summaryrefslogtreecommitdiffstats
path: root/src/backend/parser/parse_coerce.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/parser/parse_coerce.c
parentInitial commit. (diff)
downloadpostgresql-14-upstream.tar.xz
postgresql-14-upstream.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/parser/parse_coerce.c')
-rw-r--r--src/backend/parser/parse_coerce.c3346
1 files changed, 3346 insertions, 0 deletions
diff --git a/src/backend/parser/parse_coerce.c b/src/backend/parser/parse_coerce.c
new file mode 100644
index 0000000..fc9224c
--- /dev/null
+++ b/src/backend/parser/parse_coerce.c
@@ -0,0 +1,3346 @@
+/*-------------------------------------------------------------------------
+ *
+ * parse_coerce.c
+ * handle type coercions/conversions for parser
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/parser/parse_coerce.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "catalog/pg_cast.h"
+#include "catalog/pg_class.h"
+#include "catalog/pg_inherits.h"
+#include "catalog/pg_proc.h"
+#include "catalog/pg_type.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "parser/parse_coerce.h"
+#include "parser/parse_relation.h"
+#include "parser/parse_type.h"
+#include "utils/builtins.h"
+#include "utils/datum.h" /* needed for datumIsEqual() */
+#include "utils/fmgroids.h"
+#include "utils/lsyscache.h"
+#include "utils/syscache.h"
+#include "utils/typcache.h"
+
+
+static Node *coerce_type_typmod(Node *node,
+ Oid targetTypeId, int32 targetTypMod,
+ CoercionContext ccontext, CoercionForm cformat,
+ int location,
+ bool hideInputCoercion);
+static void hide_coercion_node(Node *node);
+static Node *build_coercion_expression(Node *node,
+ CoercionPathType pathtype,
+ Oid funcId,
+ Oid targetTypeId, int32 targetTypMod,
+ CoercionContext ccontext, CoercionForm cformat,
+ int location);
+static Node *coerce_record_to_complex(ParseState *pstate, Node *node,
+ Oid targetTypeId,
+ CoercionContext ccontext,
+ CoercionForm cformat,
+ int location);
+static bool is_complex_array(Oid typid);
+static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId);
+
+
+/*
+ * coerce_to_target_type()
+ * Convert an expression to a target type and typmod.
+ *
+ * This is the general-purpose entry point for arbitrary type coercion
+ * operations. Direct use of the component operations can_coerce_type,
+ * coerce_type, and coerce_type_typmod should be restricted to special
+ * cases (eg, when the conversion is expected to succeed).
+ *
+ * Returns the possibly-transformed expression tree, or NULL if the type
+ * conversion is not possible. (We do this, rather than ereport'ing directly,
+ * so that callers can generate custom error messages indicating context.)
+ *
+ * pstate - parse state (can be NULL, see coerce_type)
+ * expr - input expression tree (already transformed by transformExpr)
+ * exprtype - result type of expr
+ * targettype - desired result type
+ * targettypmod - desired result typmod
+ * ccontext, cformat - context indicators to control coercions
+ * location - parse location of the coercion request, or -1 if unknown/implicit
+ */
+Node *
+coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype,
+ Oid targettype, int32 targettypmod,
+ CoercionContext ccontext,
+ CoercionForm cformat,
+ int location)
+{
+ Node *result;
+ Node *origexpr;
+
+ if (!can_coerce_type(1, &exprtype, &targettype, ccontext))
+ return NULL;
+
+ /*
+ * If the input has a CollateExpr at the top, strip it off, perform the
+ * coercion, and put a new one back on. This is annoying since it
+ * duplicates logic in coerce_type, but if we don't do this then it's too
+ * hard to tell whether coerce_type actually changed anything, and we
+ * *must* know that to avoid possibly calling hide_coercion_node on
+ * something that wasn't generated by coerce_type. Note that if there are
+ * multiple stacked CollateExprs, we just discard all but the topmost.
+ * Also, if the target type isn't collatable, we discard the CollateExpr.
+ */
+ origexpr = expr;
+ while (expr && IsA(expr, CollateExpr))
+ expr = (Node *) ((CollateExpr *) expr)->arg;
+
+ result = coerce_type(pstate, expr, exprtype,
+ targettype, targettypmod,
+ ccontext, cformat, location);
+
+ /*
+ * If the target is a fixed-length type, it may need a length coercion as
+ * well as a type coercion. If we find ourselves adding both, force the
+ * inner coercion node to implicit display form.
+ */
+ result = coerce_type_typmod(result,
+ targettype, targettypmod,
+ ccontext, cformat, location,
+ (result != expr && !IsA(result, Const)));
+
+ if (expr != origexpr && type_is_collatable(targettype))
+ {
+ /* Reinstall top CollateExpr */
+ CollateExpr *coll = (CollateExpr *) origexpr;
+ CollateExpr *newcoll = makeNode(CollateExpr);
+
+ newcoll->arg = (Expr *) result;
+ newcoll->collOid = coll->collOid;
+ newcoll->location = coll->location;
+ result = (Node *) newcoll;
+ }
+
+ return result;
+}
+
+
+/*
+ * coerce_type()
+ * Convert an expression to a different type.
+ *
+ * The caller should already have determined that the coercion is possible;
+ * see can_coerce_type.
+ *
+ * Normally, no coercion to a typmod (length) is performed here. The caller
+ * must call coerce_type_typmod as well, if a typmod constraint is wanted.
+ * (But if the target type is a domain, it may internally contain a
+ * typmod constraint, which will be applied inside coerce_to_domain.)
+ * In some cases pg_cast specifies a type coercion function that also
+ * applies length conversion, and in those cases only, the result will
+ * already be properly coerced to the specified typmod.
+ *
+ * pstate is only used in the case that we are able to resolve the type of
+ * a previously UNKNOWN Param. It is okay to pass pstate = NULL if the
+ * caller does not want type information updated for Params.
+ *
+ * Note: this function must not modify the given expression tree, only add
+ * decoration on top of it. See transformSetOperationTree, for example.
+ */
+Node *
+coerce_type(ParseState *pstate, Node *node,
+ Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod,
+ CoercionContext ccontext, CoercionForm cformat, int location)
+{
+ Node *result;
+ CoercionPathType pathtype;
+ Oid funcId;
+
+ if (targetTypeId == inputTypeId ||
+ node == NULL)
+ {
+ /* no conversion needed */
+ return node;
+ }
+ if (targetTypeId == ANYOID ||
+ targetTypeId == ANYELEMENTOID ||
+ targetTypeId == ANYNONARRAYOID ||
+ targetTypeId == ANYCOMPATIBLEOID ||
+ targetTypeId == ANYCOMPATIBLENONARRAYOID)
+ {
+ /*
+ * Assume can_coerce_type verified that implicit coercion is okay.
+ *
+ * Note: by returning the unmodified node here, we are saying that
+ * it's OK to treat an UNKNOWN constant as a valid input for a
+ * function accepting one of these pseudotypes. This should be all
+ * right, since an UNKNOWN value is still a perfectly valid Datum.
+ *
+ * NB: we do NOT want a RelabelType here: the exposed type of the
+ * function argument must be its actual type, not the polymorphic
+ * pseudotype.
+ */
+ return node;
+ }
+ if (targetTypeId == ANYARRAYOID ||
+ targetTypeId == ANYENUMOID ||
+ targetTypeId == ANYRANGEOID ||
+ targetTypeId == ANYMULTIRANGEOID ||
+ targetTypeId == ANYCOMPATIBLEARRAYOID ||
+ targetTypeId == ANYCOMPATIBLERANGEOID ||
+ targetTypeId == ANYCOMPATIBLEMULTIRANGEOID)
+ {
+ /*
+ * Assume can_coerce_type verified that implicit coercion is okay.
+ *
+ * These cases are unlike the ones above because the exposed type of
+ * the argument must be an actual array, enum, range, or multirange
+ * type. In particular the argument must *not* be an UNKNOWN
+ * constant. If it is, we just fall through; below, we'll call the
+ * pseudotype's input function, which will produce an error. Also, if
+ * what we have is a domain over array, enum, range, or multirange, we
+ * have to relabel it to its base type.
+ *
+ * Note: currently, we can't actually see a domain-over-enum here,
+ * since the other functions in this file will not match such a
+ * parameter to ANYENUM. But that should get changed eventually.
+ */
+ if (inputTypeId != UNKNOWNOID)
+ {
+ Oid baseTypeId = getBaseType(inputTypeId);
+
+ if (baseTypeId != inputTypeId)
+ {
+ RelabelType *r = makeRelabelType((Expr *) node,
+ baseTypeId, -1,
+ InvalidOid,
+ cformat);
+
+ r->location = location;
+ return (Node *) r;
+ }
+ /* Not a domain type, so return it as-is */
+ return node;
+ }
+ }
+ if (inputTypeId == UNKNOWNOID && IsA(node, Const))
+ {
+ /*
+ * Input is a string constant with previously undetermined type. Apply
+ * the target type's typinput function to it to produce a constant of
+ * the target type.
+ *
+ * NOTE: this case cannot be folded together with the other
+ * constant-input case, since the typinput function does not
+ * necessarily behave the same as a type conversion function. For
+ * example, int4's typinput function will reject "1.2", whereas
+ * float-to-int type conversion will round to integer.
+ *
+ * XXX if the typinput function is not immutable, we really ought to
+ * postpone evaluation of the function call until runtime. But there
+ * is no way to represent a typinput function call as an expression
+ * tree, because C-string values are not Datums. (XXX This *is*
+ * possible as of 7.3, do we want to do it?)
+ */
+ Const *con = (Const *) node;
+ Const *newcon = makeNode(Const);
+ Oid baseTypeId;
+ int32 baseTypeMod;
+ int32 inputTypeMod;
+ Type baseType;
+ ParseCallbackState pcbstate;
+
+ /*
+ * If the target type is a domain, we want to call its base type's
+ * input routine, not domain_in(). This is to avoid premature failure
+ * when the domain applies a typmod: existing input routines follow
+ * implicit-coercion semantics for length checks, which is not always
+ * what we want here. The needed check will be applied properly
+ * inside coerce_to_domain().
+ */
+ baseTypeMod = targetTypeMod;
+ baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
+
+ /*
+ * For most types we pass typmod -1 to the input routine, because
+ * existing input routines follow implicit-coercion semantics for
+ * length checks, which is not always what we want here. Any length
+ * constraint will be applied later by our caller. An exception
+ * however is the INTERVAL type, for which we *must* pass the typmod
+ * or it won't be able to obey the bizarre SQL-spec input rules. (Ugly
+ * as sin, but so is this part of the spec...)
+ */
+ if (baseTypeId == INTERVALOID)
+ inputTypeMod = baseTypeMod;
+ else
+ inputTypeMod = -1;
+
+ baseType = typeidType(baseTypeId);
+
+ newcon->consttype = baseTypeId;
+ newcon->consttypmod = inputTypeMod;
+ newcon->constcollid = typeTypeCollation(baseType);
+ newcon->constlen = typeLen(baseType);
+ newcon->constbyval = typeByVal(baseType);
+ newcon->constisnull = con->constisnull;
+
+ /*
+ * We use the original literal's location regardless of the position
+ * of the coercion. This is a change from pre-9.2 behavior, meant to
+ * simplify life for pg_stat_statements.
+ */
+ newcon->location = con->location;
+
+ /*
+ * Set up to point at the constant's text if the input routine throws
+ * an error.
+ */
+ setup_parser_errposition_callback(&pcbstate, pstate, con->location);
+
+ /*
+ * We assume here that UNKNOWN's internal representation is the same
+ * as CSTRING.
+ */
+ if (!con->constisnull)
+ newcon->constvalue = stringTypeDatum(baseType,
+ DatumGetCString(con->constvalue),
+ inputTypeMod);
+ else
+ newcon->constvalue = stringTypeDatum(baseType,
+ NULL,
+ inputTypeMod);
+
+ /*
+ * If it's a varlena value, force it to be in non-expanded
+ * (non-toasted) format; this avoids any possible dependency on
+ * external values and improves consistency of representation.
+ */
+ if (!con->constisnull && newcon->constlen == -1)
+ newcon->constvalue =
+ PointerGetDatum(PG_DETOAST_DATUM(newcon->constvalue));
+
+#ifdef RANDOMIZE_ALLOCATED_MEMORY
+
+ /*
+ * For pass-by-reference data types, repeat the conversion to see if
+ * the input function leaves any uninitialized bytes in the result. We
+ * can only detect that reliably if RANDOMIZE_ALLOCATED_MEMORY is
+ * enabled, so we don't bother testing otherwise. The reason we don't
+ * want any instability in the input function is that comparison of
+ * Const nodes relies on bytewise comparison of the datums, so if the
+ * input function leaves garbage then subexpressions that should be
+ * identical may not get recognized as such. See pgsql-hackers
+ * discussion of 2008-04-04.
+ */
+ if (!con->constisnull && !newcon->constbyval)
+ {
+ Datum val2;
+
+ val2 = stringTypeDatum(baseType,
+ DatumGetCString(con->constvalue),
+ inputTypeMod);
+ if (newcon->constlen == -1)
+ val2 = PointerGetDatum(PG_DETOAST_DATUM(val2));
+ if (!datumIsEqual(newcon->constvalue, val2, false, newcon->constlen))
+ elog(WARNING, "type %s has unstable input conversion for \"%s\"",
+ typeTypeName(baseType), DatumGetCString(con->constvalue));
+ }
+#endif
+
+ cancel_parser_errposition_callback(&pcbstate);
+
+ result = (Node *) newcon;
+
+ /* If target is a domain, apply constraints. */
+ if (baseTypeId != targetTypeId)
+ result = coerce_to_domain(result,
+ baseTypeId, baseTypeMod,
+ targetTypeId,
+ ccontext, cformat, location,
+ false);
+
+ ReleaseSysCache(baseType);
+
+ return result;
+ }
+ if (IsA(node, Param) &&
+ pstate != NULL && pstate->p_coerce_param_hook != NULL)
+ {
+ /*
+ * Allow the CoerceParamHook to decide what happens. It can return a
+ * transformed node (very possibly the same Param node), or return
+ * NULL to indicate we should proceed with normal coercion.
+ */
+ result = pstate->p_coerce_param_hook(pstate,
+ (Param *) node,
+ targetTypeId,
+ targetTypeMod,
+ location);
+ if (result)
+ return result;
+ }
+ if (IsA(node, CollateExpr))
+ {
+ /*
+ * If we have a COLLATE clause, we have to push the coercion
+ * underneath the COLLATE; or discard the COLLATE if the target type
+ * isn't collatable. This is really ugly, but there is little choice
+ * because the above hacks on Consts and Params wouldn't happen
+ * otherwise. This kluge has consequences in coerce_to_target_type.
+ */
+ CollateExpr *coll = (CollateExpr *) node;
+
+ result = coerce_type(pstate, (Node *) coll->arg,
+ inputTypeId, targetTypeId, targetTypeMod,
+ ccontext, cformat, location);
+ if (type_is_collatable(targetTypeId))
+ {
+ CollateExpr *newcoll = makeNode(CollateExpr);
+
+ newcoll->arg = (Expr *) result;
+ newcoll->collOid = coll->collOid;
+ newcoll->location = coll->location;
+ result = (Node *) newcoll;
+ }
+ return result;
+ }
+ pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
+ &funcId);
+ if (pathtype != COERCION_PATH_NONE)
+ {
+ if (pathtype != COERCION_PATH_RELABELTYPE)
+ {
+ /*
+ * Generate an expression tree representing run-time application
+ * of the conversion function. If we are dealing with a domain
+ * target type, the conversion function will yield the base type,
+ * and we need to extract the correct typmod to use from the
+ * domain's typtypmod.
+ */
+ Oid baseTypeId;
+ int32 baseTypeMod;
+
+ baseTypeMod = targetTypeMod;
+ baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
+
+ result = build_coercion_expression(node, pathtype, funcId,
+ baseTypeId, baseTypeMod,
+ ccontext, cformat, location);
+
+ /*
+ * If domain, coerce to the domain type and relabel with domain
+ * type ID, hiding the previous coercion node.
+ */
+ if (targetTypeId != baseTypeId)
+ result = coerce_to_domain(result, baseTypeId, baseTypeMod,
+ targetTypeId,
+ ccontext, cformat, location,
+ true);
+ }
+ else
+ {
+ /*
+ * We don't need to do a physical conversion, but we do need to
+ * attach a RelabelType node so that the expression will be seen
+ * to have the intended type when inspected by higher-level code.
+ *
+ * Also, domains may have value restrictions beyond the base type
+ * that must be accounted for. If the destination is a domain
+ * then we won't need a RelabelType node.
+ */
+ result = coerce_to_domain(node, InvalidOid, -1, targetTypeId,
+ ccontext, cformat, location,
+ false);
+ if (result == node)
+ {
+ /*
+ * XXX could we label result with exprTypmod(node) instead of
+ * default -1 typmod, to save a possible length-coercion
+ * later? Would work if both types have same interpretation of
+ * typmod, which is likely but not certain.
+ */
+ RelabelType *r = makeRelabelType((Expr *) result,
+ targetTypeId, -1,
+ InvalidOid,
+ cformat);
+
+ r->location = location;
+ result = (Node *) r;
+ }
+ }
+ return result;
+ }
+ if (inputTypeId == RECORDOID &&
+ ISCOMPLEX(targetTypeId))
+ {
+ /* Coerce a RECORD to a specific complex type */
+ return coerce_record_to_complex(pstate, node, targetTypeId,
+ ccontext, cformat, location);
+ }
+ if (targetTypeId == RECORDOID &&
+ ISCOMPLEX(inputTypeId))
+ {
+ /* Coerce a specific complex type to RECORD */
+ /* NB: we do NOT want a RelabelType here */
+ return node;
+ }
+#ifdef NOT_USED
+ if (inputTypeId == RECORDARRAYOID &&
+ is_complex_array(targetTypeId))
+ {
+ /* Coerce record[] to a specific complex array type */
+ /* not implemented yet ... */
+ }
+#endif
+ if (targetTypeId == RECORDARRAYOID &&
+ is_complex_array(inputTypeId))
+ {
+ /* Coerce a specific complex array type to record[] */
+ /* NB: we do NOT want a RelabelType here */
+ return node;
+ }
+ if (typeInheritsFrom(inputTypeId, targetTypeId)
+ || typeIsOfTypedTable(inputTypeId, targetTypeId))
+ {
+ /*
+ * Input class type is a subclass of target, so generate an
+ * appropriate runtime conversion (removing unneeded columns and
+ * possibly rearranging the ones that are wanted).
+ *
+ * We will also get here when the input is a domain over a subclass of
+ * the target type. To keep life simple for the executor, we define
+ * ConvertRowtypeExpr as only working between regular composite types;
+ * therefore, in such cases insert a RelabelType to smash the input
+ * expression down to its base type.
+ */
+ Oid baseTypeId = getBaseType(inputTypeId);
+ ConvertRowtypeExpr *r = makeNode(ConvertRowtypeExpr);
+
+ if (baseTypeId != inputTypeId)
+ {
+ RelabelType *rt = makeRelabelType((Expr *) node,
+ baseTypeId, -1,
+ InvalidOid,
+ COERCE_IMPLICIT_CAST);
+
+ rt->location = location;
+ node = (Node *) rt;
+ }
+ r->arg = (Expr *) node;
+ r->resulttype = targetTypeId;
+ r->convertformat = cformat;
+ r->location = location;
+ return (Node *) r;
+ }
+ /* If we get here, caller blew it */
+ elog(ERROR, "failed to find conversion function from %s to %s",
+ format_type_be(inputTypeId), format_type_be(targetTypeId));
+ return NULL; /* keep compiler quiet */
+}
+
+
+/*
+ * can_coerce_type()
+ * Can input_typeids be coerced to target_typeids?
+ *
+ * We must be told the context (CAST construct, assignment, implicit coercion)
+ * as this determines the set of available casts.
+ */
+bool
+can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids,
+ CoercionContext ccontext)
+{
+ bool have_generics = false;
+ int i;
+
+ /* run through argument list... */
+ for (i = 0; i < nargs; i++)
+ {
+ Oid inputTypeId = input_typeids[i];
+ Oid targetTypeId = target_typeids[i];
+ CoercionPathType pathtype;
+ Oid funcId;
+
+ /* no problem if same type */
+ if (inputTypeId == targetTypeId)
+ continue;
+
+ /* accept if target is ANY */
+ if (targetTypeId == ANYOID)
+ continue;
+
+ /* accept if target is polymorphic, for now */
+ if (IsPolymorphicType(targetTypeId))
+ {
+ have_generics = true; /* do more checking later */
+ continue;
+ }
+
+ /*
+ * If input is an untyped string constant, assume we can convert it to
+ * anything.
+ */
+ if (inputTypeId == UNKNOWNOID)
+ continue;
+
+ /*
+ * If pg_cast shows that we can coerce, accept. This test now covers
+ * both binary-compatible and coercion-function cases.
+ */
+ pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
+ &funcId);
+ if (pathtype != COERCION_PATH_NONE)
+ continue;
+
+ /*
+ * If input is RECORD and target is a composite type, assume we can
+ * coerce (may need tighter checking here)
+ */
+ if (inputTypeId == RECORDOID &&
+ ISCOMPLEX(targetTypeId))
+ continue;
+
+ /*
+ * If input is a composite type and target is RECORD, accept
+ */
+ if (targetTypeId == RECORDOID &&
+ ISCOMPLEX(inputTypeId))
+ continue;
+
+#ifdef NOT_USED /* not implemented yet */
+
+ /*
+ * If input is record[] and target is a composite array type, assume
+ * we can coerce (may need tighter checking here)
+ */
+ if (inputTypeId == RECORDARRAYOID &&
+ is_complex_array(targetTypeId))
+ continue;
+#endif
+
+ /*
+ * If input is a composite array type and target is record[], accept
+ */
+ if (targetTypeId == RECORDARRAYOID &&
+ is_complex_array(inputTypeId))
+ continue;
+
+ /*
+ * If input is a class type that inherits from target, accept
+ */
+ if (typeInheritsFrom(inputTypeId, targetTypeId)
+ || typeIsOfTypedTable(inputTypeId, targetTypeId))
+ continue;
+
+ /*
+ * Else, cannot coerce at this argument position
+ */
+ return false;
+ }
+
+ /* If we found any generic argument types, cross-check them */
+ if (have_generics)
+ {
+ if (!check_generic_type_consistency(input_typeids, target_typeids,
+ nargs))
+ return false;
+ }
+
+ return true;
+}
+
+
+/*
+ * Create an expression tree to represent coercion to a domain type.
+ *
+ * 'arg': input expression
+ * 'baseTypeId': base type of domain, if known (pass InvalidOid if caller
+ * has not bothered to look this up)
+ * 'baseTypeMod': base type typmod of domain, if known (pass -1 if caller
+ * has not bothered to look this up)
+ * 'typeId': target type to coerce to
+ * 'ccontext': context indicator to control coercions
+ * 'cformat': coercion display format
+ * 'location': coercion request location
+ * 'hideInputCoercion': if true, hide the input coercion under this one.
+ *
+ * If the target type isn't a domain, the given 'arg' is returned as-is.
+ */
+Node *
+coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId,
+ CoercionContext ccontext, CoercionForm cformat, int location,
+ bool hideInputCoercion)
+{
+ CoerceToDomain *result;
+
+ /* Get the base type if it hasn't been supplied */
+ if (baseTypeId == InvalidOid)
+ baseTypeId = getBaseTypeAndTypmod(typeId, &baseTypeMod);
+
+ /* If it isn't a domain, return the node as it was passed in */
+ if (baseTypeId == typeId)
+ return arg;
+
+ /* Suppress display of nested coercion steps */
+ if (hideInputCoercion)
+ hide_coercion_node(arg);
+
+ /*
+ * If the domain applies a typmod to its base type, build the appropriate
+ * coercion step. Mark it implicit for display purposes, because we don't
+ * want it shown separately by ruleutils.c; but the isExplicit flag passed
+ * to the conversion function depends on the manner in which the domain
+ * coercion is invoked, so that the semantics of implicit and explicit
+ * coercion differ. (Is that really the behavior we want?)
+ *
+ * NOTE: because we apply this as part of the fixed expression structure,
+ * ALTER DOMAIN cannot alter the typtypmod. But it's unclear that that
+ * would be safe to do anyway, without lots of knowledge about what the
+ * base type thinks the typmod means.
+ */
+ arg = coerce_type_typmod(arg, baseTypeId, baseTypeMod,
+ ccontext, COERCE_IMPLICIT_CAST, location,
+ false);
+
+ /*
+ * Now build the domain coercion node. This represents run-time checking
+ * of any constraints currently attached to the domain. This also ensures
+ * that the expression is properly labeled as to result type.
+ */
+ result = makeNode(CoerceToDomain);
+ result->arg = (Expr *) arg;
+ result->resulttype = typeId;
+ result->resulttypmod = -1; /* currently, always -1 for domains */
+ /* resultcollid will be set by parse_collate.c */
+ result->coercionformat = cformat;
+ result->location = location;
+
+ return (Node *) result;
+}
+
+
+/*
+ * coerce_type_typmod()
+ * Force a value to a particular typmod, if meaningful and possible.
+ *
+ * This is applied to values that are going to be stored in a relation
+ * (where we have an atttypmod for the column) as well as values being
+ * explicitly CASTed (where the typmod comes from the target type spec).
+ *
+ * The caller must have already ensured that the value is of the correct
+ * type, typically by applying coerce_type.
+ *
+ * ccontext may affect semantics, depending on whether the length coercion
+ * function pays attention to the isExplicit flag it's passed.
+ *
+ * cformat determines the display properties of the generated node (if any).
+ *
+ * If hideInputCoercion is true *and* we generate a node, the input node is
+ * forced to IMPLICIT display form, so that only the typmod coercion node will
+ * be visible when displaying the expression.
+ *
+ * NOTE: this does not need to work on domain types, because any typmod
+ * coercion for a domain is considered to be part of the type coercion
+ * needed to produce the domain value in the first place. So, no getBaseType.
+ */
+static Node *
+coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod,
+ CoercionContext ccontext, CoercionForm cformat,
+ int location,
+ bool hideInputCoercion)
+{
+ CoercionPathType pathtype;
+ Oid funcId;
+
+ /* Skip coercion if already done */
+ if (targetTypMod == exprTypmod(node))
+ return node;
+
+ /* Suppress display of nested coercion steps */
+ if (hideInputCoercion)
+ hide_coercion_node(node);
+
+ /*
+ * A negative typmod means that no actual coercion is needed, but we still
+ * want a RelabelType to ensure that the expression exposes the intended
+ * typmod.
+ */
+ if (targetTypMod < 0)
+ pathtype = COERCION_PATH_NONE;
+ else
+ pathtype = find_typmod_coercion_function(targetTypeId, &funcId);
+
+ if (pathtype != COERCION_PATH_NONE)
+ {
+ node = build_coercion_expression(node, pathtype, funcId,
+ targetTypeId, targetTypMod,
+ ccontext, cformat, location);
+ }
+ else
+ {
+ /*
+ * We don't need to perform any actual coercion step, but we should
+ * apply a RelabelType to ensure that the expression exposes the
+ * intended typmod.
+ */
+ node = applyRelabelType(node, targetTypeId, targetTypMod,
+ exprCollation(node),
+ cformat, location, false);
+ }
+
+ return node;
+}
+
+/*
+ * Mark a coercion node as IMPLICIT so it will never be displayed by
+ * ruleutils.c. We use this when we generate a nest of coercion nodes
+ * to implement what is logically one conversion; the inner nodes are
+ * forced to IMPLICIT_CAST format. This does not change their semantics,
+ * only display behavior.
+ *
+ * It is caller error to call this on something that doesn't have a
+ * CoercionForm field.
+ */
+static void
+hide_coercion_node(Node *node)
+{
+ if (IsA(node, FuncExpr))
+ ((FuncExpr *) node)->funcformat = COERCE_IMPLICIT_CAST;
+ else if (IsA(node, RelabelType))
+ ((RelabelType *) node)->relabelformat = COERCE_IMPLICIT_CAST;
+ else if (IsA(node, CoerceViaIO))
+ ((CoerceViaIO *) node)->coerceformat = COERCE_IMPLICIT_CAST;
+ else if (IsA(node, ArrayCoerceExpr))
+ ((ArrayCoerceExpr *) node)->coerceformat = COERCE_IMPLICIT_CAST;
+ else if (IsA(node, ConvertRowtypeExpr))
+ ((ConvertRowtypeExpr *) node)->convertformat = COERCE_IMPLICIT_CAST;
+ else if (IsA(node, RowExpr))
+ ((RowExpr *) node)->row_format = COERCE_IMPLICIT_CAST;
+ else if (IsA(node, CoerceToDomain))
+ ((CoerceToDomain *) node)->coercionformat = COERCE_IMPLICIT_CAST;
+ else
+ elog(ERROR, "unsupported node type: %d", (int) nodeTag(node));
+}
+
+/*
+ * build_coercion_expression()
+ * Construct an expression tree for applying a pg_cast entry.
+ *
+ * This is used for both type-coercion and length-coercion operations,
+ * since there is no difference in terms of the calling convention.
+ */
+static Node *
+build_coercion_expression(Node *node,
+ CoercionPathType pathtype,
+ Oid funcId,
+ Oid targetTypeId, int32 targetTypMod,
+ CoercionContext ccontext, CoercionForm cformat,
+ int location)
+{
+ int nargs = 0;
+
+ if (OidIsValid(funcId))
+ {
+ HeapTuple tp;
+ Form_pg_proc procstruct;
+
+ tp = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcId));
+ if (!HeapTupleIsValid(tp))
+ elog(ERROR, "cache lookup failed for function %u", funcId);
+ procstruct = (Form_pg_proc) GETSTRUCT(tp);
+
+ /*
+ * These Asserts essentially check that function is a legal coercion
+ * function. We can't make the seemingly obvious tests on prorettype
+ * and proargtypes[0], even in the COERCION_PATH_FUNC case, because of
+ * various binary-compatibility cases.
+ */
+ /* Assert(targetTypeId == procstruct->prorettype); */
+ Assert(!procstruct->proretset);
+ Assert(procstruct->prokind == PROKIND_FUNCTION);
+ nargs = procstruct->pronargs;
+ Assert(nargs >= 1 && nargs <= 3);
+ /* Assert(procstruct->proargtypes.values[0] == exprType(node)); */
+ Assert(nargs < 2 || procstruct->proargtypes.values[1] == INT4OID);
+ Assert(nargs < 3 || procstruct->proargtypes.values[2] == BOOLOID);
+
+ ReleaseSysCache(tp);
+ }
+
+ if (pathtype == COERCION_PATH_FUNC)
+ {
+ /* We build an ordinary FuncExpr with special arguments */
+ FuncExpr *fexpr;
+ List *args;
+ Const *cons;
+
+ Assert(OidIsValid(funcId));
+
+ args = list_make1(node);
+
+ if (nargs >= 2)
+ {
+ /* Pass target typmod as an int4 constant */
+ cons = makeConst(INT4OID,
+ -1,
+ InvalidOid,
+ sizeof(int32),
+ Int32GetDatum(targetTypMod),
+ false,
+ true);
+
+ args = lappend(args, cons);
+ }
+
+ if (nargs == 3)
+ {
+ /* Pass it a boolean isExplicit parameter, too */
+ cons = makeConst(BOOLOID,
+ -1,
+ InvalidOid,
+ sizeof(bool),
+ BoolGetDatum(ccontext == COERCION_EXPLICIT),
+ false,
+ true);
+
+ args = lappend(args, cons);
+ }
+
+ fexpr = makeFuncExpr(funcId, targetTypeId, args,
+ InvalidOid, InvalidOid, cformat);
+ fexpr->location = location;
+ return (Node *) fexpr;
+ }
+ else if (pathtype == COERCION_PATH_ARRAYCOERCE)
+ {
+ /* We need to build an ArrayCoerceExpr */
+ ArrayCoerceExpr *acoerce = makeNode(ArrayCoerceExpr);
+ CaseTestExpr *ctest = makeNode(CaseTestExpr);
+ Oid sourceBaseTypeId;
+ int32 sourceBaseTypeMod;
+ Oid targetElementType;
+ Node *elemexpr;
+
+ /*
+ * Look through any domain over the source array type. Note we don't
+ * expect that the target type is a domain; it must be a plain array.
+ * (To get to a domain target type, we'll do coerce_to_domain later.)
+ */
+ sourceBaseTypeMod = exprTypmod(node);
+ sourceBaseTypeId = getBaseTypeAndTypmod(exprType(node),
+ &sourceBaseTypeMod);
+
+ /*
+ * Set up a CaseTestExpr representing one element of the source array.
+ * This is an abuse of CaseTestExpr, but it's OK as long as there
+ * can't be any CaseExpr or ArrayCoerceExpr within the completed
+ * elemexpr.
+ */
+ ctest->typeId = get_element_type(sourceBaseTypeId);
+ Assert(OidIsValid(ctest->typeId));
+ ctest->typeMod = sourceBaseTypeMod;
+ ctest->collation = InvalidOid; /* Assume coercions don't care */
+
+ /* And coerce it to the target element type */
+ targetElementType = get_element_type(targetTypeId);
+ Assert(OidIsValid(targetElementType));
+
+ elemexpr = coerce_to_target_type(NULL,
+ (Node *) ctest,
+ ctest->typeId,
+ targetElementType,
+ targetTypMod,
+ ccontext,
+ cformat,
+ location);
+ if (elemexpr == NULL) /* shouldn't happen */
+ elog(ERROR, "failed to coerce array element type as expected");
+
+ acoerce->arg = (Expr *) node;
+ acoerce->elemexpr = (Expr *) elemexpr;
+ acoerce->resulttype = targetTypeId;
+
+ /*
+ * Label the output as having a particular element typmod only if we
+ * ended up with a per-element expression that is labeled that way.
+ */
+ acoerce->resulttypmod = exprTypmod(elemexpr);
+ /* resultcollid will be set by parse_collate.c */
+ acoerce->coerceformat = cformat;
+ acoerce->location = location;
+
+ return (Node *) acoerce;
+ }
+ else if (pathtype == COERCION_PATH_COERCEVIAIO)
+ {
+ /* We need to build a CoerceViaIO node */
+ CoerceViaIO *iocoerce = makeNode(CoerceViaIO);
+
+ Assert(!OidIsValid(funcId));
+
+ iocoerce->arg = (Expr *) node;
+ iocoerce->resulttype = targetTypeId;
+ /* resultcollid will be set by parse_collate.c */
+ iocoerce->coerceformat = cformat;
+ iocoerce->location = location;
+
+ return (Node *) iocoerce;
+ }
+ else
+ {
+ elog(ERROR, "unsupported pathtype %d in build_coercion_expression",
+ (int) pathtype);
+ return NULL; /* keep compiler quiet */
+ }
+}
+
+
+/*
+ * coerce_record_to_complex
+ * Coerce a RECORD to a specific composite type.
+ *
+ * Currently we only support this for inputs that are RowExprs or whole-row
+ * Vars.
+ */
+static Node *
+coerce_record_to_complex(ParseState *pstate, Node *node,
+ Oid targetTypeId,
+ CoercionContext ccontext,
+ CoercionForm cformat,
+ int location)
+{
+ RowExpr *rowexpr;
+ Oid baseTypeId;
+ int32 baseTypeMod = -1;
+ TupleDesc tupdesc;
+ List *args = NIL;
+ List *newargs;
+ int i;
+ int ucolno;
+ ListCell *arg;
+
+ if (node && IsA(node, RowExpr))
+ {
+ /*
+ * Since the RowExpr must be of type RECORD, we needn't worry about it
+ * containing any dropped columns.
+ */
+ args = ((RowExpr *) node)->args;
+ }
+ else if (node && IsA(node, Var) &&
+ ((Var *) node)->varattno == InvalidAttrNumber)
+ {
+ int rtindex = ((Var *) node)->varno;
+ int sublevels_up = ((Var *) node)->varlevelsup;
+ int vlocation = ((Var *) node)->location;
+ ParseNamespaceItem *nsitem;
+
+ nsitem = GetNSItemByRangeTablePosn(pstate, rtindex, sublevels_up);
+ args = expandNSItemVars(nsitem, sublevels_up, vlocation, NULL);
+ }
+ else
+ ereport(ERROR,
+ (errcode(ERRCODE_CANNOT_COERCE),
+ errmsg("cannot cast type %s to %s",
+ format_type_be(RECORDOID),
+ format_type_be(targetTypeId)),
+ parser_coercion_errposition(pstate, location, node)));
+
+ /*
+ * Look up the composite type, accounting for possibility that what we are
+ * given is a domain over composite.
+ */
+ baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
+ tupdesc = lookup_rowtype_tupdesc(baseTypeId, baseTypeMod);
+
+ /* Process the fields */
+ newargs = NIL;
+ ucolno = 1;
+ arg = list_head(args);
+ for (i = 0; i < tupdesc->natts; i++)
+ {
+ Node *expr;
+ Node *cexpr;
+ Oid exprtype;
+ Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
+
+ /* Fill in NULLs for dropped columns in rowtype */
+ if (attr->attisdropped)
+ {
+ /*
+ * can't use atttypid here, but it doesn't really matter what type
+ * the Const claims to be.
+ */
+ newargs = lappend(newargs,
+ makeNullConst(INT4OID, -1, InvalidOid));
+ continue;
+ }
+
+ if (arg == NULL)
+ ereport(ERROR,
+ (errcode(ERRCODE_CANNOT_COERCE),
+ errmsg("cannot cast type %s to %s",
+ format_type_be(RECORDOID),
+ format_type_be(targetTypeId)),
+ errdetail("Input has too few columns."),
+ parser_coercion_errposition(pstate, location, node)));
+ expr = (Node *) lfirst(arg);
+ exprtype = exprType(expr);
+
+ cexpr = coerce_to_target_type(pstate,
+ expr, exprtype,
+ attr->atttypid,
+ attr->atttypmod,
+ ccontext,
+ COERCE_IMPLICIT_CAST,
+ -1);
+ if (cexpr == NULL)
+ ereport(ERROR,
+ (errcode(ERRCODE_CANNOT_COERCE),
+ errmsg("cannot cast type %s to %s",
+ format_type_be(RECORDOID),
+ format_type_be(targetTypeId)),
+ errdetail("Cannot cast type %s to %s in column %d.",
+ format_type_be(exprtype),
+ format_type_be(attr->atttypid),
+ ucolno),
+ parser_coercion_errposition(pstate, location, expr)));
+ newargs = lappend(newargs, cexpr);
+ ucolno++;
+ arg = lnext(args, arg);
+ }
+ if (arg != NULL)
+ ereport(ERROR,
+ (errcode(ERRCODE_CANNOT_COERCE),
+ errmsg("cannot cast type %s to %s",
+ format_type_be(RECORDOID),
+ format_type_be(targetTypeId)),
+ errdetail("Input has too many columns."),
+ parser_coercion_errposition(pstate, location, node)));
+
+ ReleaseTupleDesc(tupdesc);
+
+ rowexpr = makeNode(RowExpr);
+ rowexpr->args = newargs;
+ rowexpr->row_typeid = baseTypeId;
+ rowexpr->row_format = cformat;
+ rowexpr->colnames = NIL; /* not needed for named target type */
+ rowexpr->location = location;
+
+ /* If target is a domain, apply constraints */
+ if (baseTypeId != targetTypeId)
+ {
+ rowexpr->row_format = COERCE_IMPLICIT_CAST;
+ return coerce_to_domain((Node *) rowexpr,
+ baseTypeId, baseTypeMod,
+ targetTypeId,
+ ccontext, cformat, location,
+ false);
+ }
+
+ return (Node *) rowexpr;
+}
+
+/*
+ * coerce_to_boolean()
+ * Coerce an argument of a construct that requires boolean input
+ * (AND, OR, NOT, etc). Also check that input is not a set.
+ *
+ * Returns the possibly-transformed node tree.
+ *
+ * As with coerce_type, pstate may be NULL if no special unknown-Param
+ * processing is wanted.
+ */
+Node *
+coerce_to_boolean(ParseState *pstate, Node *node,
+ const char *constructName)
+{
+ Oid inputTypeId = exprType(node);
+
+ if (inputTypeId != BOOLOID)
+ {
+ Node *newnode;
+
+ newnode = coerce_to_target_type(pstate, node, inputTypeId,
+ BOOLOID, -1,
+ COERCION_ASSIGNMENT,
+ COERCE_IMPLICIT_CAST,
+ -1);
+ if (newnode == NULL)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ /* translator: first %s is name of a SQL construct, eg WHERE */
+ errmsg("argument of %s must be type %s, not type %s",
+ constructName, "boolean",
+ format_type_be(inputTypeId)),
+ parser_errposition(pstate, exprLocation(node))));
+ node = newnode;
+ }
+
+ if (expression_returns_set(node))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ /* translator: %s is name of a SQL construct, eg WHERE */
+ errmsg("argument of %s must not return a set",
+ constructName),
+ parser_errposition(pstate, exprLocation(node))));
+
+ return node;
+}
+
+/*
+ * coerce_to_specific_type_typmod()
+ * Coerce an argument of a construct that requires a specific data type,
+ * with a specific typmod. Also check that input is not a set.
+ *
+ * Returns the possibly-transformed node tree.
+ *
+ * As with coerce_type, pstate may be NULL if no special unknown-Param
+ * processing is wanted.
+ */
+Node *
+coerce_to_specific_type_typmod(ParseState *pstate, Node *node,
+ Oid targetTypeId, int32 targetTypmod,
+ const char *constructName)
+{
+ Oid inputTypeId = exprType(node);
+
+ if (inputTypeId != targetTypeId)
+ {
+ Node *newnode;
+
+ newnode = coerce_to_target_type(pstate, node, inputTypeId,
+ targetTypeId, targetTypmod,
+ COERCION_ASSIGNMENT,
+ COERCE_IMPLICIT_CAST,
+ -1);
+ if (newnode == NULL)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ /* translator: first %s is name of a SQL construct, eg LIMIT */
+ errmsg("argument of %s must be type %s, not type %s",
+ constructName,
+ format_type_be(targetTypeId),
+ format_type_be(inputTypeId)),
+ parser_errposition(pstate, exprLocation(node))));
+ node = newnode;
+ }
+
+ if (expression_returns_set(node))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ /* translator: %s is name of a SQL construct, eg LIMIT */
+ errmsg("argument of %s must not return a set",
+ constructName),
+ parser_errposition(pstate, exprLocation(node))));
+
+ return node;
+}
+
+/*
+ * coerce_to_specific_type()
+ * Coerce an argument of a construct that requires a specific data type.
+ * Also check that input is not a set.
+ *
+ * Returns the possibly-transformed node tree.
+ *
+ * As with coerce_type, pstate may be NULL if no special unknown-Param
+ * processing is wanted.
+ */
+Node *
+coerce_to_specific_type(ParseState *pstate, Node *node,
+ Oid targetTypeId,
+ const char *constructName)
+{
+ return coerce_to_specific_type_typmod(pstate, node,
+ targetTypeId, -1,
+ constructName);
+}
+
+/*
+ * parser_coercion_errposition - report coercion error location, if possible
+ *
+ * We prefer to point at the coercion request (CAST, ::, etc) if possible;
+ * but there may be no such location in the case of an implicit coercion.
+ * In that case point at the input expression.
+ *
+ * XXX possibly this is more generally useful than coercion errors;
+ * if so, should rename and place with parser_errposition.
+ */
+int
+parser_coercion_errposition(ParseState *pstate,
+ int coerce_location,
+ Node *input_expr)
+{
+ if (coerce_location >= 0)
+ return parser_errposition(pstate, coerce_location);
+ else
+ return parser_errposition(pstate, exprLocation(input_expr));
+}
+
+
+/*
+ * select_common_type()
+ * Determine the common supertype of a list of input expressions.
+ * This is used for determining the output type of CASE, UNION,
+ * and similar constructs.
+ *
+ * 'exprs' is a *nonempty* list of expressions. Note that earlier items
+ * in the list will be preferred if there is doubt.
+ * 'context' is a phrase to use in the error message if we fail to select
+ * a usable type. Pass NULL to have the routine return InvalidOid
+ * rather than throwing an error on failure.
+ * 'which_expr': if not NULL, receives a pointer to the particular input
+ * expression from which the result type was taken.
+ *
+ * Caution: "failure" just means that there were inputs of different type
+ * categories. It is not guaranteed that all the inputs are coercible to the
+ * selected type; caller must check that (see verify_common_type).
+ */
+Oid
+select_common_type(ParseState *pstate, List *exprs, const char *context,
+ Node **which_expr)
+{
+ Node *pexpr;
+ Oid ptype;
+ TYPCATEGORY pcategory;
+ bool pispreferred;
+ ListCell *lc;
+
+ Assert(exprs != NIL);
+ pexpr = (Node *) linitial(exprs);
+ lc = list_second_cell(exprs);
+ ptype = exprType(pexpr);
+
+ /*
+ * If all input types are valid and exactly the same, just pick that type.
+ * This is the only way that we will resolve the result as being a domain
+ * type; otherwise domains are smashed to their base types for comparison.
+ */
+ if (ptype != UNKNOWNOID)
+ {
+ for_each_cell(lc, exprs, lc)
+ {
+ Node *nexpr = (Node *) lfirst(lc);
+ Oid ntype = exprType(nexpr);
+
+ if (ntype != ptype)
+ break;
+ }
+ if (lc == NULL) /* got to the end of the list? */
+ {
+ if (which_expr)
+ *which_expr = pexpr;
+ return ptype;
+ }
+ }
+
+ /*
+ * Nope, so set up for the full algorithm. Note that at this point, lc
+ * points to the first list item with type different from pexpr's; we need
+ * not re-examine any items the previous loop advanced over.
+ */
+ ptype = getBaseType(ptype);
+ get_type_category_preferred(ptype, &pcategory, &pispreferred);
+
+ for_each_cell(lc, exprs, lc)
+ {
+ Node *nexpr = (Node *) lfirst(lc);
+ Oid ntype = getBaseType(exprType(nexpr));
+
+ /* move on to next one if no new information... */
+ if (ntype != UNKNOWNOID && ntype != ptype)
+ {
+ TYPCATEGORY ncategory;
+ bool nispreferred;
+
+ get_type_category_preferred(ntype, &ncategory, &nispreferred);
+ if (ptype == UNKNOWNOID)
+ {
+ /* so far, only unknowns so take anything... */
+ pexpr = nexpr;
+ ptype = ntype;
+ pcategory = ncategory;
+ pispreferred = nispreferred;
+ }
+ else if (ncategory != pcategory)
+ {
+ /*
+ * both types in different categories? then not much hope...
+ */
+ if (context == NULL)
+ return InvalidOid;
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ /*------
+ translator: first %s is name of a SQL construct, eg CASE */
+ errmsg("%s types %s and %s cannot be matched",
+ context,
+ format_type_be(ptype),
+ format_type_be(ntype)),
+ parser_errposition(pstate, exprLocation(nexpr))));
+ }
+ else if (!pispreferred &&
+ can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) &&
+ !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT))
+ {
+ /*
+ * take new type if can coerce to it implicitly but not the
+ * other way; but if we have a preferred type, stay on it.
+ */
+ pexpr = nexpr;
+ ptype = ntype;
+ pcategory = ncategory;
+ pispreferred = nispreferred;
+ }
+ }
+ }
+
+ /*
+ * If all the inputs were UNKNOWN type --- ie, unknown-type literals ---
+ * then resolve as type TEXT. This situation comes up with constructs
+ * like SELECT (CASE WHEN foo THEN 'bar' ELSE 'baz' END); SELECT 'foo'
+ * UNION SELECT 'bar'; It might seem desirable to leave the construct's
+ * output type as UNKNOWN, but that really doesn't work, because we'd
+ * probably end up needing a runtime coercion from UNKNOWN to something
+ * else, and we usually won't have it. We need to coerce the unknown
+ * literals while they are still literals, so a decision has to be made
+ * now.
+ */
+ if (ptype == UNKNOWNOID)
+ ptype = TEXTOID;
+
+ if (which_expr)
+ *which_expr = pexpr;
+ return ptype;
+}
+
+/*
+ * select_common_type_from_oids()
+ * Determine the common supertype of an array of type OIDs.
+ *
+ * This is the same logic as select_common_type(), but working from
+ * an array of type OIDs not a list of expressions. As in that function,
+ * earlier entries in the array have some preference over later ones.
+ * On failure, return InvalidOid if noerror is true, else throw an error.
+ *
+ * Caution: "failure" just means that there were inputs of different type
+ * categories. It is not guaranteed that all the inputs are coercible to the
+ * selected type; caller must check that (see verify_common_type_from_oids).
+ *
+ * Note: neither caller will pass any UNKNOWNOID entries, so the tests
+ * for that in this function are dead code. However, they don't cost much,
+ * and it seems better to keep this logic as close to select_common_type()
+ * as possible.
+ */
+static Oid
+select_common_type_from_oids(int nargs, const Oid *typeids, bool noerror)
+{
+ Oid ptype;
+ TYPCATEGORY pcategory;
+ bool pispreferred;
+ int i = 1;
+
+ Assert(nargs > 0);
+ ptype = typeids[0];
+
+ /* If all input types are valid and exactly the same, pick that type. */
+ if (ptype != UNKNOWNOID)
+ {
+ for (; i < nargs; i++)
+ {
+ if (typeids[i] != ptype)
+ break;
+ }
+ if (i == nargs)
+ return ptype;
+ }
+
+ /*
+ * Nope, so set up for the full algorithm. Note that at this point, we
+ * can skip array entries before "i"; they are all equal to ptype.
+ */
+ ptype = getBaseType(ptype);
+ get_type_category_preferred(ptype, &pcategory, &pispreferred);
+
+ for (; i < nargs; i++)
+ {
+ Oid ntype = getBaseType(typeids[i]);
+
+ /* move on to next one if no new information... */
+ if (ntype != UNKNOWNOID && ntype != ptype)
+ {
+ TYPCATEGORY ncategory;
+ bool nispreferred;
+
+ get_type_category_preferred(ntype, &ncategory, &nispreferred);
+ if (ptype == UNKNOWNOID)
+ {
+ /* so far, only unknowns so take anything... */
+ ptype = ntype;
+ pcategory = ncategory;
+ pispreferred = nispreferred;
+ }
+ else if (ncategory != pcategory)
+ {
+ /*
+ * both types in different categories? then not much hope...
+ */
+ if (noerror)
+ return InvalidOid;
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument types %s and %s cannot be matched",
+ format_type_be(ptype),
+ format_type_be(ntype))));
+ }
+ else if (!pispreferred &&
+ can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) &&
+ !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT))
+ {
+ /*
+ * take new type if can coerce to it implicitly but not the
+ * other way; but if we have a preferred type, stay on it.
+ */
+ ptype = ntype;
+ pcategory = ncategory;
+ pispreferred = nispreferred;
+ }
+ }
+ }
+
+ /* Like select_common_type(), choose TEXT if all inputs were UNKNOWN */
+ if (ptype == UNKNOWNOID)
+ ptype = TEXTOID;
+
+ return ptype;
+}
+
+/*
+ * coerce_to_common_type()
+ * Coerce an expression to the given type.
+ *
+ * This is used following select_common_type() to coerce the individual
+ * expressions to the desired type. 'context' is a phrase to use in the
+ * error message if we fail to coerce.
+ *
+ * As with coerce_type, pstate may be NULL if no special unknown-Param
+ * processing is wanted.
+ */
+Node *
+coerce_to_common_type(ParseState *pstate, Node *node,
+ Oid targetTypeId, const char *context)
+{
+ Oid inputTypeId = exprType(node);
+
+ if (inputTypeId == targetTypeId)
+ return node; /* no work */
+ if (can_coerce_type(1, &inputTypeId, &targetTypeId, COERCION_IMPLICIT))
+ node = coerce_type(pstate, node, inputTypeId, targetTypeId, -1,
+ COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
+ else
+ ereport(ERROR,
+ (errcode(ERRCODE_CANNOT_COERCE),
+ /* translator: first %s is name of a SQL construct, eg CASE */
+ errmsg("%s could not convert type %s to %s",
+ context,
+ format_type_be(inputTypeId),
+ format_type_be(targetTypeId)),
+ parser_errposition(pstate, exprLocation(node))));
+ return node;
+}
+
+/*
+ * verify_common_type()
+ * Verify that all input types can be coerced to a proposed common type.
+ * Return true if so, false if not all coercions are possible.
+ *
+ * Most callers of select_common_type() don't need to do this explicitly
+ * because the checks will happen while trying to convert input expressions
+ * to the right type, e.g. in coerce_to_common_type(). However, if a separate
+ * check step is needed to validate the applicability of the common type, call
+ * this.
+ */
+bool
+verify_common_type(Oid common_type, List *exprs)
+{
+ ListCell *lc;
+
+ foreach(lc, exprs)
+ {
+ Node *nexpr = (Node *) lfirst(lc);
+ Oid ntype = exprType(nexpr);
+
+ if (!can_coerce_type(1, &ntype, &common_type, COERCION_IMPLICIT))
+ return false;
+ }
+ return true;
+}
+
+/*
+ * verify_common_type_from_oids()
+ * As above, but work from an array of type OIDs.
+ */
+static bool
+verify_common_type_from_oids(Oid common_type, int nargs, const Oid *typeids)
+{
+ for (int i = 0; i < nargs; i++)
+ {
+ if (!can_coerce_type(1, &typeids[i], &common_type, COERCION_IMPLICIT))
+ return false;
+ }
+ return true;
+}
+
+/*
+ * select_common_typmod()
+ * Determine the common typmod of a list of input expressions.
+ *
+ * common_type is the selected common type of the expressions, typically
+ * computed using select_common_type().
+ */
+int32
+select_common_typmod(ParseState *pstate, List *exprs, Oid common_type)
+{
+ ListCell *lc;
+ bool first = true;
+ int32 result = -1;
+
+ foreach(lc, exprs)
+ {
+ Node *expr = (Node *) lfirst(lc);
+
+ /* Types must match */
+ if (exprType(expr) != common_type)
+ return -1;
+ else if (first)
+ {
+ result = exprTypmod(expr);
+ first = false;
+ }
+ else
+ {
+ /* As soon as we see a non-matching typmod, fall back to -1 */
+ if (result != exprTypmod(expr))
+ return -1;
+ }
+ }
+
+ return result;
+}
+
+/*
+ * check_generic_type_consistency()
+ * Are the actual arguments potentially compatible with a
+ * polymorphic function?
+ *
+ * The argument consistency rules are:
+ *
+ * 1) All arguments declared ANYELEMENT must have the same datatype.
+ * 2) All arguments declared ANYARRAY must have the same datatype,
+ * which must be a varlena array type.
+ * 3) All arguments declared ANYRANGE must be the same range type.
+ * Similarly, all arguments declared ANYMULTIRANGE must be the same
+ * multirange type; and if both of these appear, the ANYRANGE type
+ * must be the element type of the ANYMULTIRANGE type.
+ * 4) If there are arguments of more than one of these polymorphic types,
+ * the array element type and/or range subtype must be the same as each
+ * other and the same as the ANYELEMENT type.
+ * 5) ANYENUM is treated the same as ANYELEMENT except that if it is used
+ * (alone or in combination with plain ANYELEMENT), we add the extra
+ * condition that the ANYELEMENT type must be an enum.
+ * 6) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
+ * we add the extra condition that the ANYELEMENT type must not be an array.
+ * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
+ * is an extra restriction if not.)
+ * 7) All arguments declared ANYCOMPATIBLE must be implicitly castable
+ * to a common supertype (chosen as per select_common_type's rules).
+ * ANYCOMPATIBLENONARRAY works like ANYCOMPATIBLE but also requires the
+ * common supertype to not be an array. If there are ANYCOMPATIBLEARRAY
+ * or ANYCOMPATIBLERANGE or ANYCOMPATIBLEMULTIRANGE arguments, their element
+ * types or subtypes are included while making the choice of common supertype.
+ * 8) The resolved type of ANYCOMPATIBLEARRAY arguments will be the array
+ * type over the common supertype (which might not be the same array type
+ * as any of the original arrays).
+ * 9) All ANYCOMPATIBLERANGE arguments must be the exact same range type
+ * (after domain flattening), since we have no preference rule that would
+ * let us choose one over another. Furthermore, that range's subtype
+ * must exactly match the common supertype chosen by rule 7.
+ * 10) All ANYCOMPATIBLEMULTIRANGE arguments must be the exact same multirange
+ * type (after domain flattening), since we have no preference rule that
+ * would let us choose one over another. Furthermore, if ANYCOMPATIBLERANGE
+ * also appears, that range type must be the multirange's element type;
+ * otherwise, the multirange's range's subtype must exactly match the
+ * common supertype chosen by rule 7.
+ *
+ * Domains over arrays match ANYARRAY, and are immediately flattened to their
+ * base type. (Thus, for example, we will consider it a match if one ANYARRAY
+ * argument is a domain over int4[] while another one is just int4[].) Also
+ * notice that such a domain does *not* match ANYNONARRAY. The same goes
+ * for ANYCOMPATIBLEARRAY and ANYCOMPATIBLENONARRAY.
+ *
+ * Similarly, domains over ranges match ANYRANGE or ANYCOMPATIBLERANGE,
+ * and are immediately flattened to their base type. Likewise, domains
+ * over multiranges match ANYMULTIRANGE or ANYCOMPATIBLEMULTIRANGE and are
+ * immediately flattened to their base type.
+ *
+ * Note that domains aren't currently considered to match ANYENUM,
+ * even if their base type would match.
+ *
+ * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
+ * argument, assume it is okay.
+ *
+ * We do not ereport here, but just return false if a rule is violated.
+ */
+bool
+check_generic_type_consistency(const Oid *actual_arg_types,
+ const Oid *declared_arg_types,
+ int nargs)
+{
+ Oid elem_typeid = InvalidOid;
+ Oid array_typeid = InvalidOid;
+ Oid range_typeid = InvalidOid;
+ Oid multirange_typeid = InvalidOid;
+ Oid anycompatible_range_typeid = InvalidOid;
+ Oid anycompatible_range_typelem = InvalidOid;
+ Oid anycompatible_multirange_typeid = InvalidOid;
+ Oid anycompatible_multirange_typelem = InvalidOid;
+ Oid range_typelem = InvalidOid;
+ bool have_anynonarray = false;
+ bool have_anyenum = false;
+ bool have_anycompatible_nonarray = false;
+ int n_anycompatible_args = 0;
+ Oid anycompatible_actual_types[FUNC_MAX_ARGS];
+
+ /*
+ * Loop through the arguments to see if we have any that are polymorphic.
+ * If so, require the actual types to be consistent.
+ */
+ Assert(nargs <= FUNC_MAX_ARGS);
+ for (int j = 0; j < nargs; j++)
+ {
+ Oid decl_type = declared_arg_types[j];
+ Oid actual_type = actual_arg_types[j];
+
+ if (decl_type == ANYELEMENTOID ||
+ decl_type == ANYNONARRAYOID ||
+ decl_type == ANYENUMOID)
+ {
+ if (decl_type == ANYNONARRAYOID)
+ have_anynonarray = true;
+ else if (decl_type == ANYENUMOID)
+ have_anyenum = true;
+ if (actual_type == UNKNOWNOID)
+ continue;
+ if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
+ return false;
+ elem_typeid = actual_type;
+ }
+ else if (decl_type == ANYARRAYOID)
+ {
+ if (actual_type == UNKNOWNOID)
+ continue;
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ if (OidIsValid(array_typeid) && actual_type != array_typeid)
+ return false;
+ array_typeid = actual_type;
+ }
+ else if (decl_type == ANYRANGEOID)
+ {
+ if (actual_type == UNKNOWNOID)
+ continue;
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ if (OidIsValid(range_typeid) && actual_type != range_typeid)
+ return false;
+ range_typeid = actual_type;
+ }
+ else if (decl_type == ANYMULTIRANGEOID)
+ {
+ if (actual_type == UNKNOWNOID)
+ continue;
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ if (OidIsValid(multirange_typeid) && actual_type != multirange_typeid)
+ return false;
+ multirange_typeid = actual_type;
+ }
+ else if (decl_type == ANYCOMPATIBLEOID ||
+ decl_type == ANYCOMPATIBLENONARRAYOID)
+ {
+ if (decl_type == ANYCOMPATIBLENONARRAYOID)
+ have_anycompatible_nonarray = true;
+ if (actual_type == UNKNOWNOID)
+ continue;
+ /* collect the actual types of non-unknown COMPATIBLE args */
+ anycompatible_actual_types[n_anycompatible_args++] = actual_type;
+ }
+ else if (decl_type == ANYCOMPATIBLEARRAYOID)
+ {
+ Oid elem_type;
+
+ if (actual_type == UNKNOWNOID)
+ continue;
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ elem_type = get_element_type(actual_type);
+ if (!OidIsValid(elem_type))
+ return false; /* not an array */
+ /* collect the element type for common-supertype choice */
+ anycompatible_actual_types[n_anycompatible_args++] = elem_type;
+ }
+ else if (decl_type == ANYCOMPATIBLERANGEOID)
+ {
+ if (actual_type == UNKNOWNOID)
+ continue;
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ if (OidIsValid(anycompatible_range_typeid))
+ {
+ /* All ANYCOMPATIBLERANGE arguments must be the same type */
+ if (anycompatible_range_typeid != actual_type)
+ return false;
+ }
+ else
+ {
+ anycompatible_range_typeid = actual_type;
+ anycompatible_range_typelem = get_range_subtype(actual_type);
+ if (!OidIsValid(anycompatible_range_typelem))
+ return false; /* not a range type */
+ /* collect the subtype for common-supertype choice */
+ anycompatible_actual_types[n_anycompatible_args++] = anycompatible_range_typelem;
+ }
+ }
+ else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID)
+ {
+ if (actual_type == UNKNOWNOID)
+ continue;
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ if (OidIsValid(anycompatible_multirange_typeid))
+ {
+ /* All ANYCOMPATIBLEMULTIRANGE arguments must be the same type */
+ if (anycompatible_multirange_typeid != actual_type)
+ return false;
+ }
+ else
+ {
+ anycompatible_multirange_typeid = actual_type;
+ anycompatible_multirange_typelem = get_multirange_range(actual_type);
+ if (!OidIsValid(anycompatible_multirange_typelem))
+ return false; /* not a multirange type */
+ /* we'll consider the subtype below */
+ }
+ }
+ }
+
+ /* Get the element type based on the array type, if we have one */
+ if (OidIsValid(array_typeid))
+ {
+ if (array_typeid == ANYARRAYOID)
+ {
+ /*
+ * Special case for matching ANYARRAY input to an ANYARRAY
+ * argument: allow it for now. enforce_generic_type_consistency()
+ * might complain later, depending on the presence of other
+ * polymorphic arguments or results, but it will deliver a less
+ * surprising error message than "function does not exist".
+ *
+ * (If you think to change this, note that can_coerce_type will
+ * consider such a situation as a match, so that we might not even
+ * get here.)
+ */
+ }
+ else
+ {
+ Oid array_typelem;
+
+ array_typelem = get_element_type(array_typeid);
+ if (!OidIsValid(array_typelem))
+ return false; /* should be an array, but isn't */
+
+ if (!OidIsValid(elem_typeid))
+ {
+ /*
+ * if we don't have an element type yet, use the one we just
+ * got
+ */
+ elem_typeid = array_typelem;
+ }
+ else if (array_typelem != elem_typeid)
+ {
+ /* otherwise, they better match */
+ return false;
+ }
+ }
+ }
+
+ /* Deduce range type from multirange type, or check that they agree */
+ if (OidIsValid(multirange_typeid))
+ {
+ Oid multirange_typelem;
+
+ multirange_typelem = get_multirange_range(multirange_typeid);
+ if (!OidIsValid(multirange_typelem))
+ return false; /* should be a multirange, but isn't */
+
+ if (!OidIsValid(range_typeid))
+ {
+ /* If we don't have a range type yet, use the one we just got */
+ range_typeid = multirange_typelem;
+ range_typelem = get_range_subtype(multirange_typelem);
+ if (!OidIsValid(range_typelem))
+ return false; /* should be a range, but isn't */
+ }
+ else if (multirange_typelem != range_typeid)
+ {
+ /* otherwise, they better match */
+ return false;
+ }
+ }
+
+ /* Get the element type based on the range type, if we have one */
+ if (OidIsValid(range_typeid))
+ {
+ range_typelem = get_range_subtype(range_typeid);
+ if (!OidIsValid(range_typelem))
+ return false; /* should be a range, but isn't */
+
+ if (!OidIsValid(elem_typeid))
+ {
+ /*
+ * If we don't have an element type yet, use the one we just got
+ */
+ elem_typeid = range_typelem;
+ }
+ else if (range_typelem != elem_typeid)
+ {
+ /* otherwise, they better match */
+ return false;
+ }
+ }
+
+ if (have_anynonarray)
+ {
+ /* require the element type to not be an array or domain over array */
+ if (type_is_array_domain(elem_typeid))
+ return false;
+ }
+
+ if (have_anyenum)
+ {
+ /* require the element type to be an enum */
+ if (!type_is_enum(elem_typeid))
+ return false;
+ }
+
+ /* Deduce range type from multirange type, or check that they agree */
+ if (OidIsValid(anycompatible_multirange_typeid))
+ {
+ if (OidIsValid(anycompatible_range_typeid))
+ {
+ if (anycompatible_multirange_typelem !=
+ anycompatible_range_typeid)
+ return false;
+ }
+ else
+ {
+ anycompatible_range_typeid = anycompatible_multirange_typelem;
+ anycompatible_range_typelem = get_range_subtype(anycompatible_range_typeid);
+ if (!OidIsValid(anycompatible_range_typelem))
+ return false; /* not a range type */
+ /* collect the subtype for common-supertype choice */
+ anycompatible_actual_types[n_anycompatible_args++] =
+ anycompatible_range_typelem;
+ }
+ }
+
+ /* Check matching of ANYCOMPATIBLE-family arguments, if any */
+ if (n_anycompatible_args > 0)
+ {
+ Oid anycompatible_typeid;
+
+ anycompatible_typeid =
+ select_common_type_from_oids(n_anycompatible_args,
+ anycompatible_actual_types,
+ true);
+
+ if (!OidIsValid(anycompatible_typeid))
+ return false; /* there's definitely no common supertype */
+
+ /* We have to verify that the selected type actually works */
+ if (!verify_common_type_from_oids(anycompatible_typeid,
+ n_anycompatible_args,
+ anycompatible_actual_types))
+ return false;
+
+ if (have_anycompatible_nonarray)
+ {
+ /*
+ * require the anycompatible type to not be an array or domain
+ * over array
+ */
+ if (type_is_array_domain(anycompatible_typeid))
+ return false;
+ }
+
+ /*
+ * The anycompatible type must exactly match the range element type,
+ * if we were able to identify one. This checks compatibility for
+ * anycompatiblemultirange too since that also sets
+ * anycompatible_range_typelem above.
+ */
+ if (OidIsValid(anycompatible_range_typelem) &&
+ anycompatible_range_typelem != anycompatible_typeid)
+ return false;
+ }
+
+ /* Looks valid */
+ return true;
+}
+
+/*
+ * enforce_generic_type_consistency()
+ * Make sure a polymorphic function is legally callable, and
+ * deduce actual argument and result types.
+ *
+ * If any polymorphic pseudotype is used in a function's arguments or
+ * return type, we make sure the actual data types are consistent with
+ * each other. The argument consistency rules are shown above for
+ * check_generic_type_consistency().
+ *
+ * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
+ * argument, we attempt to deduce the actual type it should have. If
+ * successful, we alter that position of declared_arg_types[] so that
+ * make_fn_arguments will coerce the literal to the right thing.
+ *
+ * If we have polymorphic arguments of the ANYCOMPATIBLE family,
+ * we similarly alter declared_arg_types[] entries to show the resolved
+ * common supertype, so that make_fn_arguments will coerce the actual
+ * arguments to the proper type.
+ *
+ * Rules are applied to the function's return type (possibly altering it)
+ * if it is declared as a polymorphic type and there is at least one
+ * polymorphic argument type:
+ *
+ * 1) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the
+ * argument's actual type as the function's return type.
+ * 2) If return type is ANYARRAY, and any argument is ANYARRAY, use the
+ * argument's actual type as the function's return type.
+ * 3) Similarly, if return type is ANYRANGE or ANYMULTIRANGE, and any
+ * argument is ANYRANGE or ANYMULTIRANGE, use that argument's actual type
+ * (or the corresponding range or multirange type) as the function's return
+ * type.
+ * 4) Otherwise, if return type is ANYELEMENT or ANYARRAY, and there is
+ * at least one ANYELEMENT, ANYARRAY, ANYRANGE, or ANYMULTIRANGE input,
+ * deduce the return type from those inputs, or throw error if we can't.
+ * 5) Otherwise, if return type is ANYRANGE or ANYMULTIRANGE, throw error.
+ * (We have no way to select a specific range type if the arguments don't
+ * include ANYRANGE or ANYMULTIRANGE.)
+ * 6) ANYENUM is treated the same as ANYELEMENT except that if it is used
+ * (alone or in combination with plain ANYELEMENT), we add the extra
+ * condition that the ANYELEMENT type must be an enum.
+ * 7) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
+ * we add the extra condition that the ANYELEMENT type must not be an array.
+ * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
+ * is an extra restriction if not.)
+ * 8) ANYCOMPATIBLE, ANYCOMPATIBLEARRAY, and ANYCOMPATIBLENONARRAY are handled
+ * by resolving the common supertype of those arguments (or their element
+ * types, for array inputs), and then coercing all those arguments to the
+ * common supertype, or the array type over the common supertype for
+ * ANYCOMPATIBLEARRAY.
+ * 9) For ANYCOMPATIBLERANGE and ANYCOMPATIBLEMULTIRANGE, there must be at
+ * least one non-UNKNOWN input matching those arguments, and all such
+ * inputs must be the same range type (or its multirange type, as
+ * appropriate), since we cannot deduce a range type from non-range types.
+ * Furthermore, the range type's subtype is included while choosing the
+ * common supertype for ANYCOMPATIBLE et al, and it must exactly match
+ * that common supertype.
+ *
+ * Domains over arrays or ranges match ANYARRAY or ANYRANGE arguments,
+ * respectively, and are immediately flattened to their base type. (In
+ * particular, if the return type is also ANYARRAY or ANYRANGE, we'll set
+ * it to the base type not the domain type.) The same is true for
+ * ANYMULTIRANGE, ANYCOMPATIBLEARRAY, ANYCOMPATIBLERANGE, and
+ * ANYCOMPATIBLEMULTIRANGE.
+ *
+ * When allow_poly is false, we are not expecting any of the actual_arg_types
+ * to be polymorphic, and we should not return a polymorphic result type
+ * either. When allow_poly is true, it is okay to have polymorphic "actual"
+ * arg types, and we can return a matching polymorphic type as the result.
+ * (This case is currently used only to check compatibility of an aggregate's
+ * declaration with the underlying transfn.)
+ *
+ * A special case is that we could see ANYARRAY as an actual_arg_type even
+ * when allow_poly is false (this is possible only because pg_statistic has
+ * columns shown as anyarray in the catalogs). We allow this to match a
+ * declared ANYARRAY argument, but only if there is no other polymorphic
+ * argument that we would need to match it with, and no need to determine
+ * the element type to infer the result type. Note this means that functions
+ * taking ANYARRAY had better behave sanely if applied to the pg_statistic
+ * columns; they can't just assume that successive inputs are of the same
+ * actual element type. There is no similar logic for ANYCOMPATIBLEARRAY;
+ * there isn't a need for it since there are no catalog columns of that type,
+ * so we won't see it as input. We could consider matching an actual ANYARRAY
+ * input to an ANYCOMPATIBLEARRAY argument, but at present that seems useless
+ * as well, since there's no value in using ANYCOMPATIBLEARRAY unless there's
+ * at least one other ANYCOMPATIBLE-family argument or result.
+ *
+ * Also, if there are no arguments declared to be of polymorphic types,
+ * we'll return the rettype unmodified even if it's polymorphic. This should
+ * never occur for user-declared functions, because CREATE FUNCTION prevents
+ * it. But it does happen for some built-in functions, such as array_in().
+ */
+Oid
+enforce_generic_type_consistency(const Oid *actual_arg_types,
+ Oid *declared_arg_types,
+ int nargs,
+ Oid rettype,
+ bool allow_poly)
+{
+ bool have_poly_anycompatible = false;
+ bool have_poly_unknowns = false;
+ Oid elem_typeid = InvalidOid;
+ Oid array_typeid = InvalidOid;
+ Oid range_typeid = InvalidOid;
+ Oid multirange_typeid = InvalidOid;
+ Oid anycompatible_typeid = InvalidOid;
+ Oid anycompatible_array_typeid = InvalidOid;
+ Oid anycompatible_range_typeid = InvalidOid;
+ Oid anycompatible_range_typelem = InvalidOid;
+ Oid anycompatible_multirange_typeid = InvalidOid;
+ Oid anycompatible_multirange_typelem = InvalidOid;
+ bool have_anynonarray = (rettype == ANYNONARRAYOID);
+ bool have_anyenum = (rettype == ANYENUMOID);
+ bool have_anymultirange = (rettype == ANYMULTIRANGEOID);
+ bool have_anycompatible_nonarray = (rettype == ANYCOMPATIBLENONARRAYOID);
+ bool have_anycompatible_array = (rettype == ANYCOMPATIBLEARRAYOID);
+ bool have_anycompatible_range = (rettype == ANYCOMPATIBLERANGEOID);
+ bool have_anycompatible_multirange = (rettype == ANYCOMPATIBLEMULTIRANGEOID);
+ int n_poly_args = 0; /* this counts all family-1 arguments */
+ int n_anycompatible_args = 0; /* this counts only non-unknowns */
+ Oid anycompatible_actual_types[FUNC_MAX_ARGS];
+
+ /*
+ * Loop through the arguments to see if we have any that are polymorphic.
+ * If so, require the actual types to be consistent.
+ */
+ Assert(nargs <= FUNC_MAX_ARGS);
+ for (int j = 0; j < nargs; j++)
+ {
+ Oid decl_type = declared_arg_types[j];
+ Oid actual_type = actual_arg_types[j];
+
+ if (decl_type == ANYELEMENTOID ||
+ decl_type == ANYNONARRAYOID ||
+ decl_type == ANYENUMOID)
+ {
+ n_poly_args++;
+ if (decl_type == ANYNONARRAYOID)
+ have_anynonarray = true;
+ else if (decl_type == ANYENUMOID)
+ have_anyenum = true;
+ if (actual_type == UNKNOWNOID)
+ {
+ have_poly_unknowns = true;
+ continue;
+ }
+ if (allow_poly && decl_type == actual_type)
+ continue; /* no new information here */
+ if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("arguments declared \"%s\" are not all alike", "anyelement"),
+ errdetail("%s versus %s",
+ format_type_be(elem_typeid),
+ format_type_be(actual_type))));
+ elem_typeid = actual_type;
+ }
+ else if (decl_type == ANYARRAYOID)
+ {
+ n_poly_args++;
+ if (actual_type == UNKNOWNOID)
+ {
+ have_poly_unknowns = true;
+ continue;
+ }
+ if (allow_poly && decl_type == actual_type)
+ continue; /* no new information here */
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ if (OidIsValid(array_typeid) && actual_type != array_typeid)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("arguments declared \"%s\" are not all alike", "anyarray"),
+ errdetail("%s versus %s",
+ format_type_be(array_typeid),
+ format_type_be(actual_type))));
+ array_typeid = actual_type;
+ }
+ else if (decl_type == ANYRANGEOID)
+ {
+ n_poly_args++;
+ if (actual_type == UNKNOWNOID)
+ {
+ have_poly_unknowns = true;
+ continue;
+ }
+ if (allow_poly && decl_type == actual_type)
+ continue; /* no new information here */
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ if (OidIsValid(range_typeid) && actual_type != range_typeid)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("arguments declared \"%s\" are not all alike", "anyrange"),
+ errdetail("%s versus %s",
+ format_type_be(range_typeid),
+ format_type_be(actual_type))));
+ range_typeid = actual_type;
+ }
+ else if (decl_type == ANYMULTIRANGEOID)
+ {
+ n_poly_args++;
+ have_anymultirange = true;
+ if (actual_type == UNKNOWNOID)
+ {
+ have_poly_unknowns = true;
+ continue;
+ }
+ if (allow_poly && decl_type == actual_type)
+ continue; /* no new information here */
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ if (OidIsValid(multirange_typeid) && actual_type != multirange_typeid)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("arguments declared \"%s\" are not all alike", "anymultirange"),
+ errdetail("%s versus %s",
+ format_type_be(multirange_typeid),
+ format_type_be(actual_type))));
+ multirange_typeid = actual_type;
+ }
+ else if (decl_type == ANYCOMPATIBLEOID ||
+ decl_type == ANYCOMPATIBLENONARRAYOID)
+ {
+ have_poly_anycompatible = true;
+ if (decl_type == ANYCOMPATIBLENONARRAYOID)
+ have_anycompatible_nonarray = true;
+ if (actual_type == UNKNOWNOID)
+ continue;
+ if (allow_poly && decl_type == actual_type)
+ continue; /* no new information here */
+ /* collect the actual types of non-unknown COMPATIBLE args */
+ anycompatible_actual_types[n_anycompatible_args++] = actual_type;
+ }
+ else if (decl_type == ANYCOMPATIBLEARRAYOID)
+ {
+ Oid anycompatible_elem_type;
+
+ have_poly_anycompatible = true;
+ have_anycompatible_array = true;
+ if (actual_type == UNKNOWNOID)
+ continue;
+ if (allow_poly && decl_type == actual_type)
+ continue; /* no new information here */
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ anycompatible_elem_type = get_element_type(actual_type);
+ if (!OidIsValid(anycompatible_elem_type))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not an array but type %s",
+ "anycompatiblearray",
+ format_type_be(actual_type))));
+ /* collect the element type for common-supertype choice */
+ anycompatible_actual_types[n_anycompatible_args++] = anycompatible_elem_type;
+ }
+ else if (decl_type == ANYCOMPATIBLERANGEOID)
+ {
+ have_poly_anycompatible = true;
+ have_anycompatible_range = true;
+ if (actual_type == UNKNOWNOID)
+ continue;
+ if (allow_poly && decl_type == actual_type)
+ continue; /* no new information here */
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ if (OidIsValid(anycompatible_range_typeid))
+ {
+ /* All ANYCOMPATIBLERANGE arguments must be the same type */
+ if (anycompatible_range_typeid != actual_type)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("arguments declared \"%s\" are not all alike", "anycompatiblerange"),
+ errdetail("%s versus %s",
+ format_type_be(anycompatible_range_typeid),
+ format_type_be(actual_type))));
+ }
+ else
+ {
+ anycompatible_range_typeid = actual_type;
+ anycompatible_range_typelem = get_range_subtype(actual_type);
+ if (!OidIsValid(anycompatible_range_typelem))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not a range type but type %s",
+ "anycompatiblerange",
+ format_type_be(actual_type))));
+ /* collect the subtype for common-supertype choice */
+ anycompatible_actual_types[n_anycompatible_args++] = anycompatible_range_typelem;
+ }
+ }
+ else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID)
+ {
+ have_poly_anycompatible = true;
+ have_anycompatible_multirange = true;
+ if (actual_type == UNKNOWNOID)
+ continue;
+ if (allow_poly && decl_type == actual_type)
+ continue; /* no new information here */
+ actual_type = getBaseType(actual_type); /* flatten domains */
+ if (OidIsValid(anycompatible_multirange_typeid))
+ {
+ /* All ANYCOMPATIBLEMULTIRANGE arguments must be the same type */
+ if (anycompatible_multirange_typeid != actual_type)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("arguments declared \"%s\" are not all alike", "anycompatiblemultirange"),
+ errdetail("%s versus %s",
+ format_type_be(anycompatible_multirange_typeid),
+ format_type_be(actual_type))));
+ }
+ else
+ {
+ anycompatible_multirange_typeid = actual_type;
+ anycompatible_multirange_typelem = get_multirange_range(actual_type);
+ if (!OidIsValid(anycompatible_multirange_typelem))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not a multirange type but type %s",
+ "anycompatiblemultirange",
+ format_type_be(actual_type))));
+ /* we'll consider the subtype below */
+ }
+ }
+ }
+
+ /*
+ * Fast Track: if none of the arguments are polymorphic, return the
+ * unmodified rettype. Not our job to resolve it if it's polymorphic.
+ */
+ if (n_poly_args == 0 && !have_poly_anycompatible)
+ return rettype;
+
+ /* Check matching of family-1 polymorphic arguments, if any */
+ if (n_poly_args)
+ {
+ /* Get the element type based on the array type, if we have one */
+ if (OidIsValid(array_typeid))
+ {
+ Oid array_typelem;
+
+ if (array_typeid == ANYARRAYOID)
+ {
+ /*
+ * Special case for matching ANYARRAY input to an ANYARRAY
+ * argument: allow it iff no other arguments are family-1
+ * polymorphics (otherwise we couldn't be sure whether the
+ * array element type matches up) and the result type doesn't
+ * require us to infer a specific element type.
+ */
+ if (n_poly_args != 1 ||
+ (rettype != ANYARRAYOID &&
+ IsPolymorphicTypeFamily1(rettype)))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("cannot determine element type of \"anyarray\" argument")));
+ array_typelem = ANYELEMENTOID;
+ }
+ else
+ {
+ array_typelem = get_element_type(array_typeid);
+ if (!OidIsValid(array_typelem))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not an array but type %s",
+ "anyarray", format_type_be(array_typeid))));
+ }
+
+ if (!OidIsValid(elem_typeid))
+ {
+ /*
+ * if we don't have an element type yet, use the one we just
+ * got
+ */
+ elem_typeid = array_typelem;
+ }
+ else if (array_typelem != elem_typeid)
+ {
+ /* otherwise, they better match */
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not consistent with argument declared %s",
+ "anyarray", "anyelement"),
+ errdetail("%s versus %s",
+ format_type_be(array_typeid),
+ format_type_be(elem_typeid))));
+ }
+ }
+
+ /* Deduce range type from multirange type, or vice versa */
+ if (OidIsValid(multirange_typeid))
+ {
+ Oid multirange_typelem;
+
+ multirange_typelem = get_multirange_range(multirange_typeid);
+ if (!OidIsValid(multirange_typelem))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not a multirange type but type %s",
+ "anymultirange",
+ format_type_be(multirange_typeid))));
+
+ if (!OidIsValid(range_typeid))
+ {
+ /* if we don't have a range type yet, use the one we just got */
+ range_typeid = multirange_typelem;
+ }
+ else if (multirange_typelem != range_typeid)
+ {
+ /* otherwise, they better match */
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not consistent with argument declared %s",
+ "anymultirange", "anyrange"),
+ errdetail("%s versus %s",
+ format_type_be(multirange_typeid),
+ format_type_be(range_typeid))));
+ }
+ }
+ else if (have_anymultirange && OidIsValid(range_typeid))
+ {
+ multirange_typeid = get_range_multirange(range_typeid);
+ /* We'll complain below if that didn't work */
+ }
+
+ /* Get the element type based on the range type, if we have one */
+ if (OidIsValid(range_typeid))
+ {
+ Oid range_typelem;
+
+ range_typelem = get_range_subtype(range_typeid);
+ if (!OidIsValid(range_typelem))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not a range type but type %s",
+ "anyrange",
+ format_type_be(range_typeid))));
+
+ if (!OidIsValid(elem_typeid))
+ {
+ /*
+ * if we don't have an element type yet, use the one we just
+ * got
+ */
+ elem_typeid = range_typelem;
+ }
+ else if (range_typelem != elem_typeid)
+ {
+ /* otherwise, they better match */
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not consistent with argument declared %s",
+ "anyrange", "anyelement"),
+ errdetail("%s versus %s",
+ format_type_be(range_typeid),
+ format_type_be(elem_typeid))));
+ }
+ }
+
+ if (!OidIsValid(elem_typeid))
+ {
+ if (allow_poly)
+ {
+ elem_typeid = ANYELEMENTOID;
+ array_typeid = ANYARRAYOID;
+ range_typeid = ANYRANGEOID;
+ multirange_typeid = ANYMULTIRANGEOID;
+ }
+ else
+ {
+ /*
+ * Only way to get here is if all the family-1 polymorphic
+ * arguments have UNKNOWN inputs.
+ */
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("could not determine polymorphic type because input has type %s",
+ "unknown")));
+ }
+ }
+
+ if (have_anynonarray && elem_typeid != ANYELEMENTOID)
+ {
+ /*
+ * require the element type to not be an array or domain over
+ * array
+ */
+ if (type_is_array_domain(elem_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("type matched to anynonarray is an array type: %s",
+ format_type_be(elem_typeid))));
+ }
+
+ if (have_anyenum && elem_typeid != ANYELEMENTOID)
+ {
+ /* require the element type to be an enum */
+ if (!type_is_enum(elem_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("type matched to anyenum is not an enum type: %s",
+ format_type_be(elem_typeid))));
+ }
+ }
+
+ /* Check matching of family-2 polymorphic arguments, if any */
+ if (have_poly_anycompatible)
+ {
+ /* Deduce range type from multirange type, or vice versa */
+ if (OidIsValid(anycompatible_multirange_typeid))
+ {
+ if (OidIsValid(anycompatible_range_typeid))
+ {
+ if (anycompatible_multirange_typelem !=
+ anycompatible_range_typeid)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not consistent with argument declared %s",
+ "anycompatiblemultirange",
+ "anycompatiblerange"),
+ errdetail("%s versus %s",
+ format_type_be(anycompatible_multirange_typeid),
+ format_type_be(anycompatible_range_typeid))));
+ }
+ else
+ {
+ anycompatible_range_typeid = anycompatible_multirange_typelem;
+ anycompatible_range_typelem = get_range_subtype(anycompatible_range_typeid);
+ if (!OidIsValid(anycompatible_range_typelem))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("argument declared %s is not a multirange type but type %s",
+ "anycompatiblemultirange",
+ format_type_be(anycompatible_multirange_typeid))));
+ /* this enables element type matching check below */
+ have_anycompatible_range = true;
+ /* collect the subtype for common-supertype choice */
+ anycompatible_actual_types[n_anycompatible_args++] =
+ anycompatible_range_typelem;
+ }
+ }
+ else if (have_anycompatible_multirange &&
+ OidIsValid(anycompatible_range_typeid))
+ {
+ anycompatible_multirange_typeid = get_range_multirange(anycompatible_range_typeid);
+ /* We'll complain below if that didn't work */
+ }
+
+ if (n_anycompatible_args > 0)
+ {
+ anycompatible_typeid =
+ select_common_type_from_oids(n_anycompatible_args,
+ anycompatible_actual_types,
+ false);
+
+ /* We have to verify that the selected type actually works */
+ if (!verify_common_type_from_oids(anycompatible_typeid,
+ n_anycompatible_args,
+ anycompatible_actual_types))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("arguments of anycompatible family cannot be cast to a common type")));
+
+ if (have_anycompatible_array)
+ {
+ anycompatible_array_typeid = get_array_type(anycompatible_typeid);
+ if (!OidIsValid(anycompatible_array_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_UNDEFINED_OBJECT),
+ errmsg("could not find array type for data type %s",
+ format_type_be(anycompatible_typeid))));
+ }
+
+ if (have_anycompatible_range)
+ {
+ /* we can't infer a range type from the others */
+ if (!OidIsValid(anycompatible_range_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("could not determine polymorphic type %s because input has type %s",
+ "anycompatiblerange", "unknown")));
+
+ /*
+ * the anycompatible type must exactly match the range element
+ * type
+ */
+ if (anycompatible_range_typelem != anycompatible_typeid)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("anycompatiblerange type %s does not match anycompatible type %s",
+ format_type_be(anycompatible_range_typeid),
+ format_type_be(anycompatible_typeid))));
+ }
+
+ if (have_anycompatible_multirange)
+ {
+ /* we can't infer a multirange type from the others */
+ if (!OidIsValid(anycompatible_multirange_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("could not determine polymorphic type %s because input has type %s",
+ "anycompatiblemultirange", "unknown")));
+
+ /*
+ * the anycompatible type must exactly match the multirange
+ * element type
+ */
+ if (anycompatible_range_typelem != anycompatible_typeid)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("anycompatiblemultirange type %s does not match anycompatible type %s",
+ format_type_be(anycompatible_multirange_typeid),
+ format_type_be(anycompatible_typeid))));
+ }
+
+ if (have_anycompatible_nonarray)
+ {
+ /*
+ * require the element type to not be an array or domain over
+ * array
+ */
+ if (type_is_array_domain(anycompatible_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("type matched to anycompatiblenonarray is an array type: %s",
+ format_type_be(anycompatible_typeid))));
+ }
+ }
+ else
+ {
+ if (allow_poly)
+ {
+ anycompatible_typeid = ANYCOMPATIBLEOID;
+ anycompatible_array_typeid = ANYCOMPATIBLEARRAYOID;
+ anycompatible_range_typeid = ANYCOMPATIBLERANGEOID;
+ anycompatible_multirange_typeid = ANYCOMPATIBLEMULTIRANGEOID;
+ }
+ else
+ {
+ /*
+ * Only way to get here is if all the family-2 polymorphic
+ * arguments have UNKNOWN inputs. Resolve to TEXT as
+ * select_common_type() would do. That doesn't license us to
+ * use TEXTRANGE or TEXTMULTIRANGE, though.
+ */
+ anycompatible_typeid = TEXTOID;
+ anycompatible_array_typeid = TEXTARRAYOID;
+ if (have_anycompatible_range)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("could not determine polymorphic type %s because input has type %s",
+ "anycompatiblerange", "unknown")));
+ if (have_anycompatible_multirange)
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("could not determine polymorphic type %s because input has type %s",
+ "anycompatiblemultirange", "unknown")));
+ }
+ }
+
+ /* replace family-2 polymorphic types by selected types */
+ for (int j = 0; j < nargs; j++)
+ {
+ Oid decl_type = declared_arg_types[j];
+
+ if (decl_type == ANYCOMPATIBLEOID ||
+ decl_type == ANYCOMPATIBLENONARRAYOID)
+ declared_arg_types[j] = anycompatible_typeid;
+ else if (decl_type == ANYCOMPATIBLEARRAYOID)
+ declared_arg_types[j] = anycompatible_array_typeid;
+ else if (decl_type == ANYCOMPATIBLERANGEOID)
+ declared_arg_types[j] = anycompatible_range_typeid;
+ else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID)
+ declared_arg_types[j] = anycompatible_multirange_typeid;
+ }
+ }
+
+ /*
+ * If we had any UNKNOWN inputs for family-1 polymorphic arguments,
+ * re-scan to assign correct types to them.
+ *
+ * Note: we don't have to consider unknown inputs that were matched to
+ * family-2 polymorphic arguments, because we forcibly updated their
+ * declared_arg_types[] positions just above.
+ */
+ if (have_poly_unknowns)
+ {
+ for (int j = 0; j < nargs; j++)
+ {
+ Oid decl_type = declared_arg_types[j];
+ Oid actual_type = actual_arg_types[j];
+
+ if (actual_type != UNKNOWNOID)
+ continue;
+
+ if (decl_type == ANYELEMENTOID ||
+ decl_type == ANYNONARRAYOID ||
+ decl_type == ANYENUMOID)
+ declared_arg_types[j] = elem_typeid;
+ else if (decl_type == ANYARRAYOID)
+ {
+ if (!OidIsValid(array_typeid))
+ {
+ array_typeid = get_array_type(elem_typeid);
+ if (!OidIsValid(array_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_UNDEFINED_OBJECT),
+ errmsg("could not find array type for data type %s",
+ format_type_be(elem_typeid))));
+ }
+ declared_arg_types[j] = array_typeid;
+ }
+ else if (decl_type == ANYRANGEOID)
+ {
+ if (!OidIsValid(range_typeid))
+ {
+ /* we can't infer a range type from the others */
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("could not determine polymorphic type %s because input has type %s",
+ "anyrange", "unknown")));
+ }
+ declared_arg_types[j] = range_typeid;
+ }
+ else if (decl_type == ANYMULTIRANGEOID)
+ {
+ if (!OidIsValid(multirange_typeid))
+ {
+ /* we can't infer a multirange type from the others */
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg("could not determine polymorphic type %s because input has type %s",
+ "anymultirange", "unknown")));
+ }
+ declared_arg_types[j] = multirange_typeid;
+ }
+ }
+ }
+
+ /* if we return ANYELEMENT use the appropriate argument type */
+ if (rettype == ANYELEMENTOID ||
+ rettype == ANYNONARRAYOID ||
+ rettype == ANYENUMOID)
+ return elem_typeid;
+
+ /* if we return ANYARRAY use the appropriate argument type */
+ if (rettype == ANYARRAYOID)
+ {
+ if (!OidIsValid(array_typeid))
+ {
+ array_typeid = get_array_type(elem_typeid);
+ if (!OidIsValid(array_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_UNDEFINED_OBJECT),
+ errmsg("could not find array type for data type %s",
+ format_type_be(elem_typeid))));
+ }
+ return array_typeid;
+ }
+
+ /* if we return ANYRANGE use the appropriate argument type */
+ if (rettype == ANYRANGEOID)
+ {
+ /* this error is unreachable if the function signature is valid: */
+ if (!OidIsValid(range_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg_internal("could not determine polymorphic type %s because input has type %s",
+ "anyrange", "unknown")));
+ return range_typeid;
+ }
+
+ /* if we return ANYMULTIRANGE use the appropriate argument type */
+ if (rettype == ANYMULTIRANGEOID)
+ {
+ /* this error is unreachable if the function signature is valid: */
+ if (!OidIsValid(multirange_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg_internal("could not determine polymorphic type %s because input has type %s",
+ "anymultirange", "unknown")));
+ return multirange_typeid;
+ }
+
+ /* if we return ANYCOMPATIBLE use the appropriate type */
+ if (rettype == ANYCOMPATIBLEOID ||
+ rettype == ANYCOMPATIBLENONARRAYOID)
+ {
+ /* this error is unreachable if the function signature is valid: */
+ if (!OidIsValid(anycompatible_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg_internal("could not identify anycompatible type")));
+ return anycompatible_typeid;
+ }
+
+ /* if we return ANYCOMPATIBLEARRAY use the appropriate type */
+ if (rettype == ANYCOMPATIBLEARRAYOID)
+ {
+ /* this error is unreachable if the function signature is valid: */
+ if (!OidIsValid(anycompatible_array_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg_internal("could not identify anycompatiblearray type")));
+ return anycompatible_array_typeid;
+ }
+
+ /* if we return ANYCOMPATIBLERANGE use the appropriate argument type */
+ if (rettype == ANYCOMPATIBLERANGEOID)
+ {
+ /* this error is unreachable if the function signature is valid: */
+ if (!OidIsValid(anycompatible_range_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg_internal("could not identify anycompatiblerange type")));
+ return anycompatible_range_typeid;
+ }
+
+ /* if we return ANYCOMPATIBLEMULTIRANGE use the appropriate argument type */
+ if (rettype == ANYCOMPATIBLEMULTIRANGEOID)
+ {
+ /* this error is unreachable if the function signature is valid: */
+ if (!OidIsValid(anycompatible_multirange_typeid))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATATYPE_MISMATCH),
+ errmsg_internal("could not identify anycompatiblemultirange type")));
+ return anycompatible_multirange_typeid;
+ }
+
+ /* we don't return a generic type; send back the original return type */
+ return rettype;
+}
+
+/*
+ * check_valid_polymorphic_signature()
+ * Is a proposed function signature valid per polymorphism rules?
+ *
+ * Returns NULL if the signature is valid (either ret_type is not polymorphic,
+ * or it can be deduced from the given declared argument types). Otherwise,
+ * returns a palloc'd, already translated errdetail string saying why not.
+ */
+char *
+check_valid_polymorphic_signature(Oid ret_type,
+ const Oid *declared_arg_types,
+ int nargs)
+{
+ if (ret_type == ANYRANGEOID || ret_type == ANYMULTIRANGEOID)
+ {
+ /*
+ * ANYRANGE and ANYMULTIRANGE require an ANYRANGE or ANYMULTIRANGE
+ * input, else we can't tell which of several range types with the
+ * same element type to use.
+ */
+ for (int i = 0; i < nargs; i++)
+ {
+ if (declared_arg_types[i] == ANYRANGEOID ||
+ declared_arg_types[i] == ANYMULTIRANGEOID)
+ return NULL; /* OK */
+ }
+ return psprintf(_("A result of type %s requires at least one input of type anyrange or anymultirange."),
+ format_type_be(ret_type));
+ }
+ else if (ret_type == ANYCOMPATIBLERANGEOID || ret_type == ANYCOMPATIBLEMULTIRANGEOID)
+ {
+ /*
+ * ANYCOMPATIBLERANGE and ANYCOMPATIBLEMULTIRANGE require an
+ * ANYCOMPATIBLERANGE or ANYCOMPATIBLEMULTIRANGE input, else we can't
+ * tell which of several range types with the same element type to
+ * use.
+ */
+ for (int i = 0; i < nargs; i++)
+ {
+ if (declared_arg_types[i] == ANYCOMPATIBLERANGEOID ||
+ declared_arg_types[i] == ANYCOMPATIBLEMULTIRANGEOID)
+ return NULL; /* OK */
+ }
+ return psprintf(_("A result of type %s requires at least one input of type anycompatiblerange or anycompatiblemultirange."),
+ format_type_be(ret_type));
+ }
+ else if (IsPolymorphicTypeFamily1(ret_type))
+ {
+ /* Otherwise, any family-1 type can be deduced from any other */
+ for (int i = 0; i < nargs; i++)
+ {
+ if (IsPolymorphicTypeFamily1(declared_arg_types[i]))
+ return NULL; /* OK */
+ }
+ /* Keep this list in sync with IsPolymorphicTypeFamily1! */
+ return psprintf(_("A result of type %s requires at least one input of type anyelement, anyarray, anynonarray, anyenum, anyrange, or anymultirange."),
+ format_type_be(ret_type));
+ }
+ else if (IsPolymorphicTypeFamily2(ret_type))
+ {
+ /* Otherwise, any family-2 type can be deduced from any other */
+ for (int i = 0; i < nargs; i++)
+ {
+ if (IsPolymorphicTypeFamily2(declared_arg_types[i]))
+ return NULL; /* OK */
+ }
+ /* Keep this list in sync with IsPolymorphicTypeFamily2! */
+ return psprintf(_("A result of type %s requires at least one input of type anycompatible, anycompatiblearray, anycompatiblenonarray, anycompatiblerange, or anycompatiblemultirange."),
+ format_type_be(ret_type));
+ }
+ else
+ return NULL; /* OK, ret_type is not polymorphic */
+}
+
+/*
+ * check_valid_internal_signature()
+ * Is a proposed function signature valid per INTERNAL safety rules?
+ *
+ * Returns NULL if OK, or a suitable error message if ret_type is INTERNAL but
+ * none of the declared arg types are. (It's unsafe to create such a function
+ * since it would allow invocation of INTERNAL-consuming functions directly
+ * from SQL.) It's overkill to return the error detail message, since there
+ * is only one possibility, but we do it like this to keep the API similar to
+ * check_valid_polymorphic_signature().
+ */
+char *
+check_valid_internal_signature(Oid ret_type,
+ const Oid *declared_arg_types,
+ int nargs)
+{
+ if (ret_type == INTERNALOID)
+ {
+ for (int i = 0; i < nargs; i++)
+ {
+ if (declared_arg_types[i] == ret_type)
+ return NULL; /* OK */
+ }
+ return pstrdup(_("A result of type internal requires at least one input of type internal."));
+ }
+ else
+ return NULL; /* OK, ret_type is not INTERNAL */
+}
+
+
+/* TypeCategory()
+ * Assign a category to the specified type OID.
+ *
+ * NB: this must not return TYPCATEGORY_INVALID.
+ */
+TYPCATEGORY
+TypeCategory(Oid type)
+{
+ char typcategory;
+ bool typispreferred;
+
+ get_type_category_preferred(type, &typcategory, &typispreferred);
+ Assert(typcategory != TYPCATEGORY_INVALID);
+ return (TYPCATEGORY) typcategory;
+}
+
+
+/* IsPreferredType()
+ * Check if this type is a preferred type for the given category.
+ *
+ * If category is TYPCATEGORY_INVALID, then we'll return true for preferred
+ * types of any category; otherwise, only for preferred types of that
+ * category.
+ */
+bool
+IsPreferredType(TYPCATEGORY category, Oid type)
+{
+ char typcategory;
+ bool typispreferred;
+
+ get_type_category_preferred(type, &typcategory, &typispreferred);
+ if (category == typcategory || category == TYPCATEGORY_INVALID)
+ return typispreferred;
+ else
+ return false;
+}
+
+
+/* IsBinaryCoercible()
+ * Check if srctype is binary-coercible to targettype.
+ *
+ * This notion allows us to cheat and directly exchange values without
+ * going through the trouble of calling a conversion function. Note that
+ * in general, this should only be an implementation shortcut. Before 7.4,
+ * this was also used as a heuristic for resolving overloaded functions and
+ * operators, but that's basically a bad idea.
+ *
+ * As of 7.3, binary coercibility isn't hardwired into the code anymore.
+ * We consider two types binary-coercible if there is an implicitly
+ * invokable, no-function-needed pg_cast entry. Also, a domain is always
+ * binary-coercible to its base type, though *not* vice versa (in the other
+ * direction, one must apply domain constraint checks before accepting the
+ * value as legitimate). We also need to special-case various polymorphic
+ * types.
+ *
+ * This function replaces IsBinaryCompatible(), which was an inherently
+ * symmetric test. Since the pg_cast entries aren't necessarily symmetric,
+ * the order of the operands is now significant.
+ */
+bool
+IsBinaryCoercible(Oid srctype, Oid targettype)
+{
+ HeapTuple tuple;
+ Form_pg_cast castForm;
+ bool result;
+
+ /* Fast path if same type */
+ if (srctype == targettype)
+ return true;
+
+ /* Anything is coercible to ANY or ANYELEMENT or ANYCOMPATIBLE */
+ if (targettype == ANYOID || targettype == ANYELEMENTOID ||
+ targettype == ANYCOMPATIBLEOID)
+ return true;
+
+ /* If srctype is a domain, reduce to its base type */
+ if (OidIsValid(srctype))
+ srctype = getBaseType(srctype);
+
+ /* Somewhat-fast path for domain -> base type case */
+ if (srctype == targettype)
+ return true;
+
+ /* Also accept any array type as coercible to ANY[COMPATIBLE]ARRAY */
+ if (targettype == ANYARRAYOID || targettype == ANYCOMPATIBLEARRAYOID)
+ if (type_is_array(srctype))
+ return true;
+
+ /* Also accept any non-array type as coercible to ANY[COMPATIBLE]NONARRAY */
+ if (targettype == ANYNONARRAYOID || targettype == ANYCOMPATIBLENONARRAYOID)
+ if (!type_is_array(srctype))
+ return true;
+
+ /* Also accept any enum type as coercible to ANYENUM */
+ if (targettype == ANYENUMOID)
+ if (type_is_enum(srctype))
+ return true;
+
+ /* Also accept any range type as coercible to ANY[COMPATIBLE]RANGE */
+ if (targettype == ANYRANGEOID || targettype == ANYCOMPATIBLERANGEOID)
+ if (type_is_range(srctype))
+ return true;
+
+ /* Also, any multirange type is coercible to ANY[COMPATIBLE]MULTIRANGE */
+ if (targettype == ANYMULTIRANGEOID || targettype == ANYCOMPATIBLEMULTIRANGEOID)
+ if (type_is_multirange(srctype))
+ return true;
+
+ /* Also accept any composite type as coercible to RECORD */
+ if (targettype == RECORDOID)
+ if (ISCOMPLEX(srctype))
+ return true;
+
+ /* Also accept any composite array type as coercible to RECORD[] */
+ if (targettype == RECORDARRAYOID)
+ if (is_complex_array(srctype))
+ return true;
+
+ /* Else look in pg_cast */
+ tuple = SearchSysCache2(CASTSOURCETARGET,
+ ObjectIdGetDatum(srctype),
+ ObjectIdGetDatum(targettype));
+ if (!HeapTupleIsValid(tuple))
+ return false; /* no cast */
+ castForm = (Form_pg_cast) GETSTRUCT(tuple);
+
+ result = (castForm->castmethod == COERCION_METHOD_BINARY &&
+ castForm->castcontext == COERCION_CODE_IMPLICIT);
+
+ ReleaseSysCache(tuple);
+
+ return result;
+}
+
+
+/*
+ * find_coercion_pathway
+ * Look for a coercion pathway between two types.
+ *
+ * Currently, this deals only with scalar-type cases; it does not consider
+ * polymorphic types nor casts between composite types. (Perhaps fold
+ * those in someday?)
+ *
+ * ccontext determines the set of available casts.
+ *
+ * The possible result codes are:
+ * COERCION_PATH_NONE: failed to find any coercion pathway
+ * *funcid is set to InvalidOid
+ * COERCION_PATH_FUNC: apply the coercion function returned in *funcid
+ * COERCION_PATH_RELABELTYPE: binary-compatible cast, no function needed
+ * *funcid is set to InvalidOid
+ * COERCION_PATH_ARRAYCOERCE: need an ArrayCoerceExpr node
+ * *funcid is set to InvalidOid
+ * COERCION_PATH_COERCEVIAIO: need a CoerceViaIO node
+ * *funcid is set to InvalidOid
+ *
+ * Note: COERCION_PATH_RELABELTYPE does not necessarily mean that no work is
+ * needed to do the coercion; if the target is a domain then we may need to
+ * apply domain constraint checking. If you want to check for a zero-effort
+ * conversion then use IsBinaryCoercible().
+ */
+CoercionPathType
+find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId,
+ CoercionContext ccontext,
+ Oid *funcid)
+{
+ CoercionPathType result = COERCION_PATH_NONE;
+ HeapTuple tuple;
+
+ *funcid = InvalidOid;
+
+ /* Perhaps the types are domains; if so, look at their base types */
+ if (OidIsValid(sourceTypeId))
+ sourceTypeId = getBaseType(sourceTypeId);
+ if (OidIsValid(targetTypeId))
+ targetTypeId = getBaseType(targetTypeId);
+
+ /* Domains are always coercible to and from their base type */
+ if (sourceTypeId == targetTypeId)
+ return COERCION_PATH_RELABELTYPE;
+
+ /* Look in pg_cast */
+ tuple = SearchSysCache2(CASTSOURCETARGET,
+ ObjectIdGetDatum(sourceTypeId),
+ ObjectIdGetDatum(targetTypeId));
+
+ if (HeapTupleIsValid(tuple))
+ {
+ Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);
+ CoercionContext castcontext;
+
+ /* convert char value for castcontext to CoercionContext enum */
+ switch (castForm->castcontext)
+ {
+ case COERCION_CODE_IMPLICIT:
+ castcontext = COERCION_IMPLICIT;
+ break;
+ case COERCION_CODE_ASSIGNMENT:
+ castcontext = COERCION_ASSIGNMENT;
+ break;
+ case COERCION_CODE_EXPLICIT:
+ castcontext = COERCION_EXPLICIT;
+ break;
+ default:
+ elog(ERROR, "unrecognized castcontext: %d",
+ (int) castForm->castcontext);
+ castcontext = 0; /* keep compiler quiet */
+ break;
+ }
+
+ /* Rely on ordering of enum for correct behavior here */
+ if (ccontext >= castcontext)
+ {
+ switch (castForm->castmethod)
+ {
+ case COERCION_METHOD_FUNCTION:
+ result = COERCION_PATH_FUNC;
+ *funcid = castForm->castfunc;
+ break;
+ case COERCION_METHOD_INOUT:
+ result = COERCION_PATH_COERCEVIAIO;
+ break;
+ case COERCION_METHOD_BINARY:
+ result = COERCION_PATH_RELABELTYPE;
+ break;
+ default:
+ elog(ERROR, "unrecognized castmethod: %d",
+ (int) castForm->castmethod);
+ break;
+ }
+ }
+
+ ReleaseSysCache(tuple);
+ }
+ else
+ {
+ /*
+ * If there's no pg_cast entry, perhaps we are dealing with a pair of
+ * array types. If so, and if their element types have a conversion
+ * pathway, report that we can coerce with an ArrayCoerceExpr.
+ *
+ * Hack: disallow coercions to oidvector and int2vector, which
+ * otherwise tend to capture coercions that should go to "real" array
+ * types. We want those types to be considered "real" arrays for many
+ * purposes, but not this one. (Also, ArrayCoerceExpr isn't
+ * guaranteed to produce an output that meets the restrictions of
+ * these datatypes, such as being 1-dimensional.)
+ */
+ if (targetTypeId != OIDVECTOROID && targetTypeId != INT2VECTOROID)
+ {
+ Oid targetElem;
+ Oid sourceElem;
+
+ if ((targetElem = get_element_type(targetTypeId)) != InvalidOid &&
+ (sourceElem = get_element_type(sourceTypeId)) != InvalidOid)
+ {
+ CoercionPathType elempathtype;
+ Oid elemfuncid;
+
+ elempathtype = find_coercion_pathway(targetElem,
+ sourceElem,
+ ccontext,
+ &elemfuncid);
+ if (elempathtype != COERCION_PATH_NONE)
+ {
+ result = COERCION_PATH_ARRAYCOERCE;
+ }
+ }
+ }
+
+ /*
+ * If we still haven't found a possibility, consider automatic casting
+ * using I/O functions. We allow assignment casts to string types and
+ * explicit casts from string types to be handled this way. (The
+ * CoerceViaIO mechanism is a lot more general than that, but this is
+ * all we want to allow in the absence of a pg_cast entry.) It would
+ * probably be better to insist on explicit casts in both directions,
+ * but this is a compromise to preserve something of the pre-8.3
+ * behavior that many types had implicit (yipes!) casts to text.
+ */
+ if (result == COERCION_PATH_NONE)
+ {
+ if (ccontext >= COERCION_ASSIGNMENT &&
+ TypeCategory(targetTypeId) == TYPCATEGORY_STRING)
+ result = COERCION_PATH_COERCEVIAIO;
+ else if (ccontext >= COERCION_EXPLICIT &&
+ TypeCategory(sourceTypeId) == TYPCATEGORY_STRING)
+ result = COERCION_PATH_COERCEVIAIO;
+ }
+ }
+
+ /*
+ * When parsing PL/pgSQL assignments, allow an I/O cast to be used
+ * whenever no normal coercion is available.
+ */
+ if (result == COERCION_PATH_NONE &&
+ ccontext == COERCION_PLPGSQL)
+ result = COERCION_PATH_COERCEVIAIO;
+
+ return result;
+}
+
+
+/*
+ * find_typmod_coercion_function -- does the given type need length coercion?
+ *
+ * If the target type possesses a pg_cast function from itself to itself,
+ * it must need length coercion.
+ *
+ * "bpchar" (ie, char(N)) and "numeric" are examples of such types.
+ *
+ * If the given type is a varlena array type, we do not look for a coercion
+ * function associated directly with the array type, but instead look for
+ * one associated with the element type. An ArrayCoerceExpr node must be
+ * used to apply such a function. (Note: currently, it's pointless to
+ * return the funcid in this case, because it'll just get looked up again
+ * in the recursive construction of the ArrayCoerceExpr's elemexpr.)
+ *
+ * We use the same result enum as find_coercion_pathway, but the only possible
+ * result codes are:
+ * COERCION_PATH_NONE: no length coercion needed
+ * COERCION_PATH_FUNC: apply the function returned in *funcid
+ * COERCION_PATH_ARRAYCOERCE: apply the function using ArrayCoerceExpr
+ */
+CoercionPathType
+find_typmod_coercion_function(Oid typeId,
+ Oid *funcid)
+{
+ CoercionPathType result;
+ Type targetType;
+ Form_pg_type typeForm;
+ HeapTuple tuple;
+
+ *funcid = InvalidOid;
+ result = COERCION_PATH_FUNC;
+
+ targetType = typeidType(typeId);
+ typeForm = (Form_pg_type) GETSTRUCT(targetType);
+
+ /* Check for a "true" array type */
+ if (IsTrueArrayType(typeForm))
+ {
+ /* Yes, switch our attention to the element type */
+ typeId = typeForm->typelem;
+ result = COERCION_PATH_ARRAYCOERCE;
+ }
+ ReleaseSysCache(targetType);
+
+ /* Look in pg_cast */
+ tuple = SearchSysCache2(CASTSOURCETARGET,
+ ObjectIdGetDatum(typeId),
+ ObjectIdGetDatum(typeId));
+
+ if (HeapTupleIsValid(tuple))
+ {
+ Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);
+
+ *funcid = castForm->castfunc;
+ ReleaseSysCache(tuple);
+ }
+
+ if (!OidIsValid(*funcid))
+ result = COERCION_PATH_NONE;
+
+ return result;
+}
+
+/*
+ * is_complex_array
+ * Is this type an array of composite?
+ *
+ * Note: this will not return true for record[]; check for RECORDARRAYOID
+ * separately if needed.
+ */
+static bool
+is_complex_array(Oid typid)
+{
+ Oid elemtype = get_element_type(typid);
+
+ return (OidIsValid(elemtype) && ISCOMPLEX(elemtype));
+}
+
+
+/*
+ * Check whether reltypeId is the row type of a typed table of type
+ * reloftypeId, or is a domain over such a row type. (This is conceptually
+ * similar to the subtype relationship checked by typeInheritsFrom().)
+ */
+static bool
+typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId)
+{
+ Oid relid = typeOrDomainTypeRelid(reltypeId);
+ bool result = false;
+
+ if (relid)
+ {
+ HeapTuple tp;
+ Form_pg_class reltup;
+
+ tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
+ if (!HeapTupleIsValid(tp))
+ elog(ERROR, "cache lookup failed for relation %u", relid);
+
+ reltup = (Form_pg_class) GETSTRUCT(tp);
+ if (reltup->reloftype == reloftypeId)
+ result = true;
+
+ ReleaseSysCache(tp);
+ }
+
+ return result;
+}