
+ if (clause->opno == fkinfo->conpfeqop[colno])
+ {
+ fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
+ rinfo);
+ fkinfo->nmatched_ri++;
+ }
+ }
+ else if (fkinfo->ref_relid == rightvar->varno &&
+ ref_attno == rightvar->varattno &&
+ fkinfo->con_relid == leftvar->varno &&
+ con_attno == leftvar->varattno)
+ {
+ /*
+ * Reverse match, must check commutator operator. Look it
+ * up if we didn't already. (In the worst case we might
+ * do multiple lookups here, but that would require an FK
+ * equality operator without commutator, which is
+ * unlikely.)
+ */
+ if (!OidIsValid(fpeqop))
+ fpeqop = get_commutator(fkinfo->conpfeqop[colno]);
+ if (clause->opno == fpeqop)
+ {
+ fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
+ rinfo);
+ fkinfo->nmatched_ri++;
+ }
+ }
+ }
+ /* If we found any matching loose quals, count col as matched */
+ if (fkinfo->rinfos[colno])
+ fkinfo->nmatched_rcols++;
+ }
+
+ /*
+ * Currently, we drop multicolumn FKs that aren't fully matched to the
+ * query. Later we might figure out how to derive some sort of
+ * estimate from them, in which case this test should be weakened to
+ * "if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) > 0)".
+ */
+ if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) == fkinfo->nkeys)
+ newlist = lappend(newlist, fkinfo);
+ }
+ /* Replace fkey_list, thereby discarding any useless entries */
+ root->fkey_list = newlist;
+}
+
+
+/*****************************************************************************
+ *
+ * CHECKS FOR MERGEJOINABLE AND HASHJOINABLE CLAUSES
+ *
+ *****************************************************************************/
+
+/*
+ * check_mergejoinable
+ * If the restrictinfo's clause is mergejoinable, set the mergejoin
+ * info fields in the restrictinfo.
+ *
+ * Currently, we support mergejoin for binary opclauses where
+ * the operator is a mergejoinable operator. The arguments can be
+ * anything --- as long as there are no volatile functions in them.
+ */
+static void
+check_mergejoinable(RestrictInfo *restrictinfo)
+{
+ Expr *clause = restrictinfo->clause;
+ Oid opno;
+ Node *leftarg;
+
+ if (restrictinfo->pseudoconstant)
+ return;
+ if (!is_opclause(clause))
+ return;
+ if (list_length(((OpExpr *) clause)->args) != 2)
+ return;
+
+ opno = ((OpExpr *) clause)->opno;
+ leftarg = linitial(((OpExpr *) clause)->args);
+
+ if (op_mergejoinable(opno, exprType(leftarg)) &&
+ !contain_volatile_functions((Node *) restrictinfo))
+ restrictinfo->mergeopfamilies = get_mergejoin_opfamilies(opno);
+
+ /*
+ * Note: op_mergejoinable is just a hint; if we fail to find the operator
+ * in any btree opfamilies, mergeopfamilies remains NIL and so the clause
+ * is not treated as mergejoinable.
+ */
+}
+
+/*
+ * check_hashjoinable
+ * If the restrictinfo's clause is hashjoinable, set the hashjoin
+ * info fields in the restrictinfo.
+ *
+ * Currently, we support hashjoin for binary opclauses where
+ * the operator is a hashjoinable operator. The arguments can be
+ * anything --- as long as there are no volatile functions in them.
+ */
+static void
+check_hashjoinable(RestrictInfo *restrictinfo)
+{
+ Expr *clause = restrictinfo->clause;
+ Oid opno;
+ Node *leftarg;
+
+ if (restrictinfo->pseudoconstant)
+ return;
+ if (!is_opclause(clause))
+ return;
+ if (list_length(((OpExpr *) clause)->args) != 2)
+ return;
+
+ opno = ((OpExpr *) clause)->opno;
+ leftarg = linitial(((OpExpr *) clause)->args);
+
+ if (op_hashjoinable(opno, exprType(leftarg)) &&
+ !contain_volatile_functions((Node *) restrictinfo))
+ restrictinfo->hashjoinoperator = opno;
+}
+
+/*
+ * check_memoizable
+ * If the restrictinfo's clause is suitable to be used for a Memoize node,
+ * set the hasheqoperator to the hash equality operator that will be needed
+ * during caching.
+ */
+static void
+check_memoizable(RestrictInfo *restrictinfo)
+{
+ TypeCacheEntry *typentry;
+ Expr *clause = restrictinfo->clause;
+ Oid lefttype;
+ Oid righttype;
+
+ if (restrictinfo->pseudoconstant)
+ return;
+ if (!is_opclause(clause))
+ return;
+ if (list_length(((OpExpr *) clause)->args) != 2)
+ return;
+
+ lefttype = exprType(linitial(((OpExpr *) clause)->args));
+ righttype = exprType(lsecond(((OpExpr *) clause)->args));
+
+ /*
+ * Really there should be a field for both the left and right hash
+ * equality operator, however, in v14, there's only a single field in
+ * RestrictInfo to record the operator in, so we must insist that the left
+ * and right types match.
+ */
+ if (lefttype != righttype)
+ return;
+
+ typentry = lookup_type_cache(lefttype, TYPECACHE_HASH_PROC |
+ TYPECACHE_EQ_OPR);
+
+ if (!OidIsValid(typentry->hash_proc) || !OidIsValid(typentry->eq_opr))
+ return;
+
+ restrictinfo->hasheqoperator = typentry->eq_opr;
+}
diff --git a/src/backend/optimizer/plan/planagg.c b/src/backend/optimizer/plan/planagg.c
new file mode 100644
index 0000000..c1634d1
--- /dev/null
+++ b/src/backend/optimizer/plan/planagg.c
@@ -0,0 +1,513 @@
+/*-------------------------------------------------------------------------
+ *
+ * planagg.c
+ * Special planning for aggregate queries.
+ *
+ * This module tries to replace MIN/MAX aggregate functions by subqueries
+ * of the form
+ * (SELECT col FROM tab
+ * WHERE col IS NOT NULL AND existing-quals
+ * ORDER BY col ASC/DESC
+ * LIMIT 1)
+ * Given a suitable index on tab.col, this can be much faster than the
+ * generic scan-all-the-rows aggregation plan. We can handle multiple
+ * MIN/MAX aggregates by generating multiple subqueries, and their
+ * orderings can be different. However, if the query contains any
+ * non-optimizable aggregates, there's no point since we'll have to
+ * scan all the rows anyway.
+ *
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/plan/planagg.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "access/htup_details.h"
+#include "catalog/pg_aggregate.h"
+#include "catalog/pg_type.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "optimizer/cost.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/pathnode.h"
+#include "optimizer/paths.h"
+#include "optimizer/planmain.h"
+#include "optimizer/subselect.h"
+#include "optimizer/tlist.h"
+#include "parser/parse_clause.h"
+#include "parser/parsetree.h"
+#include "rewrite/rewriteManip.h"
+#include "utils/lsyscache.h"
+#include "utils/syscache.h"
+
+static bool can_minmax_aggs(PlannerInfo *root, List **context);
+static bool build_minmax_path(PlannerInfo *root, MinMaxAggInfo *mminfo,
+ Oid eqop, Oid sortop, bool nulls_first);
+static void minmax_qp_callback(PlannerInfo *root, void *extra);
+static Oid fetch_agg_sort_op(Oid aggfnoid);
+
+
+/*
+ * preprocess_minmax_aggregates - preprocess MIN/MAX aggregates
+ *
+ * Check to see whether the query contains MIN/MAX aggregate functions that
+ * might be optimizable via indexscans. If it does, and all the aggregates
+ * are potentially optimizable, then create a MinMaxAggPath and add it to
+ * the (UPPERREL_GROUP_AGG, NULL) upperrel.
+ *
+ * This should be called by grouping_planner() just before it's ready to call
+ * query_planner(), because we generate indexscan paths by cloning the
+ * planner's state and invoking query_planner() on a modified version of
+ * the query parsetree. Thus, all preprocessing needed before query_planner()
+ * must already be done. This relies on the list of aggregates in
+ * root->agginfos, so preprocess_aggrefs() must have been called already, too.
+ */
+void
+preprocess_minmax_aggregates(PlannerInfo *root)
+{
+ Query *parse = root->parse;
+ FromExpr *jtnode;
+ RangeTblRef *rtr;
+ RangeTblEntry *rte;
+ List *aggs_list;
+ RelOptInfo *grouped_rel;
+ ListCell *lc;
+
+ /* minmax_aggs list should be empty at this point */
+ Assert(root->minmax_aggs == NIL);
+
+ /* Nothing to do if query has no aggregates */
+ if (!parse->hasAggs)
+ return;
+
+ Assert(!parse->setOperations); /* shouldn't get here if a setop */
+ Assert(parse->rowMarks == NIL); /* nor if FOR UPDATE */
+
+ /*
+ * Reject unoptimizable cases.
+ *
+ * We don't handle GROUP BY or windowing, because our current
+ * implementations of grouping require looking at all the rows anyway, and
+ * so there's not much point in optimizing MIN/MAX.
+ */
+ if (parse->groupClause || list_length(parse->groupingSets) > 1 ||
+ parse->hasWindowFuncs)
+ return;
+
+ /*
+ * Reject if query contains any CTEs; there's no way to build an indexscan
+ * on one so we couldn't succeed here. (If the CTEs are unreferenced,
+ * that's not true, but it doesn't seem worth expending cycles to check.)
+ */
+ if (parse->cteList)
+ return;
+
+ /*
+ * We also restrict the query to reference exactly one table, since join
+ * conditions can't be handled reasonably. (We could perhaps handle a
+ * query containing cartesian-product joins, but it hardly seems worth the
+ * trouble.) However, the single table could be buried in several levels
+ * of FromExpr due to subqueries. Note the "single" table could be an
+ * inheritance parent, too, including the case of a UNION ALL subquery
+ * that's been flattened to an appendrel.
+ */
+ jtnode = parse->jointree;
+ while (IsA(jtnode, FromExpr))
+ {
+ if (list_length(jtnode->fromlist) != 1)
+ return;
+ jtnode = linitial(jtnode->fromlist);
+ }
+ if (!IsA(jtnode, RangeTblRef))
+ return;
+ rtr = (RangeTblRef *) jtnode;
+ rte = planner_rt_fetch(rtr->rtindex, root);
+ if (rte->rtekind == RTE_RELATION)
+ /* ordinary relation, ok */ ;
+ else if (rte->rtekind == RTE_SUBQUERY && rte->inh)
+ /* flattened UNION ALL subquery, ok */ ;
+ else
+ return;
+
+ /*
+ * Scan the tlist and HAVING qual to find all the aggregates and verify
+ * all are MIN/MAX aggregates. Stop as soon as we find one that isn't.
+ */
+ aggs_list = NIL;
+ if (!can_minmax_aggs(root, &aggs_list))
+ return;
+
+ /*
+ * OK, there is at least the possibility of performing the optimization.
+ * Build an access path for each aggregate. If any of the aggregates
+ * prove to be non-indexable, give up; there is no point in optimizing
+ * just some of them.
+ */
+ foreach(lc, aggs_list)
+ {
+ MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
+ Oid eqop;
+ bool reverse;
+
+ /*
+ * We'll need the equality operator that goes with the aggregate's
+ * ordering operator.
+ */
+ eqop = get_equality_op_for_ordering_op(mminfo->aggsortop, &reverse);
+ if (!OidIsValid(eqop)) /* shouldn't happen */
+ elog(ERROR, "could not find equality operator for ordering operator %u",
+ mminfo->aggsortop);
+
+ /*
+ * We can use either an ordering that gives NULLS FIRST or one that
+ * gives NULLS LAST; furthermore there's unlikely to be much
+ * performance difference between them, so it doesn't seem worth
+ * costing out both ways if we get a hit on the first one. NULLS
+ * FIRST is more likely to be available if the operator is a
+ * reverse-sort operator, so try that first if reverse.
+ */
+ if (build_minmax_path(root, mminfo, eqop, mminfo->aggsortop, reverse))
+ continue;
+ if (build_minmax_path(root, mminfo, eqop, mminfo->aggsortop, !reverse))
+ continue;
+
+ /* No indexable path for this aggregate, so fail */
+ return;
+ }
+
+ /*
+ * OK, we can do the query this way. Prepare to create a MinMaxAggPath
+ * node.
+ *
+ * First, create an output Param node for each agg. (If we end up not
+ * using the MinMaxAggPath, we'll waste a PARAM_EXEC slot for each agg,
+ * which is not worth worrying about. We can't wait till create_plan time
+ * to decide whether to make the Param, unfortunately.)
+ */
+ foreach(lc, aggs_list)
+ {
+ MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
+
+ mminfo->param =
+ SS_make_initplan_output_param(root,
+ exprType((Node *) mminfo->target),
+ -1,
+ exprCollation((Node *) mminfo->target));
+ }
+
+ /*
+ * Create a MinMaxAggPath node with the appropriate estimated costs and
+ * other needed data, and add it to the UPPERREL_GROUP_AGG upperrel, where
+ * it will compete against the standard aggregate implementation. (It
+ * will likely always win, but we need not assume that here.)
+ *
+ * Note: grouping_planner won't have created this upperrel yet, but it's
+ * fine for us to create it first. We will not have inserted the correct
+ * consider_parallel value in it, but MinMaxAggPath paths are currently
+ * never parallel-safe anyway, so that doesn't matter. Likewise, it
+ * doesn't matter that we haven't filled FDW-related fields in the rel.
+ * Also, because there are no rowmarks, we know that the processed_tlist
+ * doesn't need to change anymore, so making the pathtarget now is safe.
+ */
+ grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, NULL);
+ add_path(grouped_rel, (Path *)
+ create_minmaxagg_path(root, grouped_rel,
+ create_pathtarget(root,
+ root->processed_tlist),
+ aggs_list,
+ (List *) parse->havingQual));
+}
+
+/*
+ * can_minmax_aggs
+ * Walk through all the aggregates in the query, and check
+ * if they are all MIN/MAX aggregates. If so, build a list of the
+ * distinct aggregate calls in the tree.
+ *
+ * Returns false if a non-MIN/MAX aggregate is found, true otherwise.
+ *
+ * This does not descend into subqueries, and so should be used only after
+ * reduction of sublinks to subplans. There mustn't be outer-aggregate
+ * references either.
+ */
+static bool
+can_minmax_aggs(PlannerInfo *root, List **context)
+{
+ ListCell *lc;
+
+ foreach(lc, root->agginfos)
+ {
+ AggInfo *agginfo = (AggInfo *) lfirst(lc);
+ Aggref *aggref = agginfo->representative_aggref;
+ Oid aggsortop;
+ TargetEntry *curTarget;
+ MinMaxAggInfo *mminfo;
+
+ Assert(aggref->agglevelsup == 0);
+ if (list_length(aggref->args) != 1)
+ return false; /* it couldn't be MIN/MAX */
+
+ /*
+ * ORDER BY is usually irrelevant for MIN/MAX, but it can change the
+ * outcome if the aggsortop's operator class recognizes non-identical
+ * values as equal. For example, 4.0 and 4.00 are equal according to
+ * numeric_ops, yet distinguishable. If MIN() receives more than one
+ * value equal to 4.0 and no value less than 4.0, it is unspecified
+ * which of those equal values MIN() returns. An ORDER BY expression
+ * that differs for each of those equal values of the argument
+ * expression makes the result predictable once again. This is a
+ * niche requirement, and we do not implement it with subquery paths.
+ * In any case, this test lets us reject ordered-set aggregates
+ * quickly.
+ */
+ if (aggref->aggorder != NIL)
+ return false;
+ /* note: we do not care if DISTINCT is mentioned ... */
+
+ /*
+ * We might implement the optimization when a FILTER clause is present
+ * by adding the filter to the quals of the generated subquery. For
+ * now, just punt.
+ */
+ if (aggref->aggfilter != NULL)
+ return false;
+
+ aggsortop = fetch_agg_sort_op(aggref->aggfnoid);
+ if (!OidIsValid(aggsortop))
+ return false; /* not a MIN/MAX aggregate */
+
+ curTarget = (TargetEntry *) linitial(aggref->args);
+
+ if (contain_mutable_functions((Node *) curTarget->expr))
+ return false; /* not potentially indexable */
+
+ if (type_is_rowtype(exprType((Node *) curTarget->expr)))
+ return false; /* IS NOT NULL would have weird semantics */
+
+ mminfo = makeNode(MinMaxAggInfo);
+ mminfo->aggfnoid = aggref->aggfnoid;
+ mminfo->aggsortop = aggsortop;
+ mminfo->target = curTarget->expr;
+ mminfo->subroot = NULL; /* don't compute path yet */
+ mminfo->path = NULL;
+ mminfo->pathcost = 0;
+ mminfo->param = NULL;
+
+ *context = lappend(*context, mminfo);
+ }
+ return true;
+}
+
+/*
+ * build_minmax_path
+ * Given a MIN/MAX aggregate, try to build an indexscan Path it can be
+ * optimized with.
+ *
+ * If successful, stash the best path in *mminfo and return true.
+ * Otherwise, return false.
+ */
+static bool
+build_minmax_path(PlannerInfo *root, MinMaxAggInfo *mminfo,
+ Oid eqop, Oid sortop, bool nulls_first)
+{
+ PlannerInfo *subroot;
+ Query *parse;
+ TargetEntry *tle;
+ List *tlist;
+ NullTest *ntest;
+ SortGroupClause *sortcl;
+ RelOptInfo *final_rel;
+ Path *sorted_path;
+ Cost path_cost;
+ double path_fraction;
+
+ /*
+ * We are going to construct what is effectively a sub-SELECT query, so
+ * clone the current query level's state and adjust it to make it look
+ * like a subquery. Any outer references will now be one level higher
+ * than before. (This means that when we are done, there will be no Vars
+ * of level 1, which is why the subquery can become an initplan.)
+ */
+ subroot = (PlannerInfo *) palloc(sizeof(PlannerInfo));
+ memcpy(subroot, root, sizeof(PlannerInfo));
+ subroot->query_level++;
+ subroot->parent_root = root;
+ /* reset subplan-related stuff */
+ subroot->plan_params = NIL;
+ subroot->outer_params = NULL;
+ subroot->init_plans = NIL;
+ subroot->agginfos = NIL;
+ subroot->aggtransinfos = NIL;
+
+ subroot->parse = parse = copyObject(root->parse);
+ IncrementVarSublevelsUp((Node *) parse, 1, 1);
+
+ /* append_rel_list might contain outer Vars? */
+ subroot->append_rel_list = copyObject(root->append_rel_list);
+ IncrementVarSublevelsUp((Node *) subroot->append_rel_list, 1, 1);
+ /* There shouldn't be any OJ info to translate, as yet */
+ Assert(subroot->join_info_list == NIL);
+ /* and we haven't made equivalence classes, either */
+ Assert(subroot->eq_classes == NIL);
+ /* and we haven't created PlaceHolderInfos, either */
+ Assert(subroot->placeholder_list == NIL);
+
+ /*----------
+ * Generate modified query of the form
+ * (SELECT col FROM tab
+ * WHERE col IS NOT NULL AND existing-quals
+ * ORDER BY col ASC/DESC
+ * LIMIT 1)
+ *----------
+ */
+ /* single tlist entry that is the aggregate target */
+ tle = makeTargetEntry(copyObject(mminfo->target),
+ (AttrNumber) 1,
+ pstrdup("agg_target"),
+ false);
+ tlist = list_make1(tle);
+ subroot->processed_tlist = parse->targetList = tlist;
+
+ /* No HAVING, no DISTINCT, no aggregates anymore */
+ parse->havingQual = NULL;
+ subroot->hasHavingQual = false;
+ parse->distinctClause = NIL;
+ parse->hasDistinctOn = false;
+ parse->hasAggs = false;
+
+ /* Build "target IS NOT NULL" expression */
+ ntest = makeNode(NullTest);
+ ntest->nulltesttype = IS_NOT_NULL;
+ ntest->arg = copyObject(mminfo->target);
+ /* we checked it wasn't a rowtype in find_minmax_aggs_walker */
+ ntest->argisrow = false;
+ ntest->location = -1;
+
+ /* User might have had that in WHERE already */
+ if (!list_member((List *) parse->jointree->quals, ntest))
+ parse->jointree->quals = (Node *)
+ lcons(ntest, (List *) parse->jointree->quals);
+
+ /* Build suitable ORDER BY clause */
+ sortcl = makeNode(SortGroupClause);
+ sortcl->tleSortGroupRef = assignSortGroupRef(tle, subroot->processed_tlist);
+ sortcl->eqop = eqop;
+ sortcl->sortop = sortop;
+ sortcl->nulls_first = nulls_first;
+ sortcl->hashable = false; /* no need to make this accurate */
+ parse->sortClause = list_make1(sortcl);
+
+ /* set up expressions for LIMIT 1 */
+ parse->limitOffset = NULL;
+ parse->limitCount = (Node *) makeConst(INT8OID, -1, InvalidOid,
+ sizeof(int64),
+ Int64GetDatum(1), false,
+ FLOAT8PASSBYVAL);
+
+ /*
+ * Generate the best paths for this query, telling query_planner that we
+ * have LIMIT 1.
+ */
+ subroot->tuple_fraction = 1.0;
+ subroot->limit_tuples = 1.0;
+
+ final_rel = query_planner(subroot, minmax_qp_callback, NULL);
+
+ /*
+ * Since we didn't go through subquery_planner() to handle the subquery,
+ * we have to do some of the same cleanup it would do, in particular cope
+ * with params and initplans used within this subquery. (This won't
+ * matter if we end up not using the subplan.)
+ */
+ SS_identify_outer_params(subroot);
+ SS_charge_for_initplans(subroot, final_rel);
+
+ /*
+ * Get the best presorted path, that being the one that's cheapest for
+ * fetching just one row. If there's no such path, fail.
+ */
+ if (final_rel->rows > 1.0)
+ path_fraction = 1.0 / final_rel->rows;
+ else
+ path_fraction = 1.0;
+
+ sorted_path =
+ get_cheapest_fractional_path_for_pathkeys(final_rel->pathlist,
+ subroot->query_pathkeys,
+ NULL,
+ path_fraction);
+ if (!sorted_path)
+ return false;
+
+ /*
+ * The path might not return exactly what we want, so fix that. (We
+ * assume that this won't change any conclusions about which was the
+ * cheapest path.)
+ */
+ sorted_path = apply_projection_to_path(subroot, final_rel, sorted_path,
+ create_pathtarget(subroot,
+ subroot->processed_tlist));
+
+ /*
+ * Determine cost to get just the first row of the presorted path.
+ *
+ * Note: cost calculation here should match
+ * compare_fractional_path_costs().
+ */
+ path_cost = sorted_path->startup_cost +
+ path_fraction * (sorted_path->total_cost - sorted_path->startup_cost);
+
+ /* Save state for further processing */
+ mminfo->subroot = subroot;
+ mminfo->path = sorted_path;
+ mminfo->pathcost = path_cost;
+
+ return true;
+}
+
+/*
+ * Compute query_pathkeys and other pathkeys during query_planner()
+ */
+static void
+minmax_qp_callback(PlannerInfo *root, void *extra)
+{
+ root->group_pathkeys = NIL;
+ root->window_pathkeys = NIL;
+ root->distinct_pathkeys = NIL;
+
+ root->sort_pathkeys =
+ make_pathkeys_for_sortclauses(root,
+ root->parse->sortClause,
+ root->parse->targetList);
+
+ root->query_pathkeys = root->sort_pathkeys;
+}
+
+/*
+ * Get the OID of the sort operator, if any, associated with an aggregate.
+ * Returns InvalidOid if there is no such operator.
+ */
+static Oid
+fetch_agg_sort_op(Oid aggfnoid)
+{
+ HeapTuple aggTuple;
+ Form_pg_aggregate aggform;
+ Oid aggsortop;
+
+ /* fetch aggregate entry from pg_aggregate */
+ aggTuple = SearchSysCache1(AGGFNOID, ObjectIdGetDatum(aggfnoid));
+ if (!HeapTupleIsValid(aggTuple))
+ return InvalidOid;
+ aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
+ aggsortop = aggform->aggsortop;
+ ReleaseSysCache(aggTuple);
+
+ return aggsortop;
+}
diff --git a/src/backend/optimizer/plan/planmain.c b/src/backend/optimizer/plan/planmain.c
new file mode 100644
index 0000000..273ac0a
--- /dev/null
+++ b/src/backend/optimizer/plan/planmain.c
@@ -0,0 +1,284 @@
+/*-------------------------------------------------------------------------
+ *
+ * planmain.c
+ * Routines to plan a single query
+ *
+ * What's in a name, anyway? The top-level entry point of the planner/
+ * optimizer is over in planner.c, not here as you might think from the
+ * file name. But this is the main code for planning a basic join operation,
+ * shorn of features like subselects, inheritance, aggregates, grouping,
+ * and so on. (Those are the things planner.c deals with.)
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/plan/planmain.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "optimizer/appendinfo.h"
+#include "optimizer/clauses.h"
+#include "optimizer/inherit.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/orclauses.h"
+#include "optimizer/pathnode.h"
+#include "optimizer/paths.h"
+#include "optimizer/placeholder.h"
+#include "optimizer/planmain.h"
+
+
+/*
+ * query_planner
+ * Generate a path (that is, a simplified plan) for a basic query,
+ * which may involve joins but not any fancier features.
+ *
+ * Since query_planner does not handle the toplevel processing (grouping,
+ * sorting, etc) it cannot select the best path by itself. Instead, it
+ * returns the RelOptInfo for the top level of joining, and the caller
+ * (grouping_planner) can choose among the surviving paths for the rel.
+ *
+ * root describes the query to plan
+ * qp_callback is a function to compute query_pathkeys once it's safe to do so
+ * qp_extra is optional extra data to pass to qp_callback
+ *
+ * Note: the PlannerInfo node also includes a query_pathkeys field, which
+ * tells query_planner the sort order that is desired in the final output
+ * plan. This value is *not* available at call time, but is computed by
+ * qp_callback once we have completed merging the query's equivalence classes.
+ * (We cannot construct canonical pathkeys until that's done.)
+ */
+RelOptInfo *
+query_planner(PlannerInfo *root,
+ query_pathkeys_callback qp_callback, void *qp_extra)
+{
+ Query *parse = root->parse;
+ List *joinlist;
+ RelOptInfo *final_rel;
+
+ /*
+ * Init planner lists to empty.
+ *
+ * NOTE: append_rel_list was set up by subquery_planner, so do not touch
+ * here.
+ */
+ root->join_rel_list = NIL;
+ root->join_rel_hash = NULL;
+ root->join_rel_level = NULL;
+ root->join_cur_level = 0;
+ root->canon_pathkeys = NIL;
+ root->left_join_clauses = NIL;
+ root->right_join_clauses = NIL;
+ root->full_join_clauses = NIL;
+ root->join_info_list = NIL;
+ root->placeholder_list = NIL;
+ root->fkey_list = NIL;
+ root->initial_rels = NIL;
+
+ /*
+ * Set up arrays for accessing base relations and AppendRelInfos.
+ */
+ setup_simple_rel_arrays(root);
+
+ /*
+ * In the trivial case where the jointree is a single RTE_RESULT relation,
+ * bypass all the rest of this function and just make a RelOptInfo and its
+ * one access path. This is worth optimizing because it applies for
+ * common cases like "SELECT expression" and "INSERT ... VALUES()".
+ */
+ Assert(parse->jointree->fromlist != NIL);
+ if (list_length(parse->jointree->fromlist) == 1)
+ {
+ Node *jtnode = (Node *) linitial(parse->jointree->fromlist);
+
+ if (IsA(jtnode, RangeTblRef))
+ {
+ int varno = ((RangeTblRef *) jtnode)->rtindex;
+ RangeTblEntry *rte = root->simple_rte_array[varno];
+
+ Assert(rte != NULL);
+ if (rte->rtekind == RTE_RESULT)
+ {
+ /* Make the RelOptInfo for it directly */
+ final_rel = build_simple_rel(root, varno, NULL);
+
+ /*
+ * If query allows parallelism in general, check whether the
+ * quals are parallel-restricted. (We need not check
+ * final_rel->reltarget because it's empty at this point.
+ * Anything parallel-restricted in the query tlist will be
+ * dealt with later.) This is normally pretty silly, because
+ * a Result-only plan would never be interesting to
+ * parallelize. However, if force_parallel_mode is on, then
+ * we want to execute the Result in a parallel worker if
+ * possible, so we must do this.
+ */
+ if (root->glob->parallelModeOK &&
+ force_parallel_mode != FORCE_PARALLEL_OFF)
+ final_rel->consider_parallel =
+ is_parallel_safe(root, parse->jointree->quals);
+
+ /*
+ * The only path for it is a trivial Result path. We cheat a
+ * bit here by using a GroupResultPath, because that way we
+ * can just jam the quals into it without preprocessing them.
+ * (But, if you hold your head at the right angle, a FROM-less
+ * SELECT is a kind of degenerate-grouping case, so it's not
+ * that much of a cheat.)
+ */
+ add_path(final_rel, (Path *)
+ create_group_result_path(root, final_rel,
+ final_rel->reltarget,
+ (List *) parse->jointree->quals));
+
+ /* Select cheapest path (pretty easy in this case...) */
+ set_cheapest(final_rel);
+
+ /*
+ * We don't need to run generate_base_implied_equalities, but
+ * we do need to pretend that EC merging is complete.
+ */
+ root->ec_merging_done = true;
+
+ /*
+ * We still are required to call qp_callback, in case it's
+ * something like "SELECT 2+2 ORDER BY 1".
+ */
+ (*qp_callback) (root, qp_extra);
+
+ return final_rel;
+ }
+ }
+ }
+
+ /*
+ * Construct RelOptInfo nodes for all base relations used in the query.
+ * Appendrel member relations ("other rels") will be added later.
+ *
+ * Note: the reason we find the baserels by searching the jointree, rather
+ * than scanning the rangetable, is that the rangetable may contain RTEs
+ * for rels not actively part of the query, for example views. We don't
+ * want to make RelOptInfos for them.
+ */
+ add_base_rels_to_query(root, (Node *) parse->jointree);
+
+ /*
+ * Examine the targetlist and join tree, adding entries to baserel
+ * targetlists for all referenced Vars, and generating PlaceHolderInfo
+ * entries for all referenced PlaceHolderVars. Restrict and join clauses
+ * are added to appropriate lists belonging to the mentioned relations. We
+ * also build EquivalenceClasses for provably equivalent expressions. The
+ * SpecialJoinInfo list is also built to hold information about join order
+ * restrictions. Finally, we form a target joinlist for make_one_rel() to
+ * work from.
+ */
+ build_base_rel_tlists(root, root->processed_tlist);
+
+ find_placeholders_in_jointree(root);
+
+ find_lateral_references(root);
+
+ joinlist = deconstruct_jointree(root);
+
+ /*
+ * Reconsider any postponed outer-join quals now that we have built up
+ * equivalence classes. (This could result in further additions or
+ * mergings of classes.)
+ */
+ reconsider_outer_join_clauses(root);
+
+ /*
+ * If we formed any equivalence classes, generate additional restriction
+ * clauses as appropriate. (Implied join clauses are formed on-the-fly
+ * later.)
+ */
+ generate_base_implied_equalities(root);
+
+ /*
+ * We have completed merging equivalence sets, so it's now possible to
+ * generate pathkeys in canonical form; so compute query_pathkeys and
+ * other pathkeys fields in PlannerInfo.
+ */
+ (*qp_callback) (root, qp_extra);
+
+ /*
+ * Examine any "placeholder" expressions generated during subquery pullup.
+ * Make sure that the Vars they need are marked as needed at the relevant
+ * join level. This must be done before join removal because it might
+ * cause Vars or placeholders to be needed above a join when they weren't
+ * so marked before.
+ */
+ fix_placeholder_input_needed_levels(root);
+
+ /*
+ * Remove any useless outer joins. Ideally this would be done during
+ * jointree preprocessing, but the necessary information isn't available
+ * until we've built baserel data structures and classified qual clauses.
+ */
+ joinlist = remove_useless_joins(root, joinlist);
+
+ /*
+ * Also, reduce any semijoins with unique inner rels to plain inner joins.
+ * Likewise, this can't be done until now for lack of needed info.
+ */
+ reduce_unique_semijoins(root);
+
+ /*
+ * Now distribute "placeholders" to base rels as needed. This has to be
+ * done after join removal because removal could change whether a
+ * placeholder is evaluable at a base rel.
+ */
+ add_placeholders_to_base_rels(root);
+
+ /*
+ * Construct the lateral reference sets now that we have finalized
+ * PlaceHolderVar eval levels.
+ */
+ create_lateral_join_info(root);
+
+ /*
+ * Match foreign keys to equivalence classes and join quals. This must be
+ * done after finalizing equivalence classes, and it's useful to wait till
+ * after join removal so that we can skip processing foreign keys
+ * involving removed relations.
+ */
+ match_foreign_keys_to_quals(root);
+
+ /*
+ * Look for join OR clauses that we can extract single-relation
+ * restriction OR clauses from.
+ */
+ extract_restriction_or_clauses(root);
+
+ /*
+ * Now expand appendrels by adding "otherrels" for their children. We
+ * delay this to the end so that we have as much information as possible
+ * available for each baserel, including all restriction clauses. That
+ * let us prune away partitions that don't satisfy a restriction clause.
+ * Also note that some information such as lateral_relids is propagated
+ * from baserels to otherrels here, so we must have computed it already.
+ */
+ add_other_rels_to_query(root);
+
+ /*
+ * Distribute any UPDATE/DELETE row identity variables to the target
+ * relations. This can't be done till we've finished expansion of
+ * appendrels.
+ */
+ distribute_row_identity_vars(root);
+
+ /*
+ * Ready to do the primary planning.
+ */
+ final_rel = make_one_rel(root, joinlist);
+
+ /* Check that we got at least one usable path */
+ if (!final_rel || !final_rel->cheapest_total_path ||
+ final_rel->cheapest_total_path->param_info != NULL)
+ elog(ERROR, "failed to construct the join relation");
+
+ return final_rel;
+}
diff --git a/src/backend/optimizer/plan/planner.c b/src/backend/optimizer/plan/planner.c
new file mode 100644
index 0000000..70899e5
--- /dev/null
+++ b/src/backend/optimizer/plan/planner.c
@@ -0,0 +1,7260 @@
+/*-------------------------------------------------------------------------
+ *
+ * planner.c
+ * The query optimizer external interface.
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/plan/planner.c
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#include "postgres.h"
+
+#include <limits.h>
+#include <math.h>
+
+#include "access/genam.h"
+#include "access/htup_details.h"
+#include "access/parallel.h"
+#include "access/sysattr.h"
+#include "access/table.h"
+#include "access/xact.h"
+#include "catalog/pg_constraint.h"
+#include "catalog/pg_inherits.h"
+#include "catalog/pg_proc.h"
+#include "catalog/pg_type.h"
+#include "executor/executor.h"
+#include "executor/nodeAgg.h"
+#include "foreign/fdwapi.h"
+#include "jit/jit.h"
+#include "lib/bipartite_match.h"
+#include "lib/knapsack.h"
+#include "miscadmin.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#ifdef OPTIMIZER_DEBUG
+#include "nodes/print.h"
+#endif
+#include "optimizer/appendinfo.h"
+#include "optimizer/clauses.h"
+#include "optimizer/cost.h"
+#include "optimizer/inherit.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/paramassign.h"
+#include "optimizer/pathnode.h"
+#include "optimizer/paths.h"
+#include "optimizer/plancat.h"
+#include "optimizer/planmain.h"
+#include "optimizer/planner.h"
+#include "optimizer/prep.h"
+#include "optimizer/subselect.h"
+#include "optimizer/tlist.h"
+#include "parser/analyze.h"
+#include "parser/parse_agg.h"
+#include "parser/parsetree.h"
+#include "partitioning/partdesc.h"
+#include "rewrite/rewriteManip.h"
+#include "storage/dsm_impl.h"
+#include "utils/lsyscache.h"
+#include "utils/rel.h"
+#include "utils/selfuncs.h"
+#include "utils/syscache.h"
+
+/* GUC parameters */
+double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
+int force_parallel_mode = FORCE_PARALLEL_OFF;
+bool parallel_leader_participation = true;
+
+/* Hook for plugins to get control in planner() */
+planner_hook_type planner_hook = NULL;
+
+/* Hook for plugins to get control when grouping_planner() plans upper rels */
+create_upper_paths_hook_type create_upper_paths_hook = NULL;
+
+
+/* Expression kind codes for preprocess_expression */
+#define EXPRKIND_QUAL 0
+#define EXPRKIND_TARGET 1
+#define EXPRKIND_RTFUNC 2
+#define EXPRKIND_RTFUNC_LATERAL 3
+#define EXPRKIND_VALUES 4
+#define EXPRKIND_VALUES_LATERAL 5
+#define EXPRKIND_LIMIT 6
+#define EXPRKIND_APPINFO 7
+#define EXPRKIND_PHV 8
+#define EXPRKIND_TABLESAMPLE 9
+#define EXPRKIND_ARBITER_ELEM 10
+#define EXPRKIND_TABLEFUNC 11
+#define EXPRKIND_TABLEFUNC_LATERAL 12
+
+/* Passthrough data for standard_qp_callback */
+typedef struct
+{
+ List *activeWindows; /* active windows, if any */
+ List *groupClause; /* overrides parse->groupClause */
+} standard_qp_extra;
+
+/*
+ * Data specific to grouping sets
+ */
+
+typedef struct
+{
+ List *rollups;
+ List *hash_sets_idx;
+ double dNumHashGroups;
+ bool any_hashable;
+ Bitmapset *unsortable_refs;
+ Bitmapset *unhashable_refs;
+ List *unsortable_sets;
+ int *tleref_to_colnum_map;
+} grouping_sets_data;
+
+/*
+ * Temporary structure for use during WindowClause reordering in order to be
+ * able to sort WindowClauses on partitioning/ordering prefix.
+ */
+typedef struct
+{
+ WindowClause *wc;
+ List *uniqueOrder; /* A List of unique ordering/partitioning
+ * clauses per Window */
+} WindowClauseSortData;
+
+/* Local functions */
+static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
+static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
+static void grouping_planner(PlannerInfo *root, double tuple_fraction);
+static grouping_sets_data *preprocess_grouping_sets(PlannerInfo *root);
+static List *remap_to_groupclause_idx(List *groupClause, List *gsets,
+ int *tleref_to_colnum_map);
+static void preprocess_rowmarks(PlannerInfo *root);
+static double preprocess_limit(PlannerInfo *root,
+ double tuple_fraction,
+ int64 *offset_est, int64 *count_est);
+static void remove_useless_groupby_columns(PlannerInfo *root);
+static List *preprocess_groupclause(PlannerInfo *root, List *force);
+static List *extract_rollup_sets(List *groupingSets);
+static List *reorder_grouping_sets(List *groupingSets, List *sortclause);
+static void standard_qp_callback(PlannerInfo *root, void *extra);
+static double get_number_of_groups(PlannerInfo *root,
+ double path_rows,
+ grouping_sets_data *gd,
+ List *target_list);
+static RelOptInfo *create_grouping_paths(PlannerInfo *root,
+ RelOptInfo *input_rel,
+ PathTarget *target,
+ bool target_parallel_safe,
+ grouping_sets_data *gd);
+static bool is_degenerate_grouping(PlannerInfo *root);
+static void create_degenerate_grouping_paths(PlannerInfo *root,
+ RelOptInfo *input_rel,
+ RelOptInfo *grouped_rel);
+static RelOptInfo *make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel,
+ PathTarget *target, bool target_parallel_safe,
+ Node *havingQual);
+static void create_ordinary_grouping_paths(PlannerInfo *root,
+ RelOptInfo *input_rel,
+ RelOptInfo *grouped_rel,
+ const AggClauseCosts *agg_costs,
+ grouping_sets_data *gd,
+ GroupPathExtraData *extra,
+ RelOptInfo **partially_grouped_rel_p);
+static void consider_groupingsets_paths(PlannerInfo *root,
+ RelOptInfo *grouped_rel,
+ Path *path,
+ bool is_sorted,
+ bool can_hash,
+ grouping_sets_data *gd,
+ const AggClauseCosts *agg_costs,
+ double dNumGroups);
+static RelOptInfo *create_window_paths(PlannerInfo *root,
+ RelOptInfo *input_rel,
+ PathTarget *input_target,
+ PathTarget *output_target,
+ bool output_target_parallel_safe,
+ WindowFuncLists *wflists,
+ List *activeWindows);
+static void create_one_window_path(PlannerInfo *root,
+ RelOptInfo *window_rel,
+ Path *path,
+ PathTarget *input_target,
+ PathTarget *output_target,
+ WindowFuncLists *wflists,
+ List *activeWindows);
+static RelOptInfo *create_distinct_paths(PlannerInfo *root,
+ RelOptInfo *input_rel);
+static RelOptInfo *create_ordered_paths(PlannerInfo *root,
+ RelOptInfo *input_rel,
+ PathTarget *target,
+ bool target_parallel_safe,
+ double limit_tuples);
+static PathTarget *make_group_input_target(PlannerInfo *root,
+ PathTarget *final_target);
+static PathTarget *make_partial_grouping_target(PlannerInfo *root,
+ PathTarget *grouping_target,
+ Node *havingQual);
+static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
+static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
+static PathTarget *make_window_input_target(PlannerInfo *root,
+ PathTarget *final_target,
+ List *activeWindows);
+static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
+ List *tlist);
+static PathTarget *make_sort_input_target(PlannerInfo *root,
+ PathTarget *final_target,
+ bool *have_postponed_srfs);
+static void adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel,
+ List *targets, List *targets_contain_srfs);
+static void add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel,
+ RelOptInfo *grouped_rel,
+ RelOptInfo *partially_grouped_rel,
+ const AggClauseCosts *agg_costs,
+ grouping_sets_data *gd,
+ double dNumGroups,
+ GroupPathExtraData *extra);
+static RelOptInfo *create_partial_grouping_paths(PlannerInfo *root,
+ RelOptInfo *grouped_rel,
+ RelOptInfo *input_rel,
+ grouping_sets_data *gd,
+ GroupPathExtraData *extra,
+ bool force_rel_creation);
+static void gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel);
+static bool can_partial_agg(PlannerInfo *root);
+static void apply_scanjoin_target_to_paths(PlannerInfo *root,
+ RelOptInfo *rel,
+ List *scanjoin_targets,
+ List *scanjoin_targets_contain_srfs,
+ bool scanjoin_target_parallel_safe,
+ bool tlist_same_exprs);
+static void create_partitionwise_grouping_paths(PlannerInfo *root,
+ RelOptInfo *input_rel,
+ RelOptInfo *grouped_rel,
+ RelOptInfo *partially_grouped_rel,
+ const AggClauseCosts *agg_costs,
+ grouping_sets_data *gd,
+ PartitionwiseAggregateType patype,
+ GroupPathExtraData *extra);
+static bool group_by_has_partkey(RelOptInfo *input_rel,
+ List *targetList,
+ List *groupClause);
+static int common_prefix_cmp(const void *a, const void *b);
+
+
+/*****************************************************************************
+ *
+ * Query optimizer entry point
+ *
+ * To support loadable plugins that monitor or modify planner behavior,
+ * we provide a hook variable that lets a plugin get control before and
+ * after the standard planning process. The plugin would normally call
+ * standard_planner().
+ *
+ * Note to plugin authors: standard_planner() scribbles on its Query input,
+ * so you'd better copy that data structure if you want to plan more than once.
+ *
+ *****************************************************************************/
+PlannedStmt *
+planner(Query *parse, const char *query_string, int cursorOptions,
+ ParamListInfo boundParams)
+{
+ PlannedStmt *result;
+
+ if (planner_hook)
+ result = (*planner_hook) (parse, query_string, cursorOptions, boundParams);
+ else
+ result = standard_planner(parse, query_string, cursorOptions, boundParams);
+ return result;
+}
+
+PlannedStmt *
+standard_planner(Query *parse, const char *query_string, int cursorOptions,
+ ParamListInfo boundParams)
+{
+ PlannedStmt *result;
+ PlannerGlobal *glob;
+ double tuple_fraction;
+ PlannerInfo *root;
+ RelOptInfo *final_rel;
+ Path *best_path;
+ Plan *top_plan;
+ ListCell *lp,
+ *lr;
+
+ /*
+ * Set up global state for this planner invocation. This data is needed
+ * across all levels of sub-Query that might exist in the given command,
+ * so we keep it in a separate struct that's linked to by each per-Query
+ * PlannerInfo.
+ */
+ glob = makeNode(PlannerGlobal);
+
+ glob->boundParams = boundParams;
+ glob->subplans = NIL;
+ glob->subroots = NIL;
+ glob->rewindPlanIDs = NULL;
+ glob->finalrtable = NIL;
+ glob->finalrowmarks = NIL;
+ glob->resultRelations = NIL;
+ glob->appendRelations = NIL;
+ glob->relationOids = NIL;
+ glob->invalItems = NIL;
+ glob->paramExecTypes = NIL;
+ glob->lastPHId = 0;
+ glob->lastRowMarkId = 0;
+ glob->lastPlanNodeId = 0;
+ glob->transientPlan = false;
+ glob->dependsOnRole = false;
+
+ /*
+ * Assess whether it's feasible to use parallel mode for this query. We
+ * can't do this in a standalone backend, or if the command will try to
+ * modify any data, or if this is a cursor operation, or if GUCs are set
+ * to values that don't permit parallelism, or if parallel-unsafe
+ * functions are present in the query tree.
+ *
+ * (Note that we do allow CREATE TABLE AS, SELECT INTO, and CREATE
+ * MATERIALIZED VIEW to use parallel plans, but as of now, only the leader
+ * backend writes into a completely new table. In the future, we can
+ * extend it to allow workers to write into the table. However, to allow
+ * parallel updates and deletes, we have to solve other problems,
+ * especially around combo CIDs.)
+ *
+ * For now, we don't try to use parallel mode if we're running inside a
+ * parallel worker. We might eventually be able to relax this
+ * restriction, but for now it seems best not to have parallel workers
+ * trying to create their own parallel workers.
+ */
+ if ((cursorOptions & CURSOR_OPT_PARALLEL_OK) != 0 &&
+ IsUnderPostmaster &&
+ parse->commandType == CMD_SELECT &&
+ !parse->hasModifyingCTE &&
+ max_parallel_workers_per_gather > 0 &&
+ !IsParallelWorker())
+ {
+ /* all the cheap tests pass, so scan the query tree */
+ glob->maxParallelHazard = max_parallel_hazard(parse);
+ glob->parallelModeOK = (glob->maxParallelHazard != PROPARALLEL_UNSAFE);
+ }
+ else
+ {
+ /* skip the query tree scan, just assume it's unsafe */
+ glob->maxParallelHazard = PROPARALLEL_UNSAFE;
+ glob->parallelModeOK = false;
+ }
+
+ /*
+ * glob->parallelModeNeeded is normally set to false here and changed to
+ * true during plan creation if a Gather or Gather Merge plan is actually
+ * created (cf. create_gather_plan, create_gather_merge_plan).
+ *
+ * However, if force_parallel_mode = on or force_parallel_mode = regress,
+ * then we impose parallel mode whenever it's safe to do so, even if the
+ * final plan doesn't use parallelism. It's not safe to do so if the
+ * query contains anything parallel-unsafe; parallelModeOK will be false
+ * in that case. Note that parallelModeOK can't change after this point.
+ * Otherwise, everything in the query is either parallel-safe or
+ * parallel-restricted, and in either case it should be OK to impose
+ * parallel-mode restrictions. If that ends up breaking something, then
+ * either some function the user included in the query is incorrectly
+ * labeled as parallel-safe or parallel-restricted when in reality it's
+ * parallel-unsafe, or else the query planner itself has a bug.
+ */
+ glob->parallelModeNeeded = glob->parallelModeOK &&
+ (force_parallel_mode != FORCE_PARALLEL_OFF);
+
+ /* Determine what fraction of the plan is likely to be scanned */
+ if (cursorOptions & CURSOR_OPT_FAST_PLAN)
+ {
+ /*
+ * We have no real idea how many tuples the user will ultimately FETCH
+ * from a cursor, but it is often the case that he doesn't want 'em
+ * all, or would prefer a fast-start plan anyway so that he can
+ * process some of the tuples sooner. Use a GUC parameter to decide
+ * what fraction to optimize for.
+ */
+ tuple_fraction = cursor_tuple_fraction;
+
+ /*
+ * We document cursor_tuple_fraction as simply being a fraction, which
+ * means the edge cases 0 and 1 have to be treated specially here. We
+ * convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
+ */
+ if (tuple_fraction >= 1.0)
+ tuple_fraction = 0.0;
+ else if (tuple_fraction <= 0.0)
+ tuple_fraction = 1e-10;
+ }
+ else
+ {
+ /* Default assumption is we need all the tuples */
+ tuple_fraction = 0.0;
+ }
+
+ /* primary planning entry point (may recurse for subqueries) */
+ root = subquery_planner(glob, parse, NULL,
+ false, tuple_fraction);
+
+ /* Select best Path and turn it into a Plan */
+ final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);
+ best_path = get_cheapest_fractional_path(final_rel, tuple_fraction);
+
+ top_plan = create_plan(root, best_path);
+
+ /*
+ * If creating a plan for a scrollable cursor, make sure it can run
+ * backwards on demand. Add a Material node at the top at need.
+ */
+ if (cursorOptions & CURSOR_OPT_SCROLL)
+ {
+ if (!ExecSupportsBackwardScan(top_plan))
+ top_plan = materialize_finished_plan(top_plan);
+ }
+
+ /*
+ * Optionally add a Gather node for testing purposes, provided this is
+ * actually a safe thing to do.
+ */
+ if (force_parallel_mode != FORCE_PARALLEL_OFF && top_plan->parallel_safe)
+ {
+ Gather *gather = makeNode(Gather);
+
+ /*
+ * If there are any initPlans attached to the formerly-top plan node,
+ * move them up to the Gather node; same as we do for Material node in
+ * materialize_finished_plan.
+ */
+ gather->plan.initPlan = top_plan->initPlan;
+ top_plan->initPlan = NIL;
+
+ gather->plan.targetlist = top_plan->targetlist;
+ gather->plan.qual = NIL;
+ gather->plan.lefttree = top_plan;
+ gather->plan.righttree = NULL;
+ gather->num_workers = 1;
+ gather->single_copy = true;
+ gather->invisible = (force_parallel_mode == FORCE_PARALLEL_REGRESS);
+
+ /*
+ * Since this Gather has no parallel-aware descendants to signal to,
+ * we don't need a rescan Param.
+ */
+ gather->rescan_param = -1;
+
+ /*
+ * Ideally we'd use cost_gather here, but setting up dummy path data
+ * to satisfy it doesn't seem much cleaner than knowing what it does.
+ */
+ gather->plan.startup_cost = top_plan->startup_cost +
+ parallel_setup_cost;
+ gather->plan.total_cost = top_plan->total_cost +
+ parallel_setup_cost + parallel_tuple_cost * top_plan->plan_rows;
+ gather->plan.plan_rows = top_plan->plan_rows;
+ gather->plan.plan_width = top_plan->plan_width;
+ gather->plan.parallel_aware = false;
+ gather->plan.parallel_safe = false;
+
+ /* use parallel mode for parallel plans. */
+ root->glob->parallelModeNeeded = true;
+
+ top_plan = &gather->plan;
+ }
+
+ /*
+ * If any Params were generated, run through the plan tree and compute
+ * each plan node's extParam/allParam sets. Ideally we'd merge this into
+ * set_plan_references' tree traversal, but for now it has to be separate
+ * because we need to visit subplans before not after main plan.
+ */
+ if (glob->paramExecTypes != NIL)
+ {
+ Assert(list_length(glob->subplans) == list_length(glob->subroots));
+ forboth(lp, glob->subplans, lr, glob->subroots)
+ {
+ Plan *subplan = (Plan *) lfirst(lp);
+ PlannerInfo *subroot = lfirst_node(PlannerInfo, lr);
+
+ SS_finalize_plan(subroot, subplan);
+ }
+ SS_finalize_plan(root, top_plan);
+ }
+
+ /* final cleanup of the plan */
+ Assert(glob->finalrtable == NIL);
+ Assert(glob->finalrowmarks == NIL);
+ Assert(glob->resultRelations == NIL);
+ Assert(glob->appendRelations == NIL);
+ top_plan = set_plan_references(root, top_plan);
+ /* ... and the subplans (both regular subplans and initplans) */
+ Assert(list_length(glob->subplans) == list_length(glob->subroots));
+ forboth(lp, glob->subplans, lr, glob->subroots)
+ {
+ Plan *subplan = (Plan *) lfirst(lp);
+ PlannerInfo *subroot = lfirst_node(PlannerInfo, lr);
+
+ lfirst(lp) = set_plan_references(subroot, subplan);
+ }
+
+ /* build the PlannedStmt result */
+ result = makeNode(PlannedStmt);
+
+ result->commandType = parse->commandType;
+ result->queryId = parse->queryId;
+ result->hasReturning = (parse->returningList != NIL);
+ result->hasModifyingCTE = parse->hasModifyingCTE;
+ result->canSetTag = parse->canSetTag;
+ result->transientPlan = glob->transientPlan;
+ result->dependsOnRole = glob->dependsOnRole;
+ result->parallelModeNeeded = glob->parallelModeNeeded;
+ result->planTree = top_plan;
+ result->rtable = glob->finalrtable;
+ result->resultRelations = glob->resultRelations;
+ result->appendRelations = glob->appendRelations;
+ result->subplans = glob->subplans;
+ result->rewindPlanIDs = glob->rewindPlanIDs;
+ result->rowMarks = glob->finalrowmarks;
+ result->relationOids = glob->relationOids;
+ result->invalItems = glob->invalItems;
+ result->paramExecTypes = glob->paramExecTypes;
+ /* utilityStmt should be null, but we might as well copy it */
+ result->utilityStmt = parse->utilityStmt;
+ result->stmt_location = parse->stmt_location;
+ result->stmt_len = parse->stmt_len;
+
+ result->jitFlags = PGJIT_NONE;
+ if (jit_enabled && jit_above_cost >= 0 &&
+ top_plan->total_cost > jit_above_cost)
+ {
+ result->jitFlags |= PGJIT_PERFORM;
+
+ /*
+ * Decide how much effort should be put into generating better code.
+ */
+ if (jit_optimize_above_cost >= 0 &&
+ top_plan->total_cost > jit_optimize_above_cost)
+ result->jitFlags |= PGJIT_OPT3;
+ if (jit_inline_above_cost >= 0 &&
+ top_plan->total_cost > jit_inline_above_cost)
+ result->jitFlags |= PGJIT_INLINE;
+
+ /*
+ * Decide which operations should be JITed.
+ */
+ if (jit_expressions)
+ result->jitFlags |= PGJIT_EXPR;
+ if (jit_tuple_deforming)
+ result->jitFlags |= PGJIT_DEFORM;
+ }
+
+ if (glob->partition_directory != NULL)
+ DestroyPartitionDirectory(glob->partition_directory);
+
+ return result;
+}
+
+
+/*--------------------
+ * subquery_planner
+ * Invokes the planner on a subquery. We recurse to here for each
+ * sub-SELECT found in the query tree.
+ *
+ * glob is the global state for the current planner run.
+ * parse is the querytree produced by the parser & rewriter.
+ * parent_root is the immediate parent Query's info (NULL at the top level).
+ * hasRecursion is true if this is a recursive WITH query.
+ * tuple_fraction is the fraction of tuples we expect will be retrieved.
+ * tuple_fraction is interpreted as explained for grouping_planner, below.
+ *
+ * Basically, this routine does the stuff that should only be done once
+ * per Query object. It then calls grouping_planner. At one time,
+ * grouping_planner could be invoked recursively on the same Query object;
+ * that's not currently true, but we keep the separation between the two
+ * routines anyway, in case we need it again someday.
+ *
+ * subquery_planner will be called recursively to handle sub-Query nodes
+ * found within the query's expressions and rangetable.
+ *
+ * Returns the PlannerInfo struct ("root") that contains all data generated
+ * while planning the subquery. In particular, the Path(s) attached to
+ * the (UPPERREL_FINAL, NULL) upperrel represent our conclusions about the
+ * cheapest way(s) to implement the query. The top level will select the
+ * best Path and pass it through createplan.c to produce a finished Plan.
+ *--------------------
+ */
+PlannerInfo *
+subquery_planner(PlannerGlobal *glob, Query *parse,
+ PlannerInfo *parent_root,
+ bool hasRecursion, double tuple_fraction)
+{
+ PlannerInfo *root;
+ List *newWithCheckOptions;
+ List *newHaving;
+ bool hasOuterJoins;
+ bool hasResultRTEs;
+ RelOptInfo *final_rel;
+ ListCell *l;
+
+ /* Create a PlannerInfo data structure for this subquery */
+ root = makeNode(PlannerInfo);
+ root->parse = parse;
+ root->glob = glob;
+ root->query_level = parent_root ? parent_root->query_level + 1 : 1;
+ root->parent_root = parent_root;
+ root->plan_params = NIL;
+ root->outer_params = NULL;
+ root->planner_cxt = CurrentMemoryContext;
+ root->init_plans = NIL;
+ root->cte_plan_ids = NIL;
+ root->multiexpr_params = NIL;
+ root->eq_classes = NIL;
+ root->ec_merging_done = false;
+ root->all_result_relids =
+ parse->resultRelation ? bms_make_singleton(parse->resultRelation) : NULL;
+ root->leaf_result_relids = NULL; /* we'll find out leaf-ness later */
+ root->append_rel_list = NIL;
+ root->row_identity_vars = NIL;
+ root->rowMarks = NIL;
+ memset(root->upper_rels, 0, sizeof(root->upper_rels));
+ memset(root->upper_targets, 0, sizeof(root->upper_targets));
+ root->processed_tlist = NIL;
+ root->update_colnos = NIL;
+ root->grouping_map = NULL;
+ root->minmax_aggs = NIL;
+ root->qual_security_level = 0;
+ root->hasPseudoConstantQuals = false;
+ root->hasAlternativeSubPlans = false;
+ root->hasRecursion = hasRecursion;
+ if (hasRecursion)
+ root->wt_param_id = assign_special_exec_param(root);
+ else
+ root->wt_param_id = -1;
+ root->non_recursive_path = NULL;
+ root->partColsUpdated = false;
+
+ /*
+ * If there is a WITH list, process each WITH query and either convert it
+ * to RTE_SUBQUERY RTE(s) or build an initplan SubPlan structure for it.
+ */
+ if (parse->cteList)
+ SS_process_ctes(root);
+
+ /*
+ * If the FROM clause is empty, replace it with a dummy RTE_RESULT RTE, so
+ * that we don't need so many special cases to deal with that situation.
+ */
+ replace_empty_jointree(parse);
+
+ /*
+ * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
+ * to transform them into joins. Note that this step does not descend
+ * into subqueries; if we pull up any subqueries below, their SubLinks are
+ * processed just before pulling them up.
+ */
+ if (parse->hasSubLinks)
+ pull_up_sublinks(root);
+
+ /*
+ * Scan the rangetable for function RTEs, do const-simplification on them,
+ * and then inline them if possible (producing subqueries that might get
+ * pulled up next). Recursion issues here are handled in the same way as
+ * for SubLinks.
+ */
+ preprocess_function_rtes(root);
+
+ /*
+ * Check to see if any subqueries in the jointree can be merged into this
+ * query.
+ */
+ pull_up_subqueries(root);
+
+ /*
+ * If this is a simple UNION ALL query, flatten it into an appendrel. We
+ * do this now because it requires applying pull_up_subqueries to the leaf
+ * queries of the UNION ALL, which weren't touched above because they
+ * weren't referenced by the jointree (they will be after we do this).
+ */
+ if (parse->setOperations)
+ flatten_simple_union_all(root);
+
+ /*
+ * Survey the rangetable to see what kinds of entries are present. We can
+ * skip some later processing if relevant SQL features are not used; for
+ * example if there are no JOIN RTEs we can avoid the expense of doing
+ * flatten_join_alias_vars(). This must be done after we have finished
+ * adding rangetable entries, of course. (Note: actually, processing of
+ * inherited or partitioned rels can cause RTEs for their child tables to
+ * get added later; but those must all be RTE_RELATION entries, so they
+ * don't invalidate the conclusions drawn here.)
+ */
+ root->hasJoinRTEs = false;
+ root->hasLateralRTEs = false;
+ hasOuterJoins = false;
+ hasResultRTEs = false;
+ foreach(l, parse->rtable)
+ {
+ RangeTblEntry *rte = lfirst_node(RangeTblEntry, l);
+
+ switch (rte->rtekind)
+ {
+ case RTE_RELATION:
+ if (rte->inh)
+ {
+ /*
+ * Check to see if the relation actually has any children;
+ * if not, clear the inh flag so we can treat it as a
+ * plain base relation.
+ *
+ * Note: this could give a false-positive result, if the
+ * rel once had children but no longer does. We used to
+ * be able to clear rte->inh later on when we discovered
+ * that, but no more; we have to handle such cases as
+ * full-fledged inheritance.
+ */
+ rte->inh = has_subclass(rte->relid);
+ }
+ break;
+ case RTE_JOIN:
+ root->hasJoinRTEs = true;
+ if (IS_OUTER_JOIN(rte->jointype))
+ hasOuterJoins = true;
+ break;
+ case RTE_RESULT:
+ hasResultRTEs = true;
+ break;
+ default:
+ /* No work here for other RTE types */
+ break;
+ }
+
+ if (rte->lateral)
+ root->hasLateralRTEs = true;
+
+ /*
+ * We can also determine the maximum security level required for any
+ * securityQuals now. Addition of inheritance-child RTEs won't affect
+ * this, because child tables don't have their own securityQuals; see
+ * expand_single_inheritance_child().
+ */
+ if (rte->securityQuals)
+ root->qual_security_level = Max(root->qual_security_level,
+ list_length(rte->securityQuals));
+ }
+
+ /*
+ * If we have now verified that the query target relation is
+ * non-inheriting, mark it as a leaf target.
+ */
+ if (parse->resultRelation)
+ {
+ RangeTblEntry *rte = rt_fetch(parse->resultRelation, parse->rtable);
+
+ if (!rte->inh)
+ root->leaf_result_relids =
+ bms_make_singleton(parse->resultRelation);
+ }
+
+ /*
+ * Preprocess RowMark information. We need to do this after subquery
+ * pullup, so that all base relations are present.
+ */
+ preprocess_rowmarks(root);
+
+ /*
+ * Set hasHavingQual to remember if HAVING clause is present. Needed
+ * because preprocess_expression will reduce a constant-true condition to
+ * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
+ */
+ root->hasHavingQual = (parse->havingQual != NULL);
+
+ /*
+ * Do expression preprocessing on targetlist and quals, as well as other
+ * random expressions in the querytree. Note that we do not need to
+ * handle sort/group expressions explicitly, because they are actually
+ * part of the targetlist.
+ */
+ parse->targetList = (List *)
+ preprocess_expression(root, (Node *) parse->targetList,
+ EXPRKIND_TARGET);
+
+ /* Constant-folding might have removed all set-returning functions */
+ if (parse->hasTargetSRFs)
+ parse->hasTargetSRFs = expression_returns_set((Node *) parse->targetList);
+
+ newWithCheckOptions = NIL;
+ foreach(l, parse->withCheckOptions)
+ {
+ WithCheckOption *wco = lfirst_node(WithCheckOption, l);
+
+ wco->qual = preprocess_expression(root, wco->qual,
+ EXPRKIND_QUAL);
+ if (wco->qual != NULL)
+ newWithCheckOptions = lappend(newWithCheckOptions, wco);
+ }
+ parse->withCheckOptions = newWithCheckOptions;
+
+ parse->returningList = (List *)
+ preprocess_expression(root, (Node *) parse->returningList,
+ EXPRKIND_TARGET);
+
+ preprocess_qual_conditions(root, (Node *) parse->jointree);
+
+ parse->havingQual = preprocess_expression(root, parse->havingQual,
+ EXPRKIND_QUAL);
+
+ foreach(l, parse->windowClause)
+ {
+ WindowClause *wc = lfirst_node(WindowClause, l);
+
+ /* partitionClause/orderClause are sort/group expressions */
+ wc->startOffset = preprocess_expression(root, wc->startOffset,
+ EXPRKIND_LIMIT);
+ wc->endOffset = preprocess_expression(root, wc->endOffset,
+ EXPRKIND_LIMIT);
+ }
+
+ parse->limitOffset = preprocess_expression(root, parse->limitOffset,
+ EXPRKIND_LIMIT);
+ parse->limitCount = preprocess_expression(root, parse->limitCount,
+ EXPRKIND_LIMIT);
+
+ if (parse->onConflict)
+ {
+ parse->onConflict->arbiterElems = (List *)
+ preprocess_expression(root,
+ (Node *) parse->onConflict->arbiterElems,
+ EXPRKIND_ARBITER_ELEM);
+ parse->onConflict->arbiterWhere =
+ preprocess_expression(root,
+ parse->onConflict->arbiterWhere,
+ EXPRKIND_QUAL);
+ parse->onConflict->onConflictSet = (List *)
+ preprocess_expression(root,
+ (Node *) parse->onConflict->onConflictSet,
+ EXPRKIND_TARGET);
+ parse->onConflict->onConflictWhere =
+ preprocess_expression(root,
+ parse->onConflict->onConflictWhere,
+ EXPRKIND_QUAL);
+ /* exclRelTlist contains only Vars, so no preprocessing needed */
+ }
+
+ root->append_rel_list = (List *)
+ preprocess_expression(root, (Node *) root->append_rel_list,
+ EXPRKIND_APPINFO);
+
+ /* Also need to preprocess expressions within RTEs */
+ foreach(l, parse->rtable)
+ {
+ RangeTblEntry *rte = lfirst_node(RangeTblEntry, l);
+ int kind;
+ ListCell *lcsq;
+
+ if (rte->rtekind == RTE_RELATION)
+ {
+ if (rte->tablesample)
+ rte->tablesample = (TableSampleClause *)
+ preprocess_expression(root,
+ (Node *) rte->tablesample,
+ EXPRKIND_TABLESAMPLE);
+ }
+ else if (rte->rtekind == RTE_SUBQUERY)
+ {
+ /*
+ * We don't want to do all preprocessing yet on the subquery's
+ * expressions, since that will happen when we plan it. But if it
+ * contains any join aliases of our level, those have to get
+ * expanded now, because planning of the subquery won't do it.
+ * That's only possible if the subquery is LATERAL.
+ */
+ if (rte->lateral && root->hasJoinRTEs)
+ rte->subquery = (Query *)
+ flatten_join_alias_vars(root->parse,
+ (Node *) rte->subquery);
+ }
+ else if (rte->rtekind == RTE_FUNCTION)
+ {
+ /* Preprocess the function expression(s) fully */
+ kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
+ rte->functions = (List *)
+ preprocess_expression(root, (Node *) rte->functions, kind);
+ }
+ else if (rte->rtekind == RTE_TABLEFUNC)
+ {
+ /* Preprocess the function expression(s) fully */
+ kind = rte->lateral ? EXPRKIND_TABLEFUNC_LATERAL : EXPRKIND_TABLEFUNC;
+ rte->tablefunc = (TableFunc *)
+ preprocess_expression(root, (Node *) rte->tablefunc, kind);
+ }
+ else if (rte->rtekind == RTE_VALUES)
+ {
+ /* Preprocess the values lists fully */
+ kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES;
+ rte->values_lists = (List *)
+ preprocess_expression(root, (Node *) rte->values_lists, kind);
+ }
+
+ /*
+ * Process each element of the securityQuals list as if it were a
+ * separate qual expression (as indeed it is). We need to do it this
+ * way to get proper canonicalization of AND/OR structure. Note that
+ * this converts each element into an implicit-AND sublist.
+ */
+ foreach(lcsq, rte->securityQuals)
+ {
+ lfirst(lcsq) = preprocess_expression(root,
+ (Node *) lfirst(lcsq),
+ EXPRKIND_QUAL);
+ }
+ }
+
+ /*
+ * Now that we are done preprocessing expressions, and in particular done
+ * flattening join alias variables, get rid of the joinaliasvars lists.
+ * They no longer match what expressions in the rest of the tree look
+ * like, because we have not preprocessed expressions in those lists (and
+ * do not want to; for example, expanding a SubLink there would result in
+ * a useless unreferenced subplan). Leaving them in place simply creates
+ * a hazard for later scans of the tree. We could try to prevent that by
+ * using QTW_IGNORE_JOINALIASES in every tree scan done after this point,
+ * but that doesn't sound very reliable.
+ */
+ if (root->hasJoinRTEs)
+ {
+ foreach(l, parse->rtable)
+ {
+ RangeTblEntry *rte = lfirst_node(RangeTblEntry, l);
+
+ rte->joinaliasvars = NIL;
+ }
+ }
+
+ /*
+ * In some cases we may want to transfer a HAVING clause into WHERE. We
+ * cannot do so if the HAVING clause contains aggregates (obviously) or
+ * volatile functions (since a HAVING clause is supposed to be executed
+ * only once per group). We also can't do this if there are any nonempty
+ * grouping sets; moving such a clause into WHERE would potentially change
+ * the results, if any referenced column isn't present in all the grouping
+ * sets. (If there are only empty grouping sets, then the HAVING clause
+ * must be degenerate as discussed below.)
+ *
+ * Also, it may be that the clause is so expensive to execute that we're
+ * better off doing it only once per group, despite the loss of
+ * selectivity. This is hard to estimate short of doing the entire
+ * planning process twice, so we use a heuristic: clauses containing
+ * subplans are left in HAVING. Otherwise, we move or copy the HAVING
+ * clause into WHERE, in hopes of eliminating tuples before aggregation
+ * instead of after.
+ *
+ * If the query has explicit grouping then we can simply move such a
+ * clause into WHERE; any group that fails the clause will not be in the
+ * output because none of its tuples will reach the grouping or
+ * aggregation stage. Otherwise we must have a degenerate (variable-free)
+ * HAVING clause, which we put in WHERE so that query_planner() can use it
+ * in a gating Result node, but also keep in HAVING to ensure that we
+ * don't emit a bogus aggregated row. (This could be done better, but it
+ * seems not worth optimizing.)
+ *
+ * Note that both havingQual and parse->jointree->quals are in
+ * implicitly-ANDed-list form at this point, even though they are declared
+ * as Node *.
+ */
+ newHaving = NIL;
+ foreach(l, (List *) parse->havingQual)
+ {
+ Node *havingclause = (Node *) lfirst(l);
+
+ if ((parse->groupClause && parse->groupingSets) ||
+ contain_agg_clause(havingclause) ||
+ contain_volatile_functions(havingclause) ||
+ contain_subplans(havingclause))
+ {
+ /* keep it in HAVING */
+ newHaving = lappend(newHaving, havingclause);
+ }
+ else if (parse->groupClause && !parse->groupingSets)
+ {
+ /* move it to WHERE */
+ parse->jointree->quals = (Node *)
+ lappend((List *) parse->jointree->quals, havingclause);
+ }
+ else
+ {
+ /* put a copy in WHERE, keep it in HAVING */
+ parse->jointree->quals = (Node *)
+ lappend((List *) parse->jointree->quals,
+ copyObject(havingclause));
+ newHaving = lappend(newHaving, havingclause);
+ }
+ }
+ parse->havingQual = (Node *) newHaving;
+
+ /* Remove any redundant GROUP BY columns */
+ remove_useless_groupby_columns(root);
+
+ /*
+ * If we have any outer joins, try to reduce them to plain inner joins.
+ * This step is most easily done after we've done expression
+ * preprocessing.
+ */
+ if (hasOuterJoins)
+ reduce_outer_joins(root);
+
+ /*
+ * If we have any RTE_RESULT relations, see if they can be deleted from
+ * the jointree. This step is most effectively done after we've done
+ * expression preprocessing and outer join reduction.
+ */
+ if (hasResultRTEs)
+ remove_useless_result_rtes(root);
+
+ /*
+ * Do the main planning.
+ */
+ grouping_planner(root, tuple_fraction);
+
+ /*
+ * Capture the set of outer-level param IDs we have access to, for use in
+ * extParam/allParam calculations later.
+ */
+ SS_identify_outer_params(root);
+
+ /*
+ * If any initPlans were created in this query level, adjust the surviving
+ * Paths' costs and parallel-safety flags to account for them. The
+ * initPlans won't actually get attached to the plan tree till
+ * create_plan() runs, but we must include their effects now.
+ */
+ final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);
+ SS_charge_for_initplans(root, final_rel);
+
+ /*
+ * Make sure we've identified the cheapest Path for the final rel. (By
+ * doing this here not in grouping_planner, we include initPlan costs in
+ * the decision, though it's unlikely that will change anything.)
+ */
+ set_cheapest(final_rel);
+
+ return root;
+}
+
+/*
+ * preprocess_expression
+ * Do subquery_planner's preprocessing work for an expression,
+ * which can be a targetlist, a WHERE clause (including JOIN/ON
+ * conditions), a HAVING clause, or a few other things.
+ */
+static Node *
+preprocess_expression(PlannerInfo *root, Node *expr, int kind)
+{
+ /*
+ * Fall out quickly if expression is empty. This occurs often enough to
+ * be worth checking. Note that null->null is the correct conversion for
+ * implicit-AND result format, too.
+ */
+ if (expr == NULL)
+ return NULL;
+
+ /*
+ * If the query has any join RTEs, replace join alias variables with
+ * base-relation variables. We must do this first, since any expressions
+ * we may extract from the joinaliasvars lists have not been preprocessed.
+ * For example, if we did this after sublink processing, sublinks expanded
+ * out from join aliases would not get processed. But we can skip this in
+ * non-lateral RTE functions, VALUES lists, and TABLESAMPLE clauses, since
+ * they can't contain any Vars of the current query level.
+ */
+ if (root->hasJoinRTEs &&
+ !(kind == EXPRKIND_RTFUNC ||
+ kind == EXPRKIND_VALUES ||
+ kind == EXPRKIND_TABLESAMPLE ||
+ kind == EXPRKIND_TABLEFUNC))
+ expr = flatten_join_alias_vars(root->parse, expr);
+
+ /*
+ * Simplify constant expressions. For function RTEs, this was already
+ * done by preprocess_function_rtes. (But note we must do it again for
+ * EXPRKIND_RTFUNC_LATERAL, because those might by now contain
+ * un-simplified subexpressions inserted by flattening of subqueries or
+ * join alias variables.)
+ *
+ * Note: an essential effect of this is to convert named-argument function
+ * calls to positional notation and insert the current actual values of
+ * any default arguments for functions. To ensure that happens, we *must*
+ * process all expressions here. Previous PG versions sometimes skipped
+ * const-simplification if it didn't seem worth the trouble, but we can't
+ * do that anymore.
+ *
+ * Note: this also flattens nested AND and OR expressions into N-argument
+ * form. All processing of a qual expression after this point must be
+ * careful to maintain AND/OR flatness --- that is, do not generate a tree
+ * with AND directly under AND, nor OR directly under OR.
+ */
+ if (kind != EXPRKIND_RTFUNC)
+ expr = eval_const_expressions(root, expr);
+
+ /*
+ * If it's a qual or havingQual, canonicalize it.
+ */
+ if (kind == EXPRKIND_QUAL)
+ {
+ expr = (Node *) canonicalize_qual((Expr *) expr, false);
+
+#ifdef OPTIMIZER_DEBUG
+ printf("After canonicalize_qual()\n");
+ pprint(expr);
+#endif
+ }
+
+ /*
+ * Check for ANY ScalarArrayOpExpr with Const arrays and set the
+ * hashfuncid of any that might execute more quickly by using hash lookups
+ * instead of a linear search.
+ */
+ if (kind == EXPRKIND_QUAL || kind == EXPRKIND_TARGET)
+ {
+ convert_saop_to_hashed_saop(expr);
+ }
+
+ /* Expand SubLinks to SubPlans */
+ if (root->parse->hasSubLinks)
+ expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
+
+ /*
+ * XXX do not insert anything here unless you have grokked the comments in
+ * SS_replace_correlation_vars ...
+ */
+
+ /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
+ if (root->query_level > 1)
+ expr = SS_replace_correlation_vars(root, expr);
+
+ /*
+ * If it's a qual or havingQual, convert it to implicit-AND format. (We
+ * don't want to do this before eval_const_expressions, since the latter
+ * would be unable to simplify a top-level AND correctly. Also,
+ * SS_process_sublinks expects explicit-AND format.)
+ */
+ if (kind == EXPRKIND_QUAL)
+ expr = (Node *) make_ands_implicit((Expr *) expr);
+
+ return expr;
+}
+
+/*
+ * preprocess_qual_conditions
+ * Recursively scan the query's jointree and do subquery_planner's
+ * preprocessing work on each qual condition found therein.
+ */
+static void
+preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
+{
+ if (jtnode == NULL)
+ return;
+ if (IsA(jtnode, RangeTblRef))
+ {
+ /* nothing to do here */
+ }
+ else if (IsA(jtnode, FromExpr))
+ {
+ FromExpr *f = (FromExpr *) jtnode;
+ ListCell *l;
+
+ foreach(l, f->fromlist)
+ preprocess_qual_conditions(root, lfirst(l));
+
+ f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
+ }
+ else if (IsA(jtnode, JoinExpr))
+ {
+ JoinExpr *j = (JoinExpr *) jtnode;
+
+ preprocess_qual_conditions(root, j->larg);
+ preprocess_qual_conditions(root, j->rarg);
+
+ j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
+ }
+ else
+ elog(ERROR, "unrecognized node type: %d",
+ (int) nodeTag(jtnode));
+}
+
+/*
+ * preprocess_phv_expression
+ * Do preprocessing on a PlaceHolderVar expression that's been pulled up.
+ *
+ * If a LATERAL subquery references an output of another subquery, and that
+ * output must be wrapped in a PlaceHolderVar because of an intermediate outer
+ * join, then we'll push the PlaceHolderVar expression down into the subquery
+ * and later pull it back up during find_lateral_references, which runs after
+ * subquery_planner has preprocessed all the expressions that were in the
+ * current query level to start with. So we need to preprocess it then.
+ */
+Expr *
+preprocess_phv_expression(PlannerInfo *root, Expr *expr)
+{
+ return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV);
+}
+
+/*--------------------
+ * grouping_planner
+ * Perform planning steps related to grouping, aggregation, etc.
+ *
+ * This function adds all required top-level processing to the scan/join
+ * Path(s) produced by query_planner.
+ *
+ * tuple_fraction is the fraction of tuples we expect will be retrieved.
+ * tuple_fraction is interpreted as follows:
+ * 0: expect all tuples to be retrieved (normal case)
+ * 0 < tuple_fraction < 1: expect the given fraction of tuples available
+ * from the plan to be retrieved
+ * tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
+ * expected to be retrieved (ie, a LIMIT specification)
+ *
+ * Returns nothing; the useful output is in the Paths we attach to the
+ * (UPPERREL_FINAL, NULL) upperrel in *root. In addition,
+ * root->processed_tlist contains the final processed targetlist.
+ *
+ * Note that we have not done set_cheapest() on the final rel; it's convenient
+ * to leave this to the caller.
+ *--------------------
+ */
+static void
+grouping_planner(PlannerInfo *root, double tuple_fraction)
+{
+ Query *parse = root->parse;
+ int64 offset_est = 0;
+ int64 count_est = 0;
+ double limit_tuples = -1.0;
+ bool have_postponed_srfs = false;
+ PathTarget *final_target;
+ List *final_targets;
+ List *final_targets_contain_srfs;
+ bool final_target_parallel_safe;
+ RelOptInfo *current_rel;
+ RelOptInfo *final_rel;
+ FinalPathExtraData extra;
+ ListCell *lc;
+
+ /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
+ if (parse->limitCount || parse->limitOffset)
+ {
+ tuple_fraction = preprocess_limit(root, tuple_fraction,
+ &offset_est, &count_est);
+
+ /*
+ * If we have a known LIMIT, and don't have an unknown OFFSET, we can
+ * estimate the effects of using a bounded sort.
+ */
+ if (count_est > 0 && offset_est >= 0)
+ limit_tuples = (double) count_est + (double) offset_est;
+ }
+
+ /* Make tuple_fraction accessible to lower-level routines */
+ root->tuple_fraction = tuple_fraction;
+
+ if (parse->setOperations)
+ {
+ /*
+ * If there's a top-level ORDER BY, assume we have to fetch all the
+ * tuples. This might be too simplistic given all the hackery below
+ * to possibly avoid the sort; but the odds of accurate estimates here
+ * are pretty low anyway. XXX try to get rid of this in favor of
+ * letting plan_set_operations generate both fast-start and
+ * cheapest-total paths.
+ */
+ if (parse->sortClause)
+ root->tuple_fraction = 0.0;
+
+ /*
+ * Construct Paths for set operations. The results will not need any
+ * work except perhaps a top-level sort and/or LIMIT. Note that any
+ * special work for recursive unions is the responsibility of
+ * plan_set_operations.
+ */
+ current_rel = plan_set_operations(root);
+
+ /*
+ * We should not need to call preprocess_targetlist, since we must be
+ * in a SELECT query node. Instead, use the processed_tlist returned
+ * by plan_set_operations (since this tells whether it returned any
+ * resjunk columns!), and transfer any sort key information from the
+ * original tlist.
+ */
+ Assert(parse->commandType == CMD_SELECT);
+
+ /* for safety, copy processed_tlist instead of modifying in-place */
+ root->processed_tlist =
+ postprocess_setop_tlist(copyObject(root->processed_tlist),
+ parse->targetList);
+
+ /* Also extract the PathTarget form of the setop result tlist */
+ final_target = current_rel->cheapest_total_path->pathtarget;
+
+ /* And check whether it's parallel safe */
+ final_target_parallel_safe =
+ is_parallel_safe(root, (Node *) final_target->exprs);
+
+ /* The setop result tlist couldn't contain any SRFs */
+ Assert(!parse->hasTargetSRFs);
+ final_targets = final_targets_contain_srfs = NIL;
+
+ /*
+ * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
+ * checked already, but let's make sure).
+ */
+ if (parse->rowMarks)
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ /*------
+ translator: %s is a SQL row locking clause such as FOR UPDATE */
+ errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
+ LCS_asString(linitial_node(RowMarkClause,
+ parse->rowMarks)->strength))));
+
+ /*
+ * Calculate pathkeys that represent result ordering requirements
+ */
+ Assert(parse->distinctClause == NIL);
+ root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
+ parse->sortClause,
+ root->processed_tlist);
+ }
+ else
+ {
+ /* No set operations, do regular planning */
+ PathTarget *sort_input_target;
+ List *sort_input_targets;
+ List *sort_input_targets_contain_srfs;
+ bool sort_input_target_parallel_safe;
+ PathTarget *grouping_target;
+ List *grouping_targets;
+ List *grouping_targets_contain_srfs;
+ bool grouping_target_parallel_safe;
+ PathTarget *scanjoin_target;
+ List *scanjoin_targets;
+ List *scanjoin_targets_contain_srfs;
+ bool scanjoin_target_parallel_safe;
+ bool scanjoin_target_same_exprs;
+ bool have_grouping;
+ WindowFuncLists *wflists = NULL;
+ List *activeWindows = NIL;
+ grouping_sets_data *gset_data = NULL;
+ standard_qp_extra qp_extra;
+
+ /* A recursive query should always have setOperations */
+ Assert(!root->hasRecursion);
+
+ /* Preprocess grouping sets and GROUP BY clause, if any */
+ if (parse->groupingSets)
+ {
+ gset_data = preprocess_grouping_sets(root);
+ }
+ else
+ {
+ /* Preprocess regular GROUP BY clause, if any */
+ if (parse->groupClause)
+ parse->groupClause = preprocess_groupclause(root, NIL);
+ }
+
+ /*
+ * Preprocess targetlist. Note that much of the remaining planning
+ * work will be done with the PathTarget representation of tlists, but
+ * we must also maintain the full representation of the final tlist so
+ * that we can transfer its decoration (resnames etc) to the topmost
+ * tlist of the finished Plan. This is kept in processed_tlist.
+ */
+ preprocess_targetlist(root);
+
+ /*
+ * Mark all the aggregates with resolved aggtranstypes, and detect
+ * aggregates that are duplicates or can share transition state. We
+ * must do this before slicing and dicing the tlist into various
+ * pathtargets, else some copies of the Aggref nodes might escape
+ * being marked.
+ */
+ if (parse->hasAggs)
+ {
+ preprocess_aggrefs(root, (Node *) root->processed_tlist);
+ preprocess_aggrefs(root, (Node *) parse->havingQual);
+ }
+
+ /*
+ * Locate any window functions in the tlist. (We don't need to look
+ * anywhere else, since expressions used in ORDER BY will be in there
+ * too.) Note that they could all have been eliminated by constant
+ * folding, in which case we don't need to do any more work.
+ */
+ if (parse->hasWindowFuncs)
+ {
+ wflists = find_window_functions((Node *) root->processed_tlist,
+ list_length(parse->windowClause));
+ if (wflists->numWindowFuncs > 0)
+ activeWindows = select_active_windows(root, wflists);
+ else
+ parse->hasWindowFuncs = false;
+ }
+
+ /*
+ * Preprocess MIN/MAX aggregates, if any. Note: be careful about
+ * adding logic between here and the query_planner() call. Anything
+ * that is needed in MIN/MAX-optimizable cases will have to be
+ * duplicated in planagg.c.
+ */
+ if (parse->hasAggs)
+ preprocess_minmax_aggregates(root);
+
+ /*
+ * Figure out whether there's a hard limit on the number of rows that
+ * query_planner's result subplan needs to return. Even if we know a
+ * hard limit overall, it doesn't apply if the query has any
+ * grouping/aggregation operations, or SRFs in the tlist.
+ */
+ if (parse->groupClause ||
+ parse->groupingSets ||
+ parse->distinctClause ||
+ parse->hasAggs ||
+ parse->hasWindowFuncs ||
+ parse->hasTargetSRFs ||
+ root->hasHavingQual)
+ root->limit_tuples = -1.0;
+ else
+ root->limit_tuples = limit_tuples;
+
+ /* Set up data needed by standard_qp_callback */
+ qp_extra.activeWindows = activeWindows;
+ qp_extra.groupClause = (gset_data
+ ? (gset_data->rollups ? linitial_node(RollupData, gset_data->rollups)->groupClause : NIL)
+ : parse->groupClause);
+
+ /*
+ * Generate the best unsorted and presorted paths for the scan/join
+ * portion of this Query, ie the processing represented by the
+ * FROM/WHERE clauses. (Note there may not be any presorted paths.)
+ * We also generate (in standard_qp_callback) pathkey representations
+ * of the query's sort clause, distinct clause, etc.
+ */
+ current_rel = query_planner(root, standard_qp_callback, &qp_extra);
+
+ /*
+ * Convert the query's result tlist into PathTarget format.
+ *
+ * Note: this cannot be done before query_planner() has performed
+ * appendrel expansion, because that might add resjunk entries to
+ * root->processed_tlist. Waiting till afterwards is also helpful
+ * because the target width estimates can use per-Var width numbers
+ * that were obtained within query_planner().
+ */
+ final_target = create_pathtarget(root, root->processed_tlist);
+ final_target_parallel_safe =
+ is_parallel_safe(root, (Node *) final_target->exprs);
+
+ /*
+ * If ORDER BY was given, consider whether we should use a post-sort
+ * projection, and compute the adjusted target for preceding steps if
+ * so.
+ */
+ if (parse->sortClause)
+ {
+ sort_input_target = make_sort_input_target(root,
+ final_target,
+ &have_postponed_srfs);
+ sort_input_target_parallel_safe =
+ is_parallel_safe(root, (Node *) sort_input_target->exprs);
+ }
+ else
+ {
+ sort_input_target = final_target;
+ sort_input_target_parallel_safe = final_target_parallel_safe;
+ }
+
+ /*
+ * If we have window functions to deal with, the output from any
+ * grouping step needs to be what the window functions want;
+ * otherwise, it should be sort_input_target.
+ */
+ if (activeWindows)
+ {
+ grouping_target = make_window_input_target(root,
+ final_target,
+ activeWindows);
+ grouping_target_parallel_safe =
+ is_parallel_safe(root, (Node *) grouping_target->exprs);
+ }
+ else
+ {
+ grouping_target = sort_input_target;
+ grouping_target_parallel_safe = sort_input_target_parallel_safe;
+ }
+
+ /*
+ * If we have grouping or aggregation to do, the topmost scan/join
+ * plan node must emit what the grouping step wants; otherwise, it
+ * should emit grouping_target.
+ */
+ have_grouping = (parse->groupClause || parse->groupingSets ||
+ parse->hasAggs || root->hasHavingQual);
+ if (have_grouping)
+ {
+ scanjoin_target = make_group_input_target(root, final_target);
+ scanjoin_target_parallel_safe =
+ is_parallel_safe(root, (Node *) scanjoin_target->exprs);
+ }
+ else
+ {
+ scanjoin_target = grouping_target;
+ scanjoin_target_parallel_safe = grouping_target_parallel_safe;
+ }
+
+ /*
+ * If there are any SRFs in the targetlist, we must separate each of
+ * these PathTargets into SRF-computing and SRF-free targets. Replace
+ * each of the named targets with a SRF-free version, and remember the
+ * list of additional projection steps we need to add afterwards.
+ */
+ if (parse->hasTargetSRFs)
+ {
+ /* final_target doesn't recompute any SRFs in sort_input_target */
+ split_pathtarget_at_srfs(root, final_target, sort_input_target,
+ &final_targets,
+ &final_targets_contain_srfs);
+ final_target = linitial_node(PathTarget, final_targets);
+ Assert(!linitial_int(final_targets_contain_srfs));
+ /* likewise for sort_input_target vs. grouping_target */
+ split_pathtarget_at_srfs(root, sort_input_target, grouping_target,
+ &sort_input_targets,
+ &sort_input_targets_contain_srfs);
+ sort_input_target = linitial_node(PathTarget, sort_input_targets);
+ Assert(!linitial_int(sort_input_targets_contain_srfs));
+ /* likewise for grouping_target vs. scanjoin_target */
+ split_pathtarget_at_srfs(root, grouping_target, scanjoin_target,
+ &grouping_targets,
+ &grouping_targets_contain_srfs);
+ grouping_target = linitial_node(PathTarget, grouping_targets);
+ Assert(!linitial_int(grouping_targets_contain_srfs));
+ /* scanjoin_target will not have any SRFs precomputed for it */
+ split_pathtarget_at_srfs(root, scanjoin_target, NULL,
+ &scanjoin_targets,
+ &scanjoin_targets_contain_srfs);
+ scanjoin_target = linitial_node(PathTarget, scanjoin_targets);
+ Assert(!linitial_int(scanjoin_targets_contain_srfs));
+ }
+ else
+ {
+ /* initialize lists; for most of these, dummy values are OK */
+ final_targets = final_targets_contain_srfs = NIL;
+ sort_input_targets = sort_input_targets_contain_srfs = NIL;
+ grouping_targets = grouping_targets_contain_srfs = NIL;
+ scanjoin_targets = list_make1(scanjoin_target);
+ scanjoin_targets_contain_srfs = NIL;
+ }
+
+ /* Apply scan/join target. */
+ scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
+ && equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
+ apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets,
+ scanjoin_targets_contain_srfs,
+ scanjoin_target_parallel_safe,
+ scanjoin_target_same_exprs);
+
+ /*
+ * Save the various upper-rel PathTargets we just computed into
+ * root->upper_targets[]. The core code doesn't use this, but it
+ * provides a convenient place for extensions to get at the info. For
+ * consistency, we save all the intermediate targets, even though some
+ * of the corresponding upperrels might not be needed for this query.
+ */
+ root->upper_targets[UPPERREL_FINAL] = final_target;
+ root->upper_targets[UPPERREL_ORDERED] = final_target;
+ root->upper_targets[UPPERREL_DISTINCT] = sort_input_target;
+ root->upper_targets[UPPERREL_WINDOW] = sort_input_target;
+ root->upper_targets[UPPERREL_GROUP_AGG] = grouping_target;
+
+ /*
+ * If we have grouping and/or aggregation, consider ways to implement
+ * that. We build a new upperrel representing the output of this
+ * phase.
+ */
+ if (have_grouping)
+ {
+ current_rel = create_grouping_paths(root,
+ current_rel,
+ grouping_target,
+ grouping_target_parallel_safe,
+ gset_data);
+ /* Fix things up if grouping_target contains SRFs */
+ if (parse->hasTargetSRFs)
+ adjust_paths_for_srfs(root, current_rel,
+ grouping_targets,
+ grouping_targets_contain_srfs);
+ }
+
+ /*
+ * If we have window functions, consider ways to implement those. We
+ * build a new upperrel representing the output of this phase.
+ */
+ if (activeWindows)
+ {
+ current_rel = create_window_paths(root,
+ current_rel,
+ grouping_target,
+ sort_input_target,
+ sort_input_target_parallel_safe,
+ wflists,
+ activeWindows);
+ /* Fix things up if sort_input_target contains SRFs */
+ if (parse->hasTargetSRFs)
+ adjust_paths_for_srfs(root, current_rel,
+ sort_input_targets,
+ sort_input_targets_contain_srfs);
+ }
+
+ /*
+ * If there is a DISTINCT clause, consider ways to implement that. We
+ * build a new upperrel representing the output of this phase.
+ */
+ if (parse->distinctClause)
+ {
+ current_rel = create_distinct_paths(root,
+ current_rel);
+ }
+ } /* end of if (setOperations) */
+
+ /*
+ * If ORDER BY was given, consider ways to implement that, and generate a
+ * new upperrel containing only paths that emit the correct ordering and
+ * project the correct final_target. We can apply the original
+ * limit_tuples limit in sort costing here, but only if there are no
+ * postponed SRFs.
+ */
+ if (parse->sortClause)
+ {
+ current_rel = create_ordered_paths(root,
+ current_rel,
+ final_target,
+ final_target_parallel_safe,
+ have_postponed_srfs ? -1.0 :
+ limit_tuples);
+ /* Fix things up if final_target contains SRFs */
+ if (parse->hasTargetSRFs)
+ adjust_paths_for_srfs(root, current_rel,
+ final_targets,
+ final_targets_contain_srfs);
+ }
+
+ /*
+ * Now we are prepared to build the final-output upperrel.
+ */
+ final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);
+
+ /*
+ * If the input rel is marked consider_parallel and there's nothing that's
+ * not parallel-safe in the LIMIT clause, then the final_rel can be marked
+ * consider_parallel as well. Note that if the query has rowMarks or is
+ * not a SELECT, consider_parallel will be false for every relation in the
+ * query.
+ */
+ if (current_rel->consider_parallel &&
+ is_parallel_safe(root, parse->limitOffset) &&
+ is_parallel_safe(root, parse->limitCount))
+ final_rel->consider_parallel = true;
+
+ /*
+ * If the current_rel belongs to a single FDW, so does the final_rel.
+ */
+ final_rel->serverid = current_rel->serverid;
+ final_rel->userid = current_rel->userid;
+ final_rel->useridiscurrent = current_rel->useridiscurrent;
+ final_rel->fdwroutine = current_rel->fdwroutine;
+
+ /*
+ * Generate paths for the final_rel. Insert all surviving paths, with
+ * LockRows, Limit, and/or ModifyTable steps added if needed.
+ */
+ foreach(lc, current_rel->pathlist)
+ {
+ Path *path = (Path *) lfirst(lc);
+
+ /*
+ * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
+ * (Note: we intentionally test parse->rowMarks not root->rowMarks
+ * here. If there are only non-locking rowmarks, they should be
+ * handled by the ModifyTable node instead. However, root->rowMarks
+ * is what goes into the LockRows node.)
+ */
+ if (parse->rowMarks)
+ {
+ path = (Path *) create_lockrows_path(root, final_rel, path,
+ root->rowMarks,
+ assign_special_exec_param(root));
+ }
+
+ /*
+ * If there is a LIMIT/OFFSET clause, add the LIMIT node.
+ */
+ if (limit_needed(parse))
+ {
+ path = (Path *) create_limit_path(root, final_rel, path,
+ parse->limitOffset,
+ parse->limitCount,
+ parse->limitOption,
+ offset_est, count_est);
+ }
+
+ /*
+ * If this is an INSERT/UPDATE/DELETE, add the ModifyTable node.
+ */
+ if (parse->commandType != CMD_SELECT)
+ {
+ Index rootRelation;
+ List *resultRelations = NIL;
+ List *updateColnosLists = NIL;
+ List *withCheckOptionLists = NIL;
+ List *returningLists = NIL;
+ List *rowMarks;
+
+ if (bms_membership(root->all_result_relids) == BMS_MULTIPLE)
+ {
+ /* Inherited UPDATE/DELETE */
+ RelOptInfo *top_result_rel = find_base_rel(root,
+ parse->resultRelation);
+ int resultRelation = -1;
+
+ /* Add only leaf children to ModifyTable. */
+ while ((resultRelation = bms_next_member(root->leaf_result_relids,
+ resultRelation)) >= 0)
+ {
+ RelOptInfo *this_result_rel = find_base_rel(root,
+ resultRelation);
+
+ /*
+ * Also exclude any leaf rels that have turned dummy since
+ * being added to the list, for example, by being excluded
+ * by constraint exclusion.
+ */
+ if (IS_DUMMY_REL(this_result_rel))
+ continue;
+
+ /* Build per-target-rel lists needed by ModifyTable */
+ resultRelations = lappend_int(resultRelations,
+ resultRelation);
+ if (parse->commandType == CMD_UPDATE)
+ {
+ List *update_colnos = root->update_colnos;
+
+ if (this_result_rel != top_result_rel)
+ update_colnos =
+ adjust_inherited_attnums_multilevel(root,
+ update_colnos,
+ this_result_rel->relid,
+ top_result_rel->relid);
+ updateColnosLists = lappend(updateColnosLists,
+ update_colnos);
+ }
+ if (parse->withCheckOptions)
+ {
+ List *withCheckOptions = parse->withCheckOptions;
+
+ if (this_result_rel != top_result_rel)
+ withCheckOptions = (List *)
+ adjust_appendrel_attrs_multilevel(root,
+ (Node *) withCheckOptions,
+ this_result_rel->relids,
+ top_result_rel->relids);
+ withCheckOptionLists = lappend(withCheckOptionLists,
+ withCheckOptions);
+ }
+ if (parse->returningList)
+ {
+ List *returningList = parse->returningList;
+
+ if (this_result_rel != top_result_rel)
+ returningList = (List *)
+ adjust_appendrel_attrs_multilevel(root,
+ (Node *) returningList,
+ this_result_rel->relids,
+ top_result_rel->relids);
+ returningLists = lappend(returningLists,
+ returningList);
+ }
+ }
+
+ if (resultRelations == NIL)
+ {
+ /*
+ * We managed to exclude every child rel, so generate a
+ * dummy one-relation plan using info for the top target
+ * rel (even though that may not be a leaf target).
+ * Although it's clear that no data will be updated or
+ * deleted, we still need to have a ModifyTable node so
+ * that any statement triggers will be executed. (This
+ * could be cleaner if we fixed nodeModifyTable.c to allow
+ * zero target relations, but that probably wouldn't be a
+ * net win.)
+ */
+ resultRelations = list_make1_int(parse->resultRelation);
+ if (parse->commandType == CMD_UPDATE)
+ updateColnosLists = list_make1(root->update_colnos);
+ if (parse->withCheckOptions)
+ withCheckOptionLists = list_make1(parse->withCheckOptions);
+ if (parse->returningList)
+ returningLists = list_make1(parse->returningList);
+ }
+ }
+ else
+ {
+ /* Single-relation INSERT/UPDATE/DELETE. */
+ resultRelations = list_make1_int(parse->resultRelation);
+ if (parse->commandType == CMD_UPDATE)
+ updateColnosLists = list_make1(root->update_colnos);
+ if (parse->withCheckOptions)
+ withCheckOptionLists = list_make1(parse->withCheckOptions);
+ if (parse->returningList)
+ returningLists = list_make1(parse->returningList);
+ }
+
+ /*
+ * If target is a partition root table, we need to mark the
+ * ModifyTable node appropriately for that.
+ */
+ if (rt_fetch(parse->resultRelation, parse->rtable)->relkind ==
+ RELKIND_PARTITIONED_TABLE)
+ rootRelation = parse->resultRelation;
+ else
+ rootRelation = 0;
+
+ /*
+ * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
+ * will have dealt with fetching non-locked marked rows, else we
+ * need to have ModifyTable do that.
+ */
+ if (parse->rowMarks)
+ rowMarks = NIL;
+ else
+ rowMarks = root->rowMarks;
+
+ path = (Path *)
+ create_modifytable_path(root, final_rel,
+ path,
+ parse->commandType,
+ parse->canSetTag,
+ parse->resultRelation,
+ rootRelation,
+ root->partColsUpdated,
+ resultRelations,
+ updateColnosLists,
+ withCheckOptionLists,
+ returningLists,
+ rowMarks,
+ parse->onConflict,
+ assign_special_exec_param(root));
+ }
+
+ /* And shove it into final_rel */
+ add_path(final_rel, path);
+ }
+
+ /*
+ * Generate partial paths for final_rel, too, if outer query levels might
+ * be able to make use of them.
+ */
+ if (final_rel->consider_parallel && root->query_level > 1 &&
+ !limit_needed(parse))
+ {
+ Assert(!parse->rowMarks && parse->commandType == CMD_SELECT);
+ foreach(lc, current_rel->partial_pathlist)
+ {
+ Path *partial_path = (Path *) lfirst(lc);
+
+ add_partial_path(final_rel, partial_path);
+ }
+ }
+
+ extra.limit_needed = limit_needed(parse);
+ extra.limit_tuples = limit_tuples;
+ extra.count_est = count_est;
+ extra.offset_est = offset_est;
+
+ /*
+ * If there is an FDW that's responsible for all baserels of the query,
+ * let it consider adding ForeignPaths.
+ */
+ if (final_rel->fdwroutine &&
+ final_rel->fdwroutine->GetForeignUpperPaths)
+ final_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_FINAL,
+ current_rel, final_rel,
+ &extra);
+
+ /* Let extensions possibly add some more paths */
+ if (create_upper_paths_hook)
+ (*create_upper_paths_hook) (root, UPPERREL_FINAL,
+ current_rel, final_rel, &extra);
+
+ /* Note: currently, we leave it to callers to do set_cheapest() */
+}
+
+/*
+ * Do preprocessing for groupingSets clause and related data. This handles the
+ * preliminary steps of expanding the grouping sets, organizing them into lists
+ * of rollups, and preparing annotations which will later be filled in with
+ * size estimates.
+ */
+static grouping_sets_data *
+preprocess_grouping_sets(PlannerInfo *root)
+{
+ Query *parse = root->parse;
+ List *sets;
+ int maxref = 0;
+ ListCell *lc;
+ ListCell *lc_set;
+ grouping_sets_data *gd = palloc0(sizeof(grouping_sets_data));
+
+ parse->groupingSets = expand_grouping_sets(parse->groupingSets, parse->groupDistinct, -1);
+
+ gd->any_hashable = false;
+ gd->unhashable_refs = NULL;
+ gd->unsortable_refs = NULL;
+ gd->unsortable_sets = NIL;
+
+ if (parse->groupClause)
+ {
+ ListCell *lc;
+
+ foreach(lc, parse->groupClause)
+ {
+ SortGroupClause *gc = lfirst_node(SortGroupClause, lc);
+ Index ref = gc->tleSortGroupRef;
+
+ if (ref > maxref)
+ maxref = ref;
+
+ if (!gc->hashable)
+ gd->unhashable_refs = bms_add_member(gd->unhashable_refs, ref);
+
+ if (!OidIsValid(gc->sortop))
+ gd->unsortable_refs = bms_add_member(gd->unsortable_refs, ref);
+ }
+ }
+
+ /* Allocate workspace array for remapping */
+ gd->tleref_to_colnum_map = (int *) palloc((maxref + 1) * sizeof(int));
+
+ /*
+ * If we have any unsortable sets, we must extract them before trying to
+ * prepare rollups. Unsortable sets don't go through
+ * reorder_grouping_sets, so we must apply the GroupingSetData annotation
+ * here.
+ */
+ if (!bms_is_empty(gd->unsortable_refs))
+ {
+ List *sortable_sets = NIL;
+
+ foreach(lc, parse->groupingSets)
+ {
+ List *gset = (List *) lfirst(lc);
+
+ if (bms_overlap_list(gd->unsortable_refs, gset))
+ {
+ GroupingSetData *gs = makeNode(GroupingSetData);
+
+ gs->set = gset;
+ gd->unsortable_sets = lappend(gd->unsortable_sets, gs);
+
+ /*
+ * We must enforce here that an unsortable set is hashable;
+ * later code assumes this. Parse analysis only checks that
+ * every individual column is either hashable or sortable.
+ *
+ * Note that passing this test doesn't guarantee we can
+ * generate a plan; there might be other showstoppers.
+ */
+ if (bms_overlap_list(gd->unhashable_refs, gset))
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("could not implement GROUP BY"),
+ errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
+ }
+ else
+ sortable_sets = lappend(sortable_sets, gset);
+ }
+
+ if (sortable_sets)
+ sets = extract_rollup_sets(sortable_sets);
+ else
+ sets = NIL;
+ }
+ else
+ sets = extract_rollup_sets(parse->groupingSets);
+
+ foreach(lc_set, sets)
+ {
+ List *current_sets = (List *) lfirst(lc_set);
+ RollupData *rollup = makeNode(RollupData);
+ GroupingSetData *gs;
+
+ /*
+ * Reorder the current list of grouping sets into correct prefix
+ * order. If only one aggregation pass is needed, try to make the
+ * list match the ORDER BY clause; if more than one pass is needed, we
+ * don't bother with that.
+ *
+ * Note that this reorders the sets from smallest-member-first to
+ * largest-member-first, and applies the GroupingSetData annotations,
+ * though the data will be filled in later.
+ */
+ current_sets = reorder_grouping_sets(current_sets,
+ (list_length(sets) == 1
+ ? parse->sortClause
+ : NIL));
+
+ /*
+ * Get the initial (and therefore largest) grouping set.
+ */
+ gs = linitial_node(GroupingSetData, current_sets);
+
+ /*
+ * Order the groupClause appropriately. If the first grouping set is
+ * empty, then the groupClause must also be empty; otherwise we have
+ * to force the groupClause to match that grouping set's order.
+ *
+ * (The first grouping set can be empty even though parse->groupClause
+ * is not empty only if all non-empty grouping sets are unsortable.
+ * The groupClauses for hashed grouping sets are built later on.)
+ */
+ if (gs->set)
+ rollup->groupClause = preprocess_groupclause(root, gs->set);
+ else
+ rollup->groupClause = NIL;
+
+ /*
+ * Is it hashable? We pretend empty sets are hashable even though we
+ * actually force them not to be hashed later. But don't bother if
+ * there's nothing but empty sets (since in that case we can't hash
+ * anything).
+ */
+ if (gs->set &&
+ !bms_overlap_list(gd->unhashable_refs, gs->set))
+ {
+ rollup->hashable = true;
+ gd->any_hashable = true;
+ }
+
+ /*
+ * Now that we've pinned down an order for the groupClause for this
+ * list of grouping sets, we need to remap the entries in the grouping
+ * sets from sortgrouprefs to plain indices (0-based) into the
+ * groupClause for this collection of grouping sets. We keep the
+ * original form for later use, though.
+ */
+ rollup->gsets = remap_to_groupclause_idx(rollup->groupClause,
+ current_sets,
+ gd->tleref_to_colnum_map);
+ rollup->gsets_data = current_sets;
+
+ gd->rollups = lappend(gd->rollups, rollup);
+ }
+
+ if (gd->unsortable_sets)
+ {
+ /*
+ * We have not yet pinned down a groupclause for this, but we will
+ * need index-based lists for estimation purposes. Construct
+ * hash_sets_idx based on the entire original groupclause for now.
+ */
+ gd->hash_sets_idx = remap_to_groupclause_idx(parse->groupClause,
+ gd->unsortable_sets,
+ gd->tleref_to_colnum_map);
+ gd->any_hashable = true;
+ }
+
+ return gd;
+}
+
+/*
+ * Given a groupclause and a list of GroupingSetData, return equivalent sets
+ * (without annotation) mapped to indexes into the given groupclause.
+ */
+static List *
+remap_to_groupclause_idx(List *groupClause,
+ List *gsets,
+ int *tleref_to_colnum_map)
+{
+ int ref = 0;
+ List *result = NIL;
+ ListCell *lc;
+
+ foreach(lc, groupClause)
+ {
+ SortGroupClause *gc = lfirst_node(SortGroupClause, lc);
+
+ tleref_to_colnum_map[gc->tleSortGroupRef] = ref++;
+ }
+
+ foreach(lc, gsets)
+ {
+ List *set = NIL;
+ ListCell *lc2;
+ GroupingSetData *gs = lfirst_node(GroupingSetData, lc);
+
+ foreach(lc2, gs->set)
+ {
+ set = lappend_int(set, tleref_to_colnum_map[lfirst_int(lc2)]);
+ }
+
+ result = lappend(result, set);
+ }
+
+ return result;
+}
+
+
+/*
+ * preprocess_rowmarks - set up PlanRowMarks if needed
+ */
+static void
+preprocess_rowmarks(PlannerInfo *root)
+{
+ Query *parse = root->parse;
+ Bitmapset *rels;
+ List *prowmarks;
+ ListCell *l;
+ int i;
+
+ if (parse->rowMarks)
+ {
+ /*
+ * We've got trouble if FOR [KEY] UPDATE/SHARE appears inside
+ * grouping, since grouping renders a reference to individual tuple
+ * CTIDs invalid. This is also checked at parse time, but that's
+ * insufficient because of rule substitution, query pullup, etc.
+ */
+ CheckSelectLocking(parse, linitial_node(RowMarkClause,
+ parse->rowMarks)->strength);
+ }
+ else
+ {
+ /*
+ * We only need rowmarks for UPDATE, DELETE, or FOR [KEY]
+ * UPDATE/SHARE.
+ */
+ if (parse->commandType != CMD_UPDATE &&
+ parse->commandType != CMD_DELETE)
+ return;
+ }
+
+ /*
+ * We need to have rowmarks for all base relations except the target. We
+ * make a bitmapset of all base rels and then remove the items we don't
+ * need or have FOR [KEY] UPDATE/SHARE marks for.
+ */
+ rels = get_relids_in_jointree((Node *) parse->jointree, false);
+ if (parse->resultRelation)
+ rels = bms_del_member(rels, parse->resultRelation);
+
+ /*
+ * Convert RowMarkClauses to PlanRowMark representation.
+ */
+ prowmarks = NIL;
+ foreach(l, parse->rowMarks)
+ {
+ RowMarkClause *rc = lfirst_node(RowMarkClause, l);
+ RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable);
+ PlanRowMark *newrc;
+
+ /*
+ * Currently, it is syntactically impossible to have FOR UPDATE et al
+ * applied to an update/delete target rel. If that ever becomes
+ * possible, we should drop the target from the PlanRowMark list.
+ */
+ Assert(rc->rti != parse->resultRelation);
+
+ /*
+ * Ignore RowMarkClauses for subqueries; they aren't real tables and
+ * can't support true locking. Subqueries that got flattened into the
+ * main query should be ignored completely. Any that didn't will get
+ * ROW_MARK_COPY items in the next loop.
+ */
+ if (rte->rtekind != RTE_RELATION)
+ continue;
+
+ rels = bms_del_member(rels, rc->rti);
+
+ newrc = makeNode(PlanRowMark);
+ newrc->rti = newrc->prti = rc->rti;
+ newrc->rowmarkId = ++(root->glob->lastRowMarkId);
+ newrc->markType = select_rowmark_type(rte, rc->strength);
+ newrc->allMarkTypes = (1 << newrc->markType);
+ newrc->strength = rc->strength;
+ newrc->waitPolicy = rc->waitPolicy;
+ newrc->isParent = false;
+
+ prowmarks = lappend(prowmarks, newrc);
+ }
+
+ /*
+ * Now, add rowmarks for any non-target, non-locked base relations.
+ */
+ i = 0;
+ foreach(l, parse->rtable)
+ {
+ RangeTblEntry *rte = lfirst_node(RangeTblEntry, l);
+ PlanRowMark *newrc;
+
+ i++;
+ if (!bms_is_member(i, rels))
+ continue;
+
+ newrc = makeNode(PlanRowMark);
+ newrc->rti = newrc->prti = i;
+ newrc->rowmarkId = ++(root->glob->lastRowMarkId);
+ newrc->markType = select_rowmark_type(rte, LCS_NONE);
+ newrc->allMarkTypes = (1 << newrc->markType);
+ newrc->strength = LCS_NONE;
+ newrc->waitPolicy = LockWaitBlock; /* doesn't matter */
+ newrc->isParent = false;
+
+ prowmarks = lappend(prowmarks, newrc);
+ }
+
+ root->rowMarks = prowmarks;
+}
+
+/*
+ * Select RowMarkType to use for a given table
+ */
+RowMarkType
+select_rowmark_type(RangeTblEntry *rte, LockClauseStrength strength)
+{
+ if (rte->rtekind != RTE_RELATION)
+ {
+ /* If it's not a table at all, use ROW_MARK_COPY */
+ return ROW_MARK_COPY;
+ }
+ else if (rte->relkind == RELKIND_FOREIGN_TABLE)
+ {
+ /* Let the FDW select the rowmark type, if it wants to */
+ FdwRoutine *fdwroutine = GetFdwRoutineByRelId(rte->relid);
+
+ if (fdwroutine->GetForeignRowMarkType != NULL)
+ return fdwroutine->GetForeignRowMarkType(rte, strength);
+ /* Otherwise, use ROW_MARK_COPY by default */
+ return ROW_MARK_COPY;
+ }
+ else
+ {
+ /* Regular table, apply the appropriate lock type */
+ switch (strength)
+ {
+ case LCS_NONE:
+
+ /*
+ * We don't need a tuple lock, only the ability to re-fetch
+ * the row.
+ */
+ return ROW_MARK_REFERENCE;
+ break;
+ case LCS_FORKEYSHARE:
+ return ROW_MARK_KEYSHARE;
+ break;
+ case LCS_FORSHARE:
+ return ROW_MARK_SHARE;
+ break;
+ case LCS_FORNOKEYUPDATE:
+ return ROW_MARK_NOKEYEXCLUSIVE;
+ break;
+ case LCS_FORUPDATE:
+ return ROW_MARK_EXCLUSIVE;
+ break;
+ }
+ elog(ERROR, "unrecognized LockClauseStrength %d", (int) strength);
+ return ROW_MARK_EXCLUSIVE; /* keep compiler quiet */
+ }
+}
+
+/*
+ * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
+ *
+ * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
+ * results back in *count_est and *offset_est. These variables are set to
+ * 0 if the corresponding clause is not present, and -1 if it's present
+ * but we couldn't estimate the value for it. (The "0" convention is OK
+ * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
+ * LIMIT 0 as though it were LIMIT 1. But this is in line with the planner's
+ * usual practice of never estimating less than one row.) These values will
+ * be passed to create_limit_path, which see if you change this code.
+ *
+ * The return value is the suitably adjusted tuple_fraction to use for
+ * planning the query. This adjustment is not overridable, since it reflects
+ * plan actions that grouping_planner() will certainly take, not assumptions
+ * about context.
+ */
+static double
+preprocess_limit(PlannerInfo *root, double tuple_fraction,
+ int64 *offset_est, int64 *count_est)
+{
+ Query *parse = root->parse;
+ Node *est;
+ double limit_fraction;
+
+ /* Should not be called unless LIMIT or OFFSET */
+ Assert(parse->limitCount || parse->limitOffset);
+
+ /*
+ * Try to obtain the clause values. We use estimate_expression_value
+ * primarily because it can sometimes do something useful with Params.
+ */
+ if (parse->limitCount)
+ {
+ est = estimate_expression_value(root, parse->limitCount);
+ if (est && IsA(est, Const))
+ {
+ if (((Const *) est)->constisnull)
+ {
+ /* NULL indicates LIMIT ALL, ie, no limit */
+ *count_est = 0; /* treat as not present */
+ }
+ else
+ {
+ *count_est = DatumGetInt64(((Const *) est)->constvalue);
+ if (*count_est <= 0)
+ *count_est = 1; /* force to at least 1 */
+ }
+ }
+ else
+ *count_est = -1; /* can't estimate */
+ }
+ else
+ *count_est = 0; /* not present */
+
+ if (parse->limitOffset)
+ {
+ est = estimate_expression_value(root, parse->limitOffset);
+ if (est && IsA(est, Const))
+ {
+ if (((Const *) est)->constisnull)
+ {
+ /* Treat NULL as no offset; the executor will too */
+ *offset_est = 0; /* treat as not present */
+ }
+ else
+ {
+ *offset_est = DatumGetInt64(((Const *) est)->constvalue);
+ if (*offset_est < 0)
+ *offset_est = 0; /* treat as not present */
+ }
+ }
+ else
+ *offset_est = -1; /* can't estimate */
+ }
+ else
+ *offset_est = 0; /* not present */
+
+ if (*count_est != 0)
+ {
+ /*
+ * A LIMIT clause limits the absolute number of tuples returned.
+ * However, if it's not a constant LIMIT then we have to guess; for
+ * lack of a better idea, assume 10% of the plan's result is wanted.
+ */
+ if (*count_est < 0 || *offset_est < 0)
+ {
+ /* LIMIT or OFFSET is an expression ... punt ... */
+ limit_fraction = 0.10;
+ }
+ else
+ {
+ /* LIMIT (plus OFFSET, if any) is max number of tuples needed */
+ limit_fraction = (double) *count_est + (double) *offset_est;
+ }
+
+ /*
+ * If we have absolute limits from both caller and LIMIT, use the
+ * smaller value; likewise if they are both fractional. If one is
+ * fractional and the other absolute, we can't easily determine which
+ * is smaller, but we use the heuristic that the absolute will usually
+ * be smaller.
+ */
+ if (tuple_fraction >= 1.0)
+ {
+ if (limit_fraction >= 1.0)
+ {
+ /* both absolute */
+ tuple_fraction = Min(tuple_fraction, limit_fraction);
+ }
+ else
+ {
+ /* caller absolute, limit fractional; use caller's value */
+ }
+ }
+ else if (tuple_fraction > 0.0)
+ {
+ if (limit_fraction >= 1.0)
+ {
+ /* caller fractional, limit absolute; use limit */
+ tuple_fraction = limit_fraction;
+ }
+ else
+ {
+ /* both fractional */
+ tuple_fraction = Min(tuple_fraction, limit_fraction);
+ }
+ }
+ else
+ {
+ /* no info from caller, just use limit */
+ tuple_fraction = limit_fraction;
+ }
+ }
+ else if (*offset_est != 0 && tuple_fraction > 0.0)
+ {
+ /*
+ * We have an OFFSET but no LIMIT. This acts entirely differently
+ * from the LIMIT case: here, we need to increase rather than decrease
+ * the caller's tuple_fraction, because the OFFSET acts to cause more
+ * tuples to be fetched instead of fewer. This only matters if we got
+ * a tuple_fraction > 0, however.
+ *
+ * As above, use 10% if OFFSET is present but unestimatable.
+ */
+ if (*offset_est < 0)
+ limit_fraction = 0.10;
+ else
+ limit_fraction = (double) *offset_est;
+
+ /*
+ * If we have absolute counts from both caller and OFFSET, add them
+ * together; likewise if they are both fractional. If one is
+ * fractional and the other absolute, we want to take the larger, and
+ * we heuristically assume that's the fractional one.
+ */
+ if (tuple_fraction >= 1.0)
+ {
+ if (limit_fraction >= 1.0)
+ {
+ /* both absolute, so add them together */
+ tuple_fraction += limit_fraction;
+ }
+ else
+ {
+ /* caller absolute, limit fractional; use limit */
+ tuple_fraction = limit_fraction;
+ }
+ }
+ else
+ {
+ if (limit_fraction >= 1.0)
+ {
+ /* caller fractional, limit absolute; use caller's value */
+ }
+ else
+ {
+ /* both fractional, so add them together */
+ tuple_fraction += limit_fraction;
+ if (tuple_fraction >= 1.0)
+ tuple_fraction = 0.0; /* assume fetch all */
+ }
+ }
+ }
+
+ return tuple_fraction;
+}
+
+/*
+ * limit_needed - do we actually need a Limit plan node?
+ *
+ * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding
+ * a Limit node. This is worth checking for because "OFFSET 0" is a common
+ * locution for an optimization fence. (Because other places in the planner
+ * merely check whether parse->limitOffset isn't NULL, it will still work as
+ * an optimization fence --- we're just suppressing unnecessary run-time
+ * overhead.)
+ *
+ * This might look like it could be merged into preprocess_limit, but there's
+ * a key distinction: here we need hard constants in OFFSET/LIMIT, whereas
+ * in preprocess_limit it's good enough to consider estimated values.
+ */
+bool
+limit_needed(Query *parse)
+{
+ Node *node;
+
+ node = parse->limitCount;
+ if (node)
+ {
+ if (IsA(node, Const))
+ {
+ /* NULL indicates LIMIT ALL, ie, no limit */
+ if (!((Const *) node)->constisnull)
+ return true; /* LIMIT with a constant value */
+ }
+ else
+ return true; /* non-constant LIMIT */
+ }
+
+ node = parse->limitOffset;
+ if (node)
+ {
+ if (IsA(node, Const))
+ {
+ /* Treat NULL as no offset; the executor would too */
+ if (!((Const *) node)->constisnull)
+ {
+ int64 offset = DatumGetInt64(((Const *) node)->constvalue);
+
+ if (offset != 0)
+ return true; /* OFFSET with a nonzero value */
+ }
+ }
+ else
+ return true; /* non-constant OFFSET */
+ }
+
+ return false; /* don't need a Limit plan node */
+}
+
+
+/*
+ * remove_useless_groupby_columns
+ * Remove any columns in the GROUP BY clause that are redundant due to
+ * being functionally dependent on other GROUP BY columns.
+ *
+ * Since some other DBMSes do not allow references to ungrouped columns, it's
+ * not unusual to find all columns listed in GROUP BY even though listing the
+ * primary-key columns would be sufficient. Deleting such excess columns
+ * avoids redundant sorting work, so it's worth doing.
+ *
+ * Relcache invalidations will ensure that cached plans become invalidated
+ * when the underlying index of the pkey constraint is dropped.
+ *
+ * Currently, we only make use of pkey constraints for this, however, we may
+ * wish to take this further in the future and also use unique constraints
+ * which have NOT NULL columns. In that case, plan invalidation will still
+ * work since relations will receive a relcache invalidation when a NOT NULL
+ * constraint is dropped.
+ */
+static void
+remove_useless_groupby_columns(PlannerInfo *root)
+{
+ Query *parse = root->parse;
+ Bitmapset **groupbyattnos;
+ Bitmapset **surplusvars;
+ ListCell *lc;
+ int relid;
+
+ /* No chance to do anything if there are less than two GROUP BY items */
+ if (list_length(parse->groupClause) < 2)
+ return;
+
+ /* Don't fiddle with the GROUP BY clause if the query has grouping sets */
+ if (parse->groupingSets)
+ return;
+
+ /*
+ * Scan the GROUP BY clause to find GROUP BY items that are simple Vars.
+ * Fill groupbyattnos[k] with a bitmapset of the column attnos of RTE k
+ * that are GROUP BY items.
+ */
+ groupbyattnos = (Bitmapset **) palloc0(sizeof(Bitmapset *) *
+ (list_length(parse->rtable) + 1));
+ foreach(lc, parse->groupClause)
+ {
+ SortGroupClause *sgc = lfirst_node(SortGroupClause, lc);
+ TargetEntry *tle = get_sortgroupclause_tle(sgc, parse->targetList);
+ Var *var = (Var *) tle->expr;
+
+ /*
+ * Ignore non-Vars and Vars from other query levels.
+ *
+ * XXX in principle, stable expressions containing Vars could also be
+ * removed, if all the Vars are functionally dependent on other GROUP
+ * BY items. But it's not clear that such cases occur often enough to
+ * be worth troubling over.
+ */
+ if (!IsA(var, Var) ||
+ var->varlevelsup > 0)
+ continue;
+
+ /* OK, remember we have this Var */
+ relid = var->varno;
+ Assert(relid <= list_length(parse->rtable));
+ groupbyattnos[relid] = bms_add_member(groupbyattnos[relid],
+ var->varattno - FirstLowInvalidHeapAttributeNumber);
+ }
+
+ /*
+ * Consider each relation and see if it is possible to remove some of its
+ * Vars from GROUP BY. For simplicity and speed, we do the actual removal
+ * in a separate pass. Here, we just fill surplusvars[k] with a bitmapset
+ * of the column attnos of RTE k that are removable GROUP BY items.
+ */
+ surplusvars = NULL; /* don't allocate array unless required */
+ relid = 0;
+ foreach(lc, parse->rtable)
+ {
+ RangeTblEntry *rte = lfirst_node(RangeTblEntry, lc);
+ Bitmapset *relattnos;
+ Bitmapset *pkattnos;
+ Oid constraintOid;
+
+ relid++;
+
+ /* Only plain relations could have primary-key constraints */
+ if (rte->rtekind != RTE_RELATION)
+ continue;
+
+ /*
+ * We must skip inheritance parent tables as some of the child rels
+ * may cause duplicate rows. This cannot happen with partitioned
+ * tables, however.
+ */
+ if (rte->inh && rte->relkind != RELKIND_PARTITIONED_TABLE)
+ continue;
+
+ /* Nothing to do unless this rel has multiple Vars in GROUP BY */
+ relattnos = groupbyattnos[relid];
+ if (bms_membership(relattnos) != BMS_MULTIPLE)
+ continue;
+
+ /*
+ * Can't remove any columns for this rel if there is no suitable
+ * (i.e., nondeferrable) primary key constraint.
+ */
+ pkattnos = get_primary_key_attnos(rte->relid, false, &constraintOid);
+ if (pkattnos == NULL)
+ continue;
+
+ /*
+ * If the primary key is a proper subset of relattnos then we have
+ * some items in the GROUP BY that can be removed.
+ */
+ if (bms_subset_compare(pkattnos, relattnos) == BMS_SUBSET1)
+ {
+ /*
+ * To easily remember whether we've found anything to do, we don't
+ * allocate the surplusvars[] array until we find something.
+ */
+ if (surplusvars == NULL)
+ surplusvars = (Bitmapset **) palloc0(sizeof(Bitmapset *) *
+ (list_length(parse->rtable) + 1));
+
+ /* Remember the attnos of the removable columns */
+ surplusvars[relid] = bms_difference(relattnos, pkattnos);
+ }
+ }
+
+ /*
+ * If we found any surplus Vars, build a new GROUP BY clause without them.
+ * (Note: this may leave some TLEs with unreferenced ressortgroupref
+ * markings, but that's harmless.)
+ */
+ if (surplusvars != NULL)
+ {
+ List *new_groupby = NIL;
+
+ foreach(lc, parse->groupClause)
+ {
+ SortGroupClause *sgc = lfirst_node(SortGroupClause, lc);
+ TargetEntry *tle = get_sortgroupclause_tle(sgc, parse->targetList);
+ Var *var = (Var *) tle->expr;
+
+ /*
+ * New list must include non-Vars, outer Vars, and anything not
+ * marked as surplus.
+ */
+ if (!IsA(var, Var) ||
+ var->varlevelsup > 0 ||
+ !bms_is_member(var->varattno - FirstLowInvalidHeapAttributeNumber,
+ surplusvars[var->varno]))
+ new_groupby = lappend(new_groupby, sgc);
+ }
+
+ parse->groupClause = new_groupby;
+ }
+}
+
+/*
+ * preprocess_groupclause - do preparatory work on GROUP BY clause
+ *
+ * The idea here is to adjust the ordering of the GROUP BY elements
+ * (which in itself is semantically insignificant) to match ORDER BY,
+ * thereby allowing a single sort operation to both implement the ORDER BY
+ * requirement and set up for a Unique step that implements GROUP BY.
+ *
+ * In principle it might be interesting to consider other orderings of the
+ * GROUP BY elements, which could match the sort ordering of other
+ * possible plans (eg an indexscan) and thereby reduce cost. We don't
+ * bother with that, though. Hashed grouping will frequently win anyway.
+ *
+ * Note: we need no comparable processing of the distinctClause because
+ * the parser already enforced that that matches ORDER BY.
+ *
+ * For grouping sets, the order of items is instead forced to agree with that
+ * of the grouping set (and items not in the grouping set are skipped). The
+ * work of sorting the order of grouping set elements to match the ORDER BY if
+ * possible is done elsewhere.
+ */
+static List *
+preprocess_groupclause(PlannerInfo *root, List *force)
+{
+ Query *parse = root->parse;
+ List *new_groupclause = NIL;
+ bool partial_match;
+ ListCell *sl;
+ ListCell *gl;
+
+ /* For grouping sets, we need to force the ordering */
+ if (force)
+ {
+ foreach(sl, force)
+ {
+ Index ref = lfirst_int(sl);
+ SortGroupClause *cl = get_sortgroupref_clause(ref, parse->groupClause);
+
+ new_groupclause = lappend(new_groupclause, cl);
+ }
+
+ return new_groupclause;
+ }
+
+ /* If no ORDER BY, nothing useful to do here */
+ if (parse->sortClause == NIL)
+ return parse->groupClause;
+
+ /*
+ * Scan the ORDER BY clause and construct a list of matching GROUP BY
+ * items, but only as far as we can make a matching prefix.
+ *
+ * This code assumes that the sortClause contains no duplicate items.
+ */
+ foreach(sl, parse->sortClause)
+ {
+ SortGroupClause *sc = lfirst_node(SortGroupClause, sl);
+
+ foreach(gl, parse->groupClause)
+ {
+ SortGroupClause *gc = lfirst_node(SortGroupClause, gl);
+
+ if (equal(gc, sc))
+ {
+ new_groupclause = lappend(new_groupclause, gc);
+ break;
+ }
+ }
+ if (gl == NULL)
+ break; /* no match, so stop scanning */
+ }
+
+ /* Did we match all of the ORDER BY list, or just some of it? */
+ partial_match = (sl != NULL);
+
+ /* If no match at all, no point in reordering GROUP BY */
+ if (new_groupclause == NIL)
+ return parse->groupClause;
+
+ /*
+ * Add any remaining GROUP BY items to the new list, but only if we were
+ * able to make a complete match. In other words, we only rearrange the
+ * GROUP BY list if the result is that one list is a prefix of the other
+ * --- otherwise there's no possibility of a common sort. Also, give up
+ * if there are any non-sortable GROUP BY items, since then there's no
+ * hope anyway.
+ */
+ foreach(gl, parse->groupClause)
+ {
+ SortGroupClause *gc = lfirst_node(SortGroupClause, gl);
+
+ if (list_member_ptr(new_groupclause, gc))
+ continue; /* it matched an ORDER BY item */
+ if (partial_match)
+ return parse->groupClause; /* give up, no common sort possible */
+ if (!OidIsValid(gc->sortop))
+ return parse->groupClause; /* give up, GROUP BY can't be sorted */
+ new_groupclause = lappend(new_groupclause, gc);
+ }
+
+ /* Success --- install the rearranged GROUP BY list */
+ Assert(list_length(parse->groupClause) == list_length(new_groupclause));
+ return new_groupclause;
+}
+
+/*
+ * Extract lists of grouping sets that can be implemented using a single
+ * rollup-type aggregate pass each. Returns a list of lists of grouping sets.
+ *
+ * Input must be sorted with smallest sets first. Result has each sublist
+ * sorted with smallest sets first.
+ *
+ * We want to produce the absolute minimum possible number of lists here to
+ * avoid excess sorts. Fortunately, there is an algorithm for this; the problem
+ * of finding the minimal partition of a partially-ordered set into chains
+ * (which is what we need, taking the list of grouping sets as a poset ordered
+ * by set inclusion) can be mapped to the problem of finding the maximum
+ * cardinality matching on a bipartite graph, which is solvable in polynomial
+ * time with a worst case of no worse than O(n^2.5) and usually much
+ * better. Since our N is at most 4096, we don't need to consider fallbacks to
+ * heuristic or approximate methods. (Planning time for a 12-d cube is under
+ * half a second on my modest system even with optimization off and assertions
+ * on.)
+ */
+static List *
+extract_rollup_sets(List *groupingSets)
+{
+ int num_sets_raw = list_length(groupingSets);
+ int num_empty = 0;
+ int num_sets = 0; /* distinct sets */
+ int num_chains = 0;
+ List *result = NIL;
+ List **results;
+ List **orig_sets;
+ Bitmapset **set_masks;
+ int *chains;
+ short **adjacency;
+ short *adjacency_buf;
+ BipartiteMatchState *state;
+ int i;
+ int j;
+ int j_size;
+ ListCell *lc1 = list_head(groupingSets);
+ ListCell *lc;
+
+ /*
+ * Start by stripping out empty sets. The algorithm doesn't require this,
+ * but the planner currently needs all empty sets to be returned in the
+ * first list, so we strip them here and add them back after.
+ */
+ while (lc1 && lfirst(lc1) == NIL)
+ {
+ ++num_empty;
+ lc1 = lnext(groupingSets, lc1);
+ }
+
+ /* bail out now if it turns out that all we had were empty sets. */
+ if (!lc1)
+ return list_make1(groupingSets);
+
+ /*----------
+ * We don't strictly need to remove duplicate sets here, but if we don't,
+ * they tend to become scattered through the result, which is a bit
+ * confusing (and irritating if we ever decide to optimize them out).
+ * So we remove them here and add them back after.
+ *
+ * For each non-duplicate set, we fill in the following:
+ *
+ * orig_sets[i] = list of the original set lists
+ * set_masks[i] = bitmapset for testing inclusion
+ * adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices
+ *
+ * chains[i] will be the result group this set is assigned to.
+ *
+ * We index all of these from 1 rather than 0 because it is convenient
+ * to leave 0 free for the NIL node in the graph algorithm.
+ *----------
+ */
+ orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *));
+ set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *));
+ adjacency = palloc0((num_sets_raw + 1) * sizeof(short *));
+ adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short));
+
+ j_size = 0;
+ j = 0;
+ i = 1;
+
+ for_each_cell(lc, groupingSets, lc1)
+ {
+ List *candidate = (List *) lfirst(lc);
+ Bitmapset *candidate_set = NULL;
+ ListCell *lc2;
+ int dup_of = 0;
+
+ foreach(lc2, candidate)
+ {
+ candidate_set = bms_add_member(candidate_set, lfirst_int(lc2));
+ }
+
+ /* we can only be a dup if we're the same length as a previous set */
+ if (j_size == list_length(candidate))
+ {
+ int k;
+
+ for (k = j; k < i; ++k)
+ {
+ if (bms_equal(set_masks[k], candidate_set))
+ {
+ dup_of = k;
+ break;
+ }
+ }
+ }
+ else if (j_size < list_length(candidate))
+ {
+ j_size = list_length(candidate);
+ j = i;
+ }
+
+ if (dup_of > 0)
+ {
+ orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate);
+ bms_free(candidate_set);
+ }
+ else
+ {
+ int k;
+ int n_adj = 0;
+
+ orig_sets[i] = list_make1(candidate);
+ set_masks[i] = candidate_set;
+
+ /* fill in adjacency list; no need to compare equal-size sets */
+
+ for (k = j - 1; k > 0; --k)
+ {
+ if (bms_is_subset(set_masks[k], candidate_set))
+ adjacency_buf[++n_adj] = k;
+ }
+
+ if (n_adj > 0)
+ {
+ adjacency_buf[0] = n_adj;
+ adjacency[i] = palloc((n_adj + 1) * sizeof(short));
+ memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short));
+ }
+ else
+ adjacency[i] = NULL;
+
+ ++i;
+ }
+ }
+
+ num_sets = i - 1;
+
+ /*
+ * Apply the graph matching algorithm to do the work.
+ */
+ state = BipartiteMatch(num_sets, num_sets, adjacency);
+
+ /*
+ * Now, the state->pair* fields have the info we need to assign sets to
+ * chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or
+ * pair_vu[v] = u (both will be true, but we check both so that we can do
+ * it in one pass)
+ */
+ chains = palloc0((num_sets + 1) * sizeof(int));
+
+ for (i = 1; i <= num_sets; ++i)
+ {
+ int u = state->pair_vu[i];
+ int v = state->pair_uv[i];
+
+ if (u > 0 && u < i)
+ chains[i] = chains[u];
+ else if (v > 0 && v < i)
+ chains[i] = chains[v];
+ else
+ chains[i] = ++num_chains;
+ }
+
+ /* build result lists. */
+ results = palloc0((num_chains + 1) * sizeof(List *));
+
+ for (i = 1; i <= num_sets; ++i)
+ {
+ int c = chains[i];
+
+ Assert(c > 0);
+
+ results[c] = list_concat(results[c], orig_sets[i]);
+ }
+
+ /* push any empty sets back on the first list. */
+ while (num_empty-- > 0)
+ results[1] = lcons(NIL, results[1]);
+
+ /* make result list */
+ for (i = 1; i <= num_chains; ++i)
+ result = lappend(result, results[i]);
+
+ /*
+ * Free all the things.
+ *
+ * (This is over-fussy for small sets but for large sets we could have
+ * tied up a nontrivial amount of memory.)
+ */
+ BipartiteMatchFree(state);
+ pfree(results);
+ pfree(chains);
+ for (i = 1; i <= num_sets; ++i)
+ if (adjacency[i])
+ pfree(adjacency[i]);
+ pfree(adjacency);
+ pfree(adjacency_buf);
+ pfree(orig_sets);
+ for (i = 1; i <= num_sets; ++i)
+ bms_free(set_masks[i]);
+ pfree(set_masks);
+
+ return result;
+}
+
+/*
+ * Reorder the elements of a list of grouping sets such that they have correct
+ * prefix relationships. Also inserts the GroupingSetData annotations.
+ *
+ * The input must be ordered with smallest sets first; the result is returned
+ * with largest sets first. Note that the result shares no list substructure
+ * with the input, so it's safe for the caller to modify it later.
+ *
+ * If we're passed in a sortclause, we follow its order of columns to the
+ * extent possible, to minimize the chance that we add unnecessary sorts.
+ * (We're trying here to ensure that GROUPING SETS ((a,b,c),(c)) ORDER BY c,b,a
+ * gets implemented in one pass.)
+ */
+static List *
+reorder_grouping_sets(List *groupingsets, List *sortclause)
+{
+ ListCell *lc;
+ List *previous = NIL;
+ List *result = NIL;
+
+ foreach(lc, groupingsets)
+ {
+ List *candidate = (List *) lfirst(lc);
+ List *new_elems = list_difference_int(candidate, previous);
+ GroupingSetData *gs = makeNode(GroupingSetData);
+
+ while (list_length(sortclause) > list_length(previous) &&
+ list_length(new_elems) > 0)
+ {
+ SortGroupClause *sc = list_nth(sortclause, list_length(previous));
+ int ref = sc->tleSortGroupRef;
+
+ if (list_member_int(new_elems, ref))
+ {
+ previous = lappend_int(previous, ref);
+ new_elems = list_delete_int(new_elems, ref);
+ }
+ else
+ {
+ /* diverged from the sortclause; give up on it */
+ sortclause = NIL;
+ break;
+ }
+ }
+
+ previous = list_concat(previous, new_elems);
+
+ gs->set = list_copy(previous);
+ result = lcons(gs, result);
+ }
+
+ list_free(previous);
+
+ return result;
+}
+
+/*
+ * Compute query_pathkeys and other pathkeys during plan generation
+ */
+static void
+standard_qp_callback(PlannerInfo *root, void *extra)
+{
+ Query *parse = root->parse;
+ standard_qp_extra *qp_extra = (standard_qp_extra *) extra;
+ List *tlist = root->processed_tlist;
+ List *activeWindows = qp_extra->activeWindows;
+
+ /*
+ * Calculate pathkeys that represent grouping/ordering requirements. The
+ * sortClause is certainly sort-able, but GROUP BY and DISTINCT might not
+ * be, in which case we just leave their pathkeys empty.
+ */
+ if (qp_extra->groupClause &&
+ grouping_is_sortable(qp_extra->groupClause))
+ root->group_pathkeys =
+ make_pathkeys_for_sortclauses(root,
+ qp_extra->groupClause,
+ tlist);
+ else
+ root->group_pathkeys = NIL;
+
+ /* We consider only the first (bottom) window in pathkeys logic */
+ if (activeWindows != NIL)
+ {
+ WindowClause *wc = linitial_node(WindowClause, activeWindows);
+
+ root->window_pathkeys = make_pathkeys_for_window(root,
+ wc,
+ tlist);
+ }
+ else
+ root->window_pathkeys = NIL;
+
+ if (parse->distinctClause &&
+ grouping_is_sortable(parse->distinctClause))
+ root->distinct_pathkeys =
+ make_pathkeys_for_sortclauses(root,
+ parse->distinctClause,
+ tlist);
+ else
+ root->distinct_pathkeys = NIL;
+
+ root->sort_pathkeys =
+ make_pathkeys_for_sortclauses(root,
+ parse->sortClause,
+ tlist);
+
+ /*
+ * Figure out whether we want a sorted result from query_planner.
+ *
+ * If we have a sortable GROUP BY clause, then we want a result sorted
+ * properly for grouping. Otherwise, if we have window functions to
+ * evaluate, we try to sort for the first window. Otherwise, if there's a
+ * sortable DISTINCT clause that's more rigorous than the ORDER BY clause,
+ * we try to produce output that's sufficiently well sorted for the
+ * DISTINCT. Otherwise, if there is an ORDER BY clause, we want to sort
+ * by the ORDER BY clause.
+ *
+ * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset
+ * of GROUP BY, it would be tempting to request sort by ORDER BY --- but
+ * that might just leave us failing to exploit an available sort order at
+ * all. Needs more thought. The choice for DISTINCT versus ORDER BY is
+ * much easier, since we know that the parser ensured that one is a
+ * superset of the other.
+ */
+ if (root->group_pathkeys)
+ root->query_pathkeys = root->group_pathkeys;
+ else if (root->window_pathkeys)
+ root->query_pathkeys = root->window_pathkeys;
+ else if (list_length(root->distinct_pathkeys) >
+ list_length(root->sort_pathkeys))
+ root->query_pathkeys = root->distinct_pathkeys;
+ else if (root->sort_pathkeys)
+ root->query_pathkeys = root->sort_pathkeys;
+ else
+ root->query_pathkeys = NIL;
+}
+
+/*
+ * Estimate number of groups produced by grouping clauses (1 if not grouping)
+ *
+ * path_rows: number of output rows from scan/join step
+ * gd: grouping sets data including list of grouping sets and their clauses
+ * target_list: target list containing group clause references
+ *
+ * If doing grouping sets, we also annotate the gsets data with the estimates
+ * for each set and each individual rollup list, with a view to later
+ * determining whether some combination of them could be hashed instead.
+ */
+static double
+get_number_of_groups(PlannerInfo *root,
+ double path_rows,
+ grouping_sets_data *gd,
+ List *target_list)
+{
+ Query *parse = root->parse;
+ double dNumGroups;
+
+ if (parse->groupClause)
+ {
+ List *groupExprs;
+
+ if (parse->groupingSets)
+ {
+ /* Add up the estimates for each grouping set */
+ ListCell *lc;
+ ListCell *lc2;
+
+ Assert(gd); /* keep Coverity happy */
+
+ dNumGroups = 0;
+
+ foreach(lc, gd->rollups)
+ {
+ RollupData *rollup = lfirst_node(RollupData, lc);
+ ListCell *lc;
+
+ groupExprs = get_sortgrouplist_exprs(rollup->groupClause,
+ target_list);
+
+ rollup->numGroups = 0.0;
+
+ forboth(lc, rollup->gsets, lc2, rollup->gsets_data)
+ {
+ List *gset = (List *) lfirst(lc);
+ GroupingSetData *gs = lfirst_node(GroupingSetData, lc2);
+ double numGroups = estimate_num_groups(root,
+ groupExprs,
+ path_rows,
+ &gset,
+ NULL);
+
+ gs->numGroups = numGroups;
+ rollup->numGroups += numGroups;
+ }
+
+ dNumGroups += rollup->numGroups;
+ }
+
+ if (gd->hash_sets_idx)
+ {
+ ListCell *lc;
+
+ gd->dNumHashGroups = 0;
+
+ groupExprs = get_sortgrouplist_exprs(parse->groupClause,
+ target_list);
+
+ forboth(lc, gd->hash_sets_idx, lc2, gd->unsortable_sets)
+ {
+ List *gset = (List *) lfirst(lc);
+ GroupingSetData *gs = lfirst_node(GroupingSetData, lc2);
+ double numGroups = estimate_num_groups(root,
+ groupExprs,
+ path_rows,
+ &gset,
+ NULL);
+
+ gs->numGroups = numGroups;
+ gd->dNumHashGroups += numGroups;
+ }
+
+ dNumGroups += gd->dNumHashGroups;
+ }
+ }
+ else
+ {
+ /* Plain GROUP BY */
+ groupExprs = get_sortgrouplist_exprs(parse->groupClause,
+ target_list);
+
+ dNumGroups = estimate_num_groups(root, groupExprs, path_rows,
+ NULL, NULL);
+ }
+ }
+ else if (parse->groupingSets)
+ {
+ /* Empty grouping sets ... one result row for each one */
+ dNumGroups = list_length(parse->groupingSets);
+ }
+ else if (parse->hasAggs || root->hasHavingQual)
+ {
+ /* Plain aggregation, one result row */
+ dNumGroups = 1;
+ }
+ else
+ {
+ /* Not grouping */
+ dNumGroups = 1;
+ }
+
+ return dNumGroups;
+}
+
+/*
+ * create_grouping_paths
+ *
+ * Build a new upperrel containing Paths for grouping and/or aggregation.
+ * Along the way, we also build an upperrel for Paths which are partially
+ * grouped and/or aggregated. A partially grouped and/or aggregated path
+ * needs a FinalizeAggregate node to complete the aggregation. Currently,
+ * the only partially grouped paths we build are also partial paths; that
+ * is, they need a Gather and then a FinalizeAggregate.
+ *
+ * input_rel: contains the source-data Paths
+ * target: the pathtarget for the result Paths to compute
+ * gd: grouping sets data including list of grouping sets and their clauses
+ *
+ * Note: all Paths in input_rel are expected to return the target computed
+ * by make_group_input_target.
+ */
+static RelOptInfo *
+create_grouping_paths(PlannerInfo *root,
+ RelOptInfo *input_rel,
+ PathTarget *target,
+ bool target_parallel_safe,
+ grouping_sets_data *gd)
+{
+ Query *parse = root->parse;
+ RelOptInfo *grouped_rel;
+ RelOptInfo *partially_grouped_rel;
+ AggClauseCosts agg_costs;
+
+ MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
+ get_agg_clause_costs(root, AGGSPLIT_SIMPLE, &agg_costs);
+
+ /*
+ * Create grouping relation to hold fully aggregated grouping and/or
+ * aggregation paths.
+ */
+ grouped_rel = make_grouping_rel(root, input_rel, target,
+ target_parallel_safe, parse->havingQual);
+
+ /*
+ * Create either paths for a degenerate grouping or paths for ordinary
+ * grouping, as appropriate.
+ */
+ if (is_degenerate_grouping(root))
+ create_degenerate_grouping_paths(root, input_rel, grouped_rel);
+ else
+ {
+ int flags = 0;
+ GroupPathExtraData extra;
+
+ /*
+ * Determine whether it's possible to perform sort-based
+ * implementations of grouping. (Note that if groupClause is empty,
+ * grouping_is_sortable() is trivially true, and all the
+ * pathkeys_contained_in() tests will succeed too, so that we'll
+ * consider every surviving input path.)
+ *
+ * If we have grouping sets, we might be able to sort some but not all
+ * of them; in this case, we need can_sort to be true as long as we
+ * must consider any sorted-input plan.
+ */
+ if ((gd && gd->rollups != NIL)
+ || grouping_is_sortable(parse->groupClause))
+ flags |= GROUPING_CAN_USE_SORT;
+
+ /*
+ * Determine whether we should consider hash-based implementations of
+ * grouping.
+ *
+ * Hashed aggregation only applies if we're grouping. If we have
+ * grouping sets, some groups might be hashable but others not; in
+ * this case we set can_hash true as long as there is nothing globally
+ * preventing us from hashing (and we should therefore consider plans
+ * with hashes).
+ *
+ * Executor doesn't support hashed aggregation with DISTINCT or ORDER
+ * BY aggregates. (Doing so would imply storing *all* the input
+ * values in the hash table, and/or running many sorts in parallel,
+ * either of which seems like a certain loser.) We similarly don't
+ * support ordered-set aggregates in hashed aggregation, but that case
+ * is also included in the numOrderedAggs count.
+ *
+ * Note: grouping_is_hashable() is much more expensive to check than
+ * the other gating conditions, so we want to do it last.
+ */
+ if ((parse->groupClause != NIL &&
+ root->numOrderedAggs == 0 &&
+ (gd ? gd->any_hashable : grouping_is_hashable(parse->groupClause))))
+ flags |= GROUPING_CAN_USE_HASH;
+
+ /*
+ * Determine whether partial aggregation is possible.
+ */
+ if (can_partial_agg(root))
+ flags |= GROUPING_CAN_PARTIAL_AGG;
+
+ extra.flags = flags;
+ extra.target_parallel_safe = target_parallel_safe;
+ extra.havingQual = parse->havingQual;
+ extra.targetList = parse->targetList;
+ extra.partial_costs_set = false;
+
+ /*
+ * Determine whether partitionwise aggregation is in theory possible.
+ * It can be disabled by the user, and for now, we don't try to
+ * support grouping sets. create_ordinary_grouping_paths() will check
+ * additional conditions, such as whether input_rel is partitioned.
+ */
+ if (enable_partitionwise_aggregate && !parse->groupingSets)
+ extra.patype = PARTITIONWISE_AGGREGATE_FULL;
+ else
+ extra.patype = PARTITIONWISE_AGGREGATE_NONE;
+
+ create_ordinary_grouping_paths(root, input_rel, grouped_rel,
+ &agg_costs, gd, &extra,
+ &partially_grouped_rel);
+ }
+
+ set_cheapest(grouped_rel);
+ return grouped_rel;
+}
+
+/*
+ * make_grouping_rel
+ *
+ * Create a new grouping rel and set basic properties.
+ *
+ * input_rel represents the underlying scan/join relation.
+ * target is the output expected from the grouping relation.
+ */
+static RelOptInfo *
+make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel,
+ PathTarget *target, bool target_parallel_safe,
+ Node *havingQual)
+{
+ RelOptInfo *grouped_rel;
+
+ if (IS_OTHER_REL(input_rel))
+ {
+ grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG,
+ input_rel->relids);
+ grouped_rel->reloptkind = RELOPT_OTHER_UPPER_REL;
+ }
+ else
+ {
+ /*
+ * By tradition, the relids set for the main grouping relation is
+ * NULL. (This could be changed, but might require adjustments
+ * elsewhere.)
+ */
+ grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, NULL);
+ }
+
+ /* Set target. */
+ grouped_rel->reltarget = target;
+
+ /*
+ * If the input relation is not parallel-safe, then the grouped relation
+ * can't be parallel-safe, either. Otherwise, it's parallel-safe if the
+ * target list and HAVING quals are parallel-safe.
+ */
+ if (input_rel->consider_parallel && target_parallel_safe &&
+ is_parallel_safe(root, (Node *) havingQual))
+ grouped_rel->consider_parallel = true;
+
+ /*
+ * If the input rel belongs to a single FDW, so does the grouped rel.
+ */
+ grouped_rel->serverid = input_rel->serverid;
+ grouped_rel->userid = input_rel->userid;
+ grouped_rel->useridiscurrent = input_rel->useridiscurrent;
+ grouped_rel->fdwroutine = input_rel->fdwroutine;
+
+ return grouped_rel;
+}
+
+/*
+ * is_degenerate_grouping
+ *
+ * A degenerate grouping is one in which the query has a HAVING qual and/or
+ * grouping sets, but no aggregates and no GROUP BY (which implies that the
+ * grouping sets are all empty).
+ */
+static bool
+is_degenerate_grouping(PlannerInfo *root)
+{
+ Query *parse = root->parse;
+
+ return (root->hasHavingQual || parse->groupingSets) &&
+ !parse->hasAggs && parse->groupClause == NIL;
+}
+
+/*
+ * create_degenerate_grouping_paths
+ *
+ * When the grouping is degenerate (see is_degenerate_grouping), we are
+ * supposed to emit either zero or one row for each grouping set depending on
+ * whether HAVING succeeds. Furthermore, there cannot be any variables in
+ * either HAVING or the targetlist, so we actually do not need the FROM table
+ * at all! We can just throw away the plan-so-far and generate a Result node.
+ * This is a sufficiently unusual corner case that it's not worth contorting
+ * the structure of this module to avoid having to generate the earlier paths
+ * in the first place.
+ */
+static void
+create_degenerate_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel,
+ RelOptInfo *grouped_rel)
+{
+ Query *parse = root->parse;
+ int nrows;
+ Path *path;
+
+ nrows = list_length(parse->groupingSets);
+ if (nrows > 1)
+ {
+ /*
+ * Doesn't seem worthwhile writing code to cons up a generate_series
+ * or a values scan to emit multiple rows. Instead just make N clones
+ * and append them. (With a volatile HAVING clause, this means you
+ * might get between 0 and N output rows. Offhand I think that's
+ * desired.)
+ */
+ List *paths = NIL;
+
+ while (--nrows >= 0)
+ {
+ path = (Path *)
+ create_group_result_path(root, grouped_rel,
+ grouped_rel->reltarget,
+ (List *) parse->havingQual);
+ paths = lappend(paths, path);
+ }
+ path = (Path *)
+ create_append_path(root,
+ grouped_rel,
+ paths,
+ NIL,
+ NIL,
+ NULL,
+ 0,
+ false,
+ -1);
+ }
+ else
+ {
+ /* No grouping sets, or just one, so one output row */
+ path = (Path *)
+ create_group_result_path(root, grouped_rel,
+ grouped_rel->reltarget,
+ (List *) parse->havingQual);
+ }
+
+ add_path(grouped_rel, path);
+}
+
+/*
+ * create_ordinary_grouping_paths
+ *
+ * Create grouping paths for the ordinary (that is, non-degenerate) case.
+ *
+ * We need to consider sorted and hashed aggregation in the same function,
+ * because otherwise (1) it would be harder to throw an appropriate error
+ * message if neither way works, and (2) we should not allow hashtable size
+ * considerations to dissuade us from using hashing if sorting is not possible.
+ *
+ * *partially_grouped_rel_p will be set to the partially grouped rel which this
+ * function creates, or to NULL if it doesn't create one.
+ */
+static void
+create_ordinary_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel,
+ RelOptInfo *grouped_rel,
+ const AggClauseCosts *agg_costs,
+ grouping_sets_data *gd,
+ GroupPathExtraData *extra,
+ RelOptInfo **partially_grouped_rel_p)
+{
+ Path *cheapest_path = input_rel->cheapest_total_path;
+ RelOptInfo *partially_grouped_rel = NULL;
+ double dNumGroups;
+ PartitionwiseAggregateType patype = PARTITIONWISE_AGGREGATE_NONE;
+
+ /*
+ * If this is the topmost grouping relation or if the parent relation is
+ * doing some form of partitionwise aggregation, then we may be able to do
+ * it at this level also. However, if the input relation is not
+ * partitioned, partitionwise aggregate is impossible.
+ */
+ if (extra->patype != PARTITIONWISE_AGGREGATE_NONE &&
+ IS_PARTITIONED_REL(input_rel))
+ {
+ /*
+ * If this is the topmost relation or if the parent relation is doing
+ * full partitionwise aggregation, then we can do full partitionwise
+ * aggregation provided that the GROUP BY clause contains all of the
+ * partitioning columns at this level. Otherwise, we can do at most
+ * partial partitionwise aggregation. But if partial aggregation is
+ * not supported in general then we can't use it for partitionwise
+ * aggregation either.
+ */
+ if (extra->patype == PARTITIONWISE_AGGREGATE_FULL &&
+ group_by_has_partkey(input_rel, extra->targetList,
+ root->parse->groupClause))
+ patype = PARTITIONWISE_AGGREGATE_FULL;
+ else if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0)
+ patype = PARTITIONWISE_AGGREGATE_PARTIAL;
+ else
+ patype = PARTITIONWISE_AGGREGATE_NONE;
+ }
+
+ /*
+ * Before generating paths for grouped_rel, we first generate any possible
+ * partially grouped paths; that way, later code can easily consider both
+ * parallel and non-parallel approaches to grouping.
+ */
+ if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0)
+ {
+ bool force_rel_creation;
+
+ /*
+ * If we're doing partitionwise aggregation at this level, force
+ * creation of a partially_grouped_rel so we can add partitionwise
+ * paths to it.
+ */
+ force_rel_creation = (patype == PARTITIONWISE_AGGREGATE_PARTIAL);
+
+ partially_grouped_rel =
+ create_partial_grouping_paths(root,
+ grouped_rel,
+ input_rel,
+ gd,
+ extra,
+ force_rel_creation);
+ }
+
+ /* Set out parameter. */
+ *partially_grouped_rel_p = partially_grouped_rel;
+
+ /* Apply partitionwise aggregation technique, if possible. */
+ if (patype != PARTITIONWISE_AGGREGATE_NONE)
+ create_partitionwise_grouping_paths(root, input_rel, grouped_rel,
+ partially_grouped_rel, agg_costs,
+ gd, patype, extra);
+
+ /* If we are doing partial aggregation only, return. */
+ if (extra->patype == PARTITIONWISE_AGGREGATE_PARTIAL)
+ {
+ Assert(partially_grouped_rel);
+
+ if (partially_grouped_rel->pathlist)
+ set_cheapest(partially_grouped_rel);
+
+ return;
+ }
+
+ /* Gather any partially grouped partial paths. */
+ if (partially_grouped_rel && partially_grouped_rel->partial_pathlist)
+ {
+ gather_grouping_paths(root, partially_grouped_rel);
+ set_cheapest(partially_grouped_rel);
+ }
+
+ /*
+ * Estimate number of groups.
+ */
+ dNumGroups = get_number_of_groups(root,
+ cheapest_path->rows,
+ gd,
+ extra->targetList);
+
+ /* Build final grouping paths */
+ add_paths_to_grouping_rel(root, input_rel, grouped_rel,
+ partially_grouped_rel, agg_costs, gd,
+ dNumGroups, extra);
+
+ /* Give a helpful error if we failed to find any implementation */
+ if (grouped_rel->pathlist == NIL)
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("could not implement GROUP BY"),
+ errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
+
+ /*
+ * If there is an FDW that's responsible for all baserels of the query,
+ * let it consider adding ForeignPaths.
+ */
+ if (grouped_rel->fdwroutine &&
+ grouped_rel->fdwroutine->GetForeignUpperPaths)
+ grouped_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_GROUP_AGG,
+ input_rel, grouped_rel,
+ extra);
+
+ /* Let extensions possibly add some more paths */
+ if (create_upper_paths_hook)
+ (*create_upper_paths_hook) (root, UPPERREL_GROUP_AGG,
+ input_rel, grouped_rel,
+ extra);
+}
+
+/*
+ * For a given input path, consider the possible ways of doing grouping sets on
+ * it, by combinations of hashing and sorting. This can be called multiple
+ * times, so it's important that it not scribble on input. No result is
+ * returned, but any generated paths are added to grouped_rel.
+ */
+static void
+consider_groupingsets_paths(PlannerInfo *root,
+ RelOptInfo *grouped_rel,
+ Path *path,
+ bool is_sorted,
+ bool can_hash,
+ grouping_sets_data *gd,
+ const AggClauseCosts *agg_costs,
+ double dNumGroups)
+{
+ Query *parse = root->parse;
+ Size hash_mem_limit = get_hash_memory_limit();
+
+ /*
+ * If we're not being offered sorted input, then only consider plans that
+ * can be done entirely by hashing.
+ *
+ * We can hash everything if it looks like it'll fit in hash_mem. But if
+ * the input is actually sorted despite not being advertised as such, we
+ * prefer to make use of that in order to use less memory.
+ *
+ * If none of the grouping sets are sortable, then ignore the hash_mem
+ * limit and generate a path anyway, since otherwise we'll just fail.
+ */
+ if (!is_sorted)
+ {
+ List *new_rollups = NIL;
+ RollupData *unhashed_rollup = NULL;
+ List *sets_data;
+ List *empty_sets_data = NIL;
+ List *empty_sets = NIL;
+ ListCell *lc;
+ ListCell *l_start = list_head(gd->rollups);
+ AggStrategy strat = AGG_HASHED;
+ double hashsize;
+ double exclude_groups = 0.0;
+
+ Assert(can_hash);
+
+ /*
+ * If the input is coincidentally sorted usefully (which can happen
+ * even if is_sorted is false, since that only means that our caller
+ * has set up the sorting for us), then save some hashtable space by
+ * making use of that. But we need to watch out for degenerate cases:
+ *
+ * 1) If there are any empty grouping sets, then group_pathkeys might
+ * be NIL if all non-empty grouping sets are unsortable. In this case,
+ * there will be a rollup containing only empty groups, and the
+ * pathkeys_contained_in test is vacuously true; this is ok.
+ *
+ * XXX: the above relies on the fact that group_pathkeys is generated
+ * from the first rollup. If we add the ability to consider multiple
+ * sort orders for grouping input, this assumption might fail.
+ *
+ * 2) If there are no empty sets and only unsortable sets, then the
+ * rollups list will be empty (and thus l_start == NULL), and
+ * group_pathkeys will be NIL; we must ensure that the vacuously-true
+ * pathkeys_contained_in test doesn't cause us to crash.
+ */
+ if (l_start != NULL &&
+ pathkeys_contained_in(root->group_pathkeys, path->pathkeys))
+ {
+ unhashed_rollup = lfirst_node(RollupData, l_start);
+ exclude_groups = unhashed_rollup->numGroups;
+ l_start = lnext(gd->rollups, l_start);
+ }
+
+ hashsize = estimate_hashagg_tablesize(root,
+ path,
+ agg_costs,
+ dNumGroups - exclude_groups);
+
+ /*
+ * gd->rollups is empty if we have only unsortable columns to work
+ * with. Override hash_mem in that case; otherwise, we'll rely on the
+ * sorted-input case to generate usable mixed paths.
+ */
+ if (hashsize > hash_mem_limit && gd->rollups)
+ return; /* nope, won't fit */
+
+ /*
+ * We need to burst the existing rollups list into individual grouping
+ * sets and recompute a groupClause for each set.
+ */
+ sets_data = list_copy(gd->unsortable_sets);
+
+ for_each_cell(lc, gd->rollups, l_start)
+ {
+ RollupData *rollup = lfirst_node(RollupData, lc);
+
+ /*
+ * If we find an unhashable rollup that's not been skipped by the
+ * "actually sorted" check above, we can't cope; we'd need sorted
+ * input (with a different sort order) but we can't get that here.
+ * So bail out; we'll get a valid path from the is_sorted case
+ * instead.
+ *
+ * The mere presence of empty grouping sets doesn't make a rollup
+ * unhashable (see preprocess_grouping_sets), we handle those
+ * specially below.
+ */
+ if (!rollup->hashable)
+ return;
+
+ sets_data = list_concat(sets_data, rollup->gsets_data);
+ }
+ foreach(lc, sets_data)
+ {
+ GroupingSetData *gs = lfirst_node(GroupingSetData, lc);
+ List *gset = gs->set;
+ RollupData *rollup;
+
+ if (gset == NIL)
+ {
+ /* Empty grouping sets can't be hashed. */
+ empty_sets_data = lappend(empty_sets_data, gs);
+ empty_sets = lappend(empty_sets, NIL);
+ }
+ else
+ {
+ rollup = makeNode(RollupData);
+
+ rollup->groupClause = preprocess_groupclause(root, gset);
+ rollup->gsets_data = list_make1(gs);
+ rollup->gsets = remap_to_groupclause_idx(rollup->groupClause,
+ rollup->gsets_data,
+ gd->tleref_to_colnum_map);
+ rollup->numGroups = gs->numGroups;
+ rollup->hashable = true;
+ rollup->is_hashed = true;
+ new_rollups = lappend(new_rollups, rollup);
+ }
+ }
+
+ /*
+ * If we didn't find anything nonempty to hash, then bail. We'll
+ * generate a path from the is_sorted case.
+ */
+ if (new_rollups == NIL)
+ return;
+
+ /*
+ * If there were empty grouping sets they should have been in the
+ * first rollup.
+ */
+ Assert(!unhashed_rollup || !empty_sets);
+
+ if (unhashed_rollup)
+ {
+ new_rollups = lappend(new_rollups, unhashed_rollup);
+ strat = AGG_MIXED;
+ }
+ else if (empty_sets)
+ {
+ RollupData *rollup = makeNode(RollupData);
+
+ rollup->groupClause = NIL;
+ rollup->gsets_data = empty_sets_data;
+ rollup->gsets = empty_sets;
+ rollup->numGroups = list_length(empty_sets);
+ rollup->hashable = false;
+ rollup->is_hashed = false;
+ new_rollups = lappend(new_rollups, rollup);
+ strat = AGG_MIXED;
+ }
+
+ add_path(grouped_rel, (Path *)
+ create_groupingsets_path(root,
+ grouped_rel,
+ path,
+ (List *) parse->havingQual,
+ strat,
+ new_rollups,
+ agg_costs,
+ dNumGroups));
+ return;
+ }
+
+ /*
+ * If we have sorted input but nothing we can do with it, bail.
+ */
+ if (list_length(gd->rollups) == 0)
+ return;
+
+ /*
+ * Given sorted input, we try and make two paths: one sorted and one mixed
+ * sort/hash. (We need to try both because hashagg might be disabled, or
+ * some columns might not be sortable.)
+ *
+ * can_hash is passed in as false if some obstacle elsewhere (such as
+ * ordered aggs) means that we shouldn't consider hashing at all.
+ */
+ if (can_hash && gd->any_hashable)
+ {
+ List *rollups = NIL;
+ List *hash_sets = list_copy(gd->unsortable_sets);
+ double availspace = hash_mem_limit;
+ ListCell *lc;
+
+ /*
+ * Account first for space needed for groups we can't sort at all.
+ */
+ availspace -= estimate_hashagg_tablesize(root,
+ path,
+ agg_costs,
+ gd->dNumHashGroups);
+
+ if (availspace > 0 && list_length(gd->rollups) > 1)
+ {
+ double scale;
+ int num_rollups = list_length(gd->rollups);
+ int k_capacity;
+ int *k_weights = palloc(num_rollups * sizeof(int));
+ Bitmapset *hash_items = NULL;
+ int i;
+
+ /*
+ * We treat this as a knapsack problem: the knapsack capacity
+ * represents hash_mem, the item weights are the estimated memory
+ * usage of the hashtables needed to implement a single rollup,
+ * and we really ought to use the cost saving as the item value;
+ * however, currently the costs assigned to sort nodes don't
+ * reflect the comparison costs well, and so we treat all items as
+ * of equal value (each rollup we hash instead saves us one sort).
+ *
+ * To use the discrete knapsack, we need to scale the values to a
+ * reasonably small bounded range. We choose to allow a 5% error
+ * margin; we have no more than 4096 rollups in the worst possible
+ * case, which with a 5% error margin will require a bit over 42MB
+ * of workspace. (Anyone wanting to plan queries that complex had
+ * better have the memory for it. In more reasonable cases, with
+ * no more than a couple of dozen rollups, the memory usage will
+ * be negligible.)
+ *
+ * k_capacity is naturally bounded, but we clamp the values for
+ * scale and weight (below) to avoid overflows or underflows (or
+ * uselessly trying to use a scale factor less than 1 byte).
+ */
+ scale = Max(availspace / (20.0 * num_rollups), 1.0);
+ k_capacity = (int) floor(availspace / scale);
+
+ /*
+ * We leave the first rollup out of consideration since it's the
+ * one that matches the input sort order. We assign indexes "i"
+ * to only those entries considered for hashing; the second loop,
+ * below, must use the same condition.
+ */
+ i = 0;
+ for_each_from(lc, gd->rollups, 1)
+ {
+ RollupData *rollup = lfirst_node(RollupData, lc);
+
+ if (rollup->hashable)
+ {
+ double sz = estimate_hashagg_tablesize(root,
+ path,
+ agg_costs,
+ rollup->numGroups);
+
+ /*
+ * If sz is enormous, but hash_mem (and hence scale) is
+ * small, avoid integer overflow here.
+ */
+ k_weights[i] = (int) Min(floor(sz / scale),
+ k_capacity + 1.0);
+ ++i;
+ }
+ }
+
+ /*
+ * Apply knapsack algorithm; compute the set of items which
+ * maximizes the value stored (in this case the number of sorts
+ * saved) while keeping the total size (approximately) within
+ * capacity.
+ */
+ if (i > 0)
+ hash_items = DiscreteKnapsack(k_capacity, i, k_weights, NULL);
+
+ if (!bms_is_empty(hash_items))
+ {
+ rollups = list_make1(linitial(gd->rollups));
+
+ i = 0;
+ for_each_from(lc, gd->rollups, 1)
+ {
+ RollupData *rollup = lfirst_node(RollupData, lc);
+
+ if (rollup->hashable)
+ {
+ if (bms_is_member(i, hash_items))
+ hash_sets = list_concat(hash_sets,
+ rollup->gsets_data);
+ else
+ rollups = lappend(rollups, rollup);
+ ++i;
+ }
+ else
+ rollups = lappend(rollups, rollup);
+ }
+ }
+ }
+
+ if (!rollups && hash_sets)
+ rollups = list_copy(gd->rollups);
+
+ foreach(lc, hash_sets)
+ {
+ GroupingSetData *gs = lfirst_node(GroupingSetData, lc);
+ RollupData *rollup = makeNode(RollupData);
+
+ Assert(gs->set != NIL);
+
+ rollup->groupClause = preprocess_groupclause(root, gs->set);
+ rollup->gsets_data = list_make1(gs);
+ rollup->gsets = remap_to_groupclause_idx(rollup->groupClause,
+ rollup->gsets_data,
+ gd->tleref_to_colnum_map);
+ rollup->numGroups = gs->numGroups;
+ rollup->hashable = true;
+ rollup->is_hashed = true;
+ rollups = lcons(rollup, rollups);
+ }
+
+ if (rollups)
+ {
+ add_path(grouped_rel, (Path *)
+ create_groupingsets_path(root,
+ grouped_rel,
+ path,
+ (List *) parse->havingQual,
+ AGG_MIXED,
+ rollups,
+ agg_costs,
+ dNumGroups));
+ }
+ }
+
+ /*
+ * Now try the simple sorted case.
+ */
+ if (!gd->unsortable_sets)
+ add_path(grouped_rel, (Path *)
+ create_groupingsets_path(root,
+ grouped_rel,
+ path,
+ (List *) parse->havingQual,
+ AGG_SORTED,
+ gd->rollups,
+ agg_costs,
+ dNumGroups));
+}
+
+/*
+ * create_window_paths
+ *
+ * Build a new upperrel containing Paths for window-function evaluation.
+ *
+ * input_rel: contains the source-data Paths
+ * input_target: result of make_window_input_target
+ * output_target: what the topmost WindowAggPath should return
+ * wflists: result of find_window_functions
+ * activeWindows: result of select_active_windows
+ *
+ * Note: all Paths in input_rel are expected to return input_target.
+ */
+static RelOptInfo *
+create_window_paths(PlannerInfo *root,
+ RelOptInfo *input_rel,
+ PathTarget *input_target,
+ PathTarget *output_target,
+ bool output_target_parallel_safe,
+ WindowFuncLists *wflists,
+ List *activeWindows)
+{
+ RelOptInfo *window_rel;
+ ListCell *lc;
+
+ /* For now, do all work in the (WINDOW, NULL) upperrel */
+ window_rel = fetch_upper_rel(root, UPPERREL_WINDOW, NULL);
+
+ /*
+ * If the input relation is not parallel-safe, then the window relation
+ * can't be parallel-safe, either. Otherwise, we need to examine the
+ * target list and active windows for non-parallel-safe constructs.
+ */
+ if (input_rel->consider_parallel && output_target_parallel_safe &&
+ is_parallel_safe(root, (Node *) activeWindows))
+ window_rel->consider_parallel = true;
+
+ /*
+ * If the input rel belongs to a single FDW, so does the window rel.
+ */
+ window_rel->serverid = input_rel->serverid;
+ window_rel->userid = input_rel->userid;
+ window_rel->useridiscurrent = input_rel->useridiscurrent;
+ window_rel->fdwroutine = input_rel->fdwroutine;
+
+ /*
+ * Consider computing window functions starting from the existing
+ * cheapest-total path (which will likely require a sort) as well as any
+ * existing paths that satisfy or partially satisfy root->window_pathkeys.
+ */
+ foreach(lc, input_rel->pathlist)
+ {
+ Path *path = (Path *) lfirst(lc);
+ int presorted_keys;
+
+ if (path == input_rel->cheapest_total_path ||
+ pathkeys_count_contained_in(root->window_pathkeys, path->pathkeys,
+ &presorted_keys) ||
+ presorted_keys > 0)
+ create_one_window_path(root,
+ window_rel,
+ path,
+ input_target,
+ output_target,
+ wflists,
+ activeWindows);
+ }
+
+ /*
+ * If there is an FDW that's responsible for all baserels of the query,
+ * let it consider adding ForeignPaths.
+ */
+ if (window_rel->fdwroutine &&
+ window_rel->fdwroutine->GetForeignUpperPaths)
+ window_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_WINDOW,
+ input_rel, window_rel,
+ NULL);
+
+ /* Let extensions possibly add some more paths */
+ if (create_upper_paths_hook)
+ (*create_upper_paths_hook) (root, UPPERREL_WINDOW,
+ input_rel, window_rel, NULL);
+
+ /* Now choose the best path(s) */
+ set_cheapest(window_rel);
+
+ return window_rel;
+}
+
+/*
+ * Stack window-function implementation steps atop the given Path, and
+ * add the result to window_rel.
+ *
+ * window_rel: upperrel to contain result
+ * path: input Path to use (must return input_target)
+ * input_target: result of make_window_input_target
+ * output_target: what the topmost WindowAggPath should return
+ * wflists: result of find_window_functions
+ * activeWindows: result of select_active_windows
+ */
+static void
+create_one_window_path(PlannerInfo *root,
+ RelOptInfo *window_rel,
+ Path *path,
+ PathTarget *input_target,
+ PathTarget *output_target,
+ WindowFuncLists *wflists,
+ List *activeWindows)
+{
+ PathTarget *window_target;
+ ListCell *l;
+
+ /*
+ * Since each window clause could require a different sort order, we stack
+ * up a WindowAgg node for each clause, with sort steps between them as
+ * needed. (We assume that select_active_windows chose a good order for
+ * executing the clauses in.)
+ *
+ * input_target should contain all Vars and Aggs needed for the result.
+ * (In some cases we wouldn't need to propagate all of these all the way
+ * to the top, since they might only be needed as inputs to WindowFuncs.
+ * It's probably not worth trying to optimize that though.) It must also
+ * contain all window partitioning and sorting expressions, to ensure
+ * they're computed only once at the bottom of the stack (that's critical
+ * for volatile functions). As we climb up the stack, we'll add outputs
+ * for the WindowFuncs computed at each level.
+ */
+ window_target = input_target;
+
+ foreach(l, activeWindows)
+ {
+ WindowClause *wc = lfirst_node(WindowClause, l);
+ List *window_pathkeys;
+ int presorted_keys;
+ bool is_sorted;
+
+ window_pathkeys = make_pathkeys_for_window(root,
+ wc,
+ root->processed_tlist);
+
+ is_sorted = pathkeys_count_contained_in(window_pathkeys,
+ path->pathkeys,
+ &presorted_keys);
+
+ /* Sort if necessary */
+ if (!is_sorted)
+ {
+ /*
+ * No presorted keys or incremental sort disabled, just perform a
+ * complete sort.
+ */
+ if (presorted_keys == 0 || !enable_incremental_sort)
+ path = (Path *) create_sort_path(root, window_rel,
+ path,
+ window_pathkeys,
+ -1.0);
+ else
+ {
+ /*
+ * Since we have presorted keys and incremental sort is
+ * enabled, just use incremental sort.
+ */
+ path = (Path *) create_incremental_sort_path(root,
+ window_rel,
+ path,
+ window_pathkeys,
+ presorted_keys,
+ -1.0);
+ }
+ }
+
+ if (lnext(activeWindows, l))
+ {
+ /*
+ * Add the current WindowFuncs to the output target for this
+ * intermediate WindowAggPath. We must copy window_target to
+ * avoid changing the previous path's target.
+ *
+ * Note: a WindowFunc adds nothing to the target's eval costs; but
+ * we do need to account for the increase in tlist width.
+ */
+ ListCell *lc2;
+
+ window_target = copy_pathtarget(window_target);
+ foreach(lc2, wflists->windowFuncs[wc->winref])
+ {
+ WindowFunc *wfunc = lfirst_node(WindowFunc, lc2);
+
+ add_column_to_pathtarget(window_target, (Expr *) wfunc, 0);
+ window_target->width += get_typavgwidth(wfunc->wintype, -1);
+ }
+ }
+ else
+ {
+ /* Install the goal target in the topmost WindowAgg */
+ window_target = output_target;
+ }
+
+ path = (Path *)
+ create_windowagg_path(root, window_rel, path, window_target,
+ wflists->windowFuncs[wc->winref],
+ wc);
+ }
+
+ add_path(window_rel, path);
+}
+
+/*
+ * create_distinct_paths
+ *
+ * Build a new upperrel containing Paths for SELECT DISTINCT evaluation.
+ *
+ * input_rel: contains the source-data Paths
+ *
+ * Note: input paths should already compute the desired pathtarget, since
+ * Sort/Unique won't project anything.
+ */
+static RelOptInfo *
+create_distinct_paths(PlannerInfo *root,
+ RelOptInfo *input_rel)
+{
+ Query *parse = root->parse;
+ Path *cheapest_input_path = input_rel->cheapest_total_path;
+ RelOptInfo *distinct_rel;
+ double numDistinctRows;
+ bool allow_hash;
+ Path *path;
+ ListCell *lc;
+
+ /* For now, do all work in the (DISTINCT, NULL) upperrel */
+ distinct_rel = fetch_upper_rel(root, UPPERREL_DISTINCT, NULL);
+
+ /*
+ * We don't compute anything at this level, so distinct_rel will be
+ * parallel-safe if the input rel is parallel-safe. In particular, if
+ * there is a DISTINCT ON (...) clause, any path for the input_rel will
+ * output those expressions, and will not be parallel-safe unless those
+ * expressions are parallel-safe.
+ */
+ distinct_rel->consider_parallel = input_rel->consider_parallel;
+
+ /*
+ * If the input rel belongs to a single FDW, so does the distinct_rel.
+ */
+ distinct_rel->serverid = input_rel->serverid;
+ distinct_rel->userid = input_rel->userid;
+ distinct_rel->useridiscurrent = input_rel->useridiscurrent;
+ distinct_rel->fdwroutine = input_rel->fdwroutine;
+
+ /* Estimate number of distinct rows there will be */
+ if (parse->groupClause || parse->groupingSets || parse->hasAggs ||
+ root->hasHavingQual)
+ {
+ /*
+ * If there was grouping or aggregation, use the number of input rows
+ * as the estimated number of DISTINCT rows (ie, assume the input is
+ * already mostly unique).
+ */
+ numDistinctRows = cheapest_input_path->rows;
+ }
+ else
+ {
+ /*
+ * Otherwise, the UNIQUE filter has effects comparable to GROUP BY.
+ */
+ List *distinctExprs;
+
+ distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
+ parse->targetList);
+ numDistinctRows = estimate_num_groups(root, distinctExprs,
+ cheapest_input_path->rows,
+ NULL, NULL);
+ }
+
+ /*
+ * Consider sort-based implementations of DISTINCT, if possible.
+ */
+ if (grouping_is_sortable(parse->distinctClause))
+ {
+ /*
+ * First, if we have any adequately-presorted paths, just stick a
+ * Unique node on those. Then consider doing an explicit sort of the
+ * cheapest input path and Unique'ing that.
+ *
+ * When we have DISTINCT ON, we must sort by the more rigorous of
+ * DISTINCT and ORDER BY, else it won't have the desired behavior.
+ * Also, if we do have to do an explicit sort, we might as well use
+ * the more rigorous ordering to avoid a second sort later. (Note
+ * that the parser will have ensured that one clause is a prefix of
+ * the other.)
+ */
+ List *needed_pathkeys;
+
+ if (parse->hasDistinctOn &&
+ list_length(root->distinct_pathkeys) <
+ list_length(root->sort_pathkeys))
+ needed_pathkeys = root->sort_pathkeys;
+ else
+ needed_pathkeys = root->distinct_pathkeys;
+
+ foreach(lc, input_rel->pathlist)
+ {
+ Path *path = (Path *) lfirst(lc);
+
+ if (pathkeys_contained_in(needed_pathkeys, path->pathkeys))
+ {
+ add_path(distinct_rel, (Path *)
+ create_upper_unique_path(root, distinct_rel,
+ path,
+ list_length(root->distinct_pathkeys),
+ numDistinctRows));
+ }
+ }
+
+ /* For explicit-sort case, always use the more rigorous clause */
+ if (list_length(root->distinct_pathkeys) <
+ list_length(root->sort_pathkeys))
+ {
+ needed_pathkeys = root->sort_pathkeys;
+ /* Assert checks that parser didn't mess up... */
+ Assert(pathkeys_contained_in(root->distinct_pathkeys,
+ needed_pathkeys));
+ }
+ else
+ needed_pathkeys = root->distinct_pathkeys;
+
+ path = cheapest_input_path;
+ if (!pathkeys_contained_in(needed_pathkeys, path->pathkeys))
+ path = (Path *) create_sort_path(root, distinct_rel,
+ path,
+ needed_pathkeys,
+ -1.0);
+
+ add_path(distinct_rel, (Path *)
+ create_upper_unique_path(root, distinct_rel,
+ path,
+ list_length(root->distinct_pathkeys),
+ numDistinctRows));
+ }
+
+ /*
+ * Consider hash-based implementations of DISTINCT, if possible.
+ *
+ * If we were not able to make any other types of path, we *must* hash or
+ * die trying. If we do have other choices, there are two things that
+ * should prevent selection of hashing: if the query uses DISTINCT ON
+ * (because it won't really have the expected behavior if we hash), or if
+ * enable_hashagg is off.
+ *
+ * Note: grouping_is_hashable() is much more expensive to check than the
+ * other gating conditions, so we want to do it last.
+ */
+ if (distinct_rel->pathlist == NIL)
+ allow_hash = true; /* we have no alternatives */
+ else if (parse->hasDistinctOn || !enable_hashagg)
+ allow_hash = false; /* policy-based decision not to hash */
+ else
+ allow_hash = true; /* default */
+
+ if (allow_hash && grouping_is_hashable(parse->distinctClause))
+ {
+ /* Generate hashed aggregate path --- no sort needed */
+ add_path(distinct_rel, (Path *)
+ create_agg_path(root,
+ distinct_rel,
+ cheapest_input_path,
+ cheapest_input_path->pathtarget,
+ AGG_HASHED,
+ AGGSPLIT_SIMPLE,
+ parse->distinctClause,
+ NIL,
+ NULL,
+ numDistinctRows));
+ }
+
+ /* Give a helpful error if we failed to find any implementation */
+ if (distinct_rel->pathlist == NIL)
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("could not implement DISTINCT"),
+ errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
+
+ /*
+ * If there is an FDW that's responsible for all baserels of the query,
+ * let it consider adding ForeignPaths.
+ */
+ if (distinct_rel->fdwroutine &&
+ distinct_rel->fdwroutine->GetForeignUpperPaths)
+ distinct_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_DISTINCT,
+ input_rel, distinct_rel,
+ NULL);
+
+ /* Let extensions possibly add some more paths */
+ if (create_upper_paths_hook)
+ (*create_upper_paths_hook) (root, UPPERREL_DISTINCT,
+ input_rel, distinct_rel, NULL);
+
+ /* Now choose the best path(s) */
+ set_cheapest(distinct_rel);
+
+ return distinct_rel;
+}
+
+/*
+ * create_ordered_paths
+ *
+ * Build a new upperrel containing Paths for ORDER BY evaluation.
+ *
+ * All paths in the result must satisfy the ORDER BY ordering.
+ * The only new paths we need consider are an explicit full sort
+ * and incremental sort on the cheapest-total existing path.
+ *
+ * input_rel: contains the source-data Paths
+ * target: the output tlist the result Paths must emit
+ * limit_tuples: estimated bound on the number of output tuples,
+ * or -1 if no LIMIT or couldn't estimate
+ *
+ * XXX This only looks at sort_pathkeys. I wonder if it needs to look at the
+ * other pathkeys (grouping, ...) like generate_useful_gather_paths.
+ */
+static RelOptInfo *
+create_ordered_paths(PlannerInfo *root,
+ RelOptInfo *input_rel,
+ PathTarget *target,
+ bool target_parallel_safe,
+ double limit_tuples)
+{
+ Path *cheapest_input_path = input_rel->cheapest_total_path;
+ RelOptInfo *ordered_rel;
+ ListCell *lc;
+
+ /* For now, do all work in the (ORDERED, NULL) upperrel */
+ ordered_rel = fetch_upper_rel(root, UPPERREL_ORDERED, NULL);
+
+ /*
+ * If the input relation is not parallel-safe, then the ordered relation
+ * can't be parallel-safe, either. Otherwise, it's parallel-safe if the
+ * target list is parallel-safe.
+ */
+ if (input_rel->consider_parallel && target_parallel_safe)
+ ordered_rel->consider_parallel = true;
+
+ /*
+ * If the input rel belongs to a single FDW, so does the ordered_rel.
+ */
+ ordered_rel->serverid = input_rel->serverid;
+ ordered_rel->userid = input_rel->userid;
+ ordered_rel->useridiscurrent = input_rel->useridiscurrent;
+ ordered_rel->fdwroutine = input_rel->fdwroutine;
+
+ foreach(lc, input_rel->pathlist)
+ {
+ Path *input_path = (Path *) lfirst(lc);
+ Path *sorted_path = input_path;
+ bool is_sorted;
+ int presorted_keys;
+
+ is_sorted = pathkeys_count_contained_in(root->sort_pathkeys,
+ input_path->pathkeys, &presorted_keys);
+
+ if (is_sorted)
+ {
+ /* Use the input path as is, but add a projection step if needed */
+ if (sorted_path->pathtarget != target)
+ sorted_path = apply_projection_to_path(root, ordered_rel,
+ sorted_path, target);
+
+ add_path(ordered_rel, sorted_path);
+ }
+ else
+ {
+ /*
+ * Try adding an explicit sort, but only to the cheapest total
+ * path since a full sort should generally add the same cost to
+ * all paths.
+ */
+ if (input_path == cheapest_input_path)
+ {
+ /*
+ * Sort the cheapest input path. An explicit sort here can
+ * take advantage of LIMIT.
+ */
+ sorted_path = (Path *) create_sort_path(root,
+ ordered_rel,
+ input_path,
+ root->sort_pathkeys,
+ limit_tuples);
+ /* Add projection step if needed */
+ if (sorted_path->pathtarget != target)
+ sorted_path = apply_projection_to_path(root, ordered_rel,
+ sorted_path, target);
+
+ add_path(ordered_rel, sorted_path);
+ }
+
+ /*
+ * If incremental sort is enabled, then try it as well. Unlike
+ * with regular sorts, we can't just look at the cheapest path,
+ * because the cost of incremental sort depends on how well
+ * presorted the path is. Additionally incremental sort may enable
+ * a cheaper startup path to win out despite higher total cost.
+ */
+ if (!enable_incremental_sort)
+ continue;
+
+ /* Likewise, if the path can't be used for incremental sort. */
+ if (!presorted_keys)
+ continue;
+
+ /* Also consider incremental sort. */
+ sorted_path = (Path *) create_incremental_sort_path(root,
+ ordered_rel,
+ input_path,
+ root->sort_pathkeys,
+ presorted_keys,
+ limit_tuples);
+
+ /* Add projection step if needed */
+ if (sorted_path->pathtarget != target)
+ sorted_path = apply_projection_to_path(root, ordered_rel,
+ sorted_path, target);
+
+ add_path(ordered_rel, sorted_path);
+ }
+ }
+
+ /*
+ * generate_gather_paths() will have already generated a simple Gather
+ * path for the best parallel path, if any, and the loop above will have
+ * considered sorting it. Similarly, generate_gather_paths() will also
+ * have generated order-preserving Gather Merge plans which can be used
+ * without sorting if they happen to match the sort_pathkeys, and the loop
+ * above will have handled those as well. However, there's one more
+ * possibility: it may make sense to sort the cheapest partial path
+ * according to the required output order and then use Gather Merge.
+ */
+ if (ordered_rel->consider_parallel && root->sort_pathkeys != NIL &&
+ input_rel->partial_pathlist != NIL)
+ {
+ Path *cheapest_partial_path;
+
+ cheapest_partial_path = linitial(input_rel->partial_pathlist);
+
+ /*
+ * If cheapest partial path doesn't need a sort, this is redundant
+ * with what's already been tried.
+ */
+ if (!pathkeys_contained_in(root->sort_pathkeys,
+ cheapest_partial_path->pathkeys))
+ {
+ Path *path;
+ double total_groups;
+
+ path = (Path *) create_sort_path(root,
+ ordered_rel,
+ cheapest_partial_path,
+ root->sort_pathkeys,
+ limit_tuples);
+
+ total_groups = cheapest_partial_path->rows *
+ cheapest_partial_path->parallel_workers;
+ path = (Path *)
+ create_gather_merge_path(root, ordered_rel,
+ path,
+ path->pathtarget,
+ root->sort_pathkeys, NULL,
+ &total_groups);
+
+ /* Add projection step if needed */
+ if (path->pathtarget != target)
+ path = apply_projection_to_path(root, ordered_rel,
+ path, target);
+
+ add_path(ordered_rel, path);
+ }
+
+ /*
+ * Consider incremental sort with a gather merge on partial paths.
+ *
+ * We can also skip the entire loop when we only have a single-item
+ * sort_pathkeys because then we can't possibly have a presorted
+ * prefix of the list without having the list be fully sorted.
+ */
+ if (enable_incremental_sort && list_length(root->sort_pathkeys) > 1)
+ {
+ ListCell *lc;
+
+ foreach(lc, input_rel->partial_pathlist)
+ {
+ Path *input_path = (Path *) lfirst(lc);
+ Path *sorted_path;
+ bool is_sorted;
+ int presorted_keys;
+ double total_groups;
+
+ /*
+ * We don't care if this is the cheapest partial path - we
+ * can't simply skip it, because it may be partially sorted in
+ * which case we want to consider adding incremental sort
+ * (instead of full sort, which is what happens above).
+ */
+
+ is_sorted = pathkeys_count_contained_in(root->sort_pathkeys,
+ input_path->pathkeys,
+ &presorted_keys);
+
+ /* No point in adding incremental sort on fully sorted paths. */
+ if (is_sorted)
+ continue;
+
+ if (presorted_keys == 0)
+ continue;
+
+ /* Since we have presorted keys, consider incremental sort. */
+ sorted_path = (Path *) create_incremental_sort_path(root,
+ ordered_rel,
+ input_path,
+ root->sort_pathkeys,
+ presorted_keys,
+ limit_tuples);
+ total_groups = input_path->rows *
+ input_path->parallel_workers;
+ sorted_path = (Path *)
+ create_gather_merge_path(root, ordered_rel,
+ sorted_path,
+ sorted_path->pathtarget,
+ root->sort_pathkeys, NULL,
+ &total_groups);
+
+ /* Add projection step if needed */
+ if (sorted_path->pathtarget != target)
+ sorted_path = apply_projection_to_path(root, ordered_rel,
+ sorted_path, target);
+
+ add_path(ordered_rel, sorted_path);
+ }
+ }
+ }
+
+ /*
+ * If there is an FDW that's responsible for all baserels of the query,
+ * let it consider adding ForeignPaths.
+ */
+ if (ordered_rel->fdwroutine &&
+ ordered_rel->fdwroutine->GetForeignUpperPaths)
+ ordered_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_ORDERED,
+ input_rel, ordered_rel,
+ NULL);
+
+ /* Let extensions possibly add some more paths */
+ if (create_upper_paths_hook)
+ (*create_upper_paths_hook) (root, UPPERREL_ORDERED,
+ input_rel, ordered_rel, NULL);
+
+ /*
+ * No need to bother with set_cheapest here; grouping_planner does not
+ * need us to do it.
+ */
+ Assert(ordered_rel->pathlist != NIL);
+
+ return ordered_rel;
+}
+
+
+/*
+ * make_group_input_target
+ * Generate appropriate PathTarget for initial input to grouping nodes.
+ *
+ * If there is grouping or aggregation, the scan/join subplan cannot emit
+ * the query's final targetlist; for example, it certainly can't emit any
+ * aggregate function calls. This routine generates the correct target
+ * for the scan/join subplan.
+ *
+ * The query target list passed from the parser already contains entries
+ * for all ORDER BY and GROUP BY expressions, but it will not have entries
+ * for variables used only in HAVING clauses; so we need to add those
+ * variables to the subplan target list. Also, we flatten all expressions
+ * except GROUP BY items into their component variables; other expressions
+ * will be computed by the upper plan nodes rather than by the subplan.
+ * For example, given a query like
+ * SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
+ * we want to pass this targetlist to the subplan:
+ * a+b,c,d
+ * where the a+b target will be used by the Sort/Group steps, and the
+ * other targets will be used for computing the final results.
+ *
+ * 'final_target' is the query's final target list (in PathTarget form)
+ *
+ * The result is the PathTarget to be computed by the Paths returned from
+ * query_planner().
+ */
+static PathTarget *
+make_group_input_target(PlannerInfo *root, PathTarget *final_target)
+{
+ Query *parse = root->parse;
+ PathTarget *input_target;
+ List *non_group_cols;
+ List *non_group_vars;
+ int i;
+ ListCell *lc;
+
+ /*
+ * We must build a target containing all grouping columns, plus any other
+ * Vars mentioned in the query's targetlist and HAVING qual.
+ */
+ input_target = create_empty_pathtarget();
+ non_group_cols = NIL;
+
+ i = 0;
+ foreach(lc, final_target->exprs)
+ {
+ Expr *expr = (Expr *) lfirst(lc);
+ Index sgref = get_pathtarget_sortgroupref(final_target, i);
+
+ if (sgref && parse->groupClause &&
+ get_sortgroupref_clause_noerr(sgref, parse->groupClause) != NULL)
+ {
+ /*
+ * It's a grouping column, so add it to the input target as-is.
+ */
+ add_column_to_pathtarget(input_target, expr, sgref);
+ }
+ else
+ {
+ /*
+ * Non-grouping column, so just remember the expression for later
+ * call to pull_var_clause.
+ */
+ non_group_cols = lappend(non_group_cols, expr);
+ }
+
+ i++;
+ }
+
+ /*
+ * If there's a HAVING clause, we'll need the Vars it uses, too.
+ */
+ if (parse->havingQual)
+ non_group_cols = lappend(non_group_cols, parse->havingQual);
+
+ /*
+ * Pull out all the Vars mentioned in non-group cols (plus HAVING), and
+ * add them to the input target if not already present. (A Var used
+ * directly as a GROUP BY item will be present already.) Note this
+ * includes Vars used in resjunk items, so we are covering the needs of
+ * ORDER BY and window specifications. Vars used within Aggrefs and
+ * WindowFuncs will be pulled out here, too.
+ */
+ non_group_vars = pull_var_clause((Node *) non_group_cols,
+ PVC_RECURSE_AGGREGATES |
+ PVC_RECURSE_WINDOWFUNCS |
+ PVC_INCLUDE_PLACEHOLDERS);
+ add_new_columns_to_pathtarget(input_target, non_group_vars);
+
+ /* clean up cruft */
+ list_free(non_group_vars);
+ list_free(non_group_cols);
+
+ /* XXX this causes some redundant cost calculation ... */
+ return set_pathtarget_cost_width(root, input_target);
+}
+
+/*
+ * make_partial_grouping_target
+ * Generate appropriate PathTarget for output of partial aggregate
+ * (or partial grouping, if there are no aggregates) nodes.
+ *
+ * A partial aggregation node needs to emit all the same aggregates that
+ * a regular aggregation node would, plus any aggregates used in HAVING;
+ * except that the Aggref nodes should be marked as partial aggregates.
+ *
+ * In addition, we'd better emit any Vars and PlaceHolderVars that are
+ * used outside of Aggrefs in the aggregation tlist and HAVING. (Presumably,
+ * these would be Vars that are grouped by or used in grouping expressions.)
+ *
+ * grouping_target is the tlist to be emitted by the topmost aggregation step.
+ * havingQual represents the HAVING clause.
+ */
+static PathTarget *
+make_partial_grouping_target(PlannerInfo *root,
+ PathTarget *grouping_target,
+ Node *havingQual)
+{
+ Query *parse = root->parse;
+ PathTarget *partial_target;
+ List *non_group_cols;
+ List *non_group_exprs;
+ int i;
+ ListCell *lc;
+
+ partial_target = create_empty_pathtarget();
+ non_group_cols = NIL;
+
+ i = 0;
+ foreach(lc, grouping_target->exprs)
+ {
+ Expr *expr = (Expr *) lfirst(lc);
+ Index sgref = get_pathtarget_sortgroupref(grouping_target, i);
+
+ if (sgref && parse->groupClause &&
+ get_sortgroupref_clause_noerr(sgref, parse->groupClause) != NULL)
+ {
+ /*
+ * It's a grouping column, so add it to the partial_target as-is.
+ * (This allows the upper agg step to repeat the grouping calcs.)
+ */
+ add_column_to_pathtarget(partial_target, expr, sgref);
+ }
+ else
+ {
+ /*
+ * Non-grouping column, so just remember the expression for later
+ * call to pull_var_clause.
+ */
+ non_group_cols = lappend(non_group_cols, expr);
+ }
+
+ i++;
+ }
+
+ /*
+ * If there's a HAVING clause, we'll need the Vars/Aggrefs it uses, too.
+ */
+ if (havingQual)
+ non_group_cols = lappend(non_group_cols, havingQual);
+
+ /*
+ * Pull out all the Vars, PlaceHolderVars, and Aggrefs mentioned in
+ * non-group cols (plus HAVING), and add them to the partial_target if not
+ * already present. (An expression used directly as a GROUP BY item will
+ * be present already.) Note this includes Vars used in resjunk items, so
+ * we are covering the needs of ORDER BY and window specifications.
+ */
+ non_group_exprs = pull_var_clause((Node *) non_group_cols,
+ PVC_INCLUDE_AGGREGATES |
+ PVC_RECURSE_WINDOWFUNCS |
+ PVC_INCLUDE_PLACEHOLDERS);
+
+ add_new_columns_to_pathtarget(partial_target, non_group_exprs);
+
+ /*
+ * Adjust Aggrefs to put them in partial mode. At this point all Aggrefs
+ * are at the top level of the target list, so we can just scan the list
+ * rather than recursing through the expression trees.
+ */
+ foreach(lc, partial_target->exprs)
+ {
+ Aggref *aggref = (Aggref *) lfirst(lc);
+
+ if (IsA(aggref, Aggref))
+ {
+ Aggref *newaggref;
+
+ /*
+ * We shouldn't need to copy the substructure of the Aggref node,
+ * but flat-copy the node itself to avoid damaging other trees.
+ */
+ newaggref = makeNode(Aggref);
+ memcpy(newaggref, aggref, sizeof(Aggref));
+
+ /* For now, assume serialization is required */
+ mark_partial_aggref(newaggref, AGGSPLIT_INITIAL_SERIAL);
+
+ lfirst(lc) = newaggref;
+ }
+ }
+
+ /* clean up cruft */
+ list_free(non_group_exprs);
+ list_free(non_group_cols);
+
+ /* XXX this causes some redundant cost calculation ... */
+ return set_pathtarget_cost_width(root, partial_target);
+}
+
+/*
+ * mark_partial_aggref
+ * Adjust an Aggref to make it represent a partial-aggregation step.
+ *
+ * The Aggref node is modified in-place; caller must do any copying required.
+ */
+void
+mark_partial_aggref(Aggref *agg, AggSplit aggsplit)
+{
+ /* aggtranstype should be computed by this point */
+ Assert(OidIsValid(agg->aggtranstype));
+ /* ... but aggsplit should still be as the parser left it */
+ Assert(agg->aggsplit == AGGSPLIT_SIMPLE);
+
+ /* Mark the Aggref with the intended partial-aggregation mode */
+ agg->aggsplit = aggsplit;
+
+ /*
+ * Adjust result type if needed. Normally, a partial aggregate returns
+ * the aggregate's transition type; but if that's INTERNAL and we're
+ * serializing, it returns BYTEA instead.
+ */
+ if (DO_AGGSPLIT_SKIPFINAL(aggsplit))
+ {
+ if (agg->aggtranstype == INTERNALOID && DO_AGGSPLIT_SERIALIZE(aggsplit))
+ agg->aggtype = BYTEAOID;
+ else
+ agg->aggtype = agg->aggtranstype;
+ }
+}
+
+/*
+ * postprocess_setop_tlist
+ * Fix up targetlist returned by plan_set_operations().
+ *
+ * We need to transpose sort key info from the orig_tlist into new_tlist.
+ * NOTE: this would not be good enough if we supported resjunk sort keys
+ * for results of set operations --- then, we'd need to project a whole
+ * new tlist to evaluate the resjunk columns. For now, just ereport if we
+ * find any resjunk columns in orig_tlist.
+ */
+static List *
+postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
+{
+ ListCell *l;
+ ListCell *orig_tlist_item = list_head(orig_tlist);
+
+ foreach(l, new_tlist)
+ {
+ TargetEntry *new_tle = lfirst_node(TargetEntry, l);
+ TargetEntry *orig_tle;
+
+ /* ignore resjunk columns in setop result */
+ if (new_tle->resjunk)
+ continue;
+
+ Assert(orig_tlist_item != NULL);
+ orig_tle = lfirst_node(TargetEntry, orig_tlist_item);
+ orig_tlist_item = lnext(orig_tlist, orig_tlist_item);
+ if (orig_tle->resjunk) /* should not happen */
+ elog(ERROR, "resjunk output columns are not implemented");
+ Assert(new_tle->resno == orig_tle->resno);
+ new_tle->ressortgroupref = orig_tle->ressortgroupref;
+ }
+ if (orig_tlist_item != NULL)
+ elog(ERROR, "resjunk output columns are not implemented");
+ return new_tlist;
+}
+
+/*
+ * select_active_windows
+ * Create a list of the "active" window clauses (ie, those referenced
+ * by non-deleted WindowFuncs) in the order they are to be executed.
+ */
+static List *
+select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
+{
+ List *windowClause = root->parse->windowClause;
+ List *result = NIL;
+ ListCell *lc;
+ int nActive = 0;
+ WindowClauseSortData *actives = palloc(sizeof(WindowClauseSortData)
+ * list_length(windowClause));
+
+ /* First, construct an array of the active windows */
+ foreach(lc, windowClause)
+ {
+ WindowClause *wc = lfirst_node(WindowClause, lc);
+
+ /* It's only active if wflists shows some related WindowFuncs */
+ Assert(wc->winref <= wflists->maxWinRef);
+ if (wflists->windowFuncs[wc->winref] == NIL)
+ continue;
+
+ actives[nActive].wc = wc; /* original clause */
+
+ /*
+ * For sorting, we want the list of partition keys followed by the
+ * list of sort keys. But pathkeys construction will remove duplicates
+ * between the two, so we can as well (even though we can't detect all
+ * of the duplicates, since some may come from ECs - that might mean
+ * we miss optimization chances here). We must, however, ensure that
+ * the order of entries is preserved with respect to the ones we do
+ * keep.
+ *
+ * partitionClause and orderClause had their own duplicates removed in
+ * parse analysis, so we're only concerned here with removing
+ * orderClause entries that also appear in partitionClause.
+ */
+ actives[nActive].uniqueOrder =
+ list_concat_unique(list_copy(wc->partitionClause),
+ wc->orderClause);
+ nActive++;
+ }
+
+ /*
+ * Sort active windows by their partitioning/ordering clauses, ignoring
+ * any framing clauses, so that the windows that need the same sorting are
+ * adjacent in the list. When we come to generate paths, this will avoid
+ * inserting additional Sort nodes.
+ *
+ * This is how we implement a specific requirement from the SQL standard,
+ * which says that when two or more windows are order-equivalent (i.e.
+ * have matching partition and order clauses, even if their names or
+ * framing clauses differ), then all peer rows must be presented in the
+ * same order in all of them. If we allowed multiple sort nodes for such
+ * cases, we'd risk having the peer rows end up in different orders in
+ * equivalent windows due to sort instability. (See General Rule 4 of
+ * <window clause> in SQL2008 - SQL2016.)
+ *
+ * Additionally, if the entire list of clauses of one window is a prefix
+ * of another, put first the window with stronger sorting requirements.
+ * This way we will first sort for stronger window, and won't have to sort
+ * again for the weaker one.
+ */
+ qsort(actives, nActive, sizeof(WindowClauseSortData), common_prefix_cmp);
+
+ /* build ordered list of the original WindowClause nodes */
+ for (int i = 0; i < nActive; i++)
+ result = lappend(result, actives[i].wc);
+
+ pfree(actives);
+
+ return result;
+}
+
+/*
+ * common_prefix_cmp
+ * QSort comparison function for WindowClauseSortData
+ *
+ * Sort the windows by the required sorting clauses. First, compare the sort
+ * clauses themselves. Second, if one window's clauses are a prefix of another
+ * one's clauses, put the window with more sort clauses first.
+ */
+static int
+common_prefix_cmp(const void *a, const void *b)
+{
+ const WindowClauseSortData *wcsa = a;
+ const WindowClauseSortData *wcsb = b;
+ ListCell *item_a;
+ ListCell *item_b;
+
+ forboth(item_a, wcsa->uniqueOrder, item_b, wcsb->uniqueOrder)
+ {
+ SortGroupClause *sca = lfirst_node(SortGroupClause, item_a);
+ SortGroupClause *scb = lfirst_node(SortGroupClause, item_b);
+
+ if (sca->tleSortGroupRef > scb->tleSortGroupRef)
+ return -1;
+ else if (sca->tleSortGroupRef < scb->tleSortGroupRef)
+ return 1;
+ else if (sca->sortop > scb->sortop)
+ return -1;
+ else if (sca->sortop < scb->sortop)
+ return 1;
+ else if (sca->nulls_first && !scb->nulls_first)
+ return -1;
+ else if (!sca->nulls_first && scb->nulls_first)
+ return 1;
+ /* no need to compare eqop, since it is fully determined by sortop */
+ }
+
+ if (list_length(wcsa->uniqueOrder) > list_length(wcsb->uniqueOrder))
+ return -1;
+ else if (list_length(wcsa->uniqueOrder) < list_length(wcsb->uniqueOrder))
+ return 1;
+
+ return 0;
+}
+
+/*
+ * make_window_input_target
+ * Generate appropriate PathTarget for initial input to WindowAgg nodes.
+ *
+ * When the query has window functions, this function computes the desired
+ * target to be computed by the node just below the first WindowAgg.
+ * This tlist must contain all values needed to evaluate the window functions,
+ * compute the final target list, and perform any required final sort step.
+ * If multiple WindowAggs are needed, each intermediate one adds its window
+ * function results onto this base tlist; only the topmost WindowAgg computes
+ * the actual desired target list.
+ *
+ * This function is much like make_group_input_target, though not quite enough
+ * like it to share code. As in that function, we flatten most expressions
+ * into their component variables. But we do not want to flatten window
+ * PARTITION BY/ORDER BY clauses, since that might result in multiple
+ * evaluations of them, which would be bad (possibly even resulting in
+ * inconsistent answers, if they contain volatile functions).
+ * Also, we must not flatten GROUP BY clauses that were left unflattened by
+ * make_group_input_target, because we may no longer have access to the
+ * individual Vars in them.
+ *
+ * Another key difference from make_group_input_target is that we don't
+ * flatten Aggref expressions, since those are to be computed below the
+ * window functions and just referenced like Vars above that.
+ *
+ * 'final_target' is the query's final target list (in PathTarget form)
+ * 'activeWindows' is the list of active windows previously identified by
+ * select_active_windows.
+ *
+ * The result is the PathTarget to be computed by the plan node immediately
+ * below the first WindowAgg node.
+ */
+static PathTarget *
+make_window_input_target(PlannerInfo *root,
+ PathTarget *final_target,
+ List *activeWindows)
+{
+ Query *parse = root->parse;
+ PathTarget *input_target;
+ Bitmapset *sgrefs;
+ List *flattenable_cols;
+ List *flattenable_vars;
+ int i;
+ ListCell *lc;
+
+ Assert(parse->hasWindowFuncs);
+
+ /*
+ * Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses
+ * into a bitmapset for convenient reference below.
+ */
+ sgrefs = NULL;
+ foreach(lc, activeWindows)
+ {
+ WindowClause *wc = lfirst_node(WindowClause, lc);
+ ListCell *lc2;
+
+ foreach(lc2, wc->partitionClause)
+ {
+ SortGroupClause *sortcl = lfirst_node(SortGroupClause, lc2);
+
+ sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
+ }
+ foreach(lc2, wc->orderClause)
+ {
+ SortGroupClause *sortcl = lfirst_node(SortGroupClause, lc2);
+
+ sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
+ }
+ }
+
+ /* Add in sortgroupref numbers of GROUP BY clauses, too */
+ foreach(lc, parse->groupClause)
+ {
+ SortGroupClause *grpcl = lfirst_node(SortGroupClause, lc);
+
+ sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef);
+ }
+
+ /*
+ * Construct a target containing all the non-flattenable targetlist items,
+ * and save aside the others for a moment.
+ */
+ input_target = create_empty_pathtarget();
+ flattenable_cols = NIL;
+
+ i = 0;
+ foreach(lc, final_target->exprs)
+ {
+ Expr *expr = (Expr *) lfirst(lc);
+ Index sgref = get_pathtarget_sortgroupref(final_target, i);
+
+ /*
+ * Don't want to deconstruct window clauses or GROUP BY items. (Note
+ * that such items can't contain window functions, so it's okay to
+ * compute them below the WindowAgg nodes.)
+ */
+ if (sgref != 0 && bms_is_member(sgref, sgrefs))
+ {
+ /*
+ * Don't want to deconstruct this value, so add it to the input
+ * target as-is.
+ */
+ add_column_to_pathtarget(input_target, expr, sgref);
+ }
+ else
+ {
+ /*
+ * Column is to be flattened, so just remember the expression for
+ * later call to pull_var_clause.
+ */
+ flattenable_cols = lappend(flattenable_cols, expr);
+ }
+
+ i++;
+ }
+
+ /*
+ * Pull out all the Vars and Aggrefs mentioned in flattenable columns, and
+ * add them to the input target if not already present. (Some might be
+ * there already because they're used directly as window/group clauses.)
+ *
+ * Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that any
+ * Aggrefs are placed in the Agg node's tlist and not left to be computed
+ * at higher levels. On the other hand, we should recurse into
+ * WindowFuncs to make sure their input expressions are available.
+ */
+ flattenable_vars = pull_var_clause((Node *) flattenable_cols,
+ PVC_INCLUDE_AGGREGATES |
+ PVC_RECURSE_WINDOWFUNCS |
+ PVC_INCLUDE_PLACEHOLDERS);
+ add_new_columns_to_pathtarget(input_target, flattenable_vars);
+
+ /* clean up cruft */
+ list_free(flattenable_vars);
+ list_free(flattenable_cols);
+
+ /* XXX this causes some redundant cost calculation ... */
+ return set_pathtarget_cost_width(root, input_target);
+}
+
+/*
+ * make_pathkeys_for_window
+ * Create a pathkeys list describing the required input ordering
+ * for the given WindowClause.
+ *
+ * The required ordering is first the PARTITION keys, then the ORDER keys.
+ * In the future we might try to implement windowing using hashing, in which
+ * case the ordering could be relaxed, but for now we always sort.
+ */
+static List *
+make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
+ List *tlist)
+{
+ List *window_pathkeys;
+ List *window_sortclauses;
+
+ /* Throw error if can't sort */
+ if (!grouping_is_sortable(wc->partitionClause))
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("could not implement window PARTITION BY"),
+ errdetail("Window partitioning columns must be of sortable datatypes.")));
+ if (!grouping_is_sortable(wc->orderClause))
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("could not implement window ORDER BY"),
+ errdetail("Window ordering columns must be of sortable datatypes.")));
+
+ /* Okay, make the combined pathkeys */
+ window_sortclauses = list_concat_copy(wc->partitionClause, wc->orderClause);
+ window_pathkeys = make_pathkeys_for_sortclauses(root,
+ window_sortclauses,
+ tlist);
+ list_free(window_sortclauses);
+ return window_pathkeys;
+}
+
+/*
+ * make_sort_input_target
+ * Generate appropriate PathTarget for initial input to Sort step.
+ *
+ * If the query has ORDER BY, this function chooses the target to be computed
+ * by the node just below the Sort (and DISTINCT, if any, since Unique can't
+ * project) steps. This might or might not be identical to the query's final
+ * output target.
+ *
+ * The main argument for keeping the sort-input tlist the same as the final
+ * is that we avoid a separate projection node (which will be needed if
+ * they're different, because Sort can't project). However, there are also
+ * advantages to postponing tlist evaluation till after the Sort: it ensures
+ * a consistent order of evaluation for any volatile functions in the tlist,
+ * and if there's also a LIMIT, we can stop the query without ever computing
+ * tlist functions for later rows, which is beneficial for both volatile and
+ * expensive functions.
+ *
+ * Our current policy is to postpone volatile expressions till after the sort
+ * unconditionally (assuming that that's possible, ie they are in plain tlist
+ * columns and not ORDER BY/GROUP BY/DISTINCT columns). We also prefer to
+ * postpone set-returning expressions, because running them beforehand would
+ * bloat the sort dataset, and because it might cause unexpected output order
+ * if the sort isn't stable. However there's a constraint on that: all SRFs
+ * in the tlist should be evaluated at the same plan step, so that they can
+ * run in sync in nodeProjectSet. So if any SRFs are in sort columns, we
+ * mustn't postpone any SRFs. (Note that in principle that policy should
+ * probably get applied to the group/window input targetlists too, but we
+ * have not done that historically.) Lastly, expensive expressions are
+ * postponed if there is a LIMIT, or if root->tuple_fraction shows that
+ * partial evaluation of the query is possible (if neither is true, we expect
+ * to have to evaluate the expressions for every row anyway), or if there are
+ * any volatile or set-returning expressions (since once we've put in a
+ * projection at all, it won't cost any more to postpone more stuff).
+ *
+ * Another issue that could potentially be considered here is that
+ * evaluating tlist expressions could result in data that's either wider
+ * or narrower than the input Vars, thus changing the volume of data that
+ * has to go through the Sort. However, we usually have only a very bad
+ * idea of the output width of any expression more complex than a Var,
+ * so for now it seems too risky to try to optimize on that basis.
+ *
+ * Note that if we do produce a modified sort-input target, and then the
+ * query ends up not using an explicit Sort, no particular harm is done:
+ * we'll initially use the modified target for the preceding path nodes,
+ * but then change them to the final target with apply_projection_to_path.
+ * Moreover, in such a case the guarantees about evaluation order of
+ * volatile functions still hold, since the rows are sorted already.
+ *
+ * This function has some things in common with make_group_input_target and
+ * make_window_input_target, though the detailed rules for what to do are
+ * different. We never flatten/postpone any grouping or ordering columns;
+ * those are needed before the sort. If we do flatten a particular
+ * expression, we leave Aggref and WindowFunc nodes alone, since those were
+ * computed earlier.
+ *
+ * 'final_target' is the query's final target list (in PathTarget form)
+ * 'have_postponed_srfs' is an output argument, see below
+ *
+ * The result is the PathTarget to be computed by the plan node immediately
+ * below the Sort step (and the Distinct step, if any). This will be
+ * exactly final_target if we decide a projection step wouldn't be helpful.
+ *
+ * In addition, *have_postponed_srfs is set to true if we choose to postpone
+ * any set-returning functions to after the Sort.
+ */
+static PathTarget *
+make_sort_input_target(PlannerInfo *root,
+ PathTarget *final_target,
+ bool *have_postponed_srfs)
+{
+ Query *parse = root->parse;
+ PathTarget *input_target;
+ int ncols;
+ bool *col_is_srf;
+ bool *postpone_col;
+ bool have_srf;
+ bool have_volatile;
+ bool have_expensive;
+ bool have_srf_sortcols;
+ bool postpone_srfs;
+ List *postponable_cols;
+ List *postponable_vars;
+ int i;
+ ListCell *lc;
+
+ /* Shouldn't get here unless query has ORDER BY */
+ Assert(parse->sortClause);
+
+ *have_postponed_srfs = false; /* default result */
+
+ /* Inspect tlist and collect per-column information */
+ ncols = list_length(final_target->exprs);
+ col_is_srf = (bool *) palloc0(ncols * sizeof(bool));
+ postpone_col = (bool *) palloc0(ncols * sizeof(bool));
+ have_srf = have_volatile = have_expensive = have_srf_sortcols = false;
+
+ i = 0;
+ foreach(lc, final_target->exprs)
+ {
+ Expr *expr = (Expr *) lfirst(lc);
+
+ /*
+ * If the column has a sortgroupref, assume it has to be evaluated
+ * before sorting. Generally such columns would be ORDER BY, GROUP
+ * BY, etc targets. One exception is columns that were removed from
+ * GROUP BY by remove_useless_groupby_columns() ... but those would
+ * only be Vars anyway. There don't seem to be any cases where it
+ * would be worth the trouble to double-check.
+ */
+ if (get_pathtarget_sortgroupref(final_target, i) == 0)
+ {
+ /*
+ * Check for SRF or volatile functions. Check the SRF case first
+ * because we must know whether we have any postponed SRFs.
+ */
+ if (parse->hasTargetSRFs &&
+ expression_returns_set((Node *) expr))
+ {
+ /* We'll decide below whether these are postponable */
+ col_is_srf[i] = true;
+ have_srf = true;
+ }
+ else if (contain_volatile_functions((Node *) expr))
+ {
+ /* Unconditionally postpone */
+ postpone_col[i] = true;
+ have_volatile = true;
+ }
+ else
+ {
+ /*
+ * Else check the cost. XXX it's annoying to have to do this
+ * when set_pathtarget_cost_width() just did it. Refactor to
+ * allow sharing the work?
+ */
+ QualCost cost;
+
+ cost_qual_eval_node(&cost, (Node *) expr, root);
+
+ /*
+ * We arbitrarily define "expensive" as "more than 10X
+ * cpu_operator_cost". Note this will take in any PL function
+ * with default cost.
+ */
+ if (cost.per_tuple > 10 * cpu_operator_cost)
+ {
+ postpone_col[i] = true;
+ have_expensive = true;
+ }
+ }
+ }
+ else
+ {
+ /* For sortgroupref cols, just check if any contain SRFs */
+ if (!have_srf_sortcols &&
+ parse->hasTargetSRFs &&
+ expression_returns_set((Node *) expr))
+ have_srf_sortcols = true;
+ }
+
+ i++;
+ }
+
+ /*
+ * We can postpone SRFs if we have some but none are in sortgroupref cols.
+ */
+ postpone_srfs = (have_srf && !have_srf_sortcols);
+
+ /*
+ * If we don't need a post-sort projection, just return final_target.
+ */
+ if (!(postpone_srfs || have_volatile ||
+ (have_expensive &&
+ (parse->limitCount || root->tuple_fraction > 0))))
+ return final_target;
+
+ /*
+ * Report whether the post-sort projection will contain set-returning
+ * functions. This is important because it affects whether the Sort can
+ * rely on the query's LIMIT (if any) to bound the number of rows it needs
+ * to return.
+ */
+ *have_postponed_srfs = postpone_srfs;
+
+ /*
+ * Construct the sort-input target, taking all non-postponable columns and
+ * then adding Vars, PlaceHolderVars, Aggrefs, and WindowFuncs found in
+ * the postponable ones.
+ */
+ input_target = create_empty_pathtarget();
+ postponable_cols = NIL;
+
+ i = 0;
+ foreach(lc, final_target->exprs)
+ {
+ Expr *expr = (Expr *) lfirst(lc);
+
+ if (postpone_col[i] || (postpone_srfs && col_is_srf[i]))
+ postponable_cols = lappend(postponable_cols, expr);
+ else
+ add_column_to_pathtarget(input_target, expr,
+ get_pathtarget_sortgroupref(final_target, i));
+
+ i++;
+ }
+
+ /*
+ * Pull out all the Vars, Aggrefs, and WindowFuncs mentioned in
+ * postponable columns, and add them to the sort-input target if not
+ * already present. (Some might be there already.) We mustn't
+ * deconstruct Aggrefs or WindowFuncs here, since the projection node
+ * would be unable to recompute them.
+ */
+ postponable_vars = pull_var_clause((Node *) postponable_cols,
+ PVC_INCLUDE_AGGREGATES |
+ PVC_INCLUDE_WINDOWFUNCS |
+ PVC_INCLUDE_PLACEHOLDERS);
+ add_new_columns_to_pathtarget(input_target, postponable_vars);
+
+ /* clean up cruft */
+ list_free(postponable_vars);
+ list_free(postponable_cols);
+
+ /* XXX this represents even more redundant cost calculation ... */
+ return set_pathtarget_cost_width(root, input_target);
+}
+
+/*
+ * get_cheapest_fractional_path
+ * Find the cheapest path for retrieving a specified fraction of all
+ * the tuples expected to be returned by the given relation.
+ *
+ * We interpret tuple_fraction the same way as grouping_planner.
+ *
+ * We assume set_cheapest() has been run on the given rel.
+ */
+Path *
+get_cheapest_fractional_path(RelOptInfo *rel, double tuple_fraction)
+{
+ Path *best_path = rel->cheapest_total_path;
+ ListCell *l;
+
+ /* If all tuples will be retrieved, just return the cheapest-total path */
+ if (tuple_fraction <= 0.0)
+ return best_path;
+
+ /* Convert absolute # of tuples to a fraction; no need to clamp to 0..1 */
+ if (tuple_fraction >= 1.0 && best_path->rows > 0)
+ tuple_fraction /= best_path->rows;
+
+ foreach(l, rel->pathlist)
+ {
+ Path *path = (Path *) lfirst(l);
+
+ if (path == rel->cheapest_total_path ||
+ compare_fractional_path_costs(best_path, path, tuple_fraction) <= 0)
+ continue;
+
+ best_path = path;
+ }
+
+ return best_path;
+}
+
+/*
+ * adjust_paths_for_srfs
+ * Fix up the Paths of the given upperrel to handle tSRFs properly.
+ *
+ * The executor can only handle set-returning functions that appear at the
+ * top level of the targetlist of a ProjectSet plan node. If we have any SRFs
+ * that are not at top level, we need to split up the evaluation into multiple
+ * plan levels in which each level satisfies this constraint. This function
+ * modifies each Path of an upperrel that (might) compute any SRFs in its
+ * output tlist to insert appropriate projection steps.
+ *
+ * The given targets and targets_contain_srfs lists are from
+ * split_pathtarget_at_srfs(). We assume the existing Paths emit the first
+ * target in targets.
+ */
+static void
+adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel,
+ List *targets, List *targets_contain_srfs)
+{
+ ListCell *lc;
+
+ Assert(list_length(targets) == list_length(targets_contain_srfs));
+ Assert(!linitial_int(targets_contain_srfs));
+
+ /* If no SRFs appear at this plan level, nothing to do */
+ if (list_length(targets) == 1)
+ return;
+
+ /*
+ * Stack SRF-evaluation nodes atop each path for the rel.
+ *
+ * In principle we should re-run set_cheapest() here to identify the
+ * cheapest path, but it seems unlikely that adding the same tlist eval
+ * costs to all the paths would change that, so we don't bother. Instead,
+ * just assume that the cheapest-startup and cheapest-total paths remain
+ * so. (There should be no parameterized paths anymore, so we needn't
+ * worry about updating cheapest_parameterized_paths.)
+ */
+ foreach(lc, rel->pathlist)
+ {
+ Path *subpath = (Path *) lfirst(lc);
+ Path *newpath = subpath;
+ ListCell *lc1,
+ *lc2;
+
+ Assert(subpath->param_info == NULL);
+ forboth(lc1, targets, lc2, targets_contain_srfs)
+ {
+ PathTarget *thistarget = lfirst_node(PathTarget, lc1);
+ bool contains_srfs = (bool) lfirst_int(lc2);
+
+ /* If this level doesn't contain SRFs, do regular projection */
+ if (contains_srfs)
+ newpath = (Path *) create_set_projection_path(root,
+ rel,
+ newpath,
+ thistarget);
+ else
+ newpath = (Path *) apply_projection_to_path(root,
+ rel,
+ newpath,
+ thistarget);
+ }
+ lfirst(lc) = newpath;
+ if (subpath == rel->cheapest_startup_path)
+ rel->cheapest_startup_path = newpath;
+ if (subpath == rel->cheapest_total_path)
+ rel->cheapest_total_path = newpath;
+ }
+
+ /* Likewise for partial paths, if any */
+ foreach(lc, rel->partial_pathlist)
+ {
+ Path *subpath = (Path *) lfirst(lc);
+ Path *newpath = subpath;
+ ListCell *lc1,
+ *lc2;
+
+ Assert(subpath->param_info == NULL);
+ forboth(lc1, targets, lc2, targets_contain_srfs)
+ {
+ PathTarget *thistarget = lfirst_node(PathTarget, lc1);
+ bool contains_srfs = (bool) lfirst_int(lc2);
+
+ /* If this level doesn't contain SRFs, do regular projection */
+ if (contains_srfs)
+ newpath = (Path *) create_set_projection_path(root,
+ rel,
+ newpath,
+ thistarget);
+ else
+ {
+ /* avoid apply_projection_to_path, in case of multiple refs */
+ newpath = (Path *) create_projection_path(root,
+ rel,
+ newpath,
+ thistarget);
+ }
+ }
+ lfirst(lc) = newpath;
+ }
+}
+
+/*
+ * expression_planner
+ * Perform planner's transformations on a standalone expression.
+ *
+ * Various utility commands need to evaluate expressions that are not part
+ * of a plannable query. They can do so using the executor's regular
+ * expression-execution machinery, but first the expression has to be fed
+ * through here to transform it from parser output to something executable.
+ *
+ * Currently, we disallow sublinks in standalone expressions, so there's no
+ * real "planning" involved here. (That might not always be true though.)
+ * What we must do is run eval_const_expressions to ensure that any function
+ * calls are converted to positional notation and function default arguments
+ * get inserted. The fact that constant subexpressions get simplified is a
+ * side-effect that is useful when the expression will get evaluated more than
+ * once. Also, we must fix operator function IDs.
+ *
+ * This does not return any information about dependencies of the expression.
+ * Hence callers should use the results only for the duration of the current
+ * query. Callers that would like to cache the results for longer should use
+ * expression_planner_with_deps, probably via the plancache.
+ *
+ * Note: this must not make any damaging changes to the passed-in expression
+ * tree. (It would actually be okay to apply fix_opfuncids to it, but since
+ * we first do an expression_tree_mutator-based walk, what is returned will
+ * be a new node tree.) The result is constructed in the current memory
+ * context; beware that this can leak a lot of additional stuff there, too.
+ */
+Expr *
+expression_planner(Expr *expr)
+{
+ Node *result;
+
+ /*
+ * Convert named-argument function calls, insert default arguments and
+ * simplify constant subexprs
+ */
+ result = eval_const_expressions(NULL, (Node *) expr);
+
+ /* Fill in opfuncid values if missing */
+ fix_opfuncids(result);
+
+ return (Expr *) result;
+}
+
+/*
+ * expression_planner_with_deps
+ * Perform planner's transformations on a standalone expression,
+ * returning expression dependency information along with the result.
+ *
+ * This is identical to expression_planner() except that it also returns
+ * information about possible dependencies of the expression, ie identities of
+ * objects whose definitions affect the result. As in a PlannedStmt, these
+ * are expressed as a list of relation Oids and a list of PlanInvalItems.
+ */
+Expr *
+expression_planner_with_deps(Expr *expr,
+ List **relationOids,
+ List **invalItems)
+{
+ Node *result;
+ PlannerGlobal glob;
+ PlannerInfo root;
+
+ /* Make up dummy planner state so we can use setrefs machinery */
+ MemSet(&glob, 0, sizeof(glob));
+ glob.type = T_PlannerGlobal;
+ glob.relationOids = NIL;
+ glob.invalItems = NIL;
+
+ MemSet(&root, 0, sizeof(root));
+ root.type = T_PlannerInfo;
+ root.glob = &glob;
+
+ /*
+ * Convert named-argument function calls, insert default arguments and
+ * simplify constant subexprs. Collect identities of inlined functions
+ * and elided domains, too.
+ */
+ result = eval_const_expressions(&root, (Node *) expr);
+
+ /* Fill in opfuncid values if missing */
+ fix_opfuncids(result);
+
+ /*
+ * Now walk the finished expression to find anything else we ought to
+ * record as an expression dependency.
+ */
+ (void) extract_query_dependencies_walker(result, &root);
+
+ *relationOids = glob.relationOids;
+ *invalItems = glob.invalItems;
+
+ return (Expr *) result;
+}
+
+
+/*
+ * plan_cluster_use_sort
+ * Use the planner to decide how CLUSTER should implement sorting
+ *
+ * tableOid is the OID of a table to be clustered on its index indexOid
+ * (which is already known to be a btree index). Decide whether it's
+ * cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER.
+ * Return true to use sorting, false to use an indexscan.
+ *
+ * Note: caller had better already hold some type of lock on the table.
+ */
+bool
+plan_cluster_use_sort(Oid tableOid, Oid indexOid)
+{
+ PlannerInfo *root;
+ Query *query;
+ PlannerGlobal *glob;
+ RangeTblEntry *rte;
+ RelOptInfo *rel;
+ IndexOptInfo *indexInfo;
+ QualCost indexExprCost;
+ Cost comparisonCost;
+ Path *seqScanPath;
+ Path seqScanAndSortPath;
+ IndexPath *indexScanPath;
+ ListCell *lc;
+
+ /* We can short-circuit the cost comparison if indexscans are disabled */
+ if (!enable_indexscan)
+ return true; /* use sort */
+
+ /* Set up mostly-dummy planner state */
+ query = makeNode(Query);
+ query->commandType = CMD_SELECT;
+
+ glob = makeNode(PlannerGlobal);
+
+ root = makeNode(PlannerInfo);
+ root->parse = query;
+ root->glob = glob;
+ root->query_level = 1;
+ root->planner_cxt = CurrentMemoryContext;
+ root->wt_param_id = -1;
+
+ /* Build a minimal RTE for the rel */
+ rte = makeNode(RangeTblEntry);
+ rte->rtekind = RTE_RELATION;
+ rte->relid = tableOid;
+ rte->relkind = RELKIND_RELATION; /* Don't be too picky. */
+ rte->rellockmode = AccessShareLock;
+ rte->lateral = false;
+ rte->inh = false;
+ rte->inFromCl = true;
+ query->rtable = list_make1(rte);
+
+ /* Set up RTE/RelOptInfo arrays */
+ setup_simple_rel_arrays(root);
+
+ /* Build RelOptInfo */
+ rel = build_simple_rel(root, 1, NULL);
+
+ /* Locate IndexOptInfo for the target index */
+ indexInfo = NULL;
+ foreach(lc, rel->indexlist)
+ {
+ indexInfo = lfirst_node(IndexOptInfo, lc);
+ if (indexInfo->indexoid == indexOid)
+ break;
+ }
+
+ /*
+ * It's possible that get_relation_info did not generate an IndexOptInfo
+ * for the desired index; this could happen if it's not yet reached its
+ * indcheckxmin usability horizon, or if it's a system index and we're
+ * ignoring system indexes. In such cases we should tell CLUSTER to not
+ * trust the index contents but use seqscan-and-sort.
+ */
+ if (lc == NULL) /* not in the list? */
+ return true; /* use sort */
+
+ /*
+ * Rather than doing all the pushups that would be needed to use
+ * set_baserel_size_estimates, just do a quick hack for rows and width.
+ */
+ rel->rows = rel->tuples;
+ rel->reltarget->width = get_relation_data_width(tableOid, NULL);
+
+ root->total_table_pages = rel->pages;
+
+ /*
+ * Determine eval cost of the index expressions, if any. We need to
+ * charge twice that amount for each tuple comparison that happens during
+ * the sort, since tuplesort.c will have to re-evaluate the index
+ * expressions each time. (XXX that's pretty inefficient...)
+ */
+ cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
+ comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);
+
+ /* Estimate the cost of seq scan + sort */
+ seqScanPath = create_seqscan_path(root, rel, NULL, 0);
+ cost_sort(&seqScanAndSortPath, root, NIL,
+ seqScanPath->total_cost, rel->tuples, rel->reltarget->width,
+ comparisonCost, maintenance_work_mem, -1.0);
+
+ /* Estimate the cost of index scan */
+ indexScanPath = create_index_path(root, indexInfo,
+ NIL, NIL, NIL, NIL,
+ ForwardScanDirection, false,
+ NULL, 1.0, false);
+
+ return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
+}
+
+/*
+ * plan_create_index_workers
+ * Use the planner to decide how many parallel worker processes
+ * CREATE INDEX should request for use
+ *
+ * tableOid is the table on which the index is to be built. indexOid is the
+ * OID of an index to be created or reindexed (which must be a btree index).
+ *
+ * Return value is the number of parallel worker processes to request. It
+ * may be unsafe to proceed if this is 0. Note that this does not include the
+ * leader participating as a worker (value is always a number of parallel
+ * worker processes).
+ *
+ * Note: caller had better already hold some type of lock on the table and
+ * index.
+ */
+int
+plan_create_index_workers(Oid tableOid, Oid indexOid)
+{
+ PlannerInfo *root;
+ Query *query;
+ PlannerGlobal *glob;
+ RangeTblEntry *rte;
+ Relation heap;
+ Relation index;
+ RelOptInfo *rel;
+ int parallel_workers;
+ BlockNumber heap_blocks;
+ double reltuples;
+ double allvisfrac;
+
+ /*
+ * We don't allow performing parallel operation in standalone backend or
+ * when parallelism is disabled.
+ */
+ if (!IsUnderPostmaster || max_parallel_maintenance_workers == 0)
+ return 0;
+
+ /* Set up largely-dummy planner state */
+ query = makeNode(Query);
+ query->commandType = CMD_SELECT;
+
+ glob = makeNode(PlannerGlobal);
+
+ root = makeNode(PlannerInfo);
+ root->parse = query;
+ root->glob = glob;
+ root->query_level = 1;
+ root->planner_cxt = CurrentMemoryContext;
+ root->wt_param_id = -1;
+
+ /*
+ * Build a minimal RTE.
+ *
+ * Mark the RTE with inh = true. This is a kludge to prevent
+ * get_relation_info() from fetching index info, which is necessary
+ * because it does not expect that any IndexOptInfo is currently
+ * undergoing REINDEX.
+ */
+ rte = makeNode(RangeTblEntry);
+ rte->rtekind = RTE_RELATION;
+ rte->relid = tableOid;
+ rte->relkind = RELKIND_RELATION; /* Don't be too picky. */
+ rte->rellockmode = AccessShareLock;
+ rte->lateral = false;
+ rte->inh = true;
+ rte->inFromCl = true;
+ query->rtable = list_make1(rte);
+
+ /* Set up RTE/RelOptInfo arrays */
+ setup_simple_rel_arrays(root);
+
+ /* Build RelOptInfo */
+ rel = build_simple_rel(root, 1, NULL);
+
+ /* Rels are assumed already locked by the caller */
+ heap = table_open(tableOid, NoLock);
+ index = index_open(indexOid, NoLock);
+
+ /*
+ * Determine if it's safe to proceed.
+ *
+ * Currently, parallel workers can't access the leader's temporary tables.
+ * Furthermore, any index predicate or index expressions must be parallel
+ * safe.
+ */
+ if (heap->rd_rel->relpersistence == RELPERSISTENCE_TEMP ||
+ !is_parallel_safe(root, (Node *) RelationGetIndexExpressions(index)) ||
+ !is_parallel_safe(root, (Node *) RelationGetIndexPredicate(index)))
+ {
+ parallel_workers = 0;
+ goto done;
+ }
+
+ /*
+ * If parallel_workers storage parameter is set for the table, accept that
+ * as the number of parallel worker processes to launch (though still cap
+ * at max_parallel_maintenance_workers). Note that we deliberately do not
+ * consider any other factor when parallel_workers is set. (e.g., memory
+ * use by workers.)
+ */
+ if (rel->rel_parallel_workers != -1)
+ {
+ parallel_workers = Min(rel->rel_parallel_workers,
+ max_parallel_maintenance_workers);
+ goto done;
+ }
+
+ /*
+ * Estimate heap relation size ourselves, since rel->pages cannot be
+ * trusted (heap RTE was marked as inheritance parent)
+ */
+ estimate_rel_size(heap, NULL, &heap_blocks, &reltuples, &allvisfrac);
+
+ /*
+ * Determine number of workers to scan the heap relation using generic
+ * model
+ */
+ parallel_workers = compute_parallel_worker(rel, heap_blocks, -1,
+ max_parallel_maintenance_workers);
+
+ /*
+ * Cap workers based on available maintenance_work_mem as needed.
+ *
+ * Note that each tuplesort participant receives an even share of the
+ * total maintenance_work_mem budget. Aim to leave participants
+ * (including the leader as a participant) with no less than 32MB of
+ * memory. This leaves cases where maintenance_work_mem is set to 64MB
+ * immediately past the threshold of being capable of launching a single
+ * parallel worker to sort.
+ */
+ while (parallel_workers > 0 &&
+ maintenance_work_mem / (parallel_workers + 1) < 32768L)
+ parallel_workers--;
+
+done:
+ index_close(index, NoLock);
+ table_close(heap, NoLock);
+
+ return parallel_workers;
+}
+
+/*
+ * add_paths_to_grouping_rel
+ *
+ * Add non-partial paths to grouping relation.
+ */
+static void
+add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel,
+ RelOptInfo *grouped_rel,
+ RelOptInfo *partially_grouped_rel,
+ const AggClauseCosts *agg_costs,
+ grouping_sets_data *gd, double dNumGroups,
+ GroupPathExtraData *extra)
+{
+ Query *parse = root->parse;
+ Path *cheapest_path = input_rel->cheapest_total_path;
+ ListCell *lc;
+ bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0;
+ bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0;
+ List *havingQual = (List *) extra->havingQual;
+ AggClauseCosts *agg_final_costs = &extra->agg_final_costs;
+
+ if (can_sort)
+ {
+ /*
+ * Use any available suitably-sorted path as input, and also consider
+ * sorting the cheapest-total path.
+ */
+ foreach(lc, input_rel->pathlist)
+ {
+ Path *path = (Path *) lfirst(lc);
+ Path *path_original = path;
+ bool is_sorted;
+ int presorted_keys;
+
+ is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
+ path->pathkeys,
+ &presorted_keys);
+
+ if (path == cheapest_path || is_sorted)
+ {
+ /* Sort the cheapest-total path if it isn't already sorted */
+ if (!is_sorted)
+ path = (Path *) create_sort_path(root,
+ grouped_rel,
+ path,
+ root->group_pathkeys,
+ -1.0);
+
+ /* Now decide what to stick atop it */
+ if (parse->groupingSets)
+ {
+ consider_groupingsets_paths(root, grouped_rel,
+ path, true, can_hash,
+ gd, agg_costs, dNumGroups);
+ }
+ else if (parse->hasAggs)
+ {
+ /*
+ * We have aggregation, possibly with plain GROUP BY. Make
+ * an AggPath.
+ */
+ add_path(grouped_rel, (Path *)
+ create_agg_path(root,
+ grouped_rel,
+ path,
+ grouped_rel->reltarget,
+ parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_SIMPLE,
+ parse->groupClause,
+ havingQual,
+ agg_costs,
+ dNumGroups));
+ }
+ else if (parse->groupClause)
+ {
+ /*
+ * We have GROUP BY without aggregation or grouping sets.
+ * Make a GroupPath.
+ */
+ add_path(grouped_rel, (Path *)
+ create_group_path(root,
+ grouped_rel,
+ path,
+ parse->groupClause,
+ havingQual,
+ dNumGroups));
+ }
+ else
+ {
+ /* Other cases should have been handled above */
+ Assert(false);
+ }
+ }
+
+ /*
+ * Now we may consider incremental sort on this path, but only
+ * when the path is not already sorted and when incremental sort
+ * is enabled.
+ */
+ if (is_sorted || !enable_incremental_sort)
+ continue;
+
+ /* Restore the input path (we might have added Sort on top). */
+ path = path_original;
+
+ /* no shared prefix, no point in building incremental sort */
+ if (presorted_keys == 0)
+ continue;
+
+ /*
+ * We should have already excluded pathkeys of length 1 because
+ * then presorted_keys > 0 would imply is_sorted was true.
+ */
+ Assert(list_length(root->group_pathkeys) != 1);
+
+ path = (Path *) create_incremental_sort_path(root,
+ grouped_rel,
+ path,
+ root->group_pathkeys,
+ presorted_keys,
+ -1.0);
+
+ /* Now decide what to stick atop it */
+ if (parse->groupingSets)
+ {
+ consider_groupingsets_paths(root, grouped_rel,
+ path, true, can_hash,
+ gd, agg_costs, dNumGroups);
+ }
+ else if (parse->hasAggs)
+ {
+ /*
+ * We have aggregation, possibly with plain GROUP BY. Make an
+ * AggPath.
+ */
+ add_path(grouped_rel, (Path *)
+ create_agg_path(root,
+ grouped_rel,
+ path,
+ grouped_rel->reltarget,
+ parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_SIMPLE,
+ parse->groupClause,
+ havingQual,
+ agg_costs,
+ dNumGroups));
+ }
+ else if (parse->groupClause)
+ {
+ /*
+ * We have GROUP BY without aggregation or grouping sets. Make
+ * a GroupPath.
+ */
+ add_path(grouped_rel, (Path *)
+ create_group_path(root,
+ grouped_rel,
+ path,
+ parse->groupClause,
+ havingQual,
+ dNumGroups));
+ }
+ else
+ {
+ /* Other cases should have been handled above */
+ Assert(false);
+ }
+ }
+
+ /*
+ * Instead of operating directly on the input relation, we can
+ * consider finalizing a partially aggregated path.
+ */
+ if (partially_grouped_rel != NULL)
+ {
+ foreach(lc, partially_grouped_rel->pathlist)
+ {
+ Path *path = (Path *) lfirst(lc);
+ Path *path_original = path;
+ bool is_sorted;
+ int presorted_keys;
+
+ is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
+ path->pathkeys,
+ &presorted_keys);
+
+ /*
+ * Insert a Sort node, if required. But there's no point in
+ * sorting anything but the cheapest path.
+ */
+ if (!is_sorted)
+ {
+ if (path != partially_grouped_rel->cheapest_total_path)
+ continue;
+ path = (Path *) create_sort_path(root,
+ grouped_rel,
+ path,
+ root->group_pathkeys,
+ -1.0);
+ }
+
+ if (parse->hasAggs)
+ add_path(grouped_rel, (Path *)
+ create_agg_path(root,
+ grouped_rel,
+ path,
+ grouped_rel->reltarget,
+ parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_FINAL_DESERIAL,
+ parse->groupClause,
+ havingQual,
+ agg_final_costs,
+ dNumGroups));
+ else
+ add_path(grouped_rel, (Path *)
+ create_group_path(root,
+ grouped_rel,
+ path,
+ parse->groupClause,
+ havingQual,
+ dNumGroups));
+
+ /*
+ * Now we may consider incremental sort on this path, but only
+ * when the path is not already sorted and when incremental
+ * sort is enabled.
+ */
+ if (is_sorted || !enable_incremental_sort)
+ continue;
+
+ /* Restore the input path (we might have added Sort on top). */
+ path = path_original;
+
+ /* no shared prefix, not point in building incremental sort */
+ if (presorted_keys == 0)
+ continue;
+
+ /*
+ * We should have already excluded pathkeys of length 1
+ * because then presorted_keys > 0 would imply is_sorted was
+ * true.
+ */
+ Assert(list_length(root->group_pathkeys) != 1);
+
+ path = (Path *) create_incremental_sort_path(root,
+ grouped_rel,
+ path,
+ root->group_pathkeys,
+ presorted_keys,
+ -1.0);
+
+ if (parse->hasAggs)
+ add_path(grouped_rel, (Path *)
+ create_agg_path(root,
+ grouped_rel,
+ path,
+ grouped_rel->reltarget,
+ parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_FINAL_DESERIAL,
+ parse->groupClause,
+ havingQual,
+ agg_final_costs,
+ dNumGroups));
+ else
+ add_path(grouped_rel, (Path *)
+ create_group_path(root,
+ grouped_rel,
+ path,
+ parse->groupClause,
+ havingQual,
+ dNumGroups));
+ }
+ }
+ }
+
+ if (can_hash)
+ {
+ if (parse->groupingSets)
+ {
+ /*
+ * Try for a hash-only groupingsets path over unsorted input.
+ */
+ consider_groupingsets_paths(root, grouped_rel,
+ cheapest_path, false, true,
+ gd, agg_costs, dNumGroups);
+ }
+ else
+ {
+ /*
+ * Generate a HashAgg Path. We just need an Agg over the
+ * cheapest-total input path, since input order won't matter.
+ */
+ add_path(grouped_rel, (Path *)
+ create_agg_path(root, grouped_rel,
+ cheapest_path,
+ grouped_rel->reltarget,
+ AGG_HASHED,
+ AGGSPLIT_SIMPLE,
+ parse->groupClause,
+ havingQual,
+ agg_costs,
+ dNumGroups));
+ }
+
+ /*
+ * Generate a Finalize HashAgg Path atop of the cheapest partially
+ * grouped path, assuming there is one
+ */
+ if (partially_grouped_rel && partially_grouped_rel->pathlist)
+ {
+ Path *path = partially_grouped_rel->cheapest_total_path;
+
+ add_path(grouped_rel, (Path *)
+ create_agg_path(root,
+ grouped_rel,
+ path,
+ grouped_rel->reltarget,
+ AGG_HASHED,
+ AGGSPLIT_FINAL_DESERIAL,
+ parse->groupClause,
+ havingQual,
+ agg_final_costs,
+ dNumGroups));
+ }
+ }
+
+ /*
+ * When partitionwise aggregate is used, we might have fully aggregated
+ * paths in the partial pathlist, because add_paths_to_append_rel() will
+ * consider a path for grouped_rel consisting of a Parallel Append of
+ * non-partial paths from each child.
+ */
+ if (grouped_rel->partial_pathlist != NIL)
+ gather_grouping_paths(root, grouped_rel);
+}
+
+/*
+ * create_partial_grouping_paths
+ *
+ * Create a new upper relation representing the result of partial aggregation
+ * and populate it with appropriate paths. Note that we don't finalize the
+ * lists of paths here, so the caller can add additional partial or non-partial
+ * paths and must afterward call gather_grouping_paths and set_cheapest on
+ * the returned upper relation.
+ *
+ * All paths for this new upper relation -- both partial and non-partial --
+ * have been partially aggregated but require a subsequent FinalizeAggregate
+ * step.
+ *
+ * NB: This function is allowed to return NULL if it determines that there is
+ * no real need to create a new RelOptInfo.
+ */
+static RelOptInfo *
+create_partial_grouping_paths(PlannerInfo *root,
+ RelOptInfo *grouped_rel,
+ RelOptInfo *input_rel,
+ grouping_sets_data *gd,
+ GroupPathExtraData *extra,
+ bool force_rel_creation)
+{
+ Query *parse = root->parse;
+ RelOptInfo *partially_grouped_rel;
+ AggClauseCosts *agg_partial_costs = &extra->agg_partial_costs;
+ AggClauseCosts *agg_final_costs = &extra->agg_final_costs;
+ Path *cheapest_partial_path = NULL;
+ Path *cheapest_total_path = NULL;
+ double dNumPartialGroups = 0;
+ double dNumPartialPartialGroups = 0;
+ ListCell *lc;
+ bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0;
+ bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0;
+
+ /*
+ * Consider whether we should generate partially aggregated non-partial
+ * paths. We can only do this if we have a non-partial path, and only if
+ * the parent of the input rel is performing partial partitionwise
+ * aggregation. (Note that extra->patype is the type of partitionwise
+ * aggregation being used at the parent level, not this level.)
+ */
+ if (input_rel->pathlist != NIL &&
+ extra->patype == PARTITIONWISE_AGGREGATE_PARTIAL)
+ cheapest_total_path = input_rel->cheapest_total_path;
+
+ /*
+ * If parallelism is possible for grouped_rel, then we should consider
+ * generating partially-grouped partial paths. However, if the input rel
+ * has no partial paths, then we can't.
+ */
+ if (grouped_rel->consider_parallel && input_rel->partial_pathlist != NIL)
+ cheapest_partial_path = linitial(input_rel->partial_pathlist);
+
+ /*
+ * If we can't partially aggregate partial paths, and we can't partially
+ * aggregate non-partial paths, then don't bother creating the new
+ * RelOptInfo at all, unless the caller specified force_rel_creation.
+ */
+ if (cheapest_total_path == NULL &&
+ cheapest_partial_path == NULL &&
+ !force_rel_creation)
+ return NULL;
+
+ /*
+ * Build a new upper relation to represent the result of partially
+ * aggregating the rows from the input relation.
+ */
+ partially_grouped_rel = fetch_upper_rel(root,
+ UPPERREL_PARTIAL_GROUP_AGG,
+ grouped_rel->relids);
+ partially_grouped_rel->consider_parallel =
+ grouped_rel->consider_parallel;
+ partially_grouped_rel->reloptkind = grouped_rel->reloptkind;
+ partially_grouped_rel->serverid = grouped_rel->serverid;
+ partially_grouped_rel->userid = grouped_rel->userid;
+ partially_grouped_rel->useridiscurrent = grouped_rel->useridiscurrent;
+ partially_grouped_rel->fdwroutine = grouped_rel->fdwroutine;
+
+ /*
+ * Build target list for partial aggregate paths. These paths cannot just
+ * emit the same tlist as regular aggregate paths, because (1) we must
+ * include Vars and Aggrefs needed in HAVING, which might not appear in
+ * the result tlist, and (2) the Aggrefs must be set in partial mode.
+ */
+ partially_grouped_rel->reltarget =
+ make_partial_grouping_target(root, grouped_rel->reltarget,
+ extra->havingQual);
+
+ if (!extra->partial_costs_set)
+ {
+ /*
+ * Collect statistics about aggregates for estimating costs of
+ * performing aggregation in parallel.
+ */
+ MemSet(agg_partial_costs, 0, sizeof(AggClauseCosts));
+ MemSet(agg_final_costs, 0, sizeof(AggClauseCosts));
+ if (parse->hasAggs)
+ {
+ /* partial phase */
+ get_agg_clause_costs(root, AGGSPLIT_INITIAL_SERIAL,
+ agg_partial_costs);
+
+ /* final phase */
+ get_agg_clause_costs(root, AGGSPLIT_FINAL_DESERIAL,
+ agg_final_costs);
+ }
+
+ extra->partial_costs_set = true;
+ }
+
+ /* Estimate number of partial groups. */
+ if (cheapest_total_path != NULL)
+ dNumPartialGroups =
+ get_number_of_groups(root,
+ cheapest_total_path->rows,
+ gd,
+ extra->targetList);
+ if (cheapest_partial_path != NULL)
+ dNumPartialPartialGroups =
+ get_number_of_groups(root,
+ cheapest_partial_path->rows,
+ gd,
+ extra->targetList);
+
+ if (can_sort && cheapest_total_path != NULL)
+ {
+ /* This should have been checked previously */
+ Assert(parse->hasAggs || parse->groupClause);
+
+ /*
+ * Use any available suitably-sorted path as input, and also consider
+ * sorting the cheapest partial path.
+ */
+ foreach(lc, input_rel->pathlist)
+ {
+ Path *path = (Path *) lfirst(lc);
+ bool is_sorted;
+
+ is_sorted = pathkeys_contained_in(root->group_pathkeys,
+ path->pathkeys);
+ if (path == cheapest_total_path || is_sorted)
+ {
+ /* Sort the cheapest partial path, if it isn't already */
+ if (!is_sorted)
+ path = (Path *) create_sort_path(root,
+ partially_grouped_rel,
+ path,
+ root->group_pathkeys,
+ -1.0);
+
+ if (parse->hasAggs)
+ add_path(partially_grouped_rel, (Path *)
+ create_agg_path(root,
+ partially_grouped_rel,
+ path,
+ partially_grouped_rel->reltarget,
+ parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_INITIAL_SERIAL,
+ parse->groupClause,
+ NIL,
+ agg_partial_costs,
+ dNumPartialGroups));
+ else
+ add_path(partially_grouped_rel, (Path *)
+ create_group_path(root,
+ partially_grouped_rel,
+ path,
+ parse->groupClause,
+ NIL,
+ dNumPartialGroups));
+ }
+ }
+
+ /*
+ * Consider incremental sort on all partial paths, if enabled.
+ *
+ * We can also skip the entire loop when we only have a single-item
+ * group_pathkeys because then we can't possibly have a presorted
+ * prefix of the list without having the list be fully sorted.
+ */
+ if (enable_incremental_sort && list_length(root->group_pathkeys) > 1)
+ {
+ foreach(lc, input_rel->pathlist)
+ {
+ Path *path = (Path *) lfirst(lc);
+ bool is_sorted;
+ int presorted_keys;
+
+ is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
+ path->pathkeys,
+ &presorted_keys);
+
+ /* Ignore already sorted paths */
+ if (is_sorted)
+ continue;
+
+ if (presorted_keys == 0)
+ continue;
+
+ /* Since we have presorted keys, consider incremental sort. */
+ path = (Path *) create_incremental_sort_path(root,
+ partially_grouped_rel,
+ path,
+ root->group_pathkeys,
+ presorted_keys,
+ -1.0);
+
+ if (parse->hasAggs)
+ add_path(partially_grouped_rel, (Path *)
+ create_agg_path(root,
+ partially_grouped_rel,
+ path,
+ partially_grouped_rel->reltarget,
+ parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_INITIAL_SERIAL,
+ parse->groupClause,
+ NIL,
+ agg_partial_costs,
+ dNumPartialGroups));
+ else
+ add_path(partially_grouped_rel, (Path *)
+ create_group_path(root,
+ partially_grouped_rel,
+ path,
+ parse->groupClause,
+ NIL,
+ dNumPartialGroups));
+ }
+ }
+
+ }
+
+ if (can_sort && cheapest_partial_path != NULL)
+ {
+ /* Similar to above logic, but for partial paths. */
+ foreach(lc, input_rel->partial_pathlist)
+ {
+ Path *path = (Path *) lfirst(lc);
+ Path *path_original = path;
+ bool is_sorted;
+ int presorted_keys;
+
+ is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
+ path->pathkeys,
+ &presorted_keys);
+
+ if (path == cheapest_partial_path || is_sorted)
+ {
+ /* Sort the cheapest partial path, if it isn't already */
+ if (!is_sorted)
+ path = (Path *) create_sort_path(root,
+ partially_grouped_rel,
+ path,
+ root->group_pathkeys,
+ -1.0);
+
+ if (parse->hasAggs)
+ add_partial_path(partially_grouped_rel, (Path *)
+ create_agg_path(root,
+ partially_grouped_rel,
+ path,
+ partially_grouped_rel->reltarget,
+ parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_INITIAL_SERIAL,
+ parse->groupClause,
+ NIL,
+ agg_partial_costs,
+ dNumPartialPartialGroups));
+ else
+ add_partial_path(partially_grouped_rel, (Path *)
+ create_group_path(root,
+ partially_grouped_rel,
+ path,
+ parse->groupClause,
+ NIL,
+ dNumPartialPartialGroups));
+ }
+
+ /*
+ * Now we may consider incremental sort on this path, but only
+ * when the path is not already sorted and when incremental sort
+ * is enabled.
+ */
+ if (is_sorted || !enable_incremental_sort)
+ continue;
+
+ /* Restore the input path (we might have added Sort on top). */
+ path = path_original;
+
+ /* no shared prefix, not point in building incremental sort */
+ if (presorted_keys == 0)
+ continue;
+
+ /*
+ * We should have already excluded pathkeys of length 1 because
+ * then presorted_keys > 0 would imply is_sorted was true.
+ */
+ Assert(list_length(root->group_pathkeys) != 1);
+
+ path = (Path *) create_incremental_sort_path(root,
+ partially_grouped_rel,
+ path,
+ root->group_pathkeys,
+ presorted_keys,
+ -1.0);
+
+ if (parse->hasAggs)
+ add_partial_path(partially_grouped_rel, (Path *)
+ create_agg_path(root,
+ partially_grouped_rel,
+ path,
+ partially_grouped_rel->reltarget,
+ parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+ AGGSPLIT_INITIAL_SERIAL,
+ parse->groupClause,
+ NIL,
+ agg_partial_costs,
+ dNumPartialPartialGroups));
+ else
+ add_partial_path(partially_grouped_rel, (Path *)
+ create_group_path(root,
+ partially_grouped_rel,
+ path,
+ parse->groupClause,
+ NIL,
+ dNumPartialPartialGroups));
+ }
+ }
+
+ /*
+ * Add a partially-grouped HashAgg Path where possible
+ */
+ if (can_hash && cheapest_total_path != NULL)
+ {
+ /* Checked above */
+ Assert(parse->hasAggs || parse->groupClause);
+
+ add_path(partially_grouped_rel, (Path *)
+ create_agg_path(root,
+ partially_grouped_rel,
+ cheapest_total_path,
+ partially_grouped_rel->reltarget,
+ AGG_HASHED,
+ AGGSPLIT_INITIAL_SERIAL,
+ parse->groupClause,
+ NIL,
+ agg_partial_costs,
+ dNumPartialGroups));
+ }
+
+ /*
+ * Now add a partially-grouped HashAgg partial Path where possible
+ */
+ if (can_hash && cheapest_partial_path != NULL)
+ {
+ add_partial_path(partially_grouped_rel, (Path *)
+ create_agg_path(root,
+ partially_grouped_rel,
+ cheapest_partial_path,
+ partially_grouped_rel->reltarget,
+ AGG_HASHED,
+ AGGSPLIT_INITIAL_SERIAL,
+ parse->groupClause,
+ NIL,
+ agg_partial_costs,
+ dNumPartialPartialGroups));
+ }
+
+ /*
+ * If there is an FDW that's responsible for all baserels of the query,
+ * let it consider adding partially grouped ForeignPaths.
+ */
+ if (partially_grouped_rel->fdwroutine &&
+ partially_grouped_rel->fdwroutine->GetForeignUpperPaths)
+ {
+ FdwRoutine *fdwroutine = partially_grouped_rel->fdwroutine;
+
+ fdwroutine->GetForeignUpperPaths(root,
+ UPPERREL_PARTIAL_GROUP_AGG,
+ input_rel, partially_grouped_rel,
+ extra);
+ }
+
+ return partially_grouped_rel;
+}
+
+/*
+ * Generate Gather and Gather Merge paths for a grouping relation or partial
+ * grouping relation.
+ *
+ * generate_useful_gather_paths does most of the work, but we also consider a
+ * special case: we could try sorting the data by the group_pathkeys and then
+ * applying Gather Merge.
+ *
+ * NB: This function shouldn't be used for anything other than a grouped or
+ * partially grouped relation not only because of the fact that it explicitly
+ * references group_pathkeys but we pass "true" as the third argument to
+ * generate_useful_gather_paths().
+ */
+static void
+gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel)
+{
+ ListCell *lc;
+ Path *cheapest_partial_path;
+
+ /* Try Gather for unordered paths and Gather Merge for ordered ones. */
+ generate_useful_gather_paths(root, rel, true);
+
+ /* Try cheapest partial path + explicit Sort + Gather Merge. */
+ cheapest_partial_path = linitial(rel->partial_pathlist);
+ if (!pathkeys_contained_in(root->group_pathkeys,
+ cheapest_partial_path->pathkeys))
+ {
+ Path *path;
+ double total_groups;
+
+ total_groups =
+ cheapest_partial_path->rows * cheapest_partial_path->parallel_workers;
+ path = (Path *) create_sort_path(root, rel, cheapest_partial_path,
+ root->group_pathkeys,
+ -1.0);
+ path = (Path *)
+ create_gather_merge_path(root,
+ rel,
+ path,
+ rel->reltarget,
+ root->group_pathkeys,
+ NULL,
+ &total_groups);
+
+ add_path(rel, path);
+ }
+
+ /*
+ * Consider incremental sort on all partial paths, if enabled.
+ *
+ * We can also skip the entire loop when we only have a single-item
+ * group_pathkeys because then we can't possibly have a presorted prefix
+ * of the list without having the list be fully sorted.
+ */
+ if (!enable_incremental_sort || list_length(root->group_pathkeys) == 1)
+ return;
+
+ /* also consider incremental sort on partial paths, if enabled */
+ foreach(lc, rel->partial_pathlist)
+ {
+ Path *path = (Path *) lfirst(lc);
+ bool is_sorted;
+ int presorted_keys;
+ double total_groups;
+
+ is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
+ path->pathkeys,
+ &presorted_keys);
+
+ if (is_sorted)
+ continue;
+
+ if (presorted_keys == 0)
+ continue;
+
+ path = (Path *) create_incremental_sort_path(root,
+ rel,
+ path,
+ root->group_pathkeys,
+ presorted_keys,
+ -1.0);
+
+ path = (Path *)
+ create_gather_merge_path(root,
+ rel,
+ path,
+ rel->reltarget,
+ root->group_pathkeys,
+ NULL,
+ &total_groups);
+
+ add_path(rel, path);
+ }
+}
+
+/*
+ * can_partial_agg
+ *
+ * Determines whether or not partial grouping and/or aggregation is possible.
+ * Returns true when possible, false otherwise.
+ */
+static bool
+can_partial_agg(PlannerInfo *root)
+{
+ Query *parse = root->parse;
+
+ if (!parse->hasAggs && parse->groupClause == NIL)
+ {
+ /*
+ * We don't know how to do parallel aggregation unless we have either
+ * some aggregates or a grouping clause.
+ */
+ return false;
+ }
+ else if (parse->groupingSets)
+ {
+ /* We don't know how to do grouping sets in parallel. */
+ return false;
+ }
+ else if (root->hasNonPartialAggs || root->hasNonSerialAggs)
+ {
+ /* Insufficient support for partial mode. */
+ return false;
+ }
+
+ /* Everything looks good. */
+ return true;
+}
+
+/*
+ * apply_scanjoin_target_to_paths
+ *
+ * Adjust the final scan/join relation, and recursively all of its children,
+ * to generate the final scan/join target. It would be more correct to model
+ * this as a separate planning step with a new RelOptInfo at the toplevel and
+ * for each child relation, but doing it this way is noticeably cheaper.
+ * Maybe that problem can be solved at some point, but for now we do this.
+ *
+ * If tlist_same_exprs is true, then the scan/join target to be applied has
+ * the same expressions as the existing reltarget, so we need only insert the
+ * appropriate sortgroupref information. By avoiding the creation of
+ * projection paths we save effort both immediately and at plan creation time.
+ */
+static void
+apply_scanjoin_target_to_paths(PlannerInfo *root,
+ RelOptInfo *rel,
+ List *scanjoin_targets,
+ List *scanjoin_targets_contain_srfs,
+ bool scanjoin_target_parallel_safe,
+ bool tlist_same_exprs)
+{
+ bool rel_is_partitioned = IS_PARTITIONED_REL(rel);
+ PathTarget *scanjoin_target;
+ ListCell *lc;
+
+ /* This recurses, so be paranoid. */
+ check_stack_depth();
+
+ /*
+ * If the rel is partitioned, we want to drop its existing paths and
+ * generate new ones. This function would still be correct if we kept the
+ * existing paths: we'd modify them to generate the correct target above
+ * the partitioning Append, and then they'd compete on cost with paths
+ * generating the target below the Append. However, in our current cost
+ * model the latter way is always the same or cheaper cost, so modifying
+ * the existing paths would just be useless work. Moreover, when the cost
+ * is the same, varying roundoff errors might sometimes allow an existing
+ * path to be picked, resulting in undesirable cross-platform plan
+ * variations. So we drop old paths and thereby force the work to be done
+ * below the Append, except in the case of a non-parallel-safe target.
+ *
+ * Some care is needed, because we have to allow
+ * generate_useful_gather_paths to see the old partial paths in the next
+ * stanza. Hence, zap the main pathlist here, then allow
+ * generate_useful_gather_paths to add path(s) to the main list, and
+ * finally zap the partial pathlist.
+ */
+ if (rel_is_partitioned)
+ rel->pathlist = NIL;
+
+ /*
+ * If the scan/join target is not parallel-safe, partial paths cannot
+ * generate it.
+ */
+ if (!scanjoin_target_parallel_safe)
+ {
+ /*
+ * Since we can't generate the final scan/join target in parallel
+ * workers, this is our last opportunity to use any partial paths that
+ * exist; so build Gather path(s) that use them and emit whatever the
+ * current reltarget is. We don't do this in the case where the
+ * target is parallel-safe, since we will be able to generate superior
+ * paths by doing it after the final scan/join target has been
+ * applied.
+ */
+ generate_useful_gather_paths(root, rel, false);
+
+ /* Can't use parallel query above this level. */
+ rel->partial_pathlist = NIL;
+ rel->consider_parallel = false;
+ }
+
+ /* Finish dropping old paths for a partitioned rel, per comment above */
+ if (rel_is_partitioned)
+ rel->partial_pathlist = NIL;
+
+ /* Extract SRF-free scan/join target. */
+ scanjoin_target = linitial_node(PathTarget, scanjoin_targets);
+
+ /*
+ * Apply the SRF-free scan/join target to each existing path.
+ *
+ * If the tlist exprs are the same, we can just inject the sortgroupref
+ * information into the existing pathtargets. Otherwise, replace each
+ * path with a projection path that generates the SRF-free scan/join
+ * target. This can't change the ordering of paths within rel->pathlist,
+ * so we just modify the list in place.
+ */
+ foreach(lc, rel->pathlist)
+ {
+ Path *subpath = (Path *) lfirst(lc);
+
+ /* Shouldn't have any parameterized paths anymore */
+ Assert(subpath->param_info == NULL);
+
+ if (tlist_same_exprs)
+ subpath->pathtarget->sortgrouprefs =
+ scanjoin_target->sortgrouprefs;
+ else
+ {
+ Path *newpath;
+
+ newpath = (Path *) create_projection_path(root, rel, subpath,
+ scanjoin_target);
+ lfirst(lc) = newpath;
+ }
+ }
+
+ /* Likewise adjust the targets for any partial paths. */
+ foreach(lc, rel->partial_pathlist)
+ {
+ Path *subpath = (Path *) lfirst(lc);
+
+ /* Shouldn't have any parameterized paths anymore */
+ Assert(subpath->param_info == NULL);
+
+ if (tlist_same_exprs)
+ subpath->pathtarget->sortgrouprefs =
+ scanjoin_target->sortgrouprefs;
+ else
+ {
+ Path *newpath;
+
+ newpath = (Path *) create_projection_path(root, rel, subpath,
+ scanjoin_target);
+ lfirst(lc) = newpath;
+ }
+ }
+
+ /*
+ * Now, if final scan/join target contains SRFs, insert ProjectSetPath(s)
+ * atop each existing path. (Note that this function doesn't look at the
+ * cheapest-path fields, which is a good thing because they're bogus right
+ * now.)
+ */
+ if (root->parse->hasTargetSRFs)
+ adjust_paths_for_srfs(root, rel,
+ scanjoin_targets,
+ scanjoin_targets_contain_srfs);
+
+ /*
+ * Update the rel's target to be the final (with SRFs) scan/join target.
+ * This now matches the actual output of all the paths, and we might get
+ * confused in createplan.c if they don't agree. We must do this now so
+ * that any append paths made in the next part will use the correct
+ * pathtarget (cf. create_append_path).
+ *
+ * Note that this is also necessary if GetForeignUpperPaths() gets called
+ * on the final scan/join relation or on any of its children, since the
+ * FDW might look at the rel's target to create ForeignPaths.
+ */
+ rel->reltarget = llast_node(PathTarget, scanjoin_targets);
+
+ /*
+ * If the relation is partitioned, recursively apply the scan/join target
+ * to all partitions, and generate brand-new Append paths in which the
+ * scan/join target is computed below the Append rather than above it.
+ * Since Append is not projection-capable, that might save a separate
+ * Result node, and it also is important for partitionwise aggregate.
+ */
+ if (rel_is_partitioned)
+ {
+ List *live_children = NIL;
+ int partition_idx;
+
+ /* Adjust each partition. */
+ for (partition_idx = 0; partition_idx < rel->nparts; partition_idx++)
+ {
+ RelOptInfo *child_rel = rel->part_rels[partition_idx];
+ AppendRelInfo **appinfos;
+ int nappinfos;
+ List *child_scanjoin_targets = NIL;
+ ListCell *lc;
+
+ /* Pruned or dummy children can be ignored. */
+ if (child_rel == NULL || IS_DUMMY_REL(child_rel))
+ continue;
+
+ /* Translate scan/join targets for this child. */
+ appinfos = find_appinfos_by_relids(root, child_rel->relids,
+ &nappinfos);
+ foreach(lc, scanjoin_targets)
+ {
+ PathTarget *target = lfirst_node(PathTarget, lc);
+
+ target = copy_pathtarget(target);
+ target->exprs = (List *)
+ adjust_appendrel_attrs(root,
+ (Node *) target->exprs,
+ nappinfos, appinfos);
+ child_scanjoin_targets = lappend(child_scanjoin_targets,
+ target);
+ }
+ pfree(appinfos);
+
+ /* Recursion does the real work. */
+ apply_scanjoin_target_to_paths(root, child_rel,
+ child_scanjoin_targets,
+ scanjoin_targets_contain_srfs,
+ scanjoin_target_parallel_safe,
+ tlist_same_exprs);
+
+ /* Save non-dummy children for Append paths. */
+ if (!IS_DUMMY_REL(child_rel))
+ live_children = lappend(live_children, child_rel);
+ }
+
+ /* Build new paths for this relation by appending child paths. */
+ add_paths_to_append_rel(root, rel, live_children);
+ }
+
+ /*
+ * Consider generating Gather or Gather Merge paths. We must only do this
+ * if the relation is parallel safe, and we don't do it for child rels to
+ * avoid creating multiple Gather nodes within the same plan. We must do
+ * this after all paths have been generated and before set_cheapest, since
+ * one of the generated paths may turn out to be the cheapest one.
+ */
+ if (rel->consider_parallel && !IS_OTHER_REL(rel))
+ generate_useful_gather_paths(root, rel, false);
+
+ /*
+ * Reassess which paths are the cheapest, now that we've potentially added
+ * new Gather (or Gather Merge) and/or Append (or MergeAppend) paths to
+ * this relation.
+ */
+ set_cheapest(rel);
+}
+
+/*
+ * create_partitionwise_grouping_paths
+ *
+ * If the partition keys of input relation are part of the GROUP BY clause, all
+ * the rows belonging to a given group come from a single partition. This
+ * allows aggregation/grouping over a partitioned relation to be broken down
+ * into aggregation/grouping on each partition. This should be no worse, and
+ * often better, than the normal approach.
+ *
+ * However, if the GROUP BY clause does not contain all the partition keys,
+ * rows from a given group may be spread across multiple partitions. In that
+ * case, we perform partial aggregation for each group, append the results,
+ * and then finalize aggregation. This is less certain to win than the
+ * previous case. It may win if the PartialAggregate stage greatly reduces
+ * the number of groups, because fewer rows will pass through the Append node.
+ * It may lose if we have lots of small groups.
+ */
+static void
+create_partitionwise_grouping_paths(PlannerInfo *root,
+ RelOptInfo *input_rel,
+ RelOptInfo *grouped_rel,
+ RelOptInfo *partially_grouped_rel,
+ const AggClauseCosts *agg_costs,
+ grouping_sets_data *gd,
+ PartitionwiseAggregateType patype,
+ GroupPathExtraData *extra)
+{
+ int nparts = input_rel->nparts;
+ int cnt_parts;
+ List *grouped_live_children = NIL;
+ List *partially_grouped_live_children = NIL;
+ PathTarget *target = grouped_rel->reltarget;
+ bool partial_grouping_valid = true;
+
+ Assert(patype != PARTITIONWISE_AGGREGATE_NONE);
+ Assert(patype != PARTITIONWISE_AGGREGATE_PARTIAL ||
+ partially_grouped_rel != NULL);
+
+ /* Add paths for partitionwise aggregation/grouping. */
+ for (cnt_parts = 0; cnt_parts < nparts; cnt_parts++)
+ {
+ RelOptInfo *child_input_rel = input_rel->part_rels[cnt_parts];
+ PathTarget *child_target = copy_pathtarget(target);
+ AppendRelInfo **appinfos;
+ int nappinfos;
+ GroupPathExtraData child_extra;
+ RelOptInfo *child_grouped_rel;
+ RelOptInfo *child_partially_grouped_rel;
+
+ /* Pruned or dummy children can be ignored. */
+ if (child_input_rel == NULL || IS_DUMMY_REL(child_input_rel))
+ continue;
+
+ /*
+ * Copy the given "extra" structure as is and then override the
+ * members specific to this child.
+ */
+ memcpy(&child_extra, extra, sizeof(child_extra));
+
+ appinfos = find_appinfos_by_relids(root, child_input_rel->relids,
+ &nappinfos);
+
+ child_target->exprs = (List *)
+ adjust_appendrel_attrs(root,
+ (Node *) target->exprs,
+ nappinfos, appinfos);
+
+ /* Translate havingQual and targetList. */
+ child_extra.havingQual = (Node *)
+ adjust_appendrel_attrs(root,
+ extra->havingQual,
+ nappinfos, appinfos);
+ child_extra.targetList = (List *)
+ adjust_appendrel_attrs(root,
+ (Node *) extra->targetList,
+ nappinfos, appinfos);
+
+ /*
+ * extra->patype was the value computed for our parent rel; patype is
+ * the value for this relation. For the child, our value is its
+ * parent rel's value.
+ */
+ child_extra.patype = patype;
+
+ /*
+ * Create grouping relation to hold fully aggregated grouping and/or
+ * aggregation paths for the child.
+ */
+ child_grouped_rel = make_grouping_rel(root, child_input_rel,
+ child_target,
+ extra->target_parallel_safe,
+ child_extra.havingQual);
+
+ /* Create grouping paths for this child relation. */
+ create_ordinary_grouping_paths(root, child_input_rel,
+ child_grouped_rel,
+ agg_costs, gd, &child_extra,
+ &child_partially_grouped_rel);
+
+ if (child_partially_grouped_rel)
+ {
+ partially_grouped_live_children =
+ lappend(partially_grouped_live_children,
+ child_partially_grouped_rel);
+ }
+ else
+ partial_grouping_valid = false;
+
+ if (patype == PARTITIONWISE_AGGREGATE_FULL)
+ {
+ set_cheapest(child_grouped_rel);
+ grouped_live_children = lappend(grouped_live_children,
+ child_grouped_rel);
+ }
+
+ pfree(appinfos);
+ }
+
+ /*
+ * Try to create append paths for partially grouped children. For full
+ * partitionwise aggregation, we might have paths in the partial_pathlist
+ * if parallel aggregation is possible. For partial partitionwise
+ * aggregation, we may have paths in both pathlist and partial_pathlist.
+ *
+ * NB: We must have a partially grouped path for every child in order to
+ * generate a partially grouped path for this relation.
+ */
+ if (partially_grouped_rel && partial_grouping_valid)
+ {
+ Assert(partially_grouped_live_children != NIL);
+
+ add_paths_to_append_rel(root, partially_grouped_rel,
+ partially_grouped_live_children);
+
+ /*
+ * We need call set_cheapest, since the finalization step will use the
+ * cheapest path from the rel.
+ */
+ if (partially_grouped_rel->pathlist)
+ set_cheapest(partially_grouped_rel);
+ }
+
+ /* If possible, create append paths for fully grouped children. */
+ if (patype == PARTITIONWISE_AGGREGATE_FULL)
+ {
+ Assert(grouped_live_children != NIL);
+
+ add_paths_to_append_rel(root, grouped_rel, grouped_live_children);
+ }
+}
+
+/*
+ * group_by_has_partkey
+ *
+ * Returns true, if all the partition keys of the given relation are part of
+ * the GROUP BY clauses, false otherwise.
+ */
+static bool
+group_by_has_partkey(RelOptInfo *input_rel,
+ List *targetList,
+ List *groupClause)
+{
+ List *groupexprs = get_sortgrouplist_exprs(groupClause, targetList);
+ int cnt = 0;
+ int partnatts;
+
+ /* Input relation should be partitioned. */
+ Assert(input_rel->part_scheme);
+
+ /* Rule out early, if there are no partition keys present. */
+ if (!input_rel->partexprs)
+ return false;
+
+ partnatts = input_rel->part_scheme->partnatts;
+
+ for (cnt = 0; cnt < partnatts; cnt++)
+ {
+ List *partexprs = input_rel->partexprs[cnt];
+ ListCell *lc;
+ bool found = false;
+
+ foreach(lc, partexprs)
+ {
+ Expr *partexpr = lfirst(lc);
+
+ if (list_member(groupexprs, partexpr))
+ {
+ found = true;
+ break;
+ }
+ }
+
+ /*
+ * If none of the partition key expressions match with any of the
+ * GROUP BY expression, return false.
+ */
+ if (!found)
+ return false;
+ }
+
+ return true;
+}
diff --git a/src/backend/optimizer/plan/setrefs.c b/src/backend/optimizer/plan/setrefs.c
new file mode 100644
index 0000000..c79a65e
--- /dev/null
+++ b/src/backend/optimizer/plan/setrefs.c
@@ -0,0 +1,3178 @@
+/*-------------------------------------------------------------------------
+ *
+ * setrefs.c
+ * Post-processing of a completed plan tree: fix references to subplan
+ * vars, compute regproc values for operators, etc
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/plan/setrefs.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "access/transam.h"
+#include "catalog/pg_type.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/pathnode.h"
+#include "optimizer/planmain.h"
+#include "optimizer/planner.h"
+#include "optimizer/tlist.h"
+#include "tcop/utility.h"
+#include "utils/lsyscache.h"
+#include "utils/syscache.h"
+
+
+typedef struct
+{
+ Index varno; /* RT index of Var */
+ AttrNumber varattno; /* attr number of Var */
+ AttrNumber resno; /* TLE position of Var */
+} tlist_vinfo;
+
+typedef struct
+{
+ List *tlist; /* underlying target list */
+ int num_vars; /* number of plain Var tlist entries */
+ bool has_ph_vars; /* are there PlaceHolderVar entries? */
+ bool has_non_vars; /* are there other entries? */
+ tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]; /* has num_vars entries */
+} indexed_tlist;
+
+typedef struct
+{
+ PlannerInfo *root;
+ int rtoffset;
+ double num_exec;
+} fix_scan_expr_context;
+
+typedef struct
+{
+ PlannerInfo *root;
+ indexed_tlist *outer_itlist;
+ indexed_tlist *inner_itlist;
+ Index acceptable_rel;
+ int rtoffset;
+ double num_exec;
+} fix_join_expr_context;
+
+typedef struct
+{
+ PlannerInfo *root;
+ indexed_tlist *subplan_itlist;
+ Index newvarno;
+ int rtoffset;
+ double num_exec;
+} fix_upper_expr_context;
+
+/*
+ * Selecting the best alternative in an AlternativeSubPlan expression requires
+ * estimating how many times that expression will be evaluated. For an
+ * expression in a plan node's targetlist, the plan's estimated number of
+ * output rows is clearly what to use, but for an expression in a qual it's
+ * far less clear. Since AlternativeSubPlans aren't heavily used, we don't
+ * want to expend a lot of cycles making such estimates. What we use is twice
+ * the number of output rows. That's not entirely unfounded: we know that
+ * clause_selectivity() would fall back to a default selectivity estimate
+ * of 0.5 for any SubPlan, so if the qual containing the SubPlan is the last
+ * to be applied (which it likely would be, thanks to order_qual_clauses()),
+ * this matches what we could have estimated in a far more laborious fashion.
+ * Obviously there are many other scenarios, but it's probably not worth the
+ * trouble to try to improve on this estimate, especially not when we don't
+ * have a better estimate for the selectivity of the SubPlan qual itself.
+ */
+#define NUM_EXEC_TLIST(parentplan) ((parentplan)->plan_rows)
+#define NUM_EXEC_QUAL(parentplan) ((parentplan)->plan_rows * 2.0)
+
+/*
+ * Check if a Const node is a regclass value. We accept plain OID too,
+ * since a regclass Const will get folded to that type if it's an argument
+ * to oideq or similar operators. (This might result in some extraneous
+ * values in a plan's list of relation dependencies, but the worst result
+ * would be occasional useless replans.)
+ */
+#define ISREGCLASSCONST(con) \
+ (((con)->consttype == REGCLASSOID || (con)->consttype == OIDOID) && \
+ !(con)->constisnull)
+
+#define fix_scan_list(root, lst, rtoffset, num_exec) \
+ ((List *) fix_scan_expr(root, (Node *) (lst), rtoffset, num_exec))
+
+static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing);
+static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte);
+static bool flatten_rtes_walker(Node *node, PlannerGlobal *glob);
+static void add_rte_to_flat_rtable(PlannerGlobal *glob, RangeTblEntry *rte);
+static Plan *set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset);
+static Plan *set_indexonlyscan_references(PlannerInfo *root,
+ IndexOnlyScan *plan,
+ int rtoffset);
+static Plan *set_subqueryscan_references(PlannerInfo *root,
+ SubqueryScan *plan,
+ int rtoffset);
+static bool trivial_subqueryscan(SubqueryScan *plan);
+static Plan *clean_up_removed_plan_level(Plan *parent, Plan *child);
+static void set_foreignscan_references(PlannerInfo *root,
+ ForeignScan *fscan,
+ int rtoffset);
+static void set_customscan_references(PlannerInfo *root,
+ CustomScan *cscan,
+ int rtoffset);
+static Plan *set_append_references(PlannerInfo *root,
+ Append *aplan,
+ int rtoffset);
+static Plan *set_mergeappend_references(PlannerInfo *root,
+ MergeAppend *mplan,
+ int rtoffset);
+static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset);
+static Relids offset_relid_set(Relids relids, int rtoffset);
+static Node *fix_scan_expr(PlannerInfo *root, Node *node,
+ int rtoffset, double num_exec);
+static Node *fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context);
+static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context);
+static void set_join_references(PlannerInfo *root, Join *join, int rtoffset);
+static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset);
+static void set_param_references(PlannerInfo *root, Plan *plan);
+static Node *convert_combining_aggrefs(Node *node, void *context);
+static void set_dummy_tlist_references(Plan *plan, int rtoffset);
+static indexed_tlist *build_tlist_index(List *tlist);
+static Var *search_indexed_tlist_for_var(Var *var,
+ indexed_tlist *itlist,
+ Index newvarno,
+ int rtoffset);
+static Var *search_indexed_tlist_for_non_var(Expr *node,
+ indexed_tlist *itlist,
+ Index newvarno);
+static Var *search_indexed_tlist_for_sortgroupref(Expr *node,
+ Index sortgroupref,
+ indexed_tlist *itlist,
+ Index newvarno);
+static List *fix_join_expr(PlannerInfo *root,
+ List *clauses,
+ indexed_tlist *outer_itlist,
+ indexed_tlist *inner_itlist,
+ Index acceptable_rel,
+ int rtoffset, double num_exec);
+static Node *fix_join_expr_mutator(Node *node,
+ fix_join_expr_context *context);
+static Node *fix_upper_expr(PlannerInfo *root,
+ Node *node,
+ indexed_tlist *subplan_itlist,
+ Index newvarno,
+ int rtoffset, double num_exec);
+static Node *fix_upper_expr_mutator(Node *node,
+ fix_upper_expr_context *context);
+static List *set_returning_clause_references(PlannerInfo *root,
+ List *rlist,
+ Plan *topplan,
+ Index resultRelation,
+ int rtoffset);
+
+
+/*****************************************************************************
+ *
+ * SUBPLAN REFERENCES
+ *
+ *****************************************************************************/
+
+/*
+ * set_plan_references
+ *
+ * This is the final processing pass of the planner/optimizer. The plan
+ * tree is complete; we just have to adjust some representational details
+ * for the convenience of the executor:
+ *
+ * 1. We flatten the various subquery rangetables into a single list, and
+ * zero out RangeTblEntry fields that are not useful to the executor.
+ *
+ * 2. We adjust Vars in scan nodes to be consistent with the flat rangetable.
+ *
+ * 3. We adjust Vars in upper plan nodes to refer to the outputs of their
+ * subplans.
+ *
+ * 4. Aggrefs in Agg plan nodes need to be adjusted in some cases involving
+ * partial aggregation or minmax aggregate optimization.
+ *
+ * 5. PARAM_MULTIEXPR Params are replaced by regular PARAM_EXEC Params,
+ * now that we have finished planning all MULTIEXPR subplans.
+ *
+ * 6. AlternativeSubPlan expressions are replaced by just one of their
+ * alternatives, using an estimate of how many times they'll be executed.
+ *
+ * 7. We compute regproc OIDs for operators (ie, we look up the function
+ * that implements each op).
+ *
+ * 8. We create lists of specific objects that the plan depends on.
+ * This will be used by plancache.c to drive invalidation of cached plans.
+ * Relation dependencies are represented by OIDs, and everything else by
+ * PlanInvalItems (this distinction is motivated by the shared-inval APIs).
+ * Currently, relations, user-defined functions, and domains are the only
+ * types of objects that are explicitly tracked this way.
+ *
+ * 9. We assign every plan node in the tree a unique ID.
+ *
+ * We also perform one final optimization step, which is to delete
+ * SubqueryScan, Append, and MergeAppend plan nodes that aren't doing
+ * anything useful. The reason for doing this last is that
+ * it can't readily be done before set_plan_references, because it would
+ * break set_upper_references: the Vars in the child plan's top tlist
+ * wouldn't match up with the Vars in the outer plan tree. A SubqueryScan
+ * serves a necessary function as a buffer between outer query and subquery
+ * variable numbering ... but after we've flattened the rangetable this is
+ * no longer a problem, since then there's only one rtindex namespace.
+ * Likewise, Append and MergeAppend buffer between the parent and child vars
+ * of an appendrel, but we don't need to worry about that once we've done
+ * set_plan_references.
+ *
+ * set_plan_references recursively traverses the whole plan tree.
+ *
+ * The return value is normally the same Plan node passed in, but can be
+ * different when the passed-in Plan is a node we decide isn't needed.
+ *
+ * The flattened rangetable entries are appended to root->glob->finalrtable.
+ * Also, rowmarks entries are appended to root->glob->finalrowmarks, and the
+ * RT indexes of ModifyTable result relations to root->glob->resultRelations,
+ * and flattened AppendRelInfos are appended to root->glob->appendRelations.
+ * Plan dependencies are appended to root->glob->relationOids (for relations)
+ * and root->glob->invalItems (for everything else).
+ *
+ * Notice that we modify Plan nodes in-place, but use expression_tree_mutator
+ * to process targetlist and qual expressions. We can assume that the Plan
+ * nodes were just built by the planner and are not multiply referenced, but
+ * it's not so safe to assume that for expression tree nodes.
+ */
+Plan *
+set_plan_references(PlannerInfo *root, Plan *plan)
+{
+ Plan *result;
+ PlannerGlobal *glob = root->glob;
+ int rtoffset = list_length(glob->finalrtable);
+ ListCell *lc;
+
+ /*
+ * Add all the query's RTEs to the flattened rangetable. The live ones
+ * will have their rangetable indexes increased by rtoffset. (Additional
+ * RTEs, not referenced by the Plan tree, might get added after those.)
+ */
+ add_rtes_to_flat_rtable(root, false);
+
+ /*
+ * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
+ */
+ foreach(lc, root->rowMarks)
+ {
+ PlanRowMark *rc = lfirst_node(PlanRowMark, lc);
+ PlanRowMark *newrc;
+
+ /* flat copy is enough since all fields are scalars */
+ newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark));
+ memcpy(newrc, rc, sizeof(PlanRowMark));
+
+ /* adjust indexes ... but *not* the rowmarkId */
+ newrc->rti += rtoffset;
+ newrc->prti += rtoffset;
+
+ glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
+ }
+
+ /*
+ * Adjust RT indexes of AppendRelInfos and add to final appendrels list.
+ * We assume the AppendRelInfos were built during planning and don't need
+ * to be copied.
+ */
+ foreach(lc, root->append_rel_list)
+ {
+ AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
+
+ /* adjust RT indexes */
+ appinfo->parent_relid += rtoffset;
+ appinfo->child_relid += rtoffset;
+
+ /*
+ * Rather than adjust the translated_vars entries, just drop 'em.
+ * Neither the executor nor EXPLAIN currently need that data.
+ */
+ appinfo->translated_vars = NIL;
+
+ glob->appendRelations = lappend(glob->appendRelations, appinfo);
+ }
+
+ /* If needed, create workspace for processing AlternativeSubPlans */
+ if (root->hasAlternativeSubPlans)
+ {
+ root->isAltSubplan = (bool *)
+ palloc0(list_length(glob->subplans) * sizeof(bool));
+ root->isUsedSubplan = (bool *)
+ palloc0(list_length(glob->subplans) * sizeof(bool));
+ }
+
+ /* Now fix the Plan tree */
+ result = set_plan_refs(root, plan, rtoffset);
+
+ /*
+ * If we have AlternativeSubPlans, it is likely that we now have some
+ * unreferenced subplans in glob->subplans. To avoid expending cycles on
+ * those subplans later, get rid of them by setting those list entries to
+ * NULL. (Note: we can't do this immediately upon processing an
+ * AlternativeSubPlan, because there may be multiple copies of the
+ * AlternativeSubPlan, and they can get resolved differently.)
+ */
+ if (root->hasAlternativeSubPlans)
+ {
+ foreach(lc, glob->subplans)
+ {
+ int ndx = foreach_current_index(lc);
+
+ /*
+ * If it was used by some AlternativeSubPlan in this query level,
+ * but wasn't selected as best by any AlternativeSubPlan, then we
+ * don't need it. Do not touch subplans that aren't parts of
+ * AlternativeSubPlans.
+ */
+ if (root->isAltSubplan[ndx] && !root->isUsedSubplan[ndx])
+ lfirst(lc) = NULL;
+ }
+ }
+
+ return result;
+}
+
+/*
+ * Extract RangeTblEntries from the plan's rangetable, and add to flat rtable
+ *
+ * This can recurse into subquery plans; "recursing" is true if so.
+ */
+static void
+add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
+{
+ PlannerGlobal *glob = root->glob;
+ Index rti;
+ ListCell *lc;
+
+ /*
+ * Add the query's own RTEs to the flattened rangetable.
+ *
+ * At top level, we must add all RTEs so that their indexes in the
+ * flattened rangetable match up with their original indexes. When
+ * recursing, we only care about extracting relation RTEs.
+ */
+ foreach(lc, root->parse->rtable)
+ {
+ RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
+
+ if (!recursing || rte->rtekind == RTE_RELATION)
+ add_rte_to_flat_rtable(glob, rte);
+ }
+
+ /*
+ * If there are any dead subqueries, they are not referenced in the Plan
+ * tree, so we must add RTEs contained in them to the flattened rtable
+ * separately. (If we failed to do this, the executor would not perform
+ * expected permission checks for tables mentioned in such subqueries.)
+ *
+ * Note: this pass over the rangetable can't be combined with the previous
+ * one, because that would mess up the numbering of the live RTEs in the
+ * flattened rangetable.
+ */
+ rti = 1;
+ foreach(lc, root->parse->rtable)
+ {
+ RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
+
+ /*
+ * We should ignore inheritance-parent RTEs: their contents have been
+ * pulled up into our rangetable already. Also ignore any subquery
+ * RTEs without matching RelOptInfos, as they likewise have been
+ * pulled up.
+ */
+ if (rte->rtekind == RTE_SUBQUERY && !rte->inh &&
+ rti < root->simple_rel_array_size)
+ {
+ RelOptInfo *rel = root->simple_rel_array[rti];
+
+ if (rel != NULL)
+ {
+ Assert(rel->relid == rti); /* sanity check on array */
+
+ /*
+ * The subquery might never have been planned at all, if it
+ * was excluded on the basis of self-contradictory constraints
+ * in our query level. In this case apply
+ * flatten_unplanned_rtes.
+ *
+ * If it was planned but the result rel is dummy, we assume
+ * that it has been omitted from our plan tree (see
+ * set_subquery_pathlist), and recurse to pull up its RTEs.
+ *
+ * Otherwise, it should be represented by a SubqueryScan node
+ * somewhere in our plan tree, and we'll pull up its RTEs when
+ * we process that plan node.
+ *
+ * However, if we're recursing, then we should pull up RTEs
+ * whether the subquery is dummy or not, because we've found
+ * that some upper query level is treating this one as dummy,
+ * and so we won't scan this level's plan tree at all.
+ */
+ if (rel->subroot == NULL)
+ flatten_unplanned_rtes(glob, rte);
+ else if (recursing ||
+ IS_DUMMY_REL(fetch_upper_rel(rel->subroot,
+ UPPERREL_FINAL, NULL)))
+ add_rtes_to_flat_rtable(rel->subroot, true);
+ }
+ }
+ rti++;
+ }
+}
+
+/*
+ * Extract RangeTblEntries from a subquery that was never planned at all
+ */
+static void
+flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte)
+{
+ /* Use query_tree_walker to find all RTEs in the parse tree */
+ (void) query_tree_walker(rte->subquery,
+ flatten_rtes_walker,
+ (void *) glob,
+ QTW_EXAMINE_RTES_BEFORE);
+}
+
+static bool
+flatten_rtes_walker(Node *node, PlannerGlobal *glob)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, RangeTblEntry))
+ {
+ RangeTblEntry *rte = (RangeTblEntry *) node;
+
+ /* As above, we need only save relation RTEs */
+ if (rte->rtekind == RTE_RELATION)
+ add_rte_to_flat_rtable(glob, rte);
+ return false;
+ }
+ if (IsA(node, Query))
+ {
+ /* Recurse into subselects */
+ return query_tree_walker((Query *) node,
+ flatten_rtes_walker,
+ (void *) glob,
+ QTW_EXAMINE_RTES_BEFORE);
+ }
+ return expression_tree_walker(node, flatten_rtes_walker,
+ (void *) glob);
+}
+
+/*
+ * Add (a copy of) the given RTE to the final rangetable
+ *
+ * In the flat rangetable, we zero out substructure pointers that are not
+ * needed by the executor; this reduces the storage space and copying cost
+ * for cached plans. We keep only the ctename, alias and eref Alias fields,
+ * which are needed by EXPLAIN, and the selectedCols, insertedCols,
+ * updatedCols, and extraUpdatedCols bitmaps, which are needed for
+ * executor-startup permissions checking and for trigger event checking.
+ */
+static void
+add_rte_to_flat_rtable(PlannerGlobal *glob, RangeTblEntry *rte)
+{
+ RangeTblEntry *newrte;
+
+ /* flat copy to duplicate all the scalar fields */
+ newrte = (RangeTblEntry *) palloc(sizeof(RangeTblEntry));
+ memcpy(newrte, rte, sizeof(RangeTblEntry));
+
+ /* zap unneeded sub-structure */
+ newrte->tablesample = NULL;
+ newrte->subquery = NULL;
+ newrte->joinaliasvars = NIL;
+ newrte->joinleftcols = NIL;
+ newrte->joinrightcols = NIL;
+ newrte->join_using_alias = NULL;
+ newrte->functions = NIL;
+ newrte->tablefunc = NULL;
+ newrte->values_lists = NIL;
+ newrte->coltypes = NIL;
+ newrte->coltypmods = NIL;
+ newrte->colcollations = NIL;
+ newrte->securityQuals = NIL;
+
+ glob->finalrtable = lappend(glob->finalrtable, newrte);
+
+ /*
+ * Check for RT index overflow; it's very unlikely, but if it did happen,
+ * the executor would get confused by varnos that match the special varno
+ * values.
+ */
+ if (IS_SPECIAL_VARNO(list_length(glob->finalrtable)))
+ ereport(ERROR,
+ (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
+ errmsg("too many range table entries")));
+
+ /*
+ * If it's a plain relation RTE, add the table to relationOids.
+ *
+ * We do this even though the RTE might be unreferenced in the plan tree;
+ * this would correspond to cases such as views that were expanded, child
+ * tables that were eliminated by constraint exclusion, etc. Schema
+ * invalidation on such a rel must still force rebuilding of the plan.
+ *
+ * Note we don't bother to avoid making duplicate list entries. We could,
+ * but it would probably cost more cycles than it would save.
+ */
+ if (newrte->rtekind == RTE_RELATION)
+ glob->relationOids = lappend_oid(glob->relationOids, newrte->relid);
+}
+
+/*
+ * set_plan_refs: recurse through the Plan nodes of a single subquery level
+ */
+static Plan *
+set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
+{
+ ListCell *l;
+
+ if (plan == NULL)
+ return NULL;
+
+ /* Assign this node a unique ID. */
+ plan->plan_node_id = root->glob->lastPlanNodeId++;
+
+ /*
+ * Plan-type-specific fixes
+ */
+ switch (nodeTag(plan))
+ {
+ case T_SeqScan:
+ {
+ SeqScan *splan = (SeqScan *) plan;
+
+ splan->scanrelid += rtoffset;
+ splan->plan.targetlist =
+ fix_scan_list(root, splan->plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->plan.qual =
+ fix_scan_list(root, splan->plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ }
+ break;
+ case T_SampleScan:
+ {
+ SampleScan *splan = (SampleScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ splan->tablesample = (TableSampleClause *)
+ fix_scan_expr(root, (Node *) splan->tablesample,
+ rtoffset, 1);
+ }
+ break;
+ case T_IndexScan:
+ {
+ IndexScan *splan = (IndexScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ splan->indexqual =
+ fix_scan_list(root, splan->indexqual,
+ rtoffset, 1);
+ splan->indexqualorig =
+ fix_scan_list(root, splan->indexqualorig,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ splan->indexorderby =
+ fix_scan_list(root, splan->indexorderby,
+ rtoffset, 1);
+ splan->indexorderbyorig =
+ fix_scan_list(root, splan->indexorderbyorig,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ }
+ break;
+ case T_IndexOnlyScan:
+ {
+ IndexOnlyScan *splan = (IndexOnlyScan *) plan;
+
+ return set_indexonlyscan_references(root, splan, rtoffset);
+ }
+ break;
+ case T_BitmapIndexScan:
+ {
+ BitmapIndexScan *splan = (BitmapIndexScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ /* no need to fix targetlist and qual */
+ Assert(splan->scan.plan.targetlist == NIL);
+ Assert(splan->scan.plan.qual == NIL);
+ splan->indexqual =
+ fix_scan_list(root, splan->indexqual, rtoffset, 1);
+ splan->indexqualorig =
+ fix_scan_list(root, splan->indexqualorig,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ }
+ break;
+ case T_BitmapHeapScan:
+ {
+ BitmapHeapScan *splan = (BitmapHeapScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ splan->bitmapqualorig =
+ fix_scan_list(root, splan->bitmapqualorig,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ }
+ break;
+ case T_TidScan:
+ {
+ TidScan *splan = (TidScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ splan->tidquals =
+ fix_scan_list(root, splan->tidquals,
+ rtoffset, 1);
+ }
+ break;
+ case T_TidRangeScan:
+ {
+ TidRangeScan *splan = (TidRangeScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ splan->tidrangequals =
+ fix_scan_list(root, splan->tidrangequals,
+ rtoffset, 1);
+ }
+ break;
+ case T_SubqueryScan:
+ /* Needs special treatment, see comments below */
+ return set_subqueryscan_references(root,
+ (SubqueryScan *) plan,
+ rtoffset);
+ case T_FunctionScan:
+ {
+ FunctionScan *splan = (FunctionScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ splan->functions =
+ fix_scan_list(root, splan->functions, rtoffset, 1);
+ }
+ break;
+ case T_TableFuncScan:
+ {
+ TableFuncScan *splan = (TableFuncScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ splan->tablefunc = (TableFunc *)
+ fix_scan_expr(root, (Node *) splan->tablefunc,
+ rtoffset, 1);
+ }
+ break;
+ case T_ValuesScan:
+ {
+ ValuesScan *splan = (ValuesScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ splan->values_lists =
+ fix_scan_list(root, splan->values_lists,
+ rtoffset, 1);
+ }
+ break;
+ case T_CteScan:
+ {
+ CteScan *splan = (CteScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ }
+ break;
+ case T_NamedTuplestoreScan:
+ {
+ NamedTuplestoreScan *splan = (NamedTuplestoreScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ }
+ break;
+ case T_WorkTableScan:
+ {
+ WorkTableScan *splan = (WorkTableScan *) plan;
+
+ splan->scan.scanrelid += rtoffset;
+ splan->scan.plan.targetlist =
+ fix_scan_list(root, splan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->scan.plan.qual =
+ fix_scan_list(root, splan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ }
+ break;
+ case T_ForeignScan:
+ set_foreignscan_references(root, (ForeignScan *) plan, rtoffset);
+ break;
+ case T_CustomScan:
+ set_customscan_references(root, (CustomScan *) plan, rtoffset);
+ break;
+
+ case T_NestLoop:
+ case T_MergeJoin:
+ case T_HashJoin:
+ set_join_references(root, (Join *) plan, rtoffset);
+ break;
+
+ case T_Gather:
+ case T_GatherMerge:
+ {
+ set_upper_references(root, plan, rtoffset);
+ set_param_references(root, plan);
+ }
+ break;
+
+ case T_Hash:
+ set_hash_references(root, plan, rtoffset);
+ break;
+
+ case T_Memoize:
+ {
+ Memoize *mplan = (Memoize *) plan;
+
+ /*
+ * Memoize does not evaluate its targetlist. It just uses the
+ * same targetlist from its outer subnode.
+ */
+ set_dummy_tlist_references(plan, rtoffset);
+
+ mplan->param_exprs = fix_scan_list(root, mplan->param_exprs,
+ rtoffset,
+ NUM_EXEC_TLIST(plan));
+ break;
+ }
+
+ case T_Material:
+ case T_Sort:
+ case T_IncrementalSort:
+ case T_Unique:
+ case T_SetOp:
+
+ /*
+ * These plan types don't actually bother to evaluate their
+ * targetlists, because they just return their unmodified input
+ * tuples. Even though the targetlist won't be used by the
+ * executor, we fix it up for possible use by EXPLAIN (not to
+ * mention ease of debugging --- wrong varnos are very confusing).
+ */
+ set_dummy_tlist_references(plan, rtoffset);
+
+ /*
+ * Since these plan types don't check quals either, we should not
+ * find any qual expression attached to them.
+ */
+ Assert(plan->qual == NIL);
+ break;
+ case T_LockRows:
+ {
+ LockRows *splan = (LockRows *) plan;
+
+ /*
+ * Like the plan types above, LockRows doesn't evaluate its
+ * tlist or quals. But we have to fix up the RT indexes in
+ * its rowmarks.
+ */
+ set_dummy_tlist_references(plan, rtoffset);
+ Assert(splan->plan.qual == NIL);
+
+ foreach(l, splan->rowMarks)
+ {
+ PlanRowMark *rc = (PlanRowMark *) lfirst(l);
+
+ rc->rti += rtoffset;
+ rc->prti += rtoffset;
+ }
+ }
+ break;
+ case T_Limit:
+ {
+ Limit *splan = (Limit *) plan;
+
+ /*
+ * Like the plan types above, Limit doesn't evaluate its tlist
+ * or quals. It does have live expressions for limit/offset,
+ * however; and those cannot contain subplan variable refs, so
+ * fix_scan_expr works for them.
+ */
+ set_dummy_tlist_references(plan, rtoffset);
+ Assert(splan->plan.qual == NIL);
+
+ splan->limitOffset =
+ fix_scan_expr(root, splan->limitOffset, rtoffset, 1);
+ splan->limitCount =
+ fix_scan_expr(root, splan->limitCount, rtoffset, 1);
+ }
+ break;
+ case T_Agg:
+ {
+ Agg *agg = (Agg *) plan;
+
+ /*
+ * If this node is combining partial-aggregation results, we
+ * must convert its Aggrefs to contain references to the
+ * partial-aggregate subexpressions that will be available
+ * from the child plan node.
+ */
+ if (DO_AGGSPLIT_COMBINE(agg->aggsplit))
+ {
+ plan->targetlist = (List *)
+ convert_combining_aggrefs((Node *) plan->targetlist,
+ NULL);
+ plan->qual = (List *)
+ convert_combining_aggrefs((Node *) plan->qual,
+ NULL);
+ }
+
+ set_upper_references(root, plan, rtoffset);
+ }
+ break;
+ case T_Group:
+ set_upper_references(root, plan, rtoffset);
+ break;
+ case T_WindowAgg:
+ {
+ WindowAgg *wplan = (WindowAgg *) plan;
+
+ set_upper_references(root, plan, rtoffset);
+
+ /*
+ * Like Limit node limit/offset expressions, WindowAgg has
+ * frame offset expressions, which cannot contain subplan
+ * variable refs, so fix_scan_expr works for them.
+ */
+ wplan->startOffset =
+ fix_scan_expr(root, wplan->startOffset, rtoffset, 1);
+ wplan->endOffset =
+ fix_scan_expr(root, wplan->endOffset, rtoffset, 1);
+ }
+ break;
+ case T_Result:
+ {
+ Result *splan = (Result *) plan;
+
+ /*
+ * Result may or may not have a subplan; if not, it's more
+ * like a scan node than an upper node.
+ */
+ if (splan->plan.lefttree != NULL)
+ set_upper_references(root, plan, rtoffset);
+ else
+ {
+ /*
+ * The tlist of a childless Result could contain
+ * unresolved ROWID_VAR Vars, in case it's representing a
+ * target relation which is completely empty because of
+ * constraint exclusion. Replace any such Vars by null
+ * constants, as though they'd been resolved for a leaf
+ * scan node that doesn't support them. We could have
+ * fix_scan_expr do this, but since the case is only
+ * expected to occur here, it seems safer to special-case
+ * it here and keep the assertions that ROWID_VARs
+ * shouldn't be seen by fix_scan_expr.
+ */
+ foreach(l, splan->plan.targetlist)
+ {
+ TargetEntry *tle = (TargetEntry *) lfirst(l);
+ Var *var = (Var *) tle->expr;
+
+ if (var && IsA(var, Var) && var->varno == ROWID_VAR)
+ tle->expr = (Expr *) makeNullConst(var->vartype,
+ var->vartypmod,
+ var->varcollid);
+ }
+
+ splan->plan.targetlist =
+ fix_scan_list(root, splan->plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST(plan));
+ splan->plan.qual =
+ fix_scan_list(root, splan->plan.qual,
+ rtoffset, NUM_EXEC_QUAL(plan));
+ }
+ /* resconstantqual can't contain any subplan variable refs */
+ splan->resconstantqual =
+ fix_scan_expr(root, splan->resconstantqual, rtoffset, 1);
+ }
+ break;
+ case T_ProjectSet:
+ set_upper_references(root, plan, rtoffset);
+ break;
+ case T_ModifyTable:
+ {
+ ModifyTable *splan = (ModifyTable *) plan;
+
+ Assert(splan->plan.targetlist == NIL);
+ Assert(splan->plan.qual == NIL);
+
+ splan->withCheckOptionLists =
+ fix_scan_list(root, splan->withCheckOptionLists,
+ rtoffset, 1);
+
+ if (splan->returningLists)
+ {
+ List *newRL = NIL;
+ Plan *subplan = outerPlan(splan);
+ ListCell *lcrl,
+ *lcrr;
+
+ /*
+ * Pass each per-resultrel returningList through
+ * set_returning_clause_references().
+ */
+ Assert(list_length(splan->returningLists) == list_length(splan->resultRelations));
+ forboth(lcrl, splan->returningLists,
+ lcrr, splan->resultRelations)
+ {
+ List *rlist = (List *) lfirst(lcrl);
+ Index resultrel = lfirst_int(lcrr);
+
+ rlist = set_returning_clause_references(root,
+ rlist,
+ subplan,
+ resultrel,
+ rtoffset);
+ newRL = lappend(newRL, rlist);
+ }
+ splan->returningLists = newRL;
+
+ /*
+ * Set up the visible plan targetlist as being the same as
+ * the first RETURNING list. This is for the use of
+ * EXPLAIN; the executor won't pay any attention to the
+ * targetlist. We postpone this step until here so that
+ * we don't have to do set_returning_clause_references()
+ * twice on identical targetlists.
+ */
+ splan->plan.targetlist = copyObject(linitial(newRL));
+ }
+
+ /*
+ * We treat ModifyTable with ON CONFLICT as a form of 'pseudo
+ * join', where the inner side is the EXCLUDED tuple.
+ * Therefore use fix_join_expr to setup the relevant variables
+ * to INNER_VAR. We explicitly don't create any OUTER_VARs as
+ * those are already used by RETURNING and it seems better to
+ * be non-conflicting.
+ */
+ if (splan->onConflictSet)
+ {
+ indexed_tlist *itlist;
+
+ itlist = build_tlist_index(splan->exclRelTlist);
+
+ splan->onConflictSet =
+ fix_join_expr(root, splan->onConflictSet,
+ NULL, itlist,
+ linitial_int(splan->resultRelations),
+ rtoffset, NUM_EXEC_QUAL(plan));
+
+ splan->onConflictWhere = (Node *)
+ fix_join_expr(root, (List *) splan->onConflictWhere,
+ NULL, itlist,
+ linitial_int(splan->resultRelations),
+ rtoffset, NUM_EXEC_QUAL(plan));
+
+ pfree(itlist);
+
+ splan->exclRelTlist =
+ fix_scan_list(root, splan->exclRelTlist, rtoffset, 1);
+ }
+
+ splan->nominalRelation += rtoffset;
+ if (splan->rootRelation)
+ splan->rootRelation += rtoffset;
+ splan->exclRelRTI += rtoffset;
+
+ foreach(l, splan->resultRelations)
+ {
+ lfirst_int(l) += rtoffset;
+ }
+ foreach(l, splan->rowMarks)
+ {
+ PlanRowMark *rc = (PlanRowMark *) lfirst(l);
+
+ rc->rti += rtoffset;
+ rc->prti += rtoffset;
+ }
+
+ /*
+ * Append this ModifyTable node's final result relation RT
+ * index(es) to the global list for the plan.
+ */
+ root->glob->resultRelations =
+ list_concat(root->glob->resultRelations,
+ splan->resultRelations);
+ if (splan->rootRelation)
+ {
+ root->glob->resultRelations =
+ lappend_int(root->glob->resultRelations,
+ splan->rootRelation);
+ }
+ }
+ break;
+ case T_Append:
+ /* Needs special treatment, see comments below */
+ return set_append_references(root,
+ (Append *) plan,
+ rtoffset);
+ case T_MergeAppend:
+ /* Needs special treatment, see comments below */
+ return set_mergeappend_references(root,
+ (MergeAppend *) plan,
+ rtoffset);
+ case T_RecursiveUnion:
+ /* This doesn't evaluate targetlist or check quals either */
+ set_dummy_tlist_references(plan, rtoffset);
+ Assert(plan->qual == NIL);
+ break;
+ case T_BitmapAnd:
+ {
+ BitmapAnd *splan = (BitmapAnd *) plan;
+
+ /* BitmapAnd works like Append, but has no tlist */
+ Assert(splan->plan.targetlist == NIL);
+ Assert(splan->plan.qual == NIL);
+ foreach(l, splan->bitmapplans)
+ {
+ lfirst(l) = set_plan_refs(root,
+ (Plan *) lfirst(l),
+ rtoffset);
+ }
+ }
+ break;
+ case T_BitmapOr:
+ {
+ BitmapOr *splan = (BitmapOr *) plan;
+
+ /* BitmapOr works like Append, but has no tlist */
+ Assert(splan->plan.targetlist == NIL);
+ Assert(splan->plan.qual == NIL);
+ foreach(l, splan->bitmapplans)
+ {
+ lfirst(l) = set_plan_refs(root,
+ (Plan *) lfirst(l),
+ rtoffset);
+ }
+ }
+ break;
+ default:
+ elog(ERROR, "unrecognized node type: %d",
+ (int) nodeTag(plan));
+ break;
+ }
+
+ /*
+ * Now recurse into child plans, if any
+ *
+ * NOTE: it is essential that we recurse into child plans AFTER we set
+ * subplan references in this plan's tlist and quals. If we did the
+ * reference-adjustments bottom-up, then we would fail to match this
+ * plan's var nodes against the already-modified nodes of the children.
+ */
+ plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset);
+ plan->righttree = set_plan_refs(root, plan->righttree, rtoffset);
+
+ return plan;
+}
+
+/*
+ * set_indexonlyscan_references
+ * Do set_plan_references processing on an IndexOnlyScan
+ *
+ * This is unlike the handling of a plain IndexScan because we have to
+ * convert Vars referencing the heap into Vars referencing the index.
+ * We can use the fix_upper_expr machinery for that, by working from a
+ * targetlist describing the index columns.
+ */
+static Plan *
+set_indexonlyscan_references(PlannerInfo *root,
+ IndexOnlyScan *plan,
+ int rtoffset)
+{
+ indexed_tlist *index_itlist;
+ List *stripped_indextlist;
+ ListCell *lc;
+
+ /*
+ * Vars in the plan node's targetlist, qual, and recheckqual must only
+ * reference columns that the index AM can actually return. To ensure
+ * this, remove non-returnable columns (which are marked as resjunk) from
+ * the indexed tlist. We can just drop them because the indexed_tlist
+ * machinery pays attention to TLE resnos, not physical list position.
+ */
+ stripped_indextlist = NIL;
+ foreach(lc, plan->indextlist)
+ {
+ TargetEntry *indextle = (TargetEntry *) lfirst(lc);
+
+ if (!indextle->resjunk)
+ stripped_indextlist = lappend(stripped_indextlist, indextle);
+ }
+
+ index_itlist = build_tlist_index(stripped_indextlist);
+
+ plan->scan.scanrelid += rtoffset;
+ plan->scan.plan.targetlist = (List *)
+ fix_upper_expr(root,
+ (Node *) plan->scan.plan.targetlist,
+ index_itlist,
+ INDEX_VAR,
+ rtoffset,
+ NUM_EXEC_TLIST((Plan *) plan));
+ plan->scan.plan.qual = (List *)
+ fix_upper_expr(root,
+ (Node *) plan->scan.plan.qual,
+ index_itlist,
+ INDEX_VAR,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) plan));
+ plan->recheckqual = (List *)
+ fix_upper_expr(root,
+ (Node *) plan->recheckqual,
+ index_itlist,
+ INDEX_VAR,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) plan));
+ /* indexqual is already transformed to reference index columns */
+ plan->indexqual = fix_scan_list(root, plan->indexqual,
+ rtoffset, 1);
+ /* indexorderby is already transformed to reference index columns */
+ plan->indexorderby = fix_scan_list(root, plan->indexorderby,
+ rtoffset, 1);
+ /* indextlist must NOT be transformed to reference index columns */
+ plan->indextlist = fix_scan_list(root, plan->indextlist,
+ rtoffset, NUM_EXEC_TLIST((Plan *) plan));
+
+ pfree(index_itlist);
+
+ return (Plan *) plan;
+}
+
+/*
+ * set_subqueryscan_references
+ * Do set_plan_references processing on a SubqueryScan
+ *
+ * We try to strip out the SubqueryScan entirely; if we can't, we have
+ * to do the normal processing on it.
+ */
+static Plan *
+set_subqueryscan_references(PlannerInfo *root,
+ SubqueryScan *plan,
+ int rtoffset)
+{
+ RelOptInfo *rel;
+ Plan *result;
+
+ /* Need to look up the subquery's RelOptInfo, since we need its subroot */
+ rel = find_base_rel(root, plan->scan.scanrelid);
+
+ /* Recursively process the subplan */
+ plan->subplan = set_plan_references(rel->subroot, plan->subplan);
+
+ if (trivial_subqueryscan(plan))
+ {
+ /*
+ * We can omit the SubqueryScan node and just pull up the subplan.
+ */
+ result = clean_up_removed_plan_level((Plan *) plan, plan->subplan);
+ }
+ else
+ {
+ /*
+ * Keep the SubqueryScan node. We have to do the processing that
+ * set_plan_references would otherwise have done on it. Notice we do
+ * not do set_upper_references() here, because a SubqueryScan will
+ * always have been created with correct references to its subplan's
+ * outputs to begin with.
+ */
+ plan->scan.scanrelid += rtoffset;
+ plan->scan.plan.targetlist =
+ fix_scan_list(root, plan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST((Plan *) plan));
+ plan->scan.plan.qual =
+ fix_scan_list(root, plan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL((Plan *) plan));
+
+ result = (Plan *) plan;
+ }
+
+ return result;
+}
+
+/*
+ * trivial_subqueryscan
+ * Detect whether a SubqueryScan can be deleted from the plan tree.
+ *
+ * We can delete it if it has no qual to check and the targetlist just
+ * regurgitates the output of the child plan.
+ */
+static bool
+trivial_subqueryscan(SubqueryScan *plan)
+{
+ int attrno;
+ ListCell *lp,
+ *lc;
+
+ if (plan->scan.plan.qual != NIL)
+ return false;
+
+ if (list_length(plan->scan.plan.targetlist) !=
+ list_length(plan->subplan->targetlist))
+ return false; /* tlists not same length */
+
+ attrno = 1;
+ forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
+ {
+ TargetEntry *ptle = (TargetEntry *) lfirst(lp);
+ TargetEntry *ctle = (TargetEntry *) lfirst(lc);
+
+ if (ptle->resjunk != ctle->resjunk)
+ return false; /* tlist doesn't match junk status */
+
+ /*
+ * We accept either a Var referencing the corresponding element of the
+ * subplan tlist, or a Const equaling the subplan element. See
+ * generate_setop_tlist() for motivation.
+ */
+ if (ptle->expr && IsA(ptle->expr, Var))
+ {
+ Var *var = (Var *) ptle->expr;
+
+ Assert(var->varno == plan->scan.scanrelid);
+ Assert(var->varlevelsup == 0);
+ if (var->varattno != attrno)
+ return false; /* out of order */
+ }
+ else if (ptle->expr && IsA(ptle->expr, Const))
+ {
+ if (!equal(ptle->expr, ctle->expr))
+ return false;
+ }
+ else
+ return false;
+
+ attrno++;
+ }
+
+ return true;
+}
+
+/*
+ * clean_up_removed_plan_level
+ * Do necessary cleanup when we strip out a SubqueryScan, Append, etc
+ *
+ * We are dropping the "parent" plan in favor of returning just its "child".
+ * A few small tweaks are needed.
+ */
+static Plan *
+clean_up_removed_plan_level(Plan *parent, Plan *child)
+{
+ /* We have to be sure we don't lose any initplans */
+ child->initPlan = list_concat(parent->initPlan,
+ child->initPlan);
+
+ /*
+ * We also have to transfer the parent's column labeling info into the
+ * child, else columns sent to client will be improperly labeled if this
+ * is the topmost plan level. resjunk and so on may be important too.
+ */
+ apply_tlist_labeling(child->targetlist, parent->targetlist);
+
+ return child;
+}
+
+/*
+ * set_foreignscan_references
+ * Do set_plan_references processing on a ForeignScan
+ */
+static void
+set_foreignscan_references(PlannerInfo *root,
+ ForeignScan *fscan,
+ int rtoffset)
+{
+ /* Adjust scanrelid if it's valid */
+ if (fscan->scan.scanrelid > 0)
+ fscan->scan.scanrelid += rtoffset;
+
+ if (fscan->fdw_scan_tlist != NIL || fscan->scan.scanrelid == 0)
+ {
+ /*
+ * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals to reference
+ * foreign scan tuple
+ */
+ indexed_tlist *itlist = build_tlist_index(fscan->fdw_scan_tlist);
+
+ fscan->scan.plan.targetlist = (List *)
+ fix_upper_expr(root,
+ (Node *) fscan->scan.plan.targetlist,
+ itlist,
+ INDEX_VAR,
+ rtoffset,
+ NUM_EXEC_TLIST((Plan *) fscan));
+ fscan->scan.plan.qual = (List *)
+ fix_upper_expr(root,
+ (Node *) fscan->scan.plan.qual,
+ itlist,
+ INDEX_VAR,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) fscan));
+ fscan->fdw_exprs = (List *)
+ fix_upper_expr(root,
+ (Node *) fscan->fdw_exprs,
+ itlist,
+ INDEX_VAR,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) fscan));
+ fscan->fdw_recheck_quals = (List *)
+ fix_upper_expr(root,
+ (Node *) fscan->fdw_recheck_quals,
+ itlist,
+ INDEX_VAR,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) fscan));
+ pfree(itlist);
+ /* fdw_scan_tlist itself just needs fix_scan_list() adjustments */
+ fscan->fdw_scan_tlist =
+ fix_scan_list(root, fscan->fdw_scan_tlist,
+ rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
+ }
+ else
+ {
+ /*
+ * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals in the standard
+ * way
+ */
+ fscan->scan.plan.targetlist =
+ fix_scan_list(root, fscan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
+ fscan->scan.plan.qual =
+ fix_scan_list(root, fscan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
+ fscan->fdw_exprs =
+ fix_scan_list(root, fscan->fdw_exprs,
+ rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
+ fscan->fdw_recheck_quals =
+ fix_scan_list(root, fscan->fdw_recheck_quals,
+ rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
+ }
+
+ fscan->fs_relids = offset_relid_set(fscan->fs_relids, rtoffset);
+
+ /* Adjust resultRelation if it's valid */
+ if (fscan->resultRelation > 0)
+ fscan->resultRelation += rtoffset;
+}
+
+/*
+ * set_customscan_references
+ * Do set_plan_references processing on a CustomScan
+ */
+static void
+set_customscan_references(PlannerInfo *root,
+ CustomScan *cscan,
+ int rtoffset)
+{
+ ListCell *lc;
+
+ /* Adjust scanrelid if it's valid */
+ if (cscan->scan.scanrelid > 0)
+ cscan->scan.scanrelid += rtoffset;
+
+ if (cscan->custom_scan_tlist != NIL || cscan->scan.scanrelid == 0)
+ {
+ /* Adjust tlist, qual, custom_exprs to reference custom scan tuple */
+ indexed_tlist *itlist = build_tlist_index(cscan->custom_scan_tlist);
+
+ cscan->scan.plan.targetlist = (List *)
+ fix_upper_expr(root,
+ (Node *) cscan->scan.plan.targetlist,
+ itlist,
+ INDEX_VAR,
+ rtoffset,
+ NUM_EXEC_TLIST((Plan *) cscan));
+ cscan->scan.plan.qual = (List *)
+ fix_upper_expr(root,
+ (Node *) cscan->scan.plan.qual,
+ itlist,
+ INDEX_VAR,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) cscan));
+ cscan->custom_exprs = (List *)
+ fix_upper_expr(root,
+ (Node *) cscan->custom_exprs,
+ itlist,
+ INDEX_VAR,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) cscan));
+ pfree(itlist);
+ /* custom_scan_tlist itself just needs fix_scan_list() adjustments */
+ cscan->custom_scan_tlist =
+ fix_scan_list(root, cscan->custom_scan_tlist,
+ rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
+ }
+ else
+ {
+ /* Adjust tlist, qual, custom_exprs in the standard way */
+ cscan->scan.plan.targetlist =
+ fix_scan_list(root, cscan->scan.plan.targetlist,
+ rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
+ cscan->scan.plan.qual =
+ fix_scan_list(root, cscan->scan.plan.qual,
+ rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
+ cscan->custom_exprs =
+ fix_scan_list(root, cscan->custom_exprs,
+ rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
+ }
+
+ /* Adjust child plan-nodes recursively, if needed */
+ foreach(lc, cscan->custom_plans)
+ {
+ lfirst(lc) = set_plan_refs(root, (Plan *) lfirst(lc), rtoffset);
+ }
+
+ cscan->custom_relids = offset_relid_set(cscan->custom_relids, rtoffset);
+}
+
+/*
+ * set_append_references
+ * Do set_plan_references processing on an Append
+ *
+ * We try to strip out the Append entirely; if we can't, we have
+ * to do the normal processing on it.
+ */
+static Plan *
+set_append_references(PlannerInfo *root,
+ Append *aplan,
+ int rtoffset)
+{
+ ListCell *l;
+
+ /*
+ * Append, like Sort et al, doesn't actually evaluate its targetlist or
+ * check quals. If it's got exactly one child plan, then it's not doing
+ * anything useful at all, and we can strip it out.
+ */
+ Assert(aplan->plan.qual == NIL);
+
+ /* First, we gotta recurse on the children */
+ foreach(l, aplan->appendplans)
+ {
+ lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
+ }
+
+ /*
+ * See if it's safe to get rid of the Append entirely. For this to be
+ * safe, there must be only one child plan and that child plan's parallel
+ * awareness must match that of the Append's. The reason for the latter
+ * is that the if the Append is parallel aware and the child is not then
+ * the calling plan may execute the non-parallel aware child multiple
+ * times.
+ */
+ if (list_length(aplan->appendplans) == 1 &&
+ ((Plan *) linitial(aplan->appendplans))->parallel_aware == aplan->plan.parallel_aware)
+ return clean_up_removed_plan_level((Plan *) aplan,
+ (Plan *) linitial(aplan->appendplans));
+
+ /*
+ * Otherwise, clean up the Append as needed. It's okay to do this after
+ * recursing to the children, because set_dummy_tlist_references doesn't
+ * look at those.
+ */
+ set_dummy_tlist_references((Plan *) aplan, rtoffset);
+
+ aplan->apprelids = offset_relid_set(aplan->apprelids, rtoffset);
+
+ if (aplan->part_prune_info)
+ {
+ foreach(l, aplan->part_prune_info->prune_infos)
+ {
+ List *prune_infos = lfirst(l);
+ ListCell *l2;
+
+ foreach(l2, prune_infos)
+ {
+ PartitionedRelPruneInfo *pinfo = lfirst(l2);
+
+ pinfo->rtindex += rtoffset;
+ }
+ }
+ }
+
+ /* We don't need to recurse to lefttree or righttree ... */
+ Assert(aplan->plan.lefttree == NULL);
+ Assert(aplan->plan.righttree == NULL);
+
+ return (Plan *) aplan;
+}
+
+/*
+ * set_mergeappend_references
+ * Do set_plan_references processing on a MergeAppend
+ *
+ * We try to strip out the MergeAppend entirely; if we can't, we have
+ * to do the normal processing on it.
+ */
+static Plan *
+set_mergeappend_references(PlannerInfo *root,
+ MergeAppend *mplan,
+ int rtoffset)
+{
+ ListCell *l;
+
+ /*
+ * MergeAppend, like Sort et al, doesn't actually evaluate its targetlist
+ * or check quals. If it's got exactly one child plan, then it's not
+ * doing anything useful at all, and we can strip it out.
+ */
+ Assert(mplan->plan.qual == NIL);
+
+ /* First, we gotta recurse on the children */
+ foreach(l, mplan->mergeplans)
+ {
+ lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
+ }
+
+ /*
+ * See if it's safe to get rid of the MergeAppend entirely. For this to
+ * be safe, there must be only one child plan and that child plan's
+ * parallel awareness must match that of the MergeAppend's. The reason
+ * for the latter is that the if the MergeAppend is parallel aware and the
+ * child is not then the calling plan may execute the non-parallel aware
+ * child multiple times.
+ */
+ if (list_length(mplan->mergeplans) == 1 &&
+ ((Plan *) linitial(mplan->mergeplans))->parallel_aware == mplan->plan.parallel_aware)
+ return clean_up_removed_plan_level((Plan *) mplan,
+ (Plan *) linitial(mplan->mergeplans));
+
+ /*
+ * Otherwise, clean up the MergeAppend as needed. It's okay to do this
+ * after recursing to the children, because set_dummy_tlist_references
+ * doesn't look at those.
+ */
+ set_dummy_tlist_references((Plan *) mplan, rtoffset);
+
+ mplan->apprelids = offset_relid_set(mplan->apprelids, rtoffset);
+
+ if (mplan->part_prune_info)
+ {
+ foreach(l, mplan->part_prune_info->prune_infos)
+ {
+ List *prune_infos = lfirst(l);
+ ListCell *l2;
+
+ foreach(l2, prune_infos)
+ {
+ PartitionedRelPruneInfo *pinfo = lfirst(l2);
+
+ pinfo->rtindex += rtoffset;
+ }
+ }
+ }
+
+ /* We don't need to recurse to lefttree or righttree ... */
+ Assert(mplan->plan.lefttree == NULL);
+ Assert(mplan->plan.righttree == NULL);
+
+ return (Plan *) mplan;
+}
+
+/*
+ * set_hash_references
+ * Do set_plan_references processing on a Hash node
+ */
+static void
+set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset)
+{
+ Hash *hplan = (Hash *) plan;
+ Plan *outer_plan = plan->lefttree;
+ indexed_tlist *outer_itlist;
+
+ /*
+ * Hash's hashkeys are used when feeding tuples into the hashtable,
+ * therefore have them reference Hash's outer plan (which itself is the
+ * inner plan of the HashJoin).
+ */
+ outer_itlist = build_tlist_index(outer_plan->targetlist);
+ hplan->hashkeys = (List *)
+ fix_upper_expr(root,
+ (Node *) hplan->hashkeys,
+ outer_itlist,
+ OUTER_VAR,
+ rtoffset,
+ NUM_EXEC_QUAL(plan));
+
+ /* Hash doesn't project */
+ set_dummy_tlist_references(plan, rtoffset);
+
+ /* Hash nodes don't have their own quals */
+ Assert(plan->qual == NIL);
+}
+
+/*
+ * offset_relid_set
+ * Apply rtoffset to the members of a Relids set.
+ */
+static Relids
+offset_relid_set(Relids relids, int rtoffset)
+{
+ Relids result = NULL;
+ int rtindex;
+
+ /* If there's no offset to apply, we needn't recompute the value */
+ if (rtoffset == 0)
+ return relids;
+ rtindex = -1;
+ while ((rtindex = bms_next_member(relids, rtindex)) >= 0)
+ result = bms_add_member(result, rtindex + rtoffset);
+ return result;
+}
+
+/*
+ * copyVar
+ * Copy a Var node.
+ *
+ * fix_scan_expr and friends do this enough times that it's worth having
+ * a bespoke routine instead of using the generic copyObject() function.
+ */
+static inline Var *
+copyVar(Var *var)
+{
+ Var *newvar = (Var *) palloc(sizeof(Var));
+
+ *newvar = *var;
+ return newvar;
+}
+
+/*
+ * fix_expr_common
+ * Do generic set_plan_references processing on an expression node
+ *
+ * This is code that is common to all variants of expression-fixing.
+ * We must look up operator opcode info for OpExpr and related nodes,
+ * add OIDs from regclass Const nodes into root->glob->relationOids, and
+ * add PlanInvalItems for user-defined functions into root->glob->invalItems.
+ * We also fill in column index lists for GROUPING() expressions.
+ *
+ * We assume it's okay to update opcode info in-place. So this could possibly
+ * scribble on the planner's input data structures, but it's OK.
+ */
+static void
+fix_expr_common(PlannerInfo *root, Node *node)
+{
+ /* We assume callers won't call us on a NULL pointer */
+ if (IsA(node, Aggref))
+ {
+ record_plan_function_dependency(root,
+ ((Aggref *) node)->aggfnoid);
+ }
+ else if (IsA(node, WindowFunc))
+ {
+ record_plan_function_dependency(root,
+ ((WindowFunc *) node)->winfnoid);
+ }
+ else if (IsA(node, FuncExpr))
+ {
+ record_plan_function_dependency(root,
+ ((FuncExpr *) node)->funcid);
+ }
+ else if (IsA(node, OpExpr))
+ {
+ set_opfuncid((OpExpr *) node);
+ record_plan_function_dependency(root,
+ ((OpExpr *) node)->opfuncid);
+ }
+ else if (IsA(node, DistinctExpr))
+ {
+ set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
+ record_plan_function_dependency(root,
+ ((DistinctExpr *) node)->opfuncid);
+ }
+ else if (IsA(node, NullIfExpr))
+ {
+ set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
+ record_plan_function_dependency(root,
+ ((NullIfExpr *) node)->opfuncid);
+ }
+ else if (IsA(node, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
+
+ set_sa_opfuncid(saop);
+ record_plan_function_dependency(root, saop->opfuncid);
+
+ if (!OidIsValid(saop->hashfuncid))
+ record_plan_function_dependency(root, saop->hashfuncid);
+ }
+ else if (IsA(node, Const))
+ {
+ Const *con = (Const *) node;
+
+ /* Check for regclass reference */
+ if (ISREGCLASSCONST(con))
+ root->glob->relationOids =
+ lappend_oid(root->glob->relationOids,
+ DatumGetObjectId(con->constvalue));
+ }
+ else if (IsA(node, GroupingFunc))
+ {
+ GroupingFunc *g = (GroupingFunc *) node;
+ AttrNumber *grouping_map = root->grouping_map;
+
+ /* If there are no grouping sets, we don't need this. */
+
+ Assert(grouping_map || g->cols == NIL);
+
+ if (grouping_map)
+ {
+ ListCell *lc;
+ List *cols = NIL;
+
+ foreach(lc, g->refs)
+ {
+ cols = lappend_int(cols, grouping_map[lfirst_int(lc)]);
+ }
+
+ Assert(!g->cols || equal(cols, g->cols));
+
+ if (!g->cols)
+ g->cols = cols;
+ }
+ }
+}
+
+/*
+ * fix_param_node
+ * Do set_plan_references processing on a Param
+ *
+ * If it's a PARAM_MULTIEXPR, replace it with the appropriate Param from
+ * root->multiexpr_params; otherwise no change is needed.
+ * Just for paranoia's sake, we make a copy of the node in either case.
+ */
+static Node *
+fix_param_node(PlannerInfo *root, Param *p)
+{
+ if (p->paramkind == PARAM_MULTIEXPR)
+ {
+ int subqueryid = p->paramid >> 16;
+ int colno = p->paramid & 0xFFFF;
+ List *params;
+
+ if (subqueryid <= 0 ||
+ subqueryid > list_length(root->multiexpr_params))
+ elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
+ params = (List *) list_nth(root->multiexpr_params, subqueryid - 1);
+ if (colno <= 0 || colno > list_length(params))
+ elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
+ return copyObject(list_nth(params, colno - 1));
+ }
+ return (Node *) copyObject(p);
+}
+
+/*
+ * fix_alternative_subplan
+ * Do set_plan_references processing on an AlternativeSubPlan
+ *
+ * Choose one of the alternative implementations and return just that one,
+ * discarding the rest of the AlternativeSubPlan structure.
+ * Note: caller must still recurse into the result!
+ *
+ * We don't make any attempt to fix up cost estimates in the parent plan
+ * node or higher-level nodes.
+ */
+static Node *
+fix_alternative_subplan(PlannerInfo *root, AlternativeSubPlan *asplan,
+ double num_exec)
+{
+ SubPlan *bestplan = NULL;
+ Cost bestcost = 0;
+ ListCell *lc;
+
+ /*
+ * Compute the estimated cost of each subplan assuming num_exec
+ * executions, and keep the cheapest one. In event of exact equality of
+ * estimates, we prefer the later plan; this is a bit arbitrary, but in
+ * current usage it biases us to break ties against fast-start subplans.
+ */
+ Assert(asplan->subplans != NIL);
+
+ foreach(lc, asplan->subplans)
+ {
+ SubPlan *curplan = (SubPlan *) lfirst(lc);
+ Cost curcost;
+
+ curcost = curplan->startup_cost + num_exec * curplan->per_call_cost;
+ if (bestplan == NULL || curcost <= bestcost)
+ {
+ bestplan = curplan;
+ bestcost = curcost;
+ }
+
+ /* Also mark all subplans that are in AlternativeSubPlans */
+ root->isAltSubplan[curplan->plan_id - 1] = true;
+ }
+
+ /* Mark the subplan we selected */
+ root->isUsedSubplan[bestplan->plan_id - 1] = true;
+
+ return (Node *) bestplan;
+}
+
+/*
+ * fix_scan_expr
+ * Do set_plan_references processing on a scan-level expression
+ *
+ * This consists of incrementing all Vars' varnos by rtoffset,
+ * replacing PARAM_MULTIEXPR Params, expanding PlaceHolderVars,
+ * replacing Aggref nodes that should be replaced by initplan output Params,
+ * choosing the best implementation for AlternativeSubPlans,
+ * looking up operator opcode info for OpExpr and related nodes,
+ * and adding OIDs from regclass Const nodes into root->glob->relationOids.
+ *
+ * 'node': the expression to be modified
+ * 'rtoffset': how much to increment varnos by
+ * 'num_exec': estimated number of executions of expression
+ *
+ * The expression tree is either copied-and-modified, or modified in-place
+ * if that seems safe.
+ */
+static Node *
+fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset, double num_exec)
+{
+ fix_scan_expr_context context;
+
+ context.root = root;
+ context.rtoffset = rtoffset;
+ context.num_exec = num_exec;
+
+ if (rtoffset != 0 ||
+ root->multiexpr_params != NIL ||
+ root->glob->lastPHId != 0 ||
+ root->minmax_aggs != NIL ||
+ root->hasAlternativeSubPlans)
+ {
+ return fix_scan_expr_mutator(node, &context);
+ }
+ else
+ {
+ /*
+ * If rtoffset == 0, we don't need to change any Vars, and if there
+ * are no MULTIEXPR subqueries then we don't need to replace
+ * PARAM_MULTIEXPR Params, and if there are no placeholders anywhere
+ * we won't need to remove them, and if there are no minmax Aggrefs we
+ * won't need to replace them, and if there are no AlternativeSubPlans
+ * we won't need to remove them. Then it's OK to just scribble on the
+ * input node tree instead of copying (since the only change, filling
+ * in any unset opfuncid fields, is harmless). This saves just enough
+ * cycles to be noticeable on trivial queries.
+ */
+ (void) fix_scan_expr_walker(node, &context);
+ return node;
+ }
+}
+
+static Node *
+fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context)
+{
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Var))
+ {
+ Var *var = copyVar((Var *) node);
+
+ Assert(var->varlevelsup == 0);
+
+ /*
+ * We should not see Vars marked INNER_VAR, OUTER_VAR, or ROWID_VAR.
+ * But an indexqual expression could contain INDEX_VAR Vars.
+ */
+ Assert(var->varno != INNER_VAR);
+ Assert(var->varno != OUTER_VAR);
+ Assert(var->varno != ROWID_VAR);
+ if (!IS_SPECIAL_VARNO(var->varno))
+ var->varno += context->rtoffset;
+ if (var->varnosyn > 0)
+ var->varnosyn += context->rtoffset;
+ return (Node *) var;
+ }
+ if (IsA(node, Param))
+ return fix_param_node(context->root, (Param *) node);
+ if (IsA(node, Aggref))
+ {
+ Aggref *aggref = (Aggref *) node;
+
+ /* See if the Aggref should be replaced by a Param */
+ if (context->root->minmax_aggs != NIL &&
+ list_length(aggref->args) == 1)
+ {
+ TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
+ ListCell *lc;
+
+ foreach(lc, context->root->minmax_aggs)
+ {
+ MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
+
+ if (mminfo->aggfnoid == aggref->aggfnoid &&
+ equal(mminfo->target, curTarget->expr))
+ return (Node *) copyObject(mminfo->param);
+ }
+ }
+ /* If no match, just fall through to process it normally */
+ }
+ if (IsA(node, CurrentOfExpr))
+ {
+ CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node);
+
+ Assert(cexpr->cvarno != INNER_VAR);
+ Assert(cexpr->cvarno != OUTER_VAR);
+ if (!IS_SPECIAL_VARNO(cexpr->cvarno))
+ cexpr->cvarno += context->rtoffset;
+ return (Node *) cexpr;
+ }
+ if (IsA(node, PlaceHolderVar))
+ {
+ /* At scan level, we should always just evaluate the contained expr */
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+
+ return fix_scan_expr_mutator((Node *) phv->phexpr, context);
+ }
+ if (IsA(node, AlternativeSubPlan))
+ return fix_scan_expr_mutator(fix_alternative_subplan(context->root,
+ (AlternativeSubPlan *) node,
+ context->num_exec),
+ context);
+ fix_expr_common(context->root, node);
+ return expression_tree_mutator(node, fix_scan_expr_mutator,
+ (void *) context);
+}
+
+static bool
+fix_scan_expr_walker(Node *node, fix_scan_expr_context *context)
+{
+ if (node == NULL)
+ return false;
+ Assert(!(IsA(node, Var) && ((Var *) node)->varno == ROWID_VAR));
+ Assert(!IsA(node, PlaceHolderVar));
+ Assert(!IsA(node, AlternativeSubPlan));
+ fix_expr_common(context->root, node);
+ return expression_tree_walker(node, fix_scan_expr_walker,
+ (void *) context);
+}
+
+/*
+ * set_join_references
+ * Modify the target list and quals of a join node to reference its
+ * subplans, by setting the varnos to OUTER_VAR or INNER_VAR and setting
+ * attno values to the result domain number of either the corresponding
+ * outer or inner join tuple item. Also perform opcode lookup for these
+ * expressions, and add regclass OIDs to root->glob->relationOids.
+ */
+static void
+set_join_references(PlannerInfo *root, Join *join, int rtoffset)
+{
+ Plan *outer_plan = join->plan.lefttree;
+ Plan *inner_plan = join->plan.righttree;
+ indexed_tlist *outer_itlist;
+ indexed_tlist *inner_itlist;
+
+ outer_itlist = build_tlist_index(outer_plan->targetlist);
+ inner_itlist = build_tlist_index(inner_plan->targetlist);
+
+ /*
+ * First process the joinquals (including merge or hash clauses). These
+ * are logically below the join so they can always use all values
+ * available from the input tlists. It's okay to also handle
+ * NestLoopParams now, because those couldn't refer to nullable
+ * subexpressions.
+ */
+ join->joinqual = fix_join_expr(root,
+ join->joinqual,
+ outer_itlist,
+ inner_itlist,
+ (Index) 0,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) join));
+
+ /* Now do join-type-specific stuff */
+ if (IsA(join, NestLoop))
+ {
+ NestLoop *nl = (NestLoop *) join;
+ ListCell *lc;
+
+ foreach(lc, nl->nestParams)
+ {
+ NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
+
+ nlp->paramval = (Var *) fix_upper_expr(root,
+ (Node *) nlp->paramval,
+ outer_itlist,
+ OUTER_VAR,
+ rtoffset,
+ NUM_EXEC_TLIST(outer_plan));
+ /* Check we replaced any PlaceHolderVar with simple Var */
+ if (!(IsA(nlp->paramval, Var) &&
+ nlp->paramval->varno == OUTER_VAR))
+ elog(ERROR, "NestLoopParam was not reduced to a simple Var");
+ }
+ }
+ else if (IsA(join, MergeJoin))
+ {
+ MergeJoin *mj = (MergeJoin *) join;
+
+ mj->mergeclauses = fix_join_expr(root,
+ mj->mergeclauses,
+ outer_itlist,
+ inner_itlist,
+ (Index) 0,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) join));
+ }
+ else if (IsA(join, HashJoin))
+ {
+ HashJoin *hj = (HashJoin *) join;
+
+ hj->hashclauses = fix_join_expr(root,
+ hj->hashclauses,
+ outer_itlist,
+ inner_itlist,
+ (Index) 0,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) join));
+
+ /*
+ * HashJoin's hashkeys are used to look for matching tuples from its
+ * outer plan (not the Hash node!) in the hashtable.
+ */
+ hj->hashkeys = (List *) fix_upper_expr(root,
+ (Node *) hj->hashkeys,
+ outer_itlist,
+ OUTER_VAR,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) join));
+ }
+
+ /*
+ * Now we need to fix up the targetlist and qpqual, which are logically
+ * above the join. This means they should not re-use any input expression
+ * that was computed in the nullable side of an outer join. Vars and
+ * PlaceHolderVars are fine, so we can implement this restriction just by
+ * clearing has_non_vars in the indexed_tlist structs.
+ *
+ * XXX This is a grotty workaround for the fact that we don't clearly
+ * distinguish between a Var appearing below an outer join and the "same"
+ * Var appearing above it. If we did, we'd not need to hack the matching
+ * rules this way.
+ */
+ switch (join->jointype)
+ {
+ case JOIN_LEFT:
+ case JOIN_SEMI:
+ case JOIN_ANTI:
+ inner_itlist->has_non_vars = false;
+ break;
+ case JOIN_RIGHT:
+ outer_itlist->has_non_vars = false;
+ break;
+ case JOIN_FULL:
+ outer_itlist->has_non_vars = false;
+ inner_itlist->has_non_vars = false;
+ break;
+ default:
+ break;
+ }
+
+ join->plan.targetlist = fix_join_expr(root,
+ join->plan.targetlist,
+ outer_itlist,
+ inner_itlist,
+ (Index) 0,
+ rtoffset,
+ NUM_EXEC_TLIST((Plan *) join));
+ join->plan.qual = fix_join_expr(root,
+ join->plan.qual,
+ outer_itlist,
+ inner_itlist,
+ (Index) 0,
+ rtoffset,
+ NUM_EXEC_QUAL((Plan *) join));
+
+ pfree(outer_itlist);
+ pfree(inner_itlist);
+}
+
+/*
+ * set_upper_references
+ * Update the targetlist and quals of an upper-level plan node
+ * to refer to the tuples returned by its lefttree subplan.
+ * Also perform opcode lookup for these expressions, and
+ * add regclass OIDs to root->glob->relationOids.
+ *
+ * This is used for single-input plan types like Agg, Group, Result.
+ *
+ * In most cases, we have to match up individual Vars in the tlist and
+ * qual expressions with elements of the subplan's tlist (which was
+ * generated by flattening these selfsame expressions, so it should have all
+ * the required variables). There is an important exception, however:
+ * depending on where we are in the plan tree, sort/group columns may have
+ * been pushed into the subplan tlist unflattened. If these values are also
+ * needed in the output then we want to reference the subplan tlist element
+ * rather than recomputing the expression.
+ */
+static void
+set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset)
+{
+ Plan *subplan = plan->lefttree;
+ indexed_tlist *subplan_itlist;
+ List *output_targetlist;
+ ListCell *l;
+
+ subplan_itlist = build_tlist_index(subplan->targetlist);
+
+ output_targetlist = NIL;
+ foreach(l, plan->targetlist)
+ {
+ TargetEntry *tle = (TargetEntry *) lfirst(l);
+ Node *newexpr;
+
+ /* If it's a sort/group item, first try to match by sortref */
+ if (tle->ressortgroupref != 0)
+ {
+ newexpr = (Node *)
+ search_indexed_tlist_for_sortgroupref(tle->expr,
+ tle->ressortgroupref,
+ subplan_itlist,
+ OUTER_VAR);
+ if (!newexpr)
+ newexpr = fix_upper_expr(root,
+ (Node *) tle->expr,
+ subplan_itlist,
+ OUTER_VAR,
+ rtoffset,
+ NUM_EXEC_TLIST(plan));
+ }
+ else
+ newexpr = fix_upper_expr(root,
+ (Node *) tle->expr,
+ subplan_itlist,
+ OUTER_VAR,
+ rtoffset,
+ NUM_EXEC_TLIST(plan));
+ tle = flatCopyTargetEntry(tle);
+ tle->expr = (Expr *) newexpr;
+ output_targetlist = lappend(output_targetlist, tle);
+ }
+ plan->targetlist = output_targetlist;
+
+ plan->qual = (List *)
+ fix_upper_expr(root,
+ (Node *) plan->qual,
+ subplan_itlist,
+ OUTER_VAR,
+ rtoffset,
+ NUM_EXEC_QUAL(plan));
+
+ pfree(subplan_itlist);
+}
+
+/*
+ * set_param_references
+ * Initialize the initParam list in Gather or Gather merge node such that
+ * it contains reference of all the params that needs to be evaluated
+ * before execution of the node. It contains the initplan params that are
+ * being passed to the plan nodes below it.
+ */
+static void
+set_param_references(PlannerInfo *root, Plan *plan)
+{
+ Assert(IsA(plan, Gather) || IsA(plan, GatherMerge));
+
+ if (plan->lefttree->extParam)
+ {
+ PlannerInfo *proot;
+ Bitmapset *initSetParam = NULL;
+ ListCell *l;
+
+ for (proot = root; proot != NULL; proot = proot->parent_root)
+ {
+ foreach(l, proot->init_plans)
+ {
+ SubPlan *initsubplan = (SubPlan *) lfirst(l);
+ ListCell *l2;
+
+ foreach(l2, initsubplan->setParam)
+ {
+ initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
+ }
+ }
+ }
+
+ /*
+ * Remember the list of all external initplan params that are used by
+ * the children of Gather or Gather merge node.
+ */
+ if (IsA(plan, Gather))
+ ((Gather *) plan)->initParam =
+ bms_intersect(plan->lefttree->extParam, initSetParam);
+ else
+ ((GatherMerge *) plan)->initParam =
+ bms_intersect(plan->lefttree->extParam, initSetParam);
+ }
+}
+
+/*
+ * Recursively scan an expression tree and convert Aggrefs to the proper
+ * intermediate form for combining aggregates. This means (1) replacing each
+ * one's argument list with a single argument that is the original Aggref
+ * modified to show partial aggregation and (2) changing the upper Aggref to
+ * show combining aggregation.
+ *
+ * After this step, set_upper_references will replace the partial Aggrefs
+ * with Vars referencing the lower Agg plan node's outputs, so that the final
+ * form seen by the executor is a combining Aggref with a Var as input.
+ *
+ * It's rather messy to postpone this step until setrefs.c; ideally it'd be
+ * done in createplan.c. The difficulty is that once we modify the Aggref
+ * expressions, they will no longer be equal() to their original form and
+ * so cross-plan-node-level matches will fail. So this has to happen after
+ * the plan node above the Agg has resolved its subplan references.
+ */
+static Node *
+convert_combining_aggrefs(Node *node, void *context)
+{
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Aggref))
+ {
+ Aggref *orig_agg = (Aggref *) node;
+ Aggref *child_agg;
+ Aggref *parent_agg;
+
+ /* Assert we've not chosen to partial-ize any unsupported cases */
+ Assert(orig_agg->aggorder == NIL);
+ Assert(orig_agg->aggdistinct == NIL);
+
+ /*
+ * Since aggregate calls can't be nested, we needn't recurse into the
+ * arguments. But for safety, flat-copy the Aggref node itself rather
+ * than modifying it in-place.
+ */
+ child_agg = makeNode(Aggref);
+ memcpy(child_agg, orig_agg, sizeof(Aggref));
+
+ /*
+ * For the parent Aggref, we want to copy all the fields of the
+ * original aggregate *except* the args list, which we'll replace
+ * below, and the aggfilter expression, which should be applied only
+ * by the child not the parent. Rather than explicitly knowing about
+ * all the other fields here, we can momentarily modify child_agg to
+ * provide a suitable source for copyObject.
+ */
+ child_agg->args = NIL;
+ child_agg->aggfilter = NULL;
+ parent_agg = copyObject(child_agg);
+ child_agg->args = orig_agg->args;
+ child_agg->aggfilter = orig_agg->aggfilter;
+
+ /*
+ * Now, set up child_agg to represent the first phase of partial
+ * aggregation. For now, assume serialization is required.
+ */
+ mark_partial_aggref(child_agg, AGGSPLIT_INITIAL_SERIAL);
+
+ /*
+ * And set up parent_agg to represent the second phase.
+ */
+ parent_agg->args = list_make1(makeTargetEntry((Expr *) child_agg,
+ 1, NULL, false));
+ mark_partial_aggref(parent_agg, AGGSPLIT_FINAL_DESERIAL);
+
+ return (Node *) parent_agg;
+ }
+ return expression_tree_mutator(node, convert_combining_aggrefs,
+ (void *) context);
+}
+
+/*
+ * set_dummy_tlist_references
+ * Replace the targetlist of an upper-level plan node with a simple
+ * list of OUTER_VAR references to its child.
+ *
+ * This is used for plan types like Sort and Append that don't evaluate
+ * their targetlists. Although the executor doesn't care at all what's in
+ * the tlist, EXPLAIN needs it to be realistic.
+ *
+ * Note: we could almost use set_upper_references() here, but it fails for
+ * Append for lack of a lefttree subplan. Single-purpose code is faster
+ * anyway.
+ */
+static void
+set_dummy_tlist_references(Plan *plan, int rtoffset)
+{
+ List *output_targetlist;
+ ListCell *l;
+
+ output_targetlist = NIL;
+ foreach(l, plan->targetlist)
+ {
+ TargetEntry *tle = (TargetEntry *) lfirst(l);
+ Var *oldvar = (Var *) tle->expr;
+ Var *newvar;
+
+ /*
+ * As in search_indexed_tlist_for_non_var(), we prefer to keep Consts
+ * as Consts, not Vars referencing Consts. Here, there's no speed
+ * advantage to be had, but it makes EXPLAIN output look cleaner, and
+ * again it avoids confusing the executor.
+ */
+ if (IsA(oldvar, Const))
+ {
+ /* just reuse the existing TLE node */
+ output_targetlist = lappend(output_targetlist, tle);
+ continue;
+ }
+
+ newvar = makeVar(OUTER_VAR,
+ tle->resno,
+ exprType((Node *) oldvar),
+ exprTypmod((Node *) oldvar),
+ exprCollation((Node *) oldvar),
+ 0);
+ if (IsA(oldvar, Var) &&
+ oldvar->varnosyn > 0)
+ {
+ newvar->varnosyn = oldvar->varnosyn + rtoffset;
+ newvar->varattnosyn = oldvar->varattnosyn;
+ }
+ else
+ {
+ newvar->varnosyn = 0; /* wasn't ever a plain Var */
+ newvar->varattnosyn = 0;
+ }
+
+ tle = flatCopyTargetEntry(tle);
+ tle->expr = (Expr *) newvar;
+ output_targetlist = lappend(output_targetlist, tle);
+ }
+ plan->targetlist = output_targetlist;
+
+ /* We don't touch plan->qual here */
+}
+
+
+/*
+ * build_tlist_index --- build an index data structure for a child tlist
+ *
+ * In most cases, subplan tlists will be "flat" tlists with only Vars,
+ * so we try to optimize that case by extracting information about Vars
+ * in advance. Matching a parent tlist to a child is still an O(N^2)
+ * operation, but at least with a much smaller constant factor than plain
+ * tlist_member() searches.
+ *
+ * The result of this function is an indexed_tlist struct to pass to
+ * search_indexed_tlist_for_var() or search_indexed_tlist_for_non_var().
+ * When done, the indexed_tlist may be freed with a single pfree().
+ */
+static indexed_tlist *
+build_tlist_index(List *tlist)
+{
+ indexed_tlist *itlist;
+ tlist_vinfo *vinfo;
+ ListCell *l;
+
+ /* Create data structure with enough slots for all tlist entries */
+ itlist = (indexed_tlist *)
+ palloc(offsetof(indexed_tlist, vars) +
+ list_length(tlist) * sizeof(tlist_vinfo));
+
+ itlist->tlist = tlist;
+ itlist->has_ph_vars = false;
+ itlist->has_non_vars = false;
+
+ /* Find the Vars and fill in the index array */
+ vinfo = itlist->vars;
+ foreach(l, tlist)
+ {
+ TargetEntry *tle = (TargetEntry *) lfirst(l);
+
+ if (tle->expr && IsA(tle->expr, Var))
+ {
+ Var *var = (Var *) tle->expr;
+
+ vinfo->varno = var->varno;
+ vinfo->varattno = var->varattno;
+ vinfo->resno = tle->resno;
+ vinfo++;
+ }
+ else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
+ itlist->has_ph_vars = true;
+ else
+ itlist->has_non_vars = true;
+ }
+
+ itlist->num_vars = (vinfo - itlist->vars);
+
+ return itlist;
+}
+
+/*
+ * build_tlist_index_other_vars --- build a restricted tlist index
+ *
+ * This is like build_tlist_index, but we only index tlist entries that
+ * are Vars belonging to some rel other than the one specified. We will set
+ * has_ph_vars (allowing PlaceHolderVars to be matched), but not has_non_vars
+ * (so nothing other than Vars and PlaceHolderVars can be matched).
+ */
+static indexed_tlist *
+build_tlist_index_other_vars(List *tlist, Index ignore_rel)
+{
+ indexed_tlist *itlist;
+ tlist_vinfo *vinfo;
+ ListCell *l;
+
+ /* Create data structure with enough slots for all tlist entries */
+ itlist = (indexed_tlist *)
+ palloc(offsetof(indexed_tlist, vars) +
+ list_length(tlist) * sizeof(tlist_vinfo));
+
+ itlist->tlist = tlist;
+ itlist->has_ph_vars = false;
+ itlist->has_non_vars = false;
+
+ /* Find the desired Vars and fill in the index array */
+ vinfo = itlist->vars;
+ foreach(l, tlist)
+ {
+ TargetEntry *tle = (TargetEntry *) lfirst(l);
+
+ if (tle->expr && IsA(tle->expr, Var))
+ {
+ Var *var = (Var *) tle->expr;
+
+ if (var->varno != ignore_rel)
+ {
+ vinfo->varno = var->varno;
+ vinfo->varattno = var->varattno;
+ vinfo->resno = tle->resno;
+ vinfo++;
+ }
+ }
+ else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
+ itlist->has_ph_vars = true;
+ }
+
+ itlist->num_vars = (vinfo - itlist->vars);
+
+ return itlist;
+}
+
+/*
+ * search_indexed_tlist_for_var --- find a Var in an indexed tlist
+ *
+ * If a match is found, return a copy of the given Var with suitably
+ * modified varno/varattno (to wit, newvarno and the resno of the TLE entry).
+ * Also ensure that varnosyn is incremented by rtoffset.
+ * If no match, return NULL.
+ */
+static Var *
+search_indexed_tlist_for_var(Var *var, indexed_tlist *itlist,
+ Index newvarno, int rtoffset)
+{
+ Index varno = var->varno;
+ AttrNumber varattno = var->varattno;
+ tlist_vinfo *vinfo;
+ int i;
+
+ vinfo = itlist->vars;
+ i = itlist->num_vars;
+ while (i-- > 0)
+ {
+ if (vinfo->varno == varno && vinfo->varattno == varattno)
+ {
+ /* Found a match */
+ Var *newvar = copyVar(var);
+
+ newvar->varno = newvarno;
+ newvar->varattno = vinfo->resno;
+ if (newvar->varnosyn > 0)
+ newvar->varnosyn += rtoffset;
+ return newvar;
+ }
+ vinfo++;
+ }
+ return NULL; /* no match */
+}
+
+/*
+ * search_indexed_tlist_for_non_var --- find a non-Var in an indexed tlist
+ *
+ * If a match is found, return a Var constructed to reference the tlist item.
+ * If no match, return NULL.
+ *
+ * NOTE: it is a waste of time to call this unless itlist->has_ph_vars or
+ * itlist->has_non_vars. Furthermore, set_join_references() relies on being
+ * able to prevent matching of non-Vars by clearing itlist->has_non_vars,
+ * so there's a correctness reason not to call it unless that's set.
+ */
+static Var *
+search_indexed_tlist_for_non_var(Expr *node,
+ indexed_tlist *itlist, Index newvarno)
+{
+ TargetEntry *tle;
+
+ /*
+ * If it's a simple Const, replacing it with a Var is silly, even if there
+ * happens to be an identical Const below; a Var is more expensive to
+ * execute than a Const. What's more, replacing it could confuse some
+ * places in the executor that expect to see simple Consts for, eg,
+ * dropped columns.
+ */
+ if (IsA(node, Const))
+ return NULL;
+
+ tle = tlist_member(node, itlist->tlist);
+ if (tle)
+ {
+ /* Found a matching subplan output expression */
+ Var *newvar;
+
+ newvar = makeVarFromTargetEntry(newvarno, tle);
+ newvar->varnosyn = 0; /* wasn't ever a plain Var */
+ newvar->varattnosyn = 0;
+ return newvar;
+ }
+ return NULL; /* no match */
+}
+
+/*
+ * search_indexed_tlist_for_sortgroupref --- find a sort/group expression
+ *
+ * If a match is found, return a Var constructed to reference the tlist item.
+ * If no match, return NULL.
+ *
+ * This is needed to ensure that we select the right subplan TLE in cases
+ * where there are multiple textually-equal()-but-volatile sort expressions.
+ * And it's also faster than search_indexed_tlist_for_non_var.
+ */
+static Var *
+search_indexed_tlist_for_sortgroupref(Expr *node,
+ Index sortgroupref,
+ indexed_tlist *itlist,
+ Index newvarno)
+{
+ ListCell *lc;
+
+ foreach(lc, itlist->tlist)
+ {
+ TargetEntry *tle = (TargetEntry *) lfirst(lc);
+
+ /* The equal() check should be redundant, but let's be paranoid */
+ if (tle->ressortgroupref == sortgroupref &&
+ equal(node, tle->expr))
+ {
+ /* Found a matching subplan output expression */
+ Var *newvar;
+
+ newvar = makeVarFromTargetEntry(newvarno, tle);
+ newvar->varnosyn = 0; /* wasn't ever a plain Var */
+ newvar->varattnosyn = 0;
+ return newvar;
+ }
+ }
+ return NULL; /* no match */
+}
+
+/*
+ * fix_join_expr
+ * Create a new set of targetlist entries or join qual clauses by
+ * changing the varno/varattno values of variables in the clauses
+ * to reference target list values from the outer and inner join
+ * relation target lists. Also perform opcode lookup and add
+ * regclass OIDs to root->glob->relationOids.
+ *
+ * This is used in three different scenarios:
+ * 1) a normal join clause, where all the Vars in the clause *must* be
+ * replaced by OUTER_VAR or INNER_VAR references. In this case
+ * acceptable_rel should be zero so that any failure to match a Var will be
+ * reported as an error.
+ * 2) RETURNING clauses, which may contain both Vars of the target relation
+ * and Vars of other relations. In this case we want to replace the
+ * other-relation Vars by OUTER_VAR references, while leaving target Vars
+ * alone. Thus inner_itlist = NULL and acceptable_rel = the ID of the
+ * target relation should be passed.
+ * 3) ON CONFLICT UPDATE SET/WHERE clauses. Here references to EXCLUDED are
+ * to be replaced with INNER_VAR references, while leaving target Vars (the
+ * to-be-updated relation) alone. Correspondingly inner_itlist is to be
+ * EXCLUDED elements, outer_itlist = NULL and acceptable_rel the target
+ * relation.
+ *
+ * 'clauses' is the targetlist or list of join clauses
+ * 'outer_itlist' is the indexed target list of the outer join relation,
+ * or NULL
+ * 'inner_itlist' is the indexed target list of the inner join relation,
+ * or NULL
+ * 'acceptable_rel' is either zero or the rangetable index of a relation
+ * whose Vars may appear in the clause without provoking an error
+ * 'rtoffset': how much to increment varnos by
+ * 'num_exec': estimated number of executions of expression
+ *
+ * Returns the new expression tree. The original clause structure is
+ * not modified.
+ */
+static List *
+fix_join_expr(PlannerInfo *root,
+ List *clauses,
+ indexed_tlist *outer_itlist,
+ indexed_tlist *inner_itlist,
+ Index acceptable_rel,
+ int rtoffset,
+ double num_exec)
+{
+ fix_join_expr_context context;
+
+ context.root = root;
+ context.outer_itlist = outer_itlist;
+ context.inner_itlist = inner_itlist;
+ context.acceptable_rel = acceptable_rel;
+ context.rtoffset = rtoffset;
+ context.num_exec = num_exec;
+ return (List *) fix_join_expr_mutator((Node *) clauses, &context);
+}
+
+static Node *
+fix_join_expr_mutator(Node *node, fix_join_expr_context *context)
+{
+ Var *newvar;
+
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+
+ /* Look for the var in the input tlists, first in the outer */
+ if (context->outer_itlist)
+ {
+ newvar = search_indexed_tlist_for_var(var,
+ context->outer_itlist,
+ OUTER_VAR,
+ context->rtoffset);
+ if (newvar)
+ return (Node *) newvar;
+ }
+
+ /* then in the inner. */
+ if (context->inner_itlist)
+ {
+ newvar = search_indexed_tlist_for_var(var,
+ context->inner_itlist,
+ INNER_VAR,
+ context->rtoffset);
+ if (newvar)
+ return (Node *) newvar;
+ }
+
+ /* If it's for acceptable_rel, adjust and return it */
+ if (var->varno == context->acceptable_rel)
+ {
+ var = copyVar(var);
+ var->varno += context->rtoffset;
+ if (var->varnosyn > 0)
+ var->varnosyn += context->rtoffset;
+ return (Node *) var;
+ }
+
+ /* No referent found for Var */
+ elog(ERROR, "variable not found in subplan target lists");
+ }
+ if (IsA(node, PlaceHolderVar))
+ {
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+
+ /* See if the PlaceHolderVar has bubbled up from a lower plan node */
+ if (context->outer_itlist && context->outer_itlist->has_ph_vars)
+ {
+ newvar = search_indexed_tlist_for_non_var((Expr *) phv,
+ context->outer_itlist,
+ OUTER_VAR);
+ if (newvar)
+ return (Node *) newvar;
+ }
+ if (context->inner_itlist && context->inner_itlist->has_ph_vars)
+ {
+ newvar = search_indexed_tlist_for_non_var((Expr *) phv,
+ context->inner_itlist,
+ INNER_VAR);
+ if (newvar)
+ return (Node *) newvar;
+ }
+
+ /* If not supplied by input plans, evaluate the contained expr */
+ return fix_join_expr_mutator((Node *) phv->phexpr, context);
+ }
+ /* Try matching more complex expressions too, if tlists have any */
+ if (context->outer_itlist && context->outer_itlist->has_non_vars)
+ {
+ newvar = search_indexed_tlist_for_non_var((Expr *) node,
+ context->outer_itlist,
+ OUTER_VAR);
+ if (newvar)
+ return (Node *) newvar;
+ }
+ if (context->inner_itlist && context->inner_itlist->has_non_vars)
+ {
+ newvar = search_indexed_tlist_for_non_var((Expr *) node,
+ context->inner_itlist,
+ INNER_VAR);
+ if (newvar)
+ return (Node *) newvar;
+ }
+ /* Special cases (apply only AFTER failing to match to lower tlist) */
+ if (IsA(node, Param))
+ return fix_param_node(context->root, (Param *) node);
+ if (IsA(node, AlternativeSubPlan))
+ return fix_join_expr_mutator(fix_alternative_subplan(context->root,
+ (AlternativeSubPlan *) node,
+ context->num_exec),
+ context);
+ fix_expr_common(context->root, node);
+ return expression_tree_mutator(node,
+ fix_join_expr_mutator,
+ (void *) context);
+}
+
+/*
+ * fix_upper_expr
+ * Modifies an expression tree so that all Var nodes reference outputs
+ * of a subplan. Also looks for Aggref nodes that should be replaced
+ * by initplan output Params. Also performs opcode lookup, and adds
+ * regclass OIDs to root->glob->relationOids.
+ *
+ * This is used to fix up target and qual expressions of non-join upper-level
+ * plan nodes, as well as index-only scan nodes.
+ *
+ * An error is raised if no matching var can be found in the subplan tlist
+ * --- so this routine should only be applied to nodes whose subplans'
+ * targetlists were generated by flattening the expressions used in the
+ * parent node.
+ *
+ * If itlist->has_non_vars is true, then we try to match whole subexpressions
+ * against elements of the subplan tlist, so that we can avoid recomputing
+ * expressions that were already computed by the subplan. (This is relatively
+ * expensive, so we don't want to try it in the common case where the
+ * subplan tlist is just a flattened list of Vars.)
+ *
+ * 'node': the tree to be fixed (a target item or qual)
+ * 'subplan_itlist': indexed target list for subplan (or index)
+ * 'newvarno': varno to use for Vars referencing tlist elements
+ * 'rtoffset': how much to increment varnos by
+ * 'num_exec': estimated number of executions of expression
+ *
+ * The resulting tree is a copy of the original in which all Var nodes have
+ * varno = newvarno, varattno = resno of corresponding targetlist element.
+ * The original tree is not modified.
+ */
+static Node *
+fix_upper_expr(PlannerInfo *root,
+ Node *node,
+ indexed_tlist *subplan_itlist,
+ Index newvarno,
+ int rtoffset,
+ double num_exec)
+{
+ fix_upper_expr_context context;
+
+ context.root = root;
+ context.subplan_itlist = subplan_itlist;
+ context.newvarno = newvarno;
+ context.rtoffset = rtoffset;
+ context.num_exec = num_exec;
+ return fix_upper_expr_mutator(node, &context);
+}
+
+static Node *
+fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context)
+{
+ Var *newvar;
+
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+
+ newvar = search_indexed_tlist_for_var(var,
+ context->subplan_itlist,
+ context->newvarno,
+ context->rtoffset);
+ if (!newvar)
+ elog(ERROR, "variable not found in subplan target list");
+ return (Node *) newvar;
+ }
+ if (IsA(node, PlaceHolderVar))
+ {
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+
+ /* See if the PlaceHolderVar has bubbled up from a lower plan node */
+ if (context->subplan_itlist->has_ph_vars)
+ {
+ newvar = search_indexed_tlist_for_non_var((Expr *) phv,
+ context->subplan_itlist,
+ context->newvarno);
+ if (newvar)
+ return (Node *) newvar;
+ }
+ /* If not supplied by input plan, evaluate the contained expr */
+ return fix_upper_expr_mutator((Node *) phv->phexpr, context);
+ }
+ /* Try matching more complex expressions too, if tlist has any */
+ if (context->subplan_itlist->has_non_vars)
+ {
+ newvar = search_indexed_tlist_for_non_var((Expr *) node,
+ context->subplan_itlist,
+ context->newvarno);
+ if (newvar)
+ return (Node *) newvar;
+ }
+ /* Special cases (apply only AFTER failing to match to lower tlist) */
+ if (IsA(node, Param))
+ return fix_param_node(context->root, (Param *) node);
+ if (IsA(node, Aggref))
+ {
+ Aggref *aggref = (Aggref *) node;
+
+ /* See if the Aggref should be replaced by a Param */
+ if (context->root->minmax_aggs != NIL &&
+ list_length(aggref->args) == 1)
+ {
+ TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
+ ListCell *lc;
+
+ foreach(lc, context->root->minmax_aggs)
+ {
+ MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
+
+ if (mminfo->aggfnoid == aggref->aggfnoid &&
+ equal(mminfo->target, curTarget->expr))
+ return (Node *) copyObject(mminfo->param);
+ }
+ }
+ /* If no match, just fall through to process it normally */
+ }
+ if (IsA(node, AlternativeSubPlan))
+ return fix_upper_expr_mutator(fix_alternative_subplan(context->root,
+ (AlternativeSubPlan *) node,
+ context->num_exec),
+ context);
+ fix_expr_common(context->root, node);
+ return expression_tree_mutator(node,
+ fix_upper_expr_mutator,
+ (void *) context);
+}
+
+/*
+ * set_returning_clause_references
+ * Perform setrefs.c's work on a RETURNING targetlist
+ *
+ * If the query involves more than just the result table, we have to
+ * adjust any Vars that refer to other tables to reference junk tlist
+ * entries in the top subplan's targetlist. Vars referencing the result
+ * table should be left alone, however (the executor will evaluate them
+ * using the actual heap tuple, after firing triggers if any). In the
+ * adjusted RETURNING list, result-table Vars will have their original
+ * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR.
+ *
+ * We also must perform opcode lookup and add regclass OIDs to
+ * root->glob->relationOids.
+ *
+ * 'rlist': the RETURNING targetlist to be fixed
+ * 'topplan': the top subplan node that will be just below the ModifyTable
+ * node (note it's not yet passed through set_plan_refs)
+ * 'resultRelation': RT index of the associated result relation
+ * 'rtoffset': how much to increment varnos by
+ *
+ * Note: the given 'root' is for the parent query level, not the 'topplan'.
+ * This does not matter currently since we only access the dependency-item
+ * lists in root->glob, but it would need some hacking if we wanted a root
+ * that actually matches the subplan.
+ *
+ * Note: resultRelation is not yet adjusted by rtoffset.
+ */
+static List *
+set_returning_clause_references(PlannerInfo *root,
+ List *rlist,
+ Plan *topplan,
+ Index resultRelation,
+ int rtoffset)
+{
+ indexed_tlist *itlist;
+
+ /*
+ * We can perform the desired Var fixup by abusing the fix_join_expr
+ * machinery that formerly handled inner indexscan fixup. We search the
+ * top plan's targetlist for Vars of non-result relations, and use
+ * fix_join_expr to convert RETURNING Vars into references to those tlist
+ * entries, while leaving result-rel Vars as-is.
+ *
+ * PlaceHolderVars will also be sought in the targetlist, but no
+ * more-complex expressions will be. Note that it is not possible for a
+ * PlaceHolderVar to refer to the result relation, since the result is
+ * never below an outer join. If that case could happen, we'd have to be
+ * prepared to pick apart the PlaceHolderVar and evaluate its contained
+ * expression instead.
+ */
+ itlist = build_tlist_index_other_vars(topplan->targetlist, resultRelation);
+
+ rlist = fix_join_expr(root,
+ rlist,
+ itlist,
+ NULL,
+ resultRelation,
+ rtoffset,
+ NUM_EXEC_TLIST(topplan));
+
+ pfree(itlist);
+
+ return rlist;
+}
+
+
+/*****************************************************************************
+ * QUERY DEPENDENCY MANAGEMENT
+ *****************************************************************************/
+
+/*
+ * record_plan_function_dependency
+ * Mark the current plan as depending on a particular function.
+ *
+ * This is exported so that the function-inlining code can record a
+ * dependency on a function that it's removed from the plan tree.
+ */
+void
+record_plan_function_dependency(PlannerInfo *root, Oid funcid)
+{
+ /*
+ * For performance reasons, we don't bother to track built-in functions;
+ * we just assume they'll never change (or at least not in ways that'd
+ * invalidate plans using them). For this purpose we can consider a
+ * built-in function to be one with OID less than FirstBootstrapObjectId.
+ * Note that the OID generator guarantees never to generate such an OID
+ * after startup, even at OID wraparound.
+ */
+ if (funcid >= (Oid) FirstBootstrapObjectId)
+ {
+ PlanInvalItem *inval_item = makeNode(PlanInvalItem);
+
+ /*
+ * It would work to use any syscache on pg_proc, but the easiest is
+ * PROCOID since we already have the function's OID at hand. Note
+ * that plancache.c knows we use PROCOID.
+ */
+ inval_item->cacheId = PROCOID;
+ inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
+ ObjectIdGetDatum(funcid));
+
+ root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
+ }
+}
+
+/*
+ * record_plan_type_dependency
+ * Mark the current plan as depending on a particular type.
+ *
+ * This is exported so that eval_const_expressions can record a
+ * dependency on a domain that it's removed a CoerceToDomain node for.
+ *
+ * We don't currently need to record dependencies on domains that the
+ * plan contains CoerceToDomain nodes for, though that might change in
+ * future. Hence, this isn't actually called in this module, though
+ * someday fix_expr_common might call it.
+ */
+void
+record_plan_type_dependency(PlannerInfo *root, Oid typid)
+{
+ /*
+ * As in record_plan_function_dependency, ignore the possibility that
+ * someone would change a built-in domain.
+ */
+ if (typid >= (Oid) FirstBootstrapObjectId)
+ {
+ PlanInvalItem *inval_item = makeNode(PlanInvalItem);
+
+ /*
+ * It would work to use any syscache on pg_type, but the easiest is
+ * TYPEOID since we already have the type's OID at hand. Note that
+ * plancache.c knows we use TYPEOID.
+ */
+ inval_item->cacheId = TYPEOID;
+ inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
+ ObjectIdGetDatum(typid));
+
+ root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
+ }
+}
+
+/*
+ * extract_query_dependencies
+ * Given a rewritten, but not yet planned, query or queries
+ * (i.e. a Query node or list of Query nodes), extract dependencies
+ * just as set_plan_references would do. Also detect whether any
+ * rewrite steps were affected by RLS.
+ *
+ * This is needed by plancache.c to handle invalidation of cached unplanned
+ * queries.
+ *
+ * Note: this does not go through eval_const_expressions, and hence doesn't
+ * reflect its additions of inlined functions and elided CoerceToDomain nodes
+ * to the invalItems list. This is obviously OK for functions, since we'll
+ * see them in the original query tree anyway. For domains, it's OK because
+ * we don't care about domains unless they get elided. That is, a plan might
+ * have domain dependencies that the query tree doesn't.
+ */
+void
+extract_query_dependencies(Node *query,
+ List **relationOids,
+ List **invalItems,
+ bool *hasRowSecurity)
+{
+ PlannerGlobal glob;
+ PlannerInfo root;
+
+ /* Make up dummy planner state so we can use this module's machinery */
+ MemSet(&glob, 0, sizeof(glob));
+ glob.type = T_PlannerGlobal;
+ glob.relationOids = NIL;
+ glob.invalItems = NIL;
+ /* Hack: we use glob.dependsOnRole to collect hasRowSecurity flags */
+ glob.dependsOnRole = false;
+
+ MemSet(&root, 0, sizeof(root));
+ root.type = T_PlannerInfo;
+ root.glob = &glob;
+
+ (void) extract_query_dependencies_walker(query, &root);
+
+ *relationOids = glob.relationOids;
+ *invalItems = glob.invalItems;
+ *hasRowSecurity = glob.dependsOnRole;
+}
+
+/*
+ * Tree walker for extract_query_dependencies.
+ *
+ * This is exported so that expression_planner_with_deps can call it on
+ * simple expressions (post-planning, not before planning, in that case).
+ * In that usage, glob.dependsOnRole isn't meaningful, but the relationOids
+ * and invalItems lists are added to as needed.
+ */
+bool
+extract_query_dependencies_walker(Node *node, PlannerInfo *context)
+{
+ if (node == NULL)
+ return false;
+ Assert(!IsA(node, PlaceHolderVar));
+ if (IsA(node, Query))
+ {
+ Query *query = (Query *) node;
+ ListCell *lc;
+
+ if (query->commandType == CMD_UTILITY)
+ {
+ /*
+ * Ignore utility statements, except those (such as EXPLAIN) that
+ * contain a parsed-but-not-planned query.
+ */
+ query = UtilityContainsQuery(query->utilityStmt);
+ if (query == NULL)
+ return false;
+ }
+
+ /* Remember if any Query has RLS quals applied by rewriter */
+ if (query->hasRowSecurity)
+ context->glob->dependsOnRole = true;
+
+ /* Collect relation OIDs in this Query's rtable */
+ foreach(lc, query->rtable)
+ {
+ RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
+
+ if (rte->rtekind == RTE_RELATION)
+ context->glob->relationOids =
+ lappend_oid(context->glob->relationOids, rte->relid);
+ else if (rte->rtekind == RTE_NAMEDTUPLESTORE &&
+ OidIsValid(rte->relid))
+ context->glob->relationOids =
+ lappend_oid(context->glob->relationOids,
+ rte->relid);
+ }
+
+ /* And recurse into the query's subexpressions */
+ return query_tree_walker(query, extract_query_dependencies_walker,
+ (void *) context, 0);
+ }
+ /* Extract function dependencies and check for regclass Consts */
+ fix_expr_common(context, node);
+ return expression_tree_walker(node, extract_query_dependencies_walker,
+ (void *) context);
+}
diff --git a/src/backend/optimizer/plan/subselect.c b/src/backend/optimizer/plan/subselect.c
new file mode 100644
index 0000000..0ee36b9
--- /dev/null
+++ b/src/backend/optimizer/plan/subselect.c
@@ -0,0 +1,2993 @@
+/*-------------------------------------------------------------------------
+ *
+ * subselect.c
+ * Planning routines for subselects.
+ *
+ * This module deals with SubLinks and CTEs, but not subquery RTEs (i.e.,
+ * not sub-SELECT-in-FROM cases).
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/plan/subselect.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "access/htup_details.h"
+#include "catalog/pg_operator.h"
+#include "catalog/pg_type.h"
+#include "executor/executor.h"
+#include "miscadmin.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "optimizer/cost.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/paramassign.h"
+#include "optimizer/pathnode.h"
+#include "optimizer/planmain.h"
+#include "optimizer/planner.h"
+#include "optimizer/prep.h"
+#include "optimizer/subselect.h"
+#include "parser/parse_relation.h"
+#include "rewrite/rewriteManip.h"
+#include "utils/builtins.h"
+#include "utils/lsyscache.h"
+#include "utils/syscache.h"
+
+
+typedef struct convert_testexpr_context
+{
+ PlannerInfo *root;
+ List *subst_nodes; /* Nodes to substitute for Params */
+} convert_testexpr_context;
+
+typedef struct process_sublinks_context
+{
+ PlannerInfo *root;
+ bool isTopQual;
+} process_sublinks_context;
+
+typedef struct finalize_primnode_context
+{
+ PlannerInfo *root;
+ Bitmapset *paramids; /* Non-local PARAM_EXEC paramids found */
+} finalize_primnode_context;
+
+typedef struct inline_cte_walker_context
+{
+ const char *ctename; /* name and relative level of target CTE */
+ int levelsup;
+ Query *ctequery; /* query to substitute */
+} inline_cte_walker_context;
+
+
+static Node *build_subplan(PlannerInfo *root, Plan *plan, PlannerInfo *subroot,
+ List *plan_params,
+ SubLinkType subLinkType, int subLinkId,
+ Node *testexpr, List *testexpr_paramids,
+ bool unknownEqFalse);
+static List *generate_subquery_params(PlannerInfo *root, List *tlist,
+ List **paramIds);
+static List *generate_subquery_vars(PlannerInfo *root, List *tlist,
+ Index varno);
+static Node *convert_testexpr(PlannerInfo *root,
+ Node *testexpr,
+ List *subst_nodes);
+static Node *convert_testexpr_mutator(Node *node,
+ convert_testexpr_context *context);
+static bool subplan_is_hashable(Plan *plan);
+static bool subpath_is_hashable(Path *path);
+static bool testexpr_is_hashable(Node *testexpr, List *param_ids);
+static bool test_opexpr_is_hashable(OpExpr *testexpr, List *param_ids);
+static bool hash_ok_operator(OpExpr *expr);
+static bool contain_dml(Node *node);
+static bool contain_dml_walker(Node *node, void *context);
+static bool contain_outer_selfref(Node *node);
+static bool contain_outer_selfref_walker(Node *node, Index *depth);
+static void inline_cte(PlannerInfo *root, CommonTableExpr *cte);
+static bool inline_cte_walker(Node *node, inline_cte_walker_context *context);
+static bool simplify_EXISTS_query(PlannerInfo *root, Query *query);
+static Query *convert_EXISTS_to_ANY(PlannerInfo *root, Query *subselect,
+ Node **testexpr, List **paramIds);
+static Node *replace_correlation_vars_mutator(Node *node, PlannerInfo *root);
+static Node *process_sublinks_mutator(Node *node,
+ process_sublinks_context *context);
+static Bitmapset *finalize_plan(PlannerInfo *root,
+ Plan *plan,
+ int gather_param,
+ Bitmapset *valid_params,
+ Bitmapset *scan_params);
+static bool finalize_primnode(Node *node, finalize_primnode_context *context);
+static bool finalize_agg_primnode(Node *node, finalize_primnode_context *context);
+
+
+/*
+ * Get the datatype/typmod/collation of the first column of the plan's output.
+ *
+ * This information is stored for ARRAY_SUBLINK execution and for
+ * exprType()/exprTypmod()/exprCollation(), which have no way to get at the
+ * plan associated with a SubPlan node. We really only need the info for
+ * EXPR_SUBLINK and ARRAY_SUBLINK subplans, but for consistency we save it
+ * always.
+ */
+static void
+get_first_col_type(Plan *plan, Oid *coltype, int32 *coltypmod,
+ Oid *colcollation)
+{
+ /* In cases such as EXISTS, tlist might be empty; arbitrarily use VOID */
+ if (plan->targetlist)
+ {
+ TargetEntry *tent = linitial_node(TargetEntry, plan->targetlist);
+
+ if (!tent->resjunk)
+ {
+ *coltype = exprType((Node *) tent->expr);
+ *coltypmod = exprTypmod((Node *) tent->expr);
+ *colcollation = exprCollation((Node *) tent->expr);
+ return;
+ }
+ }
+ *coltype = VOIDOID;
+ *coltypmod = -1;
+ *colcollation = InvalidOid;
+}
+
+/*
+ * Convert a SubLink (as created by the parser) into a SubPlan.
+ *
+ * We are given the SubLink's contained query, type, ID, and testexpr. We are
+ * also told if this expression appears at top level of a WHERE/HAVING qual.
+ *
+ * Note: we assume that the testexpr has been AND/OR flattened (actually,
+ * it's been through eval_const_expressions), but not converted to
+ * implicit-AND form; and any SubLinks in it should already have been
+ * converted to SubPlans. The subquery is as yet untouched, however.
+ *
+ * The result is whatever we need to substitute in place of the SubLink node
+ * in the executable expression. If we're going to do the subplan as a
+ * regular subplan, this will be the constructed SubPlan node. If we're going
+ * to do the subplan as an InitPlan, the SubPlan node instead goes into
+ * root->init_plans, and what we return here is an expression tree
+ * representing the InitPlan's result: usually just a Param node representing
+ * a single scalar result, but possibly a row comparison tree containing
+ * multiple Param nodes, or for a MULTIEXPR subquery a simple NULL constant
+ * (since the real output Params are elsewhere in the tree, and the MULTIEXPR
+ * subquery itself is in a resjunk tlist entry whose value is uninteresting).
+ */
+static Node *
+make_subplan(PlannerInfo *root, Query *orig_subquery,
+ SubLinkType subLinkType, int subLinkId,
+ Node *testexpr, bool isTopQual)
+{
+ Query *subquery;
+ bool simple_exists = false;
+ double tuple_fraction;
+ PlannerInfo *subroot;
+ RelOptInfo *final_rel;
+ Path *best_path;
+ Plan *plan;
+ List *plan_params;
+ Node *result;
+
+ /*
+ * Copy the source Query node. This is a quick and dirty kluge to resolve
+ * the fact that the parser can generate trees with multiple links to the
+ * same sub-Query node, but the planner wants to scribble on the Query.
+ * Try to clean this up when we do querytree redesign...
+ */
+ subquery = copyObject(orig_subquery);
+
+ /*
+ * If it's an EXISTS subplan, we might be able to simplify it.
+ */
+ if (subLinkType == EXISTS_SUBLINK)
+ simple_exists = simplify_EXISTS_query(root, subquery);
+
+ /*
+ * For an EXISTS subplan, tell lower-level planner to expect that only the
+ * first tuple will be retrieved. For ALL and ANY subplans, we will be
+ * able to stop evaluating if the test condition fails or matches, so very
+ * often not all the tuples will be retrieved; for lack of a better idea,
+ * specify 50% retrieval. For EXPR, MULTIEXPR, and ROWCOMPARE subplans,
+ * use default behavior (we're only expecting one row out, anyway).
+ *
+ * NOTE: if you change these numbers, also change cost_subplan() in
+ * path/costsize.c.
+ *
+ * XXX If an ANY subplan is uncorrelated, build_subplan may decide to hash
+ * its output. In that case it would've been better to specify full
+ * retrieval. At present, however, we can only check hashability after
+ * we've made the subplan :-(. (Determining whether it'll fit in hash_mem
+ * is the really hard part.) Therefore, we don't want to be too
+ * optimistic about the percentage of tuples retrieved, for fear of
+ * selecting a plan that's bad for the materialization case.
+ */
+ if (subLinkType == EXISTS_SUBLINK)
+ tuple_fraction = 1.0; /* just like a LIMIT 1 */
+ else if (subLinkType == ALL_SUBLINK ||
+ subLinkType == ANY_SUBLINK)
+ tuple_fraction = 0.5; /* 50% */
+ else
+ tuple_fraction = 0.0; /* default behavior */
+
+ /* plan_params should not be in use in current query level */
+ Assert(root->plan_params == NIL);
+
+ /* Generate Paths for the subquery */
+ subroot = subquery_planner(root->glob, subquery,
+ root,
+ false, tuple_fraction);
+
+ /* Isolate the params needed by this specific subplan */
+ plan_params = root->plan_params;
+ root->plan_params = NIL;
+
+ /*
+ * Select best Path and turn it into a Plan. At least for now, there
+ * seems no reason to postpone doing that.
+ */
+ final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
+ best_path = get_cheapest_fractional_path(final_rel, tuple_fraction);
+
+ plan = create_plan(subroot, best_path);
+
+ /* And convert to SubPlan or InitPlan format. */
+ result = build_subplan(root, plan, subroot, plan_params,
+ subLinkType, subLinkId,
+ testexpr, NIL, isTopQual);
+
+ /*
+ * If it's a correlated EXISTS with an unimportant targetlist, we might be
+ * able to transform it to the equivalent of an IN and then implement it
+ * by hashing. We don't have enough information yet to tell which way is
+ * likely to be better (it depends on the expected number of executions of
+ * the EXISTS qual, and we are much too early in planning the outer query
+ * to be able to guess that). So we generate both plans, if possible, and
+ * leave it to setrefs.c to decide which to use.
+ */
+ if (simple_exists && IsA(result, SubPlan))
+ {
+ Node *newtestexpr;
+ List *paramIds;
+
+ /* Make a second copy of the original subquery */
+ subquery = copyObject(orig_subquery);
+ /* and re-simplify */
+ simple_exists = simplify_EXISTS_query(root, subquery);
+ Assert(simple_exists);
+ /* See if it can be converted to an ANY query */
+ subquery = convert_EXISTS_to_ANY(root, subquery,
+ &newtestexpr, &paramIds);
+ if (subquery)
+ {
+ /* Generate Paths for the ANY subquery; we'll need all rows */
+ subroot = subquery_planner(root->glob, subquery,
+ root,
+ false, 0.0);
+
+ /* Isolate the params needed by this specific subplan */
+ plan_params = root->plan_params;
+ root->plan_params = NIL;
+
+ /* Select best Path */
+ final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
+ best_path = final_rel->cheapest_total_path;
+
+ /* Now we can check if it'll fit in hash_mem */
+ if (subpath_is_hashable(best_path))
+ {
+ SubPlan *hashplan;
+ AlternativeSubPlan *asplan;
+
+ /* OK, finish planning the ANY subquery */
+ plan = create_plan(subroot, best_path);
+
+ /* ... and convert to SubPlan format */
+ hashplan = castNode(SubPlan,
+ build_subplan(root, plan, subroot,
+ plan_params,
+ ANY_SUBLINK, 0,
+ newtestexpr,
+ paramIds,
+ true));
+ /* Check we got what we expected */
+ Assert(hashplan->parParam == NIL);
+ Assert(hashplan->useHashTable);
+
+ /* Leave it to setrefs.c to decide which plan to use */
+ asplan = makeNode(AlternativeSubPlan);
+ asplan->subplans = list_make2(result, hashplan);
+ result = (Node *) asplan;
+ root->hasAlternativeSubPlans = true;
+ }
+ }
+ }
+
+ return result;
+}
+
+/*
+ * Build a SubPlan node given the raw inputs --- subroutine for make_subplan
+ *
+ * Returns either the SubPlan, or a replacement expression if we decide to
+ * make it an InitPlan, as explained in the comments for make_subplan.
+ */
+static Node *
+build_subplan(PlannerInfo *root, Plan *plan, PlannerInfo *subroot,
+ List *plan_params,
+ SubLinkType subLinkType, int subLinkId,
+ Node *testexpr, List *testexpr_paramids,
+ bool unknownEqFalse)
+{
+ Node *result;
+ SubPlan *splan;
+ bool isInitPlan;
+ ListCell *lc;
+
+ /*
+ * Initialize the SubPlan node. Note plan_id, plan_name, and cost fields
+ * are set further down.
+ */
+ splan = makeNode(SubPlan);
+ splan->subLinkType = subLinkType;
+ splan->testexpr = NULL;
+ splan->paramIds = NIL;
+ get_first_col_type(plan, &splan->firstColType, &splan->firstColTypmod,
+ &splan->firstColCollation);
+ splan->useHashTable = false;
+ splan->unknownEqFalse = unknownEqFalse;
+ splan->parallel_safe = plan->parallel_safe;
+ splan->setParam = NIL;
+ splan->parParam = NIL;
+ splan->args = NIL;
+
+ /*
+ * Make parParam and args lists of param IDs and expressions that current
+ * query level will pass to this child plan.
+ */
+ foreach(lc, plan_params)
+ {
+ PlannerParamItem *pitem = (PlannerParamItem *) lfirst(lc);
+ Node *arg = pitem->item;
+
+ /*
+ * The Var, PlaceHolderVar, Aggref or GroupingFunc has already been
+ * adjusted to have the correct varlevelsup, phlevelsup, or
+ * agglevelsup.
+ *
+ * If it's a PlaceHolderVar, Aggref or GroupingFunc, its arguments
+ * might contain SubLinks, which have not yet been processed (see the
+ * comments for SS_replace_correlation_vars). Do that now.
+ */
+ if (IsA(arg, PlaceHolderVar) ||
+ IsA(arg, Aggref) ||
+ IsA(arg, GroupingFunc))
+ arg = SS_process_sublinks(root, arg, false);
+
+ splan->parParam = lappend_int(splan->parParam, pitem->paramId);
+ splan->args = lappend(splan->args, arg);
+ }
+
+ /*
+ * Un-correlated or undirect correlated plans of EXISTS, EXPR, ARRAY,
+ * ROWCOMPARE, or MULTIEXPR types can be used as initPlans. For EXISTS,
+ * EXPR, or ARRAY, we return a Param referring to the result of evaluating
+ * the initPlan. For ROWCOMPARE, we must modify the testexpr tree to
+ * contain PARAM_EXEC Params instead of the PARAM_SUBLINK Params emitted
+ * by the parser, and then return that tree. For MULTIEXPR, we return a
+ * null constant: the resjunk targetlist item containing the SubLink does
+ * not need to return anything useful, since the referencing Params are
+ * elsewhere.
+ */
+ if (splan->parParam == NIL && subLinkType == EXISTS_SUBLINK)
+ {
+ Param *prm;
+
+ Assert(testexpr == NULL);
+ prm = generate_new_exec_param(root, BOOLOID, -1, InvalidOid);
+ splan->setParam = list_make1_int(prm->paramid);
+ isInitPlan = true;
+ result = (Node *) prm;
+ }
+ else if (splan->parParam == NIL && subLinkType == EXPR_SUBLINK)
+ {
+ TargetEntry *te = linitial(plan->targetlist);
+ Param *prm;
+
+ Assert(!te->resjunk);
+ Assert(testexpr == NULL);
+ prm = generate_new_exec_param(root,
+ exprType((Node *) te->expr),
+ exprTypmod((Node *) te->expr),
+ exprCollation((Node *) te->expr));
+ splan->setParam = list_make1_int(prm->paramid);
+ isInitPlan = true;
+ result = (Node *) prm;
+ }
+ else if (splan->parParam == NIL && subLinkType == ARRAY_SUBLINK)
+ {
+ TargetEntry *te = linitial(plan->targetlist);
+ Oid arraytype;
+ Param *prm;
+
+ Assert(!te->resjunk);
+ Assert(testexpr == NULL);
+ arraytype = get_promoted_array_type(exprType((Node *) te->expr));
+ if (!OidIsValid(arraytype))
+ elog(ERROR, "could not find array type for datatype %s",
+ format_type_be(exprType((Node *) te->expr)));
+ prm = generate_new_exec_param(root,
+ arraytype,
+ exprTypmod((Node *) te->expr),
+ exprCollation((Node *) te->expr));
+ splan->setParam = list_make1_int(prm->paramid);
+ isInitPlan = true;
+ result = (Node *) prm;
+ }
+ else if (splan->parParam == NIL && subLinkType == ROWCOMPARE_SUBLINK)
+ {
+ /* Adjust the Params */
+ List *params;
+
+ Assert(testexpr != NULL);
+ params = generate_subquery_params(root,
+ plan->targetlist,
+ &splan->paramIds);
+ result = convert_testexpr(root,
+ testexpr,
+ params);
+ splan->setParam = list_copy(splan->paramIds);
+ isInitPlan = true;
+
+ /*
+ * The executable expression is returned to become part of the outer
+ * plan's expression tree; it is not kept in the initplan node.
+ */
+ }
+ else if (subLinkType == MULTIEXPR_SUBLINK)
+ {
+ /*
+ * Whether it's an initplan or not, it needs to set a PARAM_EXEC Param
+ * for each output column.
+ */
+ List *params;
+
+ Assert(testexpr == NULL);
+ params = generate_subquery_params(root,
+ plan->targetlist,
+ &splan->setParam);
+
+ /*
+ * Save the list of replacement Params in the n'th cell of
+ * root->multiexpr_params; setrefs.c will use it to replace
+ * PARAM_MULTIEXPR Params.
+ */
+ while (list_length(root->multiexpr_params) < subLinkId)
+ root->multiexpr_params = lappend(root->multiexpr_params, NIL);
+ lc = list_nth_cell(root->multiexpr_params, subLinkId - 1);
+ Assert(lfirst(lc) == NIL);
+ lfirst(lc) = params;
+
+ /* It can be an initplan if there are no parParams. */
+ if (splan->parParam == NIL)
+ {
+ isInitPlan = true;
+ result = (Node *) makeNullConst(RECORDOID, -1, InvalidOid);
+ }
+ else
+ {
+ isInitPlan = false;
+ result = (Node *) splan;
+ }
+ }
+ else
+ {
+ /*
+ * Adjust the Params in the testexpr, unless caller already took care
+ * of it (as indicated by passing a list of Param IDs).
+ */
+ if (testexpr && testexpr_paramids == NIL)
+ {
+ List *params;
+
+ params = generate_subquery_params(root,
+ plan->targetlist,
+ &splan->paramIds);
+ splan->testexpr = convert_testexpr(root,
+ testexpr,
+ params);
+ }
+ else
+ {
+ splan->testexpr = testexpr;
+ splan->paramIds = testexpr_paramids;
+ }
+
+ /*
+ * We can't convert subplans of ALL_SUBLINK or ANY_SUBLINK types to
+ * initPlans, even when they are uncorrelated or undirect correlated,
+ * because we need to scan the output of the subplan for each outer
+ * tuple. But if it's a not-direct-correlated IN (= ANY) test, we
+ * might be able to use a hashtable to avoid comparing all the tuples.
+ */
+ if (subLinkType == ANY_SUBLINK &&
+ splan->parParam == NIL &&
+ subplan_is_hashable(plan) &&
+ testexpr_is_hashable(splan->testexpr, splan->paramIds))
+ splan->useHashTable = true;
+
+ /*
+ * Otherwise, we have the option to tack a Material node onto the top
+ * of the subplan, to reduce the cost of reading it repeatedly. This
+ * is pointless for a direct-correlated subplan, since we'd have to
+ * recompute its results each time anyway. For uncorrelated/undirect
+ * correlated subplans, we add Material unless the subplan's top plan
+ * node would materialize its output anyway. Also, if enable_material
+ * is false, then the user does not want us to materialize anything
+ * unnecessarily, so we don't.
+ */
+ else if (splan->parParam == NIL && enable_material &&
+ !ExecMaterializesOutput(nodeTag(plan)))
+ plan = materialize_finished_plan(plan);
+
+ result = (Node *) splan;
+ isInitPlan = false;
+ }
+
+ /*
+ * Add the subplan and its PlannerInfo to the global lists.
+ */
+ root->glob->subplans = lappend(root->glob->subplans, plan);
+ root->glob->subroots = lappend(root->glob->subroots, subroot);
+ splan->plan_id = list_length(root->glob->subplans);
+
+ if (isInitPlan)
+ root->init_plans = lappend(root->init_plans, splan);
+
+ /*
+ * A parameterless subplan (not initplan) should be prepared to handle
+ * REWIND efficiently. If it has direct parameters then there's no point
+ * since it'll be reset on each scan anyway; and if it's an initplan then
+ * there's no point since it won't get re-run without parameter changes
+ * anyway. The input of a hashed subplan doesn't need REWIND either.
+ */
+ if (splan->parParam == NIL && !isInitPlan && !splan->useHashTable)
+ root->glob->rewindPlanIDs = bms_add_member(root->glob->rewindPlanIDs,
+ splan->plan_id);
+
+ /* Label the subplan for EXPLAIN purposes */
+ splan->plan_name = palloc(32 + 12 * list_length(splan->setParam));
+ sprintf(splan->plan_name, "%s %d",
+ isInitPlan ? "InitPlan" : "SubPlan",
+ splan->plan_id);
+ if (splan->setParam)
+ {
+ char *ptr = splan->plan_name + strlen(splan->plan_name);
+
+ ptr += sprintf(ptr, " (returns ");
+ foreach(lc, splan->setParam)
+ {
+ ptr += sprintf(ptr, "$%d%s",
+ lfirst_int(lc),
+ lnext(splan->setParam, lc) ? "," : ")");
+ }
+ }
+
+ /* Lastly, fill in the cost estimates for use later */
+ cost_subplan(root, splan, plan);
+
+ return result;
+}
+
+/*
+ * generate_subquery_params: build a list of Params representing the output
+ * columns of a sublink's sub-select, given the sub-select's targetlist.
+ *
+ * We also return an integer list of the paramids of the Params.
+ */
+static List *
+generate_subquery_params(PlannerInfo *root, List *tlist, List **paramIds)
+{
+ List *result;
+ List *ids;
+ ListCell *lc;
+
+ result = ids = NIL;
+ foreach(lc, tlist)
+ {
+ TargetEntry *tent = (TargetEntry *) lfirst(lc);
+ Param *param;
+
+ if (tent->resjunk)
+ continue;
+
+ param = generate_new_exec_param(root,
+ exprType((Node *) tent->expr),
+ exprTypmod((Node *) tent->expr),
+ exprCollation((Node *) tent->expr));
+ result = lappend(result, param);
+ ids = lappend_int(ids, param->paramid);
+ }
+
+ *paramIds = ids;
+ return result;
+}
+
+/*
+ * generate_subquery_vars: build a list of Vars representing the output
+ * columns of a sublink's sub-select, given the sub-select's targetlist.
+ * The Vars have the specified varno (RTE index).
+ */
+static List *
+generate_subquery_vars(PlannerInfo *root, List *tlist, Index varno)
+{
+ List *result;
+ ListCell *lc;
+
+ result = NIL;
+ foreach(lc, tlist)
+ {
+ TargetEntry *tent = (TargetEntry *) lfirst(lc);
+ Var *var;
+
+ if (tent->resjunk)
+ continue;
+
+ var = makeVarFromTargetEntry(varno, tent);
+ result = lappend(result, var);
+ }
+
+ return result;
+}
+
+/*
+ * convert_testexpr: convert the testexpr given by the parser into
+ * actually executable form. This entails replacing PARAM_SUBLINK Params
+ * with Params or Vars representing the results of the sub-select. The
+ * nodes to be substituted are passed in as the List result from
+ * generate_subquery_params or generate_subquery_vars.
+ */
+static Node *
+convert_testexpr(PlannerInfo *root,
+ Node *testexpr,
+ List *subst_nodes)
+{
+ convert_testexpr_context context;
+
+ context.root = root;
+ context.subst_nodes = subst_nodes;
+ return convert_testexpr_mutator(testexpr, &context);
+}
+
+static Node *
+convert_testexpr_mutator(Node *node,
+ convert_testexpr_context *context)
+{
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Param))
+ {
+ Param *param = (Param *) node;
+
+ if (param->paramkind == PARAM_SUBLINK)
+ {
+ if (param->paramid <= 0 ||
+ param->paramid > list_length(context->subst_nodes))
+ elog(ERROR, "unexpected PARAM_SUBLINK ID: %d", param->paramid);
+
+ /*
+ * We copy the list item to avoid having doubly-linked
+ * substructure in the modified parse tree. This is probably
+ * unnecessary when it's a Param, but be safe.
+ */
+ return (Node *) copyObject(list_nth(context->subst_nodes,
+ param->paramid - 1));
+ }
+ }
+ if (IsA(node, SubLink))
+ {
+ /*
+ * If we come across a nested SubLink, it is neither necessary nor
+ * correct to recurse into it: any PARAM_SUBLINKs we might find inside
+ * belong to the inner SubLink not the outer. So just return it as-is.
+ *
+ * This reasoning depends on the assumption that nothing will pull
+ * subexpressions into or out of the testexpr field of a SubLink, at
+ * least not without replacing PARAM_SUBLINKs first. If we did want
+ * to do that we'd need to rethink the parser-output representation
+ * altogether, since currently PARAM_SUBLINKs are only unique per
+ * SubLink not globally across the query. The whole point of
+ * replacing them with Vars or PARAM_EXEC nodes is to make them
+ * globally unique before they escape from the SubLink's testexpr.
+ *
+ * Note: this can't happen when called during SS_process_sublinks,
+ * because that recursively processes inner SubLinks first. It can
+ * happen when called from convert_ANY_sublink_to_join, though.
+ */
+ return node;
+ }
+ return expression_tree_mutator(node,
+ convert_testexpr_mutator,
+ (void *) context);
+}
+
+/*
+ * subplan_is_hashable: can we implement an ANY subplan by hashing?
+ *
+ * This is not responsible for checking whether the combining testexpr
+ * is suitable for hashing. We only look at the subquery itself.
+ */
+static bool
+subplan_is_hashable(Plan *plan)
+{
+ double subquery_size;
+
+ /*
+ * The estimated size of the subquery result must fit in hash_mem. (Note:
+ * we use heap tuple overhead here even though the tuples will actually be
+ * stored as MinimalTuples; this provides some fudge factor for hashtable
+ * overhead.)
+ */
+ subquery_size = plan->plan_rows *
+ (MAXALIGN(plan->plan_width) + MAXALIGN(SizeofHeapTupleHeader));
+ if (subquery_size > get_hash_memory_limit())
+ return false;
+
+ return true;
+}
+
+/*
+ * subpath_is_hashable: can we implement an ANY subplan by hashing?
+ *
+ * Identical to subplan_is_hashable, but work from a Path for the subplan.
+ */
+static bool
+subpath_is_hashable(Path *path)
+{
+ double subquery_size;
+
+ /*
+ * The estimated size of the subquery result must fit in hash_mem. (Note:
+ * we use heap tuple overhead here even though the tuples will actually be
+ * stored as MinimalTuples; this provides some fudge factor for hashtable
+ * overhead.)
+ */
+ subquery_size = path->rows *
+ (MAXALIGN(path->pathtarget->width) + MAXALIGN(SizeofHeapTupleHeader));
+ if (subquery_size > get_hash_memory_limit())
+ return false;
+
+ return true;
+}
+
+/*
+ * testexpr_is_hashable: is an ANY SubLink's test expression hashable?
+ *
+ * To identify LHS vs RHS of the hash expression, we must be given the
+ * list of output Param IDs of the SubLink's subquery.
+ */
+static bool
+testexpr_is_hashable(Node *testexpr, List *param_ids)
+{
+ /*
+ * The testexpr must be a single OpExpr, or an AND-clause containing only
+ * OpExprs, each of which satisfy test_opexpr_is_hashable().
+ */
+ if (testexpr && IsA(testexpr, OpExpr))
+ {
+ if (test_opexpr_is_hashable((OpExpr *) testexpr, param_ids))
+ return true;
+ }
+ else if (is_andclause(testexpr))
+ {
+ ListCell *l;
+
+ foreach(l, ((BoolExpr *) testexpr)->args)
+ {
+ Node *andarg = (Node *) lfirst(l);
+
+ if (!IsA(andarg, OpExpr))
+ return false;
+ if (!test_opexpr_is_hashable((OpExpr *) andarg, param_ids))
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+static bool
+test_opexpr_is_hashable(OpExpr *testexpr, List *param_ids)
+{
+ /*
+ * The combining operator must be hashable and strict. The need for
+ * hashability is obvious, since we want to use hashing. Without
+ * strictness, behavior in the presence of nulls is too unpredictable. We
+ * actually must assume even more than plain strictness: it can't yield
+ * NULL for non-null inputs, either (see nodeSubplan.c). However, hash
+ * indexes and hash joins assume that too.
+ */
+ if (!hash_ok_operator(testexpr))
+ return false;
+
+ /*
+ * The left and right inputs must belong to the outer and inner queries
+ * respectively; hence Params that will be supplied by the subquery must
+ * not appear in the LHS, and Vars of the outer query must not appear in
+ * the RHS. (Ordinarily, this must be true because of the way that the
+ * parser builds an ANY SubLink's testexpr ... but inlining of functions
+ * could have changed the expression's structure, so we have to check.
+ * Such cases do not occur often enough to be worth trying to optimize, so
+ * we don't worry about trying to commute the clause or anything like
+ * that; we just need to be sure not to build an invalid plan.)
+ */
+ if (list_length(testexpr->args) != 2)
+ return false;
+ if (contain_exec_param((Node *) linitial(testexpr->args), param_ids))
+ return false;
+ if (contain_var_clause((Node *) lsecond(testexpr->args)))
+ return false;
+ return true;
+}
+
+/*
+ * Check expression is hashable + strict
+ *
+ * We could use op_hashjoinable() and op_strict(), but do it like this to
+ * avoid a redundant cache lookup.
+ */
+static bool
+hash_ok_operator(OpExpr *expr)
+{
+ Oid opid = expr->opno;
+
+ /* quick out if not a binary operator */
+ if (list_length(expr->args) != 2)
+ return false;
+ if (opid == ARRAY_EQ_OP ||
+ opid == RECORD_EQ_OP)
+ {
+ /* these are strict, but must check input type to ensure hashable */
+ Node *leftarg = linitial(expr->args);
+
+ return op_hashjoinable(opid, exprType(leftarg));
+ }
+ else
+ {
+ /* else must look up the operator properties */
+ HeapTuple tup;
+ Form_pg_operator optup;
+
+ tup = SearchSysCache1(OPEROID, ObjectIdGetDatum(opid));
+ if (!HeapTupleIsValid(tup))
+ elog(ERROR, "cache lookup failed for operator %u", opid);
+ optup = (Form_pg_operator) GETSTRUCT(tup);
+ if (!optup->oprcanhash || !func_strict(optup->oprcode))
+ {
+ ReleaseSysCache(tup);
+ return false;
+ }
+ ReleaseSysCache(tup);
+ return true;
+ }
+}
+
+
+/*
+ * SS_process_ctes: process a query's WITH list
+ *
+ * Consider each CTE in the WITH list and either ignore it (if it's an
+ * unreferenced SELECT), "inline" it to create a regular sub-SELECT-in-FROM,
+ * or convert it to an initplan.
+ *
+ * A side effect is to fill in root->cte_plan_ids with a list that
+ * parallels root->parse->cteList and provides the subplan ID for
+ * each CTE's initplan, or a dummy ID (-1) if we didn't make an initplan.
+ */
+void
+SS_process_ctes(PlannerInfo *root)
+{
+ ListCell *lc;
+
+ Assert(root->cte_plan_ids == NIL);
+
+ foreach(lc, root->parse->cteList)
+ {
+ CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
+ CmdType cmdType = ((Query *) cte->ctequery)->commandType;
+ Query *subquery;
+ PlannerInfo *subroot;
+ RelOptInfo *final_rel;
+ Path *best_path;
+ Plan *plan;
+ SubPlan *splan;
+ int paramid;
+
+ /*
+ * Ignore SELECT CTEs that are not actually referenced anywhere.
+ */
+ if (cte->cterefcount == 0 && cmdType == CMD_SELECT)
+ {
+ /* Make a dummy entry in cte_plan_ids */
+ root->cte_plan_ids = lappend_int(root->cte_plan_ids, -1);
+ continue;
+ }
+
+ /*
+ * Consider inlining the CTE (creating RTE_SUBQUERY RTE(s)) instead of
+ * implementing it as a separately-planned CTE.
+ *
+ * We cannot inline if any of these conditions hold:
+ *
+ * 1. The user said not to (the CTEMaterializeAlways option).
+ *
+ * 2. The CTE is recursive.
+ *
+ * 3. The CTE has side-effects; this includes either not being a plain
+ * SELECT, or containing volatile functions. Inlining might change
+ * the side-effects, which would be bad.
+ *
+ * 4. The CTE is multiply-referenced and contains a self-reference to
+ * a recursive CTE outside itself. Inlining would result in multiple
+ * recursive self-references, which we don't support.
+ *
+ * Otherwise, we have an option whether to inline or not. That should
+ * always be a win if there's just a single reference, but if the CTE
+ * is multiply-referenced then it's unclear: inlining adds duplicate
+ * computations, but the ability to absorb restrictions from the outer
+ * query level could outweigh that. We do not have nearly enough
+ * information at this point to tell whether that's true, so we let
+ * the user express a preference. Our default behavior is to inline
+ * only singly-referenced CTEs, but a CTE marked CTEMaterializeNever
+ * will be inlined even if multiply referenced.
+ *
+ * Note: we check for volatile functions last, because that's more
+ * expensive than the other tests needed.
+ */
+ if ((cte->ctematerialized == CTEMaterializeNever ||
+ (cte->ctematerialized == CTEMaterializeDefault &&
+ cte->cterefcount == 1)) &&
+ !cte->cterecursive &&
+ cmdType == CMD_SELECT &&
+ !contain_dml(cte->ctequery) &&
+ (cte->cterefcount <= 1 ||
+ !contain_outer_selfref(cte->ctequery)) &&
+ !contain_volatile_functions(cte->ctequery))
+ {
+ inline_cte(root, cte);
+ /* Make a dummy entry in cte_plan_ids */
+ root->cte_plan_ids = lappend_int(root->cte_plan_ids, -1);
+ continue;
+ }
+
+ /*
+ * Copy the source Query node. Probably not necessary, but let's keep
+ * this similar to make_subplan.
+ */
+ subquery = (Query *) copyObject(cte->ctequery);
+
+ /* plan_params should not be in use in current query level */
+ Assert(root->plan_params == NIL);
+
+ /*
+ * Generate Paths for the CTE query. Always plan for full retrieval
+ * --- we don't have enough info to predict otherwise.
+ */
+ subroot = subquery_planner(root->glob, subquery,
+ root,
+ cte->cterecursive, 0.0);
+
+ /*
+ * Since the current query level doesn't yet contain any RTEs, it
+ * should not be possible for the CTE to have requested parameters of
+ * this level.
+ */
+ if (root->plan_params)
+ elog(ERROR, "unexpected outer reference in CTE query");
+
+ /*
+ * Select best Path and turn it into a Plan. At least for now, there
+ * seems no reason to postpone doing that.
+ */
+ final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
+ best_path = final_rel->cheapest_total_path;
+
+ plan = create_plan(subroot, best_path);
+
+ /*
+ * Make a SubPlan node for it. This is just enough unlike
+ * build_subplan that we can't share code.
+ *
+ * Note plan_id, plan_name, and cost fields are set further down.
+ */
+ splan = makeNode(SubPlan);
+ splan->subLinkType = CTE_SUBLINK;
+ splan->testexpr = NULL;
+ splan->paramIds = NIL;
+ get_first_col_type(plan, &splan->firstColType, &splan->firstColTypmod,
+ &splan->firstColCollation);
+ splan->useHashTable = false;
+ splan->unknownEqFalse = false;
+
+ /*
+ * CTE scans are not considered for parallelism (cf
+ * set_rel_consider_parallel), and even if they were, initPlans aren't
+ * parallel-safe.
+ */
+ splan->parallel_safe = false;
+ splan->setParam = NIL;
+ splan->parParam = NIL;
+ splan->args = NIL;
+
+ /*
+ * The node can't have any inputs (since it's an initplan), so the
+ * parParam and args lists remain empty. (It could contain references
+ * to earlier CTEs' output param IDs, but CTE outputs are not
+ * propagated via the args list.)
+ */
+
+ /*
+ * Assign a param ID to represent the CTE's output. No ordinary
+ * "evaluation" of this param slot ever happens, but we use the param
+ * ID for setParam/chgParam signaling just as if the CTE plan were
+ * returning a simple scalar output. (Also, the executor abuses the
+ * ParamExecData slot for this param ID for communication among
+ * multiple CteScan nodes that might be scanning this CTE.)
+ */
+ paramid = assign_special_exec_param(root);
+ splan->setParam = list_make1_int(paramid);
+
+ /*
+ * Add the subplan and its PlannerInfo to the global lists.
+ */
+ root->glob->subplans = lappend(root->glob->subplans, plan);
+ root->glob->subroots = lappend(root->glob->subroots, subroot);
+ splan->plan_id = list_length(root->glob->subplans);
+
+ root->init_plans = lappend(root->init_plans, splan);
+
+ root->cte_plan_ids = lappend_int(root->cte_plan_ids, splan->plan_id);
+
+ /* Label the subplan for EXPLAIN purposes */
+ splan->plan_name = psprintf("CTE %s", cte->ctename);
+
+ /* Lastly, fill in the cost estimates for use later */
+ cost_subplan(root, splan, plan);
+ }
+}
+
+/*
+ * contain_dml: is any subquery not a plain SELECT?
+ *
+ * We reject SELECT FOR UPDATE/SHARE as well as INSERT etc.
+ */
+static bool
+contain_dml(Node *node)
+{
+ return contain_dml_walker(node, NULL);
+}
+
+static bool
+contain_dml_walker(Node *node, void *context)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, Query))
+ {
+ Query *query = (Query *) node;
+
+ if (query->commandType != CMD_SELECT ||
+ query->rowMarks != NIL)
+ return true;
+
+ return query_tree_walker(query, contain_dml_walker, context, 0);
+ }
+ return expression_tree_walker(node, contain_dml_walker, context);
+}
+
+/*
+ * contain_outer_selfref: is there an external recursive self-reference?
+ */
+static bool
+contain_outer_selfref(Node *node)
+{
+ Index depth = 0;
+
+ /*
+ * We should be starting with a Query, so that depth will be 1 while
+ * examining its immediate contents.
+ */
+ Assert(IsA(node, Query));
+
+ return contain_outer_selfref_walker(node, &depth);
+}
+
+static bool
+contain_outer_selfref_walker(Node *node, Index *depth)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, RangeTblEntry))
+ {
+ RangeTblEntry *rte = (RangeTblEntry *) node;
+
+ /*
+ * Check for a self-reference to a CTE that's above the Query that our
+ * search started at.
+ */
+ if (rte->rtekind == RTE_CTE &&
+ rte->self_reference &&
+ rte->ctelevelsup >= *depth)
+ return true;
+ return false; /* allow range_table_walker to continue */
+ }
+ if (IsA(node, Query))
+ {
+ /* Recurse into subquery, tracking nesting depth properly */
+ Query *query = (Query *) node;
+ bool result;
+
+ (*depth)++;
+
+ result = query_tree_walker(query, contain_outer_selfref_walker,
+ (void *) depth, QTW_EXAMINE_RTES_BEFORE);
+
+ (*depth)--;
+
+ return result;
+ }
+ return expression_tree_walker(node, contain_outer_selfref_walker,
+ (void *) depth);
+}
+
+/*
+ * inline_cte: convert RTE_CTE references to given CTE into RTE_SUBQUERYs
+ */
+static void
+inline_cte(PlannerInfo *root, CommonTableExpr *cte)
+{
+ struct inline_cte_walker_context context;
+
+ context.ctename = cte->ctename;
+ /* Start at levelsup = -1 because we'll immediately increment it */
+ context.levelsup = -1;
+ context.ctequery = castNode(Query, cte->ctequery);
+
+ (void) inline_cte_walker((Node *) root->parse, &context);
+}
+
+static bool
+inline_cte_walker(Node *node, inline_cte_walker_context *context)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, Query))
+ {
+ Query *query = (Query *) node;
+
+ context->levelsup++;
+
+ /*
+ * Visit the query's RTE nodes after their contents; otherwise
+ * query_tree_walker would descend into the newly inlined CTE query,
+ * which we don't want.
+ */
+ (void) query_tree_walker(query, inline_cte_walker, context,
+ QTW_EXAMINE_RTES_AFTER);
+
+ context->levelsup--;
+
+ return false;
+ }
+ else if (IsA(node, RangeTblEntry))
+ {
+ RangeTblEntry *rte = (RangeTblEntry *) node;
+
+ if (rte->rtekind == RTE_CTE &&
+ strcmp(rte->ctename, context->ctename) == 0 &&
+ rte->ctelevelsup == context->levelsup)
+ {
+ /*
+ * Found a reference to replace. Generate a copy of the CTE query
+ * with appropriate level adjustment for outer references (e.g.,
+ * to other CTEs).
+ */
+ Query *newquery = copyObject(context->ctequery);
+
+ if (context->levelsup > 0)
+ IncrementVarSublevelsUp((Node *) newquery, context->levelsup, 1);
+
+ /*
+ * Convert the RTE_CTE RTE into a RTE_SUBQUERY.
+ *
+ * Historically, a FOR UPDATE clause has been treated as extending
+ * into views and subqueries, but not into CTEs. We preserve this
+ * distinction by not trying to push rowmarks into the new
+ * subquery.
+ */
+ rte->rtekind = RTE_SUBQUERY;
+ rte->subquery = newquery;
+ rte->security_barrier = false;
+
+ /* Zero out CTE-specific fields */
+ rte->ctename = NULL;
+ rte->ctelevelsup = 0;
+ rte->self_reference = false;
+ rte->coltypes = NIL;
+ rte->coltypmods = NIL;
+ rte->colcollations = NIL;
+ }
+
+ return false;
+ }
+
+ return expression_tree_walker(node, inline_cte_walker, context);
+}
+
+
+/*
+ * convert_ANY_sublink_to_join: try to convert an ANY SubLink to a join
+ *
+ * The caller has found an ANY SubLink at the top level of one of the query's
+ * qual clauses, but has not checked the properties of the SubLink further.
+ * Decide whether it is appropriate to process this SubLink in join style.
+ * If so, form a JoinExpr and return it. Return NULL if the SubLink cannot
+ * be converted to a join.
+ *
+ * The only non-obvious input parameter is available_rels: this is the set
+ * of query rels that can safely be referenced in the sublink expression.
+ * (We must restrict this to avoid changing the semantics when a sublink
+ * is present in an outer join's ON qual.) The conversion must fail if
+ * the converted qual would reference any but these parent-query relids.
+ *
+ * On success, the returned JoinExpr has larg = NULL and rarg = the jointree
+ * item representing the pulled-up subquery. The caller must set larg to
+ * represent the relation(s) on the lefthand side of the new join, and insert
+ * the JoinExpr into the upper query's jointree at an appropriate place
+ * (typically, where the lefthand relation(s) had been). Note that the
+ * passed-in SubLink must also be removed from its original position in the
+ * query quals, since the quals of the returned JoinExpr replace it.
+ * (Notionally, we replace the SubLink with a constant TRUE, then elide the
+ * redundant constant from the qual.)
+ *
+ * On success, the caller is also responsible for recursively applying
+ * pull_up_sublinks processing to the rarg and quals of the returned JoinExpr.
+ * (On failure, there is no need to do anything, since pull_up_sublinks will
+ * be applied when we recursively plan the sub-select.)
+ *
+ * Side effects of a successful conversion include adding the SubLink's
+ * subselect to the query's rangetable, so that it can be referenced in
+ * the JoinExpr's rarg.
+ */
+JoinExpr *
+convert_ANY_sublink_to_join(PlannerInfo *root, SubLink *sublink,
+ Relids available_rels)
+{
+ JoinExpr *result;
+ Query *parse = root->parse;
+ Query *subselect = (Query *) sublink->subselect;
+ Relids upper_varnos;
+ int rtindex;
+ ParseNamespaceItem *nsitem;
+ RangeTblEntry *rte;
+ RangeTblRef *rtr;
+ List *subquery_vars;
+ Node *quals;
+ ParseState *pstate;
+
+ Assert(sublink->subLinkType == ANY_SUBLINK);
+
+ /*
+ * The sub-select must not refer to any Vars of the parent query. (Vars of
+ * higher levels should be okay, though.)
+ */
+ if (contain_vars_of_level((Node *) subselect, 1))
+ return NULL;
+
+ /*
+ * The test expression must contain some Vars of the parent query, else
+ * it's not gonna be a join. (Note that it won't have Vars referring to
+ * the subquery, rather Params.)
+ */
+ upper_varnos = pull_varnos(root, sublink->testexpr);
+ if (bms_is_empty(upper_varnos))
+ return NULL;
+
+ /*
+ * However, it can't refer to anything outside available_rels.
+ */
+ if (!bms_is_subset(upper_varnos, available_rels))
+ return NULL;
+
+ /*
+ * The combining operators and left-hand expressions mustn't be volatile.
+ */
+ if (contain_volatile_functions(sublink->testexpr))
+ return NULL;
+
+ /* Create a dummy ParseState for addRangeTableEntryForSubquery */
+ pstate = make_parsestate(NULL);
+
+ /*
+ * Okay, pull up the sub-select into upper range table.
+ *
+ * We rely here on the assumption that the outer query has no references
+ * to the inner (necessarily true, other than the Vars that we build
+ * below). Therefore this is a lot easier than what pull_up_subqueries has
+ * to go through.
+ */
+ nsitem = addRangeTableEntryForSubquery(pstate,
+ subselect,
+ makeAlias("ANY_subquery", NIL),
+ false,
+ false);
+ rte = nsitem->p_rte;
+ parse->rtable = lappend(parse->rtable, rte);
+ rtindex = list_length(parse->rtable);
+
+ /*
+ * Form a RangeTblRef for the pulled-up sub-select.
+ */
+ rtr = makeNode(RangeTblRef);
+ rtr->rtindex = rtindex;
+
+ /*
+ * Build a list of Vars representing the subselect outputs.
+ */
+ subquery_vars = generate_subquery_vars(root,
+ subselect->targetList,
+ rtindex);
+
+ /*
+ * Build the new join's qual expression, replacing Params with these Vars.
+ */
+ quals = convert_testexpr(root, sublink->testexpr, subquery_vars);
+
+ /*
+ * And finally, build the JoinExpr node.
+ */
+ result = makeNode(JoinExpr);
+ result->jointype = JOIN_SEMI;
+ result->isNatural = false;
+ result->larg = NULL; /* caller must fill this in */
+ result->rarg = (Node *) rtr;
+ result->usingClause = NIL;
+ result->join_using_alias = NULL;
+ result->quals = quals;
+ result->alias = NULL;
+ result->rtindex = 0; /* we don't need an RTE for it */
+
+ return result;
+}
+
+/*
+ * convert_EXISTS_sublink_to_join: try to convert an EXISTS SubLink to a join
+ *
+ * The API of this function is identical to convert_ANY_sublink_to_join's,
+ * except that we also support the case where the caller has found NOT EXISTS,
+ * so we need an additional input parameter "under_not".
+ */
+JoinExpr *
+convert_EXISTS_sublink_to_join(PlannerInfo *root, SubLink *sublink,
+ bool under_not, Relids available_rels)
+{
+ JoinExpr *result;
+ Query *parse = root->parse;
+ Query *subselect = (Query *) sublink->subselect;
+ Node *whereClause;
+ int rtoffset;
+ int varno;
+ Relids clause_varnos;
+ Relids upper_varnos;
+
+ Assert(sublink->subLinkType == EXISTS_SUBLINK);
+
+ /*
+ * Can't flatten if it contains WITH. (We could arrange to pull up the
+ * WITH into the parent query's cteList, but that risks changing the
+ * semantics, since a WITH ought to be executed once per associated query
+ * call.) Note that convert_ANY_sublink_to_join doesn't have to reject
+ * this case, since it just produces a subquery RTE that doesn't have to
+ * get flattened into the parent query.
+ */
+ if (subselect->cteList)
+ return NULL;
+
+ /*
+ * Copy the subquery so we can modify it safely (see comments in
+ * make_subplan).
+ */
+ subselect = copyObject(subselect);
+
+ /*
+ * See if the subquery can be simplified based on the knowledge that it's
+ * being used in EXISTS(). If we aren't able to get rid of its
+ * targetlist, we have to fail, because the pullup operation leaves us
+ * with noplace to evaluate the targetlist.
+ */
+ if (!simplify_EXISTS_query(root, subselect))
+ return NULL;
+
+ /*
+ * Separate out the WHERE clause. (We could theoretically also remove
+ * top-level plain JOIN/ON clauses, but it's probably not worth the
+ * trouble.)
+ */
+ whereClause = subselect->jointree->quals;
+ subselect->jointree->quals = NULL;
+
+ /*
+ * The rest of the sub-select must not refer to any Vars of the parent
+ * query. (Vars of higher levels should be okay, though.)
+ */
+ if (contain_vars_of_level((Node *) subselect, 1))
+ return NULL;
+
+ /*
+ * On the other hand, the WHERE clause must contain some Vars of the
+ * parent query, else it's not gonna be a join.
+ */
+ if (!contain_vars_of_level(whereClause, 1))
+ return NULL;
+
+ /*
+ * We don't risk optimizing if the WHERE clause is volatile, either.
+ */
+ if (contain_volatile_functions(whereClause))
+ return NULL;
+
+ /*
+ * The subquery must have a nonempty jointree, but we can make it so.
+ */
+ replace_empty_jointree(subselect);
+
+ /*
+ * Prepare to pull up the sub-select into top range table.
+ *
+ * We rely here on the assumption that the outer query has no references
+ * to the inner (necessarily true). Therefore this is a lot easier than
+ * what pull_up_subqueries has to go through.
+ *
+ * In fact, it's even easier than what convert_ANY_sublink_to_join has to
+ * do. The machinations of simplify_EXISTS_query ensured that there is
+ * nothing interesting in the subquery except an rtable and jointree, and
+ * even the jointree FromExpr no longer has quals. So we can just append
+ * the rtable to our own and use the FromExpr in our jointree. But first,
+ * adjust all level-zero varnos in the subquery to account for the rtable
+ * merger.
+ */
+ rtoffset = list_length(parse->rtable);
+ OffsetVarNodes((Node *) subselect, rtoffset, 0);
+ OffsetVarNodes(whereClause, rtoffset, 0);
+
+ /*
+ * Upper-level vars in subquery will now be one level closer to their
+ * parent than before; in particular, anything that had been level 1
+ * becomes level zero.
+ */
+ IncrementVarSublevelsUp((Node *) subselect, -1, 1);
+ IncrementVarSublevelsUp(whereClause, -1, 1);
+
+ /*
+ * Now that the WHERE clause is adjusted to match the parent query
+ * environment, we can easily identify all the level-zero rels it uses.
+ * The ones <= rtoffset belong to the upper query; the ones > rtoffset do
+ * not.
+ */
+ clause_varnos = pull_varnos(root, whereClause);
+ upper_varnos = NULL;
+ while ((varno = bms_first_member(clause_varnos)) >= 0)
+ {
+ if (varno <= rtoffset)
+ upper_varnos = bms_add_member(upper_varnos, varno);
+ }
+ bms_free(clause_varnos);
+ Assert(!bms_is_empty(upper_varnos));
+
+ /*
+ * Now that we've got the set of upper-level varnos, we can make the last
+ * check: only available_rels can be referenced.
+ */
+ if (!bms_is_subset(upper_varnos, available_rels))
+ return NULL;
+
+ /* Now we can attach the modified subquery rtable to the parent */
+ parse->rtable = list_concat(parse->rtable, subselect->rtable);
+
+ /*
+ * And finally, build the JoinExpr node.
+ */
+ result = makeNode(JoinExpr);
+ result->jointype = under_not ? JOIN_ANTI : JOIN_SEMI;
+ result->isNatural = false;
+ result->larg = NULL; /* caller must fill this in */
+ /* flatten out the FromExpr node if it's useless */
+ if (list_length(subselect->jointree->fromlist) == 1)
+ result->rarg = (Node *) linitial(subselect->jointree->fromlist);
+ else
+ result->rarg = (Node *) subselect->jointree;
+ result->usingClause = NIL;
+ result->join_using_alias = NULL;
+ result->quals = whereClause;
+ result->alias = NULL;
+ result->rtindex = 0; /* we don't need an RTE for it */
+
+ return result;
+}
+
+/*
+ * simplify_EXISTS_query: remove any useless stuff in an EXISTS's subquery
+ *
+ * The only thing that matters about an EXISTS query is whether it returns
+ * zero or more than zero rows. Therefore, we can remove certain SQL features
+ * that won't affect that. The only part that is really likely to matter in
+ * typical usage is simplifying the targetlist: it's a common habit to write
+ * "SELECT * FROM" even though there is no need to evaluate any columns.
+ *
+ * Note: by suppressing the targetlist we could cause an observable behavioral
+ * change, namely that any errors that might occur in evaluating the tlist
+ * won't occur, nor will other side-effects of volatile functions. This seems
+ * unlikely to bother anyone in practice.
+ *
+ * Returns true if was able to discard the targetlist, else false.
+ */
+static bool
+simplify_EXISTS_query(PlannerInfo *root, Query *query)
+{
+ /*
+ * We don't try to simplify at all if the query uses set operations,
+ * aggregates, grouping sets, SRFs, modifying CTEs, HAVING, OFFSET, or FOR
+ * UPDATE/SHARE; none of these seem likely in normal usage and their
+ * possible effects are complex. (Note: we could ignore an "OFFSET 0"
+ * clause, but that traditionally is used as an optimization fence, so we
+ * don't.)
+ */
+ if (query->commandType != CMD_SELECT ||
+ query->setOperations ||
+ query->hasAggs ||
+ query->groupingSets ||
+ query->hasWindowFuncs ||
+ query->hasTargetSRFs ||
+ query->hasModifyingCTE ||
+ query->havingQual ||
+ query->limitOffset ||
+ query->rowMarks)
+ return false;
+
+ /*
+ * LIMIT with a constant positive (or NULL) value doesn't affect the
+ * semantics of EXISTS, so let's ignore such clauses. This is worth doing
+ * because people accustomed to certain other DBMSes may be in the habit
+ * of writing EXISTS(SELECT ... LIMIT 1) as an optimization. If there's a
+ * LIMIT with anything else as argument, though, we can't simplify.
+ */
+ if (query->limitCount)
+ {
+ /*
+ * The LIMIT clause has not yet been through eval_const_expressions,
+ * so we have to apply that here. It might seem like this is a waste
+ * of cycles, since the only case plausibly worth worrying about is
+ * "LIMIT 1" ... but what we'll actually see is "LIMIT int8(1::int4)",
+ * so we have to fold constants or we're not going to recognize it.
+ */
+ Node *node = eval_const_expressions(root, query->limitCount);
+ Const *limit;
+
+ /* Might as well update the query if we simplified the clause. */
+ query->limitCount = node;
+
+ if (!IsA(node, Const))
+ return false;
+
+ limit = (Const *) node;
+ Assert(limit->consttype == INT8OID);
+ if (!limit->constisnull && DatumGetInt64(limit->constvalue) <= 0)
+ return false;
+
+ /* Whether or not the targetlist is safe, we can drop the LIMIT. */
+ query->limitCount = NULL;
+ }
+
+ /*
+ * Otherwise, we can throw away the targetlist, as well as any GROUP,
+ * WINDOW, DISTINCT, and ORDER BY clauses; none of those clauses will
+ * change a nonzero-rows result to zero rows or vice versa. (Furthermore,
+ * since our parsetree representation of these clauses depends on the
+ * targetlist, we'd better throw them away if we drop the targetlist.)
+ */
+ query->targetList = NIL;
+ query->groupClause = NIL;
+ query->windowClause = NIL;
+ query->distinctClause = NIL;
+ query->sortClause = NIL;
+ query->hasDistinctOn = false;
+
+ return true;
+}
+
+/*
+ * convert_EXISTS_to_ANY: try to convert EXISTS to a hashable ANY sublink
+ *
+ * The subselect is expected to be a fresh copy that we can munge up,
+ * and to have been successfully passed through simplify_EXISTS_query.
+ *
+ * On success, the modified subselect is returned, and we store a suitable
+ * upper-level test expression at *testexpr, plus a list of the subselect's
+ * output Params at *paramIds. (The test expression is already Param-ified
+ * and hence need not go through convert_testexpr, which is why we have to
+ * deal with the Param IDs specially.)
+ *
+ * On failure, returns NULL.
+ */
+static Query *
+convert_EXISTS_to_ANY(PlannerInfo *root, Query *subselect,
+ Node **testexpr, List **paramIds)
+{
+ Node *whereClause;
+ List *leftargs,
+ *rightargs,
+ *opids,
+ *opcollations,
+ *newWhere,
+ *tlist,
+ *testlist,
+ *paramids;
+ ListCell *lc,
+ *rc,
+ *oc,
+ *cc;
+ AttrNumber resno;
+
+ /*
+ * Query must not require a targetlist, since we have to insert a new one.
+ * Caller should have dealt with the case already.
+ */
+ Assert(subselect->targetList == NIL);
+
+ /*
+ * Separate out the WHERE clause. (We could theoretically also remove
+ * top-level plain JOIN/ON clauses, but it's probably not worth the
+ * trouble.)
+ */
+ whereClause = subselect->jointree->quals;
+ subselect->jointree->quals = NULL;
+
+ /*
+ * The rest of the sub-select must not refer to any Vars of the parent
+ * query. (Vars of higher levels should be okay, though.)
+ *
+ * Note: we need not check for Aggrefs separately because we know the
+ * sub-select is as yet unoptimized; any uplevel Aggref must therefore
+ * contain an uplevel Var reference. This is not the case below ...
+ */
+ if (contain_vars_of_level((Node *) subselect, 1))
+ return NULL;
+
+ /*
+ * We don't risk optimizing if the WHERE clause is volatile, either.
+ */
+ if (contain_volatile_functions(whereClause))
+ return NULL;
+
+ /*
+ * Clean up the WHERE clause by doing const-simplification etc on it.
+ * Aside from simplifying the processing we're about to do, this is
+ * important for being able to pull chunks of the WHERE clause up into the
+ * parent query. Since we are invoked partway through the parent's
+ * preprocess_expression() work, earlier steps of preprocess_expression()
+ * wouldn't get applied to the pulled-up stuff unless we do them here. For
+ * the parts of the WHERE clause that get put back into the child query,
+ * this work is partially duplicative, but it shouldn't hurt.
+ *
+ * Note: we do not run flatten_join_alias_vars. This is OK because any
+ * parent aliases were flattened already, and we're not going to pull any
+ * child Vars (of any description) into the parent.
+ *
+ * Note: passing the parent's root to eval_const_expressions is
+ * technically wrong, but we can get away with it since only the
+ * boundParams (if any) are used, and those would be the same in a
+ * subroot.
+ */
+ whereClause = eval_const_expressions(root, whereClause);
+ whereClause = (Node *) canonicalize_qual((Expr *) whereClause, false);
+ whereClause = (Node *) make_ands_implicit((Expr *) whereClause);
+
+ /*
+ * We now have a flattened implicit-AND list of clauses, which we try to
+ * break apart into "outervar = innervar" hash clauses. Anything that
+ * can't be broken apart just goes back into the newWhere list. Note that
+ * we aren't trying hard yet to ensure that we have only outer or only
+ * inner on each side; we'll check that if we get to the end.
+ */
+ leftargs = rightargs = opids = opcollations = newWhere = NIL;
+ foreach(lc, (List *) whereClause)
+ {
+ OpExpr *expr = (OpExpr *) lfirst(lc);
+
+ if (IsA(expr, OpExpr) &&
+ hash_ok_operator(expr))
+ {
+ Node *leftarg = (Node *) linitial(expr->args);
+ Node *rightarg = (Node *) lsecond(expr->args);
+
+ if (contain_vars_of_level(leftarg, 1))
+ {
+ leftargs = lappend(leftargs, leftarg);
+ rightargs = lappend(rightargs, rightarg);
+ opids = lappend_oid(opids, expr->opno);
+ opcollations = lappend_oid(opcollations, expr->inputcollid);
+ continue;
+ }
+ if (contain_vars_of_level(rightarg, 1))
+ {
+ /*
+ * We must commute the clause to put the outer var on the
+ * left, because the hashing code in nodeSubplan.c expects
+ * that. This probably shouldn't ever fail, since hashable
+ * operators ought to have commutators, but be paranoid.
+ */
+ expr->opno = get_commutator(expr->opno);
+ if (OidIsValid(expr->opno) && hash_ok_operator(expr))
+ {
+ leftargs = lappend(leftargs, rightarg);
+ rightargs = lappend(rightargs, leftarg);
+ opids = lappend_oid(opids, expr->opno);
+ opcollations = lappend_oid(opcollations, expr->inputcollid);
+ continue;
+ }
+ /* If no commutator, no chance to optimize the WHERE clause */
+ return NULL;
+ }
+ }
+ /* Couldn't handle it as a hash clause */
+ newWhere = lappend(newWhere, expr);
+ }
+
+ /*
+ * If we didn't find anything we could convert, fail.
+ */
+ if (leftargs == NIL)
+ return NULL;
+
+ /*
+ * There mustn't be any parent Vars or Aggs in the stuff that we intend to
+ * put back into the child query. Note: you might think we don't need to
+ * check for Aggs separately, because an uplevel Agg must contain an
+ * uplevel Var in its argument. But it is possible that the uplevel Var
+ * got optimized away by eval_const_expressions. Consider
+ *
+ * SUM(CASE WHEN false THEN uplevelvar ELSE 0 END)
+ */
+ if (contain_vars_of_level((Node *) newWhere, 1) ||
+ contain_vars_of_level((Node *) rightargs, 1))
+ return NULL;
+ if (root->parse->hasAggs &&
+ (contain_aggs_of_level((Node *) newWhere, 1) ||
+ contain_aggs_of_level((Node *) rightargs, 1)))
+ return NULL;
+
+ /*
+ * And there can't be any child Vars in the stuff we intend to pull up.
+ * (Note: we'd need to check for child Aggs too, except we know the child
+ * has no aggs at all because of simplify_EXISTS_query's check. The same
+ * goes for window functions.)
+ */
+ if (contain_vars_of_level((Node *) leftargs, 0))
+ return NULL;
+
+ /*
+ * Also reject sublinks in the stuff we intend to pull up. (It might be
+ * possible to support this, but doesn't seem worth the complication.)
+ */
+ if (contain_subplans((Node *) leftargs))
+ return NULL;
+
+ /*
+ * Okay, adjust the sublevelsup in the stuff we're pulling up.
+ */
+ IncrementVarSublevelsUp((Node *) leftargs, -1, 1);
+
+ /*
+ * Put back any child-level-only WHERE clauses.
+ */
+ if (newWhere)
+ subselect->jointree->quals = (Node *) make_ands_explicit(newWhere);
+
+ /*
+ * Build a new targetlist for the child that emits the expressions we
+ * need. Concurrently, build a testexpr for the parent using Params to
+ * reference the child outputs. (Since we generate Params directly here,
+ * there will be no need to convert the testexpr in build_subplan.)
+ */
+ tlist = testlist = paramids = NIL;
+ resno = 1;
+ forfour(lc, leftargs, rc, rightargs, oc, opids, cc, opcollations)
+ {
+ Node *leftarg = (Node *) lfirst(lc);
+ Node *rightarg = (Node *) lfirst(rc);
+ Oid opid = lfirst_oid(oc);
+ Oid opcollation = lfirst_oid(cc);
+ Param *param;
+
+ param = generate_new_exec_param(root,
+ exprType(rightarg),
+ exprTypmod(rightarg),
+ exprCollation(rightarg));
+ tlist = lappend(tlist,
+ makeTargetEntry((Expr *) rightarg,
+ resno++,
+ NULL,
+ false));
+ testlist = lappend(testlist,
+ make_opclause(opid, BOOLOID, false,
+ (Expr *) leftarg, (Expr *) param,
+ InvalidOid, opcollation));
+ paramids = lappend_int(paramids, param->paramid);
+ }
+
+ /* Put everything where it should go, and we're done */
+ subselect->targetList = tlist;
+ *testexpr = (Node *) make_ands_explicit(testlist);
+ *paramIds = paramids;
+
+ return subselect;
+}
+
+
+/*
+ * Replace correlation vars (uplevel vars) with Params.
+ *
+ * Uplevel PlaceHolderVars and aggregates are replaced, too.
+ *
+ * Note: it is critical that this runs immediately after SS_process_sublinks.
+ * Since we do not recurse into the arguments of uplevel PHVs and aggregates,
+ * they will get copied to the appropriate subplan args list in the parent
+ * query with uplevel vars not replaced by Params, but only adjusted in level
+ * (see replace_outer_placeholdervar and replace_outer_agg). That's exactly
+ * what we want for the vars of the parent level --- but if a PHV's or
+ * aggregate's argument contains any further-up variables, they have to be
+ * replaced with Params in their turn. That will happen when the parent level
+ * runs SS_replace_correlation_vars. Therefore it must do so after expanding
+ * its sublinks to subplans. And we don't want any steps in between, else
+ * those steps would never get applied to the argument expressions, either in
+ * the parent or the child level.
+ *
+ * Another fairly tricky thing going on here is the handling of SubLinks in
+ * the arguments of uplevel PHVs/aggregates. Those are not touched inside the
+ * intermediate query level, either. Instead, SS_process_sublinks recurses on
+ * them after copying the PHV or Aggref expression into the parent plan level
+ * (this is actually taken care of in build_subplan).
+ */
+Node *
+SS_replace_correlation_vars(PlannerInfo *root, Node *expr)
+{
+ /* No setup needed for tree walk, so away we go */
+ return replace_correlation_vars_mutator(expr, root);
+}
+
+static Node *
+replace_correlation_vars_mutator(Node *node, PlannerInfo *root)
+{
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Var))
+ {
+ if (((Var *) node)->varlevelsup > 0)
+ return (Node *) replace_outer_var(root, (Var *) node);
+ }
+ if (IsA(node, PlaceHolderVar))
+ {
+ if (((PlaceHolderVar *) node)->phlevelsup > 0)
+ return (Node *) replace_outer_placeholdervar(root,
+ (PlaceHolderVar *) node);
+ }
+ if (IsA(node, Aggref))
+ {
+ if (((Aggref *) node)->agglevelsup > 0)
+ return (Node *) replace_outer_agg(root, (Aggref *) node);
+ }
+ if (IsA(node, GroupingFunc))
+ {
+ if (((GroupingFunc *) node)->agglevelsup > 0)
+ return (Node *) replace_outer_grouping(root, (GroupingFunc *) node);
+ }
+ return expression_tree_mutator(node,
+ replace_correlation_vars_mutator,
+ (void *) root);
+}
+
+/*
+ * Expand SubLinks to SubPlans in the given expression.
+ *
+ * The isQual argument tells whether or not this expression is a WHERE/HAVING
+ * qualifier expression. If it is, any sublinks appearing at top level need
+ * not distinguish FALSE from UNKNOWN return values.
+ */
+Node *
+SS_process_sublinks(PlannerInfo *root, Node *expr, bool isQual)
+{
+ process_sublinks_context context;
+
+ context.root = root;
+ context.isTopQual = isQual;
+ return process_sublinks_mutator(expr, &context);
+}
+
+static Node *
+process_sublinks_mutator(Node *node, process_sublinks_context *context)
+{
+ process_sublinks_context locContext;
+
+ locContext.root = context->root;
+
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, SubLink))
+ {
+ SubLink *sublink = (SubLink *) node;
+ Node *testexpr;
+
+ /*
+ * First, recursively process the lefthand-side expressions, if any.
+ * They're not top-level anymore.
+ */
+ locContext.isTopQual = false;
+ testexpr = process_sublinks_mutator(sublink->testexpr, &locContext);
+
+ /*
+ * Now build the SubPlan node and make the expr to return.
+ */
+ return make_subplan(context->root,
+ (Query *) sublink->subselect,
+ sublink->subLinkType,
+ sublink->subLinkId,
+ testexpr,
+ context->isTopQual);
+ }
+
+ /*
+ * Don't recurse into the arguments of an outer PHV, Aggref or
+ * GroupingFunc here. Any SubLinks in the arguments have to be dealt with
+ * at the outer query level; they'll be handled when build_subplan
+ * collects the PHV, Aggref or GroupingFunc into the arguments to be
+ * passed down to the current subplan.
+ */
+ if (IsA(node, PlaceHolderVar))
+ {
+ if (((PlaceHolderVar *) node)->phlevelsup > 0)
+ return node;
+ }
+ else if (IsA(node, Aggref))
+ {
+ if (((Aggref *) node)->agglevelsup > 0)
+ return node;
+ }
+ else if (IsA(node, GroupingFunc))
+ {
+ if (((GroupingFunc *) node)->agglevelsup > 0)
+ return node;
+ }
+
+ /*
+ * We should never see a SubPlan expression in the input (since this is
+ * the very routine that creates 'em to begin with). We shouldn't find
+ * ourselves invoked directly on a Query, either.
+ */
+ Assert(!IsA(node, SubPlan));
+ Assert(!IsA(node, AlternativeSubPlan));
+ Assert(!IsA(node, Query));
+
+ /*
+ * Because make_subplan() could return an AND or OR clause, we have to
+ * take steps to preserve AND/OR flatness of a qual. We assume the input
+ * has been AND/OR flattened and so we need no recursion here.
+ *
+ * (Due to the coding here, we will not get called on the List subnodes of
+ * an AND; and the input is *not* yet in implicit-AND format. So no check
+ * is needed for a bare List.)
+ *
+ * Anywhere within the top-level AND/OR clause structure, we can tell
+ * make_subplan() that NULL and FALSE are interchangeable. So isTopQual
+ * propagates down in both cases. (Note that this is unlike the meaning
+ * of "top level qual" used in most other places in Postgres.)
+ */
+ if (is_andclause(node))
+ {
+ List *newargs = NIL;
+ ListCell *l;
+
+ /* Still at qual top-level */
+ locContext.isTopQual = context->isTopQual;
+
+ foreach(l, ((BoolExpr *) node)->args)
+ {
+ Node *newarg;
+
+ newarg = process_sublinks_mutator(lfirst(l), &locContext);
+ if (is_andclause(newarg))
+ newargs = list_concat(newargs, ((BoolExpr *) newarg)->args);
+ else
+ newargs = lappend(newargs, newarg);
+ }
+ return (Node *) make_andclause(newargs);
+ }
+
+ if (is_orclause(node))
+ {
+ List *newargs = NIL;
+ ListCell *l;
+
+ /* Still at qual top-level */
+ locContext.isTopQual = context->isTopQual;
+
+ foreach(l, ((BoolExpr *) node)->args)
+ {
+ Node *newarg;
+
+ newarg = process_sublinks_mutator(lfirst(l), &locContext);
+ if (is_orclause(newarg))
+ newargs = list_concat(newargs, ((BoolExpr *) newarg)->args);
+ else
+ newargs = lappend(newargs, newarg);
+ }
+ return (Node *) make_orclause(newargs);
+ }
+
+ /*
+ * If we recurse down through anything other than an AND or OR node, we
+ * are definitely not at top qual level anymore.
+ */
+ locContext.isTopQual = false;
+
+ return expression_tree_mutator(node,
+ process_sublinks_mutator,
+ (void *) &locContext);
+}
+
+/*
+ * SS_identify_outer_params - identify the Params available from outer levels
+ *
+ * This must be run after SS_replace_correlation_vars and SS_process_sublinks
+ * processing is complete in a given query level as well as all of its
+ * descendant levels (which means it's most practical to do it at the end of
+ * processing the query level). We compute the set of paramIds that outer
+ * levels will make available to this level+descendants, and record it in
+ * root->outer_params for use while computing extParam/allParam sets in final
+ * plan cleanup. (We can't just compute it then, because the upper levels'
+ * plan_params lists are transient and will be gone by then.)
+ */
+void
+SS_identify_outer_params(PlannerInfo *root)
+{
+ Bitmapset *outer_params;
+ PlannerInfo *proot;
+ ListCell *l;
+
+ /*
+ * If no parameters have been assigned anywhere in the tree, we certainly
+ * don't need to do anything here.
+ */
+ if (root->glob->paramExecTypes == NIL)
+ return;
+
+ /*
+ * Scan all query levels above this one to see which parameters are due to
+ * be available from them, either because lower query levels have
+ * requested them (via plan_params) or because they will be available from
+ * initPlans of those levels.
+ */
+ outer_params = NULL;
+ for (proot = root->parent_root; proot != NULL; proot = proot->parent_root)
+ {
+ /* Include ordinary Var/PHV/Aggref/GroupingFunc params */
+ foreach(l, proot->plan_params)
+ {
+ PlannerParamItem *pitem = (PlannerParamItem *) lfirst(l);
+
+ outer_params = bms_add_member(outer_params, pitem->paramId);
+ }
+ /* Include any outputs of outer-level initPlans */
+ foreach(l, proot->init_plans)
+ {
+ SubPlan *initsubplan = (SubPlan *) lfirst(l);
+ ListCell *l2;
+
+ foreach(l2, initsubplan->setParam)
+ {
+ outer_params = bms_add_member(outer_params, lfirst_int(l2));
+ }
+ }
+ /* Include worktable ID, if a recursive query is being planned */
+ if (proot->wt_param_id >= 0)
+ outer_params = bms_add_member(outer_params, proot->wt_param_id);
+ }
+ root->outer_params = outer_params;
+}
+
+/*
+ * SS_charge_for_initplans - account for initplans in Path costs & parallelism
+ *
+ * If any initPlans have been created in the current query level, they will
+ * get attached to the Plan tree created from whichever Path we select from
+ * the given rel. Increment all that rel's Paths' costs to account for them,
+ * and make sure the paths get marked as parallel-unsafe, since we can't
+ * currently transmit initPlans to parallel workers.
+ *
+ * This is separate from SS_attach_initplans because we might conditionally
+ * create more initPlans during create_plan(), depending on which Path we
+ * select. However, Paths that would generate such initPlans are expected
+ * to have included their cost already.
+ */
+void
+SS_charge_for_initplans(PlannerInfo *root, RelOptInfo *final_rel)
+{
+ Cost initplan_cost;
+ ListCell *lc;
+
+ /* Nothing to do if no initPlans */
+ if (root->init_plans == NIL)
+ return;
+
+ /*
+ * Compute the cost increment just once, since it will be the same for all
+ * Paths. We assume each initPlan gets run once during top plan startup.
+ * This is a conservative overestimate, since in fact an initPlan might be
+ * executed later than plan startup, or even not at all.
+ */
+ initplan_cost = 0;
+ foreach(lc, root->init_plans)
+ {
+ SubPlan *initsubplan = (SubPlan *) lfirst(lc);
+
+ initplan_cost += initsubplan->startup_cost + initsubplan->per_call_cost;
+ }
+
+ /*
+ * Now adjust the costs and parallel_safe flags.
+ */
+ foreach(lc, final_rel->pathlist)
+ {
+ Path *path = (Path *) lfirst(lc);
+
+ path->startup_cost += initplan_cost;
+ path->total_cost += initplan_cost;
+ path->parallel_safe = false;
+ }
+
+ /*
+ * Forget about any partial paths and clear consider_parallel, too;
+ * they're not usable if we attached an initPlan.
+ */
+ final_rel->partial_pathlist = NIL;
+ final_rel->consider_parallel = false;
+
+ /* We needn't do set_cheapest() here, caller will do it */
+}
+
+/*
+ * SS_attach_initplans - attach initplans to topmost plan node
+ *
+ * Attach any initplans created in the current query level to the specified
+ * plan node, which should normally be the topmost node for the query level.
+ * (In principle the initPlans could go in any node at or above where they're
+ * referenced; but there seems no reason to put them any lower than the
+ * topmost node, so we don't bother to track exactly where they came from.)
+ * We do not touch the plan node's cost; the initplans should have been
+ * accounted for in path costing.
+ */
+void
+SS_attach_initplans(PlannerInfo *root, Plan *plan)
+{
+ plan->initPlan = root->init_plans;
+}
+
+/*
+ * SS_finalize_plan - do final parameter processing for a completed Plan.
+ *
+ * This recursively computes the extParam and allParam sets for every Plan
+ * node in the given plan tree. (Oh, and RangeTblFunction.funcparams too.)
+ *
+ * We assume that SS_finalize_plan has already been run on any initplans or
+ * subplans the plan tree could reference.
+ */
+void
+SS_finalize_plan(PlannerInfo *root, Plan *plan)
+{
+ /* No setup needed, just recurse through plan tree. */
+ (void) finalize_plan(root, plan, -1, root->outer_params, NULL);
+}
+
+/*
+ * Recursive processing of all nodes in the plan tree
+ *
+ * gather_param is the rescan_param of an ancestral Gather/GatherMerge,
+ * or -1 if there is none.
+ *
+ * valid_params is the set of param IDs supplied by outer plan levels
+ * that are valid to reference in this plan node or its children.
+ *
+ * scan_params is a set of param IDs to force scan plan nodes to reference.
+ * This is for EvalPlanQual support, and is always NULL at the top of the
+ * recursion.
+ *
+ * The return value is the computed allParam set for the given Plan node.
+ * This is just an internal notational convenience: we can add a child
+ * plan's allParams to the set of param IDs of interest to this level
+ * in the same statement that recurses to that child.
+ *
+ * Do not scribble on caller's values of valid_params or scan_params!
+ *
+ * Note: although we attempt to deal with initPlans anywhere in the tree, the
+ * logic is not really right. The problem is that a plan node might return an
+ * output Param of its initPlan as a targetlist item, in which case it's valid
+ * for the parent plan level to reference that same Param; the parent's usage
+ * will be converted into a Var referencing the child plan node by setrefs.c.
+ * But this function would see the parent's reference as out of scope and
+ * complain about it. For now, this does not matter because the planner only
+ * attaches initPlans to the topmost plan node in a query level, so the case
+ * doesn't arise. If we ever merge this processing into setrefs.c, maybe it
+ * can be handled more cleanly.
+ */
+static Bitmapset *
+finalize_plan(PlannerInfo *root, Plan *plan,
+ int gather_param,
+ Bitmapset *valid_params,
+ Bitmapset *scan_params)
+{
+ finalize_primnode_context context;
+ int locally_added_param;
+ Bitmapset *nestloop_params;
+ Bitmapset *initExtParam;
+ Bitmapset *initSetParam;
+ Bitmapset *child_params;
+ ListCell *l;
+
+ if (plan == NULL)
+ return NULL;
+
+ context.root = root;
+ context.paramids = NULL; /* initialize set to empty */
+ locally_added_param = -1; /* there isn't one */
+ nestloop_params = NULL; /* there aren't any */
+
+ /*
+ * Examine any initPlans to determine the set of external params they
+ * reference and the set of output params they supply. (We assume
+ * SS_finalize_plan was run on them already.)
+ */
+ initExtParam = initSetParam = NULL;
+ foreach(l, plan->initPlan)
+ {
+ SubPlan *initsubplan = (SubPlan *) lfirst(l);
+ Plan *initplan = planner_subplan_get_plan(root, initsubplan);
+ ListCell *l2;
+
+ initExtParam = bms_add_members(initExtParam, initplan->extParam);
+ foreach(l2, initsubplan->setParam)
+ {
+ initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
+ }
+ }
+
+ /* Any setParams are validly referenceable in this node and children */
+ if (initSetParam)
+ valid_params = bms_union(valid_params, initSetParam);
+
+ /*
+ * When we call finalize_primnode, context.paramids sets are automatically
+ * merged together. But when recursing to self, we have to do it the hard
+ * way. We want the paramids set to include params in subplans as well as
+ * at this level.
+ */
+
+ /* Find params in targetlist and qual */
+ finalize_primnode((Node *) plan->targetlist, &context);
+ finalize_primnode((Node *) plan->qual, &context);
+
+ /*
+ * If it's a parallel-aware scan node, mark it as dependent on the parent
+ * Gather/GatherMerge's rescan Param.
+ */
+ if (plan->parallel_aware)
+ {
+ if (gather_param < 0)
+ elog(ERROR, "parallel-aware plan node is not below a Gather");
+ context.paramids =
+ bms_add_member(context.paramids, gather_param);
+ }
+
+ /* Check additional node-type-specific fields */
+ switch (nodeTag(plan))
+ {
+ case T_Result:
+ finalize_primnode(((Result *) plan)->resconstantqual,
+ &context);
+ break;
+
+ case T_SeqScan:
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_SampleScan:
+ finalize_primnode((Node *) ((SampleScan *) plan)->tablesample,
+ &context);
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_IndexScan:
+ finalize_primnode((Node *) ((IndexScan *) plan)->indexqual,
+ &context);
+ finalize_primnode((Node *) ((IndexScan *) plan)->indexorderby,
+ &context);
+
+ /*
+ * we need not look at indexqualorig, since it will have the same
+ * param references as indexqual. Likewise, we can ignore
+ * indexorderbyorig.
+ */
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_IndexOnlyScan:
+ finalize_primnode((Node *) ((IndexOnlyScan *) plan)->indexqual,
+ &context);
+ finalize_primnode((Node *) ((IndexOnlyScan *) plan)->recheckqual,
+ &context);
+ finalize_primnode((Node *) ((IndexOnlyScan *) plan)->indexorderby,
+ &context);
+
+ /*
+ * we need not look at indextlist, since it cannot contain Params.
+ */
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_BitmapIndexScan:
+ finalize_primnode((Node *) ((BitmapIndexScan *) plan)->indexqual,
+ &context);
+
+ /*
+ * we need not look at indexqualorig, since it will have the same
+ * param references as indexqual.
+ */
+ break;
+
+ case T_BitmapHeapScan:
+ finalize_primnode((Node *) ((BitmapHeapScan *) plan)->bitmapqualorig,
+ &context);
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_TidScan:
+ finalize_primnode((Node *) ((TidScan *) plan)->tidquals,
+ &context);
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_TidRangeScan:
+ finalize_primnode((Node *) ((TidRangeScan *) plan)->tidrangequals,
+ &context);
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_SubqueryScan:
+ {
+ SubqueryScan *sscan = (SubqueryScan *) plan;
+ RelOptInfo *rel;
+ Bitmapset *subquery_params;
+
+ /* We must run finalize_plan on the subquery */
+ rel = find_base_rel(root, sscan->scan.scanrelid);
+ subquery_params = rel->subroot->outer_params;
+ if (gather_param >= 0)
+ subquery_params = bms_add_member(bms_copy(subquery_params),
+ gather_param);
+ finalize_plan(rel->subroot, sscan->subplan, gather_param,
+ subquery_params, NULL);
+
+ /* Now we can add its extParams to the parent's params */
+ context.paramids = bms_add_members(context.paramids,
+ sscan->subplan->extParam);
+ /* We need scan_params too, though */
+ context.paramids = bms_add_members(context.paramids,
+ scan_params);
+ }
+ break;
+
+ case T_FunctionScan:
+ {
+ FunctionScan *fscan = (FunctionScan *) plan;
+ ListCell *lc;
+
+ /*
+ * Call finalize_primnode independently on each function
+ * expression, so that we can record which params are
+ * referenced in each, in order to decide which need
+ * re-evaluating during rescan.
+ */
+ foreach(lc, fscan->functions)
+ {
+ RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
+ finalize_primnode_context funccontext;
+
+ funccontext = context;
+ funccontext.paramids = NULL;
+
+ finalize_primnode(rtfunc->funcexpr, &funccontext);
+
+ /* remember results for execution */
+ rtfunc->funcparams = funccontext.paramids;
+
+ /* add the function's params to the overall set */
+ context.paramids = bms_add_members(context.paramids,
+ funccontext.paramids);
+ }
+
+ context.paramids = bms_add_members(context.paramids,
+ scan_params);
+ }
+ break;
+
+ case T_TableFuncScan:
+ finalize_primnode((Node *) ((TableFuncScan *) plan)->tablefunc,
+ &context);
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_ValuesScan:
+ finalize_primnode((Node *) ((ValuesScan *) plan)->values_lists,
+ &context);
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_CteScan:
+ {
+ /*
+ * You might think we should add the node's cteParam to
+ * paramids, but we shouldn't because that param is just a
+ * linkage mechanism for multiple CteScan nodes for the same
+ * CTE; it is never used for changed-param signaling. What we
+ * have to do instead is to find the referenced CTE plan and
+ * incorporate its external paramids, so that the correct
+ * things will happen if the CTE references outer-level
+ * variables. See test cases for bug #4902. (We assume
+ * SS_finalize_plan was run on the CTE plan already.)
+ */
+ int plan_id = ((CteScan *) plan)->ctePlanId;
+ Plan *cteplan;
+
+ /* so, do this ... */
+ if (plan_id < 1 || plan_id > list_length(root->glob->subplans))
+ elog(ERROR, "could not find plan for CteScan referencing plan ID %d",
+ plan_id);
+ cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1);
+ context.paramids =
+ bms_add_members(context.paramids, cteplan->extParam);
+
+#ifdef NOT_USED
+ /* ... but not this */
+ context.paramids =
+ bms_add_member(context.paramids,
+ ((CteScan *) plan)->cteParam);
+#endif
+
+ context.paramids = bms_add_members(context.paramids,
+ scan_params);
+ }
+ break;
+
+ case T_WorkTableScan:
+ context.paramids =
+ bms_add_member(context.paramids,
+ ((WorkTableScan *) plan)->wtParam);
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_NamedTuplestoreScan:
+ context.paramids = bms_add_members(context.paramids, scan_params);
+ break;
+
+ case T_ForeignScan:
+ {
+ ForeignScan *fscan = (ForeignScan *) plan;
+
+ finalize_primnode((Node *) fscan->fdw_exprs,
+ &context);
+ finalize_primnode((Node *) fscan->fdw_recheck_quals,
+ &context);
+
+ /* We assume fdw_scan_tlist cannot contain Params */
+ context.paramids = bms_add_members(context.paramids,
+ scan_params);
+ }
+ break;
+
+ case T_CustomScan:
+ {
+ CustomScan *cscan = (CustomScan *) plan;
+ ListCell *lc;
+
+ finalize_primnode((Node *) cscan->custom_exprs,
+ &context);
+ /* We assume custom_scan_tlist cannot contain Params */
+ context.paramids =
+ bms_add_members(context.paramids, scan_params);
+
+ /* child nodes if any */
+ foreach(lc, cscan->custom_plans)
+ {
+ context.paramids =
+ bms_add_members(context.paramids,
+ finalize_plan(root,
+ (Plan *) lfirst(lc),
+ gather_param,
+ valid_params,
+ scan_params));
+ }
+ }
+ break;
+
+ case T_ModifyTable:
+ {
+ ModifyTable *mtplan = (ModifyTable *) plan;
+
+ /* Force descendant scan nodes to reference epqParam */
+ locally_added_param = mtplan->epqParam;
+ valid_params = bms_add_member(bms_copy(valid_params),
+ locally_added_param);
+ scan_params = bms_add_member(bms_copy(scan_params),
+ locally_added_param);
+ finalize_primnode((Node *) mtplan->returningLists,
+ &context);
+ finalize_primnode((Node *) mtplan->onConflictSet,
+ &context);
+ finalize_primnode((Node *) mtplan->onConflictWhere,
+ &context);
+ /* exclRelTlist contains only Vars, doesn't need examination */
+ }
+ break;
+
+ case T_Append:
+ {
+ ListCell *l;
+
+ foreach(l, ((Append *) plan)->appendplans)
+ {
+ context.paramids =
+ bms_add_members(context.paramids,
+ finalize_plan(root,
+ (Plan *) lfirst(l),
+ gather_param,
+ valid_params,
+ scan_params));
+ }
+ }
+ break;
+
+ case T_MergeAppend:
+ {
+ ListCell *l;
+
+ foreach(l, ((MergeAppend *) plan)->mergeplans)
+ {
+ context.paramids =
+ bms_add_members(context.paramids,
+ finalize_plan(root,
+ (Plan *) lfirst(l),
+ gather_param,
+ valid_params,
+ scan_params));
+ }
+ }
+ break;
+
+ case T_BitmapAnd:
+ {
+ ListCell *l;
+
+ foreach(l, ((BitmapAnd *) plan)->bitmapplans)
+ {
+ context.paramids =
+ bms_add_members(context.paramids,
+ finalize_plan(root,
+ (Plan *) lfirst(l),
+ gather_param,
+ valid_params,
+ scan_params));
+ }
+ }
+ break;
+
+ case T_BitmapOr:
+ {
+ ListCell *l;
+
+ foreach(l, ((BitmapOr *) plan)->bitmapplans)
+ {
+ context.paramids =
+ bms_add_members(context.paramids,
+ finalize_plan(root,
+ (Plan *) lfirst(l),
+ gather_param,
+ valid_params,
+ scan_params));
+ }
+ }
+ break;
+
+ case T_NestLoop:
+ {
+ ListCell *l;
+
+ finalize_primnode((Node *) ((Join *) plan)->joinqual,
+ &context);
+ /* collect set of params that will be passed to right child */
+ foreach(l, ((NestLoop *) plan)->nestParams)
+ {
+ NestLoopParam *nlp = (NestLoopParam *) lfirst(l);
+
+ nestloop_params = bms_add_member(nestloop_params,
+ nlp->paramno);
+ }
+ }
+ break;
+
+ case T_MergeJoin:
+ finalize_primnode((Node *) ((Join *) plan)->joinqual,
+ &context);
+ finalize_primnode((Node *) ((MergeJoin *) plan)->mergeclauses,
+ &context);
+ break;
+
+ case T_HashJoin:
+ finalize_primnode((Node *) ((Join *) plan)->joinqual,
+ &context);
+ finalize_primnode((Node *) ((HashJoin *) plan)->hashclauses,
+ &context);
+ break;
+
+ case T_Limit:
+ finalize_primnode(((Limit *) plan)->limitOffset,
+ &context);
+ finalize_primnode(((Limit *) plan)->limitCount,
+ &context);
+ break;
+
+ case T_RecursiveUnion:
+ /* child nodes are allowed to reference wtParam */
+ locally_added_param = ((RecursiveUnion *) plan)->wtParam;
+ valid_params = bms_add_member(bms_copy(valid_params),
+ locally_added_param);
+ /* wtParam does *not* get added to scan_params */
+ break;
+
+ case T_LockRows:
+ /* Force descendant scan nodes to reference epqParam */
+ locally_added_param = ((LockRows *) plan)->epqParam;
+ valid_params = bms_add_member(bms_copy(valid_params),
+ locally_added_param);
+ scan_params = bms_add_member(bms_copy(scan_params),
+ locally_added_param);
+ break;
+
+ case T_Agg:
+ {
+ Agg *agg = (Agg *) plan;
+
+ /*
+ * AGG_HASHED plans need to know which Params are referenced
+ * in aggregate calls. Do a separate scan to identify them.
+ */
+ if (agg->aggstrategy == AGG_HASHED)
+ {
+ finalize_primnode_context aggcontext;
+
+ aggcontext.root = root;
+ aggcontext.paramids = NULL;
+ finalize_agg_primnode((Node *) agg->plan.targetlist,
+ &aggcontext);
+ finalize_agg_primnode((Node *) agg->plan.qual,
+ &aggcontext);
+ agg->aggParams = aggcontext.paramids;
+ }
+ }
+ break;
+
+ case T_WindowAgg:
+ finalize_primnode(((WindowAgg *) plan)->startOffset,
+ &context);
+ finalize_primnode(((WindowAgg *) plan)->endOffset,
+ &context);
+ break;
+
+ case T_Gather:
+ /* child nodes are allowed to reference rescan_param, if any */
+ locally_added_param = ((Gather *) plan)->rescan_param;
+ if (locally_added_param >= 0)
+ {
+ valid_params = bms_add_member(bms_copy(valid_params),
+ locally_added_param);
+
+ /*
+ * We currently don't support nested Gathers. The issue so
+ * far as this function is concerned would be how to identify
+ * which child nodes depend on which Gather.
+ */
+ Assert(gather_param < 0);
+ /* Pass down rescan_param to child parallel-aware nodes */
+ gather_param = locally_added_param;
+ }
+ /* rescan_param does *not* get added to scan_params */
+ break;
+
+ case T_GatherMerge:
+ /* child nodes are allowed to reference rescan_param, if any */
+ locally_added_param = ((GatherMerge *) plan)->rescan_param;
+ if (locally_added_param >= 0)
+ {
+ valid_params = bms_add_member(bms_copy(valid_params),
+ locally_added_param);
+
+ /*
+ * We currently don't support nested Gathers. The issue so
+ * far as this function is concerned would be how to identify
+ * which child nodes depend on which Gather.
+ */
+ Assert(gather_param < 0);
+ /* Pass down rescan_param to child parallel-aware nodes */
+ gather_param = locally_added_param;
+ }
+ /* rescan_param does *not* get added to scan_params */
+ break;
+
+ case T_Memoize:
+ finalize_primnode((Node *) ((Memoize *) plan)->param_exprs,
+ &context);
+ break;
+
+ case T_ProjectSet:
+ case T_Hash:
+ case T_Material:
+ case T_Sort:
+ case T_IncrementalSort:
+ case T_Unique:
+ case T_SetOp:
+ case T_Group:
+ /* no node-type-specific fields need fixing */
+ break;
+
+ default:
+ elog(ERROR, "unrecognized node type: %d",
+ (int) nodeTag(plan));
+ }
+
+ /* Process left and right child plans, if any */
+ child_params = finalize_plan(root,
+ plan->lefttree,
+ gather_param,
+ valid_params,
+ scan_params);
+ context.paramids = bms_add_members(context.paramids, child_params);
+
+ if (nestloop_params)
+ {
+ /* right child can reference nestloop_params as well as valid_params */
+ child_params = finalize_plan(root,
+ plan->righttree,
+ gather_param,
+ bms_union(nestloop_params, valid_params),
+ scan_params);
+ /* ... and they don't count as parameters used at my level */
+ child_params = bms_difference(child_params, nestloop_params);
+ bms_free(nestloop_params);
+ }
+ else
+ {
+ /* easy case */
+ child_params = finalize_plan(root,
+ plan->righttree,
+ gather_param,
+ valid_params,
+ scan_params);
+ }
+ context.paramids = bms_add_members(context.paramids, child_params);
+
+ /*
+ * Any locally generated parameter doesn't count towards its generating
+ * plan node's external dependencies. (Note: if we changed valid_params
+ * and/or scan_params, we leak those bitmapsets; not worth the notational
+ * trouble to clean them up.)
+ */
+ if (locally_added_param >= 0)
+ {
+ context.paramids = bms_del_member(context.paramids,
+ locally_added_param);
+ }
+
+ /* Now we have all the paramids referenced in this node and children */
+
+ if (!bms_is_subset(context.paramids, valid_params))
+ elog(ERROR, "plan should not reference subplan's variable");
+
+ /*
+ * The plan node's allParam and extParam fields should include all its
+ * referenced paramids, plus contributions from any child initPlans.
+ * However, any setParams of the initPlans should not be present in the
+ * parent node's extParams, only in its allParams. (It's possible that
+ * some initPlans have extParams that are setParams of other initPlans.)
+ */
+
+ /* allParam must include initplans' extParams and setParams */
+ plan->allParam = bms_union(context.paramids, initExtParam);
+ plan->allParam = bms_add_members(plan->allParam, initSetParam);
+ /* extParam must include any initplan extParams */
+ plan->extParam = bms_union(context.paramids, initExtParam);
+ /* but not any initplan setParams */
+ plan->extParam = bms_del_members(plan->extParam, initSetParam);
+
+ /*
+ * For speed at execution time, make sure extParam/allParam are actually
+ * NULL if they are empty sets.
+ */
+ if (bms_is_empty(plan->extParam))
+ plan->extParam = NULL;
+ if (bms_is_empty(plan->allParam))
+ plan->allParam = NULL;
+
+ return plan->allParam;
+}
+
+/*
+ * finalize_primnode: add IDs of all PARAM_EXEC params appearing in the given
+ * expression tree to the result set.
+ */
+static bool
+finalize_primnode(Node *node, finalize_primnode_context *context)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, Param))
+ {
+ if (((Param *) node)->paramkind == PARAM_EXEC)
+ {
+ int paramid = ((Param *) node)->paramid;
+
+ context->paramids = bms_add_member(context->paramids, paramid);
+ }
+ return false; /* no more to do here */
+ }
+ if (IsA(node, SubPlan))
+ {
+ SubPlan *subplan = (SubPlan *) node;
+ Plan *plan = planner_subplan_get_plan(context->root, subplan);
+ ListCell *lc;
+ Bitmapset *subparamids;
+
+ /* Recurse into the testexpr, but not into the Plan */
+ finalize_primnode(subplan->testexpr, context);
+
+ /*
+ * Remove any param IDs of output parameters of the subplan that were
+ * referenced in the testexpr. These are not interesting for
+ * parameter change signaling since we always re-evaluate the subplan.
+ * Note that this wouldn't work too well if there might be uses of the
+ * same param IDs elsewhere in the plan, but that can't happen because
+ * generate_new_exec_param never tries to merge params.
+ */
+ foreach(lc, subplan->paramIds)
+ {
+ context->paramids = bms_del_member(context->paramids,
+ lfirst_int(lc));
+ }
+
+ /* Also examine args list */
+ finalize_primnode((Node *) subplan->args, context);
+
+ /*
+ * Add params needed by the subplan to paramids, but excluding those
+ * we will pass down to it. (We assume SS_finalize_plan was run on
+ * the subplan already.)
+ */
+ subparamids = bms_copy(plan->extParam);
+ foreach(lc, subplan->parParam)
+ {
+ subparamids = bms_del_member(subparamids, lfirst_int(lc));
+ }
+ context->paramids = bms_join(context->paramids, subparamids);
+
+ return false; /* no more to do here */
+ }
+ return expression_tree_walker(node, finalize_primnode,
+ (void *) context);
+}
+
+/*
+ * finalize_agg_primnode: find all Aggref nodes in the given expression tree,
+ * and add IDs of all PARAM_EXEC params appearing within their aggregated
+ * arguments to the result set.
+ */
+static bool
+finalize_agg_primnode(Node *node, finalize_primnode_context *context)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, Aggref))
+ {
+ Aggref *agg = (Aggref *) node;
+
+ /* we should not consider the direct arguments, if any */
+ finalize_primnode((Node *) agg->args, context);
+ finalize_primnode((Node *) agg->aggfilter, context);
+ return false; /* there can't be any Aggrefs below here */
+ }
+ return expression_tree_walker(node, finalize_agg_primnode,
+ (void *) context);
+}
+
+/*
+ * SS_make_initplan_output_param - make a Param for an initPlan's output
+ *
+ * The plan is expected to return a scalar value of the given type/collation.
+ *
+ * Note that in some cases the initplan may not ever appear in the finished
+ * plan tree. If that happens, we'll have wasted a PARAM_EXEC slot, which
+ * is no big deal.
+ */
+Param *
+SS_make_initplan_output_param(PlannerInfo *root,
+ Oid resulttype, int32 resulttypmod,
+ Oid resultcollation)
+{
+ return generate_new_exec_param(root, resulttype,
+ resulttypmod, resultcollation);
+}
+
+/*
+ * SS_make_initplan_from_plan - given a plan tree, make it an InitPlan
+ *
+ * We build an EXPR_SUBLINK SubPlan node and put it into the initplan
+ * list for the outer query level. A Param that represents the initplan's
+ * output has already been assigned using SS_make_initplan_output_param.
+ */
+void
+SS_make_initplan_from_plan(PlannerInfo *root,
+ PlannerInfo *subroot, Plan *plan,
+ Param *prm)
+{
+ SubPlan *node;
+
+ /*
+ * Add the subplan and its PlannerInfo to the global lists.
+ */
+ root->glob->subplans = lappend(root->glob->subplans, plan);
+ root->glob->subroots = lappend(root->glob->subroots, subroot);
+
+ /*
+ * Create a SubPlan node and add it to the outer list of InitPlans. Note
+ * it has to appear after any other InitPlans it might depend on (see
+ * comments in ExecReScan).
+ */
+ node = makeNode(SubPlan);
+ node->subLinkType = EXPR_SUBLINK;
+ node->plan_id = list_length(root->glob->subplans);
+ node->plan_name = psprintf("InitPlan %d (returns $%d)",
+ node->plan_id, prm->paramid);
+ get_first_col_type(plan, &node->firstColType, &node->firstColTypmod,
+ &node->firstColCollation);
+ node->setParam = list_make1_int(prm->paramid);
+
+ root->init_plans = lappend(root->init_plans, node);
+
+ /*
+ * The node can't have any inputs (since it's an initplan), so the
+ * parParam and args lists remain empty.
+ */
+
+ /* Set costs of SubPlan using info from the plan tree */
+ cost_subplan(subroot, node, plan);
+}