diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:15:05 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:15:05 +0000 |
commit | 46651ce6fe013220ed397add242004d764fc0153 (patch) | |
tree | 6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/parser/parse_coerce.c | |
parent | Initial commit. (diff) | |
download | postgresql-14-upstream.tar.xz postgresql-14-upstream.zip |
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/parser/parse_coerce.c')
-rw-r--r-- | src/backend/parser/parse_coerce.c | 3346 |
1 files changed, 3346 insertions, 0 deletions
diff --git a/src/backend/parser/parse_coerce.c b/src/backend/parser/parse_coerce.c new file mode 100644 index 0000000..fc9224c --- /dev/null +++ b/src/backend/parser/parse_coerce.c @@ -0,0 +1,3346 @@ +/*------------------------------------------------------------------------- + * + * parse_coerce.c + * handle type coercions/conversions for parser + * + * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * + * IDENTIFICATION + * src/backend/parser/parse_coerce.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include "catalog/pg_cast.h" +#include "catalog/pg_class.h" +#include "catalog/pg_inherits.h" +#include "catalog/pg_proc.h" +#include "catalog/pg_type.h" +#include "nodes/makefuncs.h" +#include "nodes/nodeFuncs.h" +#include "parser/parse_coerce.h" +#include "parser/parse_relation.h" +#include "parser/parse_type.h" +#include "utils/builtins.h" +#include "utils/datum.h" /* needed for datumIsEqual() */ +#include "utils/fmgroids.h" +#include "utils/lsyscache.h" +#include "utils/syscache.h" +#include "utils/typcache.h" + + +static Node *coerce_type_typmod(Node *node, + Oid targetTypeId, int32 targetTypMod, + CoercionContext ccontext, CoercionForm cformat, + int location, + bool hideInputCoercion); +static void hide_coercion_node(Node *node); +static Node *build_coercion_expression(Node *node, + CoercionPathType pathtype, + Oid funcId, + Oid targetTypeId, int32 targetTypMod, + CoercionContext ccontext, CoercionForm cformat, + int location); +static Node *coerce_record_to_complex(ParseState *pstate, Node *node, + Oid targetTypeId, + CoercionContext ccontext, + CoercionForm cformat, + int location); +static bool is_complex_array(Oid typid); +static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId); + + +/* + * coerce_to_target_type() + * Convert an expression to a target type and typmod. + * + * This is the general-purpose entry point for arbitrary type coercion + * operations. Direct use of the component operations can_coerce_type, + * coerce_type, and coerce_type_typmod should be restricted to special + * cases (eg, when the conversion is expected to succeed). + * + * Returns the possibly-transformed expression tree, or NULL if the type + * conversion is not possible. (We do this, rather than ereport'ing directly, + * so that callers can generate custom error messages indicating context.) + * + * pstate - parse state (can be NULL, see coerce_type) + * expr - input expression tree (already transformed by transformExpr) + * exprtype - result type of expr + * targettype - desired result type + * targettypmod - desired result typmod + * ccontext, cformat - context indicators to control coercions + * location - parse location of the coercion request, or -1 if unknown/implicit + */ +Node * +coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype, + Oid targettype, int32 targettypmod, + CoercionContext ccontext, + CoercionForm cformat, + int location) +{ + Node *result; + Node *origexpr; + + if (!can_coerce_type(1, &exprtype, &targettype, ccontext)) + return NULL; + + /* + * If the input has a CollateExpr at the top, strip it off, perform the + * coercion, and put a new one back on. This is annoying since it + * duplicates logic in coerce_type, but if we don't do this then it's too + * hard to tell whether coerce_type actually changed anything, and we + * *must* know that to avoid possibly calling hide_coercion_node on + * something that wasn't generated by coerce_type. Note that if there are + * multiple stacked CollateExprs, we just discard all but the topmost. + * Also, if the target type isn't collatable, we discard the CollateExpr. + */ + origexpr = expr; + while (expr && IsA(expr, CollateExpr)) + expr = (Node *) ((CollateExpr *) expr)->arg; + + result = coerce_type(pstate, expr, exprtype, + targettype, targettypmod, + ccontext, cformat, location); + + /* + * If the target is a fixed-length type, it may need a length coercion as + * well as a type coercion. If we find ourselves adding both, force the + * inner coercion node to implicit display form. + */ + result = coerce_type_typmod(result, + targettype, targettypmod, + ccontext, cformat, location, + (result != expr && !IsA(result, Const))); + + if (expr != origexpr && type_is_collatable(targettype)) + { + /* Reinstall top CollateExpr */ + CollateExpr *coll = (CollateExpr *) origexpr; + CollateExpr *newcoll = makeNode(CollateExpr); + + newcoll->arg = (Expr *) result; + newcoll->collOid = coll->collOid; + newcoll->location = coll->location; + result = (Node *) newcoll; + } + + return result; +} + + +/* + * coerce_type() + * Convert an expression to a different type. + * + * The caller should already have determined that the coercion is possible; + * see can_coerce_type. + * + * Normally, no coercion to a typmod (length) is performed here. The caller + * must call coerce_type_typmod as well, if a typmod constraint is wanted. + * (But if the target type is a domain, it may internally contain a + * typmod constraint, which will be applied inside coerce_to_domain.) + * In some cases pg_cast specifies a type coercion function that also + * applies length conversion, and in those cases only, the result will + * already be properly coerced to the specified typmod. + * + * pstate is only used in the case that we are able to resolve the type of + * a previously UNKNOWN Param. It is okay to pass pstate = NULL if the + * caller does not want type information updated for Params. + * + * Note: this function must not modify the given expression tree, only add + * decoration on top of it. See transformSetOperationTree, for example. + */ +Node * +coerce_type(ParseState *pstate, Node *node, + Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod, + CoercionContext ccontext, CoercionForm cformat, int location) +{ + Node *result; + CoercionPathType pathtype; + Oid funcId; + + if (targetTypeId == inputTypeId || + node == NULL) + { + /* no conversion needed */ + return node; + } + if (targetTypeId == ANYOID || + targetTypeId == ANYELEMENTOID || + targetTypeId == ANYNONARRAYOID || + targetTypeId == ANYCOMPATIBLEOID || + targetTypeId == ANYCOMPATIBLENONARRAYOID) + { + /* + * Assume can_coerce_type verified that implicit coercion is okay. + * + * Note: by returning the unmodified node here, we are saying that + * it's OK to treat an UNKNOWN constant as a valid input for a + * function accepting one of these pseudotypes. This should be all + * right, since an UNKNOWN value is still a perfectly valid Datum. + * + * NB: we do NOT want a RelabelType here: the exposed type of the + * function argument must be its actual type, not the polymorphic + * pseudotype. + */ + return node; + } + if (targetTypeId == ANYARRAYOID || + targetTypeId == ANYENUMOID || + targetTypeId == ANYRANGEOID || + targetTypeId == ANYMULTIRANGEOID || + targetTypeId == ANYCOMPATIBLEARRAYOID || + targetTypeId == ANYCOMPATIBLERANGEOID || + targetTypeId == ANYCOMPATIBLEMULTIRANGEOID) + { + /* + * Assume can_coerce_type verified that implicit coercion is okay. + * + * These cases are unlike the ones above because the exposed type of + * the argument must be an actual array, enum, range, or multirange + * type. In particular the argument must *not* be an UNKNOWN + * constant. If it is, we just fall through; below, we'll call the + * pseudotype's input function, which will produce an error. Also, if + * what we have is a domain over array, enum, range, or multirange, we + * have to relabel it to its base type. + * + * Note: currently, we can't actually see a domain-over-enum here, + * since the other functions in this file will not match such a + * parameter to ANYENUM. But that should get changed eventually. + */ + if (inputTypeId != UNKNOWNOID) + { + Oid baseTypeId = getBaseType(inputTypeId); + + if (baseTypeId != inputTypeId) + { + RelabelType *r = makeRelabelType((Expr *) node, + baseTypeId, -1, + InvalidOid, + cformat); + + r->location = location; + return (Node *) r; + } + /* Not a domain type, so return it as-is */ + return node; + } + } + if (inputTypeId == UNKNOWNOID && IsA(node, Const)) + { + /* + * Input is a string constant with previously undetermined type. Apply + * the target type's typinput function to it to produce a constant of + * the target type. + * + * NOTE: this case cannot be folded together with the other + * constant-input case, since the typinput function does not + * necessarily behave the same as a type conversion function. For + * example, int4's typinput function will reject "1.2", whereas + * float-to-int type conversion will round to integer. + * + * XXX if the typinput function is not immutable, we really ought to + * postpone evaluation of the function call until runtime. But there + * is no way to represent a typinput function call as an expression + * tree, because C-string values are not Datums. (XXX This *is* + * possible as of 7.3, do we want to do it?) + */ + Const *con = (Const *) node; + Const *newcon = makeNode(Const); + Oid baseTypeId; + int32 baseTypeMod; + int32 inputTypeMod; + Type baseType; + ParseCallbackState pcbstate; + + /* + * If the target type is a domain, we want to call its base type's + * input routine, not domain_in(). This is to avoid premature failure + * when the domain applies a typmod: existing input routines follow + * implicit-coercion semantics for length checks, which is not always + * what we want here. The needed check will be applied properly + * inside coerce_to_domain(). + */ + baseTypeMod = targetTypeMod; + baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); + + /* + * For most types we pass typmod -1 to the input routine, because + * existing input routines follow implicit-coercion semantics for + * length checks, which is not always what we want here. Any length + * constraint will be applied later by our caller. An exception + * however is the INTERVAL type, for which we *must* pass the typmod + * or it won't be able to obey the bizarre SQL-spec input rules. (Ugly + * as sin, but so is this part of the spec...) + */ + if (baseTypeId == INTERVALOID) + inputTypeMod = baseTypeMod; + else + inputTypeMod = -1; + + baseType = typeidType(baseTypeId); + + newcon->consttype = baseTypeId; + newcon->consttypmod = inputTypeMod; + newcon->constcollid = typeTypeCollation(baseType); + newcon->constlen = typeLen(baseType); + newcon->constbyval = typeByVal(baseType); + newcon->constisnull = con->constisnull; + + /* + * We use the original literal's location regardless of the position + * of the coercion. This is a change from pre-9.2 behavior, meant to + * simplify life for pg_stat_statements. + */ + newcon->location = con->location; + + /* + * Set up to point at the constant's text if the input routine throws + * an error. + */ + setup_parser_errposition_callback(&pcbstate, pstate, con->location); + + /* + * We assume here that UNKNOWN's internal representation is the same + * as CSTRING. + */ + if (!con->constisnull) + newcon->constvalue = stringTypeDatum(baseType, + DatumGetCString(con->constvalue), + inputTypeMod); + else + newcon->constvalue = stringTypeDatum(baseType, + NULL, + inputTypeMod); + + /* + * If it's a varlena value, force it to be in non-expanded + * (non-toasted) format; this avoids any possible dependency on + * external values and improves consistency of representation. + */ + if (!con->constisnull && newcon->constlen == -1) + newcon->constvalue = + PointerGetDatum(PG_DETOAST_DATUM(newcon->constvalue)); + +#ifdef RANDOMIZE_ALLOCATED_MEMORY + + /* + * For pass-by-reference data types, repeat the conversion to see if + * the input function leaves any uninitialized bytes in the result. We + * can only detect that reliably if RANDOMIZE_ALLOCATED_MEMORY is + * enabled, so we don't bother testing otherwise. The reason we don't + * want any instability in the input function is that comparison of + * Const nodes relies on bytewise comparison of the datums, so if the + * input function leaves garbage then subexpressions that should be + * identical may not get recognized as such. See pgsql-hackers + * discussion of 2008-04-04. + */ + if (!con->constisnull && !newcon->constbyval) + { + Datum val2; + + val2 = stringTypeDatum(baseType, + DatumGetCString(con->constvalue), + inputTypeMod); + if (newcon->constlen == -1) + val2 = PointerGetDatum(PG_DETOAST_DATUM(val2)); + if (!datumIsEqual(newcon->constvalue, val2, false, newcon->constlen)) + elog(WARNING, "type %s has unstable input conversion for \"%s\"", + typeTypeName(baseType), DatumGetCString(con->constvalue)); + } +#endif + + cancel_parser_errposition_callback(&pcbstate); + + result = (Node *) newcon; + + /* If target is a domain, apply constraints. */ + if (baseTypeId != targetTypeId) + result = coerce_to_domain(result, + baseTypeId, baseTypeMod, + targetTypeId, + ccontext, cformat, location, + false); + + ReleaseSysCache(baseType); + + return result; + } + if (IsA(node, Param) && + pstate != NULL && pstate->p_coerce_param_hook != NULL) + { + /* + * Allow the CoerceParamHook to decide what happens. It can return a + * transformed node (very possibly the same Param node), or return + * NULL to indicate we should proceed with normal coercion. + */ + result = pstate->p_coerce_param_hook(pstate, + (Param *) node, + targetTypeId, + targetTypeMod, + location); + if (result) + return result; + } + if (IsA(node, CollateExpr)) + { + /* + * If we have a COLLATE clause, we have to push the coercion + * underneath the COLLATE; or discard the COLLATE if the target type + * isn't collatable. This is really ugly, but there is little choice + * because the above hacks on Consts and Params wouldn't happen + * otherwise. This kluge has consequences in coerce_to_target_type. + */ + CollateExpr *coll = (CollateExpr *) node; + + result = coerce_type(pstate, (Node *) coll->arg, + inputTypeId, targetTypeId, targetTypeMod, + ccontext, cformat, location); + if (type_is_collatable(targetTypeId)) + { + CollateExpr *newcoll = makeNode(CollateExpr); + + newcoll->arg = (Expr *) result; + newcoll->collOid = coll->collOid; + newcoll->location = coll->location; + result = (Node *) newcoll; + } + return result; + } + pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext, + &funcId); + if (pathtype != COERCION_PATH_NONE) + { + if (pathtype != COERCION_PATH_RELABELTYPE) + { + /* + * Generate an expression tree representing run-time application + * of the conversion function. If we are dealing with a domain + * target type, the conversion function will yield the base type, + * and we need to extract the correct typmod to use from the + * domain's typtypmod. + */ + Oid baseTypeId; + int32 baseTypeMod; + + baseTypeMod = targetTypeMod; + baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); + + result = build_coercion_expression(node, pathtype, funcId, + baseTypeId, baseTypeMod, + ccontext, cformat, location); + + /* + * If domain, coerce to the domain type and relabel with domain + * type ID, hiding the previous coercion node. + */ + if (targetTypeId != baseTypeId) + result = coerce_to_domain(result, baseTypeId, baseTypeMod, + targetTypeId, + ccontext, cformat, location, + true); + } + else + { + /* + * We don't need to do a physical conversion, but we do need to + * attach a RelabelType node so that the expression will be seen + * to have the intended type when inspected by higher-level code. + * + * Also, domains may have value restrictions beyond the base type + * that must be accounted for. If the destination is a domain + * then we won't need a RelabelType node. + */ + result = coerce_to_domain(node, InvalidOid, -1, targetTypeId, + ccontext, cformat, location, + false); + if (result == node) + { + /* + * XXX could we label result with exprTypmod(node) instead of + * default -1 typmod, to save a possible length-coercion + * later? Would work if both types have same interpretation of + * typmod, which is likely but not certain. + */ + RelabelType *r = makeRelabelType((Expr *) result, + targetTypeId, -1, + InvalidOid, + cformat); + + r->location = location; + result = (Node *) r; + } + } + return result; + } + if (inputTypeId == RECORDOID && + ISCOMPLEX(targetTypeId)) + { + /* Coerce a RECORD to a specific complex type */ + return coerce_record_to_complex(pstate, node, targetTypeId, + ccontext, cformat, location); + } + if (targetTypeId == RECORDOID && + ISCOMPLEX(inputTypeId)) + { + /* Coerce a specific complex type to RECORD */ + /* NB: we do NOT want a RelabelType here */ + return node; + } +#ifdef NOT_USED + if (inputTypeId == RECORDARRAYOID && + is_complex_array(targetTypeId)) + { + /* Coerce record[] to a specific complex array type */ + /* not implemented yet ... */ + } +#endif + if (targetTypeId == RECORDARRAYOID && + is_complex_array(inputTypeId)) + { + /* Coerce a specific complex array type to record[] */ + /* NB: we do NOT want a RelabelType here */ + return node; + } + if (typeInheritsFrom(inputTypeId, targetTypeId) + || typeIsOfTypedTable(inputTypeId, targetTypeId)) + { + /* + * Input class type is a subclass of target, so generate an + * appropriate runtime conversion (removing unneeded columns and + * possibly rearranging the ones that are wanted). + * + * We will also get here when the input is a domain over a subclass of + * the target type. To keep life simple for the executor, we define + * ConvertRowtypeExpr as only working between regular composite types; + * therefore, in such cases insert a RelabelType to smash the input + * expression down to its base type. + */ + Oid baseTypeId = getBaseType(inputTypeId); + ConvertRowtypeExpr *r = makeNode(ConvertRowtypeExpr); + + if (baseTypeId != inputTypeId) + { + RelabelType *rt = makeRelabelType((Expr *) node, + baseTypeId, -1, + InvalidOid, + COERCE_IMPLICIT_CAST); + + rt->location = location; + node = (Node *) rt; + } + r->arg = (Expr *) node; + r->resulttype = targetTypeId; + r->convertformat = cformat; + r->location = location; + return (Node *) r; + } + /* If we get here, caller blew it */ + elog(ERROR, "failed to find conversion function from %s to %s", + format_type_be(inputTypeId), format_type_be(targetTypeId)); + return NULL; /* keep compiler quiet */ +} + + +/* + * can_coerce_type() + * Can input_typeids be coerced to target_typeids? + * + * We must be told the context (CAST construct, assignment, implicit coercion) + * as this determines the set of available casts. + */ +bool +can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids, + CoercionContext ccontext) +{ + bool have_generics = false; + int i; + + /* run through argument list... */ + for (i = 0; i < nargs; i++) + { + Oid inputTypeId = input_typeids[i]; + Oid targetTypeId = target_typeids[i]; + CoercionPathType pathtype; + Oid funcId; + + /* no problem if same type */ + if (inputTypeId == targetTypeId) + continue; + + /* accept if target is ANY */ + if (targetTypeId == ANYOID) + continue; + + /* accept if target is polymorphic, for now */ + if (IsPolymorphicType(targetTypeId)) + { + have_generics = true; /* do more checking later */ + continue; + } + + /* + * If input is an untyped string constant, assume we can convert it to + * anything. + */ + if (inputTypeId == UNKNOWNOID) + continue; + + /* + * If pg_cast shows that we can coerce, accept. This test now covers + * both binary-compatible and coercion-function cases. + */ + pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext, + &funcId); + if (pathtype != COERCION_PATH_NONE) + continue; + + /* + * If input is RECORD and target is a composite type, assume we can + * coerce (may need tighter checking here) + */ + if (inputTypeId == RECORDOID && + ISCOMPLEX(targetTypeId)) + continue; + + /* + * If input is a composite type and target is RECORD, accept + */ + if (targetTypeId == RECORDOID && + ISCOMPLEX(inputTypeId)) + continue; + +#ifdef NOT_USED /* not implemented yet */ + + /* + * If input is record[] and target is a composite array type, assume + * we can coerce (may need tighter checking here) + */ + if (inputTypeId == RECORDARRAYOID && + is_complex_array(targetTypeId)) + continue; +#endif + + /* + * If input is a composite array type and target is record[], accept + */ + if (targetTypeId == RECORDARRAYOID && + is_complex_array(inputTypeId)) + continue; + + /* + * If input is a class type that inherits from target, accept + */ + if (typeInheritsFrom(inputTypeId, targetTypeId) + || typeIsOfTypedTable(inputTypeId, targetTypeId)) + continue; + + /* + * Else, cannot coerce at this argument position + */ + return false; + } + + /* If we found any generic argument types, cross-check them */ + if (have_generics) + { + if (!check_generic_type_consistency(input_typeids, target_typeids, + nargs)) + return false; + } + + return true; +} + + +/* + * Create an expression tree to represent coercion to a domain type. + * + * 'arg': input expression + * 'baseTypeId': base type of domain, if known (pass InvalidOid if caller + * has not bothered to look this up) + * 'baseTypeMod': base type typmod of domain, if known (pass -1 if caller + * has not bothered to look this up) + * 'typeId': target type to coerce to + * 'ccontext': context indicator to control coercions + * 'cformat': coercion display format + * 'location': coercion request location + * 'hideInputCoercion': if true, hide the input coercion under this one. + * + * If the target type isn't a domain, the given 'arg' is returned as-is. + */ +Node * +coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId, + CoercionContext ccontext, CoercionForm cformat, int location, + bool hideInputCoercion) +{ + CoerceToDomain *result; + + /* Get the base type if it hasn't been supplied */ + if (baseTypeId == InvalidOid) + baseTypeId = getBaseTypeAndTypmod(typeId, &baseTypeMod); + + /* If it isn't a domain, return the node as it was passed in */ + if (baseTypeId == typeId) + return arg; + + /* Suppress display of nested coercion steps */ + if (hideInputCoercion) + hide_coercion_node(arg); + + /* + * If the domain applies a typmod to its base type, build the appropriate + * coercion step. Mark it implicit for display purposes, because we don't + * want it shown separately by ruleutils.c; but the isExplicit flag passed + * to the conversion function depends on the manner in which the domain + * coercion is invoked, so that the semantics of implicit and explicit + * coercion differ. (Is that really the behavior we want?) + * + * NOTE: because we apply this as part of the fixed expression structure, + * ALTER DOMAIN cannot alter the typtypmod. But it's unclear that that + * would be safe to do anyway, without lots of knowledge about what the + * base type thinks the typmod means. + */ + arg = coerce_type_typmod(arg, baseTypeId, baseTypeMod, + ccontext, COERCE_IMPLICIT_CAST, location, + false); + + /* + * Now build the domain coercion node. This represents run-time checking + * of any constraints currently attached to the domain. This also ensures + * that the expression is properly labeled as to result type. + */ + result = makeNode(CoerceToDomain); + result->arg = (Expr *) arg; + result->resulttype = typeId; + result->resulttypmod = -1; /* currently, always -1 for domains */ + /* resultcollid will be set by parse_collate.c */ + result->coercionformat = cformat; + result->location = location; + + return (Node *) result; +} + + +/* + * coerce_type_typmod() + * Force a value to a particular typmod, if meaningful and possible. + * + * This is applied to values that are going to be stored in a relation + * (where we have an atttypmod for the column) as well as values being + * explicitly CASTed (where the typmod comes from the target type spec). + * + * The caller must have already ensured that the value is of the correct + * type, typically by applying coerce_type. + * + * ccontext may affect semantics, depending on whether the length coercion + * function pays attention to the isExplicit flag it's passed. + * + * cformat determines the display properties of the generated node (if any). + * + * If hideInputCoercion is true *and* we generate a node, the input node is + * forced to IMPLICIT display form, so that only the typmod coercion node will + * be visible when displaying the expression. + * + * NOTE: this does not need to work on domain types, because any typmod + * coercion for a domain is considered to be part of the type coercion + * needed to produce the domain value in the first place. So, no getBaseType. + */ +static Node * +coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod, + CoercionContext ccontext, CoercionForm cformat, + int location, + bool hideInputCoercion) +{ + CoercionPathType pathtype; + Oid funcId; + + /* Skip coercion if already done */ + if (targetTypMod == exprTypmod(node)) + return node; + + /* Suppress display of nested coercion steps */ + if (hideInputCoercion) + hide_coercion_node(node); + + /* + * A negative typmod means that no actual coercion is needed, but we still + * want a RelabelType to ensure that the expression exposes the intended + * typmod. + */ + if (targetTypMod < 0) + pathtype = COERCION_PATH_NONE; + else + pathtype = find_typmod_coercion_function(targetTypeId, &funcId); + + if (pathtype != COERCION_PATH_NONE) + { + node = build_coercion_expression(node, pathtype, funcId, + targetTypeId, targetTypMod, + ccontext, cformat, location); + } + else + { + /* + * We don't need to perform any actual coercion step, but we should + * apply a RelabelType to ensure that the expression exposes the + * intended typmod. + */ + node = applyRelabelType(node, targetTypeId, targetTypMod, + exprCollation(node), + cformat, location, false); + } + + return node; +} + +/* + * Mark a coercion node as IMPLICIT so it will never be displayed by + * ruleutils.c. We use this when we generate a nest of coercion nodes + * to implement what is logically one conversion; the inner nodes are + * forced to IMPLICIT_CAST format. This does not change their semantics, + * only display behavior. + * + * It is caller error to call this on something that doesn't have a + * CoercionForm field. + */ +static void +hide_coercion_node(Node *node) +{ + if (IsA(node, FuncExpr)) + ((FuncExpr *) node)->funcformat = COERCE_IMPLICIT_CAST; + else if (IsA(node, RelabelType)) + ((RelabelType *) node)->relabelformat = COERCE_IMPLICIT_CAST; + else if (IsA(node, CoerceViaIO)) + ((CoerceViaIO *) node)->coerceformat = COERCE_IMPLICIT_CAST; + else if (IsA(node, ArrayCoerceExpr)) + ((ArrayCoerceExpr *) node)->coerceformat = COERCE_IMPLICIT_CAST; + else if (IsA(node, ConvertRowtypeExpr)) + ((ConvertRowtypeExpr *) node)->convertformat = COERCE_IMPLICIT_CAST; + else if (IsA(node, RowExpr)) + ((RowExpr *) node)->row_format = COERCE_IMPLICIT_CAST; + else if (IsA(node, CoerceToDomain)) + ((CoerceToDomain *) node)->coercionformat = COERCE_IMPLICIT_CAST; + else + elog(ERROR, "unsupported node type: %d", (int) nodeTag(node)); +} + +/* + * build_coercion_expression() + * Construct an expression tree for applying a pg_cast entry. + * + * This is used for both type-coercion and length-coercion operations, + * since there is no difference in terms of the calling convention. + */ +static Node * +build_coercion_expression(Node *node, + CoercionPathType pathtype, + Oid funcId, + Oid targetTypeId, int32 targetTypMod, + CoercionContext ccontext, CoercionForm cformat, + int location) +{ + int nargs = 0; + + if (OidIsValid(funcId)) + { + HeapTuple tp; + Form_pg_proc procstruct; + + tp = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcId)); + if (!HeapTupleIsValid(tp)) + elog(ERROR, "cache lookup failed for function %u", funcId); + procstruct = (Form_pg_proc) GETSTRUCT(tp); + + /* + * These Asserts essentially check that function is a legal coercion + * function. We can't make the seemingly obvious tests on prorettype + * and proargtypes[0], even in the COERCION_PATH_FUNC case, because of + * various binary-compatibility cases. + */ + /* Assert(targetTypeId == procstruct->prorettype); */ + Assert(!procstruct->proretset); + Assert(procstruct->prokind == PROKIND_FUNCTION); + nargs = procstruct->pronargs; + Assert(nargs >= 1 && nargs <= 3); + /* Assert(procstruct->proargtypes.values[0] == exprType(node)); */ + Assert(nargs < 2 || procstruct->proargtypes.values[1] == INT4OID); + Assert(nargs < 3 || procstruct->proargtypes.values[2] == BOOLOID); + + ReleaseSysCache(tp); + } + + if (pathtype == COERCION_PATH_FUNC) + { + /* We build an ordinary FuncExpr with special arguments */ + FuncExpr *fexpr; + List *args; + Const *cons; + + Assert(OidIsValid(funcId)); + + args = list_make1(node); + + if (nargs >= 2) + { + /* Pass target typmod as an int4 constant */ + cons = makeConst(INT4OID, + -1, + InvalidOid, + sizeof(int32), + Int32GetDatum(targetTypMod), + false, + true); + + args = lappend(args, cons); + } + + if (nargs == 3) + { + /* Pass it a boolean isExplicit parameter, too */ + cons = makeConst(BOOLOID, + -1, + InvalidOid, + sizeof(bool), + BoolGetDatum(ccontext == COERCION_EXPLICIT), + false, + true); + + args = lappend(args, cons); + } + + fexpr = makeFuncExpr(funcId, targetTypeId, args, + InvalidOid, InvalidOid, cformat); + fexpr->location = location; + return (Node *) fexpr; + } + else if (pathtype == COERCION_PATH_ARRAYCOERCE) + { + /* We need to build an ArrayCoerceExpr */ + ArrayCoerceExpr *acoerce = makeNode(ArrayCoerceExpr); + CaseTestExpr *ctest = makeNode(CaseTestExpr); + Oid sourceBaseTypeId; + int32 sourceBaseTypeMod; + Oid targetElementType; + Node *elemexpr; + + /* + * Look through any domain over the source array type. Note we don't + * expect that the target type is a domain; it must be a plain array. + * (To get to a domain target type, we'll do coerce_to_domain later.) + */ + sourceBaseTypeMod = exprTypmod(node); + sourceBaseTypeId = getBaseTypeAndTypmod(exprType(node), + &sourceBaseTypeMod); + + /* + * Set up a CaseTestExpr representing one element of the source array. + * This is an abuse of CaseTestExpr, but it's OK as long as there + * can't be any CaseExpr or ArrayCoerceExpr within the completed + * elemexpr. + */ + ctest->typeId = get_element_type(sourceBaseTypeId); + Assert(OidIsValid(ctest->typeId)); + ctest->typeMod = sourceBaseTypeMod; + ctest->collation = InvalidOid; /* Assume coercions don't care */ + + /* And coerce it to the target element type */ + targetElementType = get_element_type(targetTypeId); + Assert(OidIsValid(targetElementType)); + + elemexpr = coerce_to_target_type(NULL, + (Node *) ctest, + ctest->typeId, + targetElementType, + targetTypMod, + ccontext, + cformat, + location); + if (elemexpr == NULL) /* shouldn't happen */ + elog(ERROR, "failed to coerce array element type as expected"); + + acoerce->arg = (Expr *) node; + acoerce->elemexpr = (Expr *) elemexpr; + acoerce->resulttype = targetTypeId; + + /* + * Label the output as having a particular element typmod only if we + * ended up with a per-element expression that is labeled that way. + */ + acoerce->resulttypmod = exprTypmod(elemexpr); + /* resultcollid will be set by parse_collate.c */ + acoerce->coerceformat = cformat; + acoerce->location = location; + + return (Node *) acoerce; + } + else if (pathtype == COERCION_PATH_COERCEVIAIO) + { + /* We need to build a CoerceViaIO node */ + CoerceViaIO *iocoerce = makeNode(CoerceViaIO); + + Assert(!OidIsValid(funcId)); + + iocoerce->arg = (Expr *) node; + iocoerce->resulttype = targetTypeId; + /* resultcollid will be set by parse_collate.c */ + iocoerce->coerceformat = cformat; + iocoerce->location = location; + + return (Node *) iocoerce; + } + else + { + elog(ERROR, "unsupported pathtype %d in build_coercion_expression", + (int) pathtype); + return NULL; /* keep compiler quiet */ + } +} + + +/* + * coerce_record_to_complex + * Coerce a RECORD to a specific composite type. + * + * Currently we only support this for inputs that are RowExprs or whole-row + * Vars. + */ +static Node * +coerce_record_to_complex(ParseState *pstate, Node *node, + Oid targetTypeId, + CoercionContext ccontext, + CoercionForm cformat, + int location) +{ + RowExpr *rowexpr; + Oid baseTypeId; + int32 baseTypeMod = -1; + TupleDesc tupdesc; + List *args = NIL; + List *newargs; + int i; + int ucolno; + ListCell *arg; + + if (node && IsA(node, RowExpr)) + { + /* + * Since the RowExpr must be of type RECORD, we needn't worry about it + * containing any dropped columns. + */ + args = ((RowExpr *) node)->args; + } + else if (node && IsA(node, Var) && + ((Var *) node)->varattno == InvalidAttrNumber) + { + int rtindex = ((Var *) node)->varno; + int sublevels_up = ((Var *) node)->varlevelsup; + int vlocation = ((Var *) node)->location; + ParseNamespaceItem *nsitem; + + nsitem = GetNSItemByRangeTablePosn(pstate, rtindex, sublevels_up); + args = expandNSItemVars(nsitem, sublevels_up, vlocation, NULL); + } + else + ereport(ERROR, + (errcode(ERRCODE_CANNOT_COERCE), + errmsg("cannot cast type %s to %s", + format_type_be(RECORDOID), + format_type_be(targetTypeId)), + parser_coercion_errposition(pstate, location, node))); + + /* + * Look up the composite type, accounting for possibility that what we are + * given is a domain over composite. + */ + baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); + tupdesc = lookup_rowtype_tupdesc(baseTypeId, baseTypeMod); + + /* Process the fields */ + newargs = NIL; + ucolno = 1; + arg = list_head(args); + for (i = 0; i < tupdesc->natts; i++) + { + Node *expr; + Node *cexpr; + Oid exprtype; + Form_pg_attribute attr = TupleDescAttr(tupdesc, i); + + /* Fill in NULLs for dropped columns in rowtype */ + if (attr->attisdropped) + { + /* + * can't use atttypid here, but it doesn't really matter what type + * the Const claims to be. + */ + newargs = lappend(newargs, + makeNullConst(INT4OID, -1, InvalidOid)); + continue; + } + + if (arg == NULL) + ereport(ERROR, + (errcode(ERRCODE_CANNOT_COERCE), + errmsg("cannot cast type %s to %s", + format_type_be(RECORDOID), + format_type_be(targetTypeId)), + errdetail("Input has too few columns."), + parser_coercion_errposition(pstate, location, node))); + expr = (Node *) lfirst(arg); + exprtype = exprType(expr); + + cexpr = coerce_to_target_type(pstate, + expr, exprtype, + attr->atttypid, + attr->atttypmod, + ccontext, + COERCE_IMPLICIT_CAST, + -1); + if (cexpr == NULL) + ereport(ERROR, + (errcode(ERRCODE_CANNOT_COERCE), + errmsg("cannot cast type %s to %s", + format_type_be(RECORDOID), + format_type_be(targetTypeId)), + errdetail("Cannot cast type %s to %s in column %d.", + format_type_be(exprtype), + format_type_be(attr->atttypid), + ucolno), + parser_coercion_errposition(pstate, location, expr))); + newargs = lappend(newargs, cexpr); + ucolno++; + arg = lnext(args, arg); + } + if (arg != NULL) + ereport(ERROR, + (errcode(ERRCODE_CANNOT_COERCE), + errmsg("cannot cast type %s to %s", + format_type_be(RECORDOID), + format_type_be(targetTypeId)), + errdetail("Input has too many columns."), + parser_coercion_errposition(pstate, location, node))); + + ReleaseTupleDesc(tupdesc); + + rowexpr = makeNode(RowExpr); + rowexpr->args = newargs; + rowexpr->row_typeid = baseTypeId; + rowexpr->row_format = cformat; + rowexpr->colnames = NIL; /* not needed for named target type */ + rowexpr->location = location; + + /* If target is a domain, apply constraints */ + if (baseTypeId != targetTypeId) + { + rowexpr->row_format = COERCE_IMPLICIT_CAST; + return coerce_to_domain((Node *) rowexpr, + baseTypeId, baseTypeMod, + targetTypeId, + ccontext, cformat, location, + false); + } + + return (Node *) rowexpr; +} + +/* + * coerce_to_boolean() + * Coerce an argument of a construct that requires boolean input + * (AND, OR, NOT, etc). Also check that input is not a set. + * + * Returns the possibly-transformed node tree. + * + * As with coerce_type, pstate may be NULL if no special unknown-Param + * processing is wanted. + */ +Node * +coerce_to_boolean(ParseState *pstate, Node *node, + const char *constructName) +{ + Oid inputTypeId = exprType(node); + + if (inputTypeId != BOOLOID) + { + Node *newnode; + + newnode = coerce_to_target_type(pstate, node, inputTypeId, + BOOLOID, -1, + COERCION_ASSIGNMENT, + COERCE_IMPLICIT_CAST, + -1); + if (newnode == NULL) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + /* translator: first %s is name of a SQL construct, eg WHERE */ + errmsg("argument of %s must be type %s, not type %s", + constructName, "boolean", + format_type_be(inputTypeId)), + parser_errposition(pstate, exprLocation(node)))); + node = newnode; + } + + if (expression_returns_set(node)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + /* translator: %s is name of a SQL construct, eg WHERE */ + errmsg("argument of %s must not return a set", + constructName), + parser_errposition(pstate, exprLocation(node)))); + + return node; +} + +/* + * coerce_to_specific_type_typmod() + * Coerce an argument of a construct that requires a specific data type, + * with a specific typmod. Also check that input is not a set. + * + * Returns the possibly-transformed node tree. + * + * As with coerce_type, pstate may be NULL if no special unknown-Param + * processing is wanted. + */ +Node * +coerce_to_specific_type_typmod(ParseState *pstate, Node *node, + Oid targetTypeId, int32 targetTypmod, + const char *constructName) +{ + Oid inputTypeId = exprType(node); + + if (inputTypeId != targetTypeId) + { + Node *newnode; + + newnode = coerce_to_target_type(pstate, node, inputTypeId, + targetTypeId, targetTypmod, + COERCION_ASSIGNMENT, + COERCE_IMPLICIT_CAST, + -1); + if (newnode == NULL) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + /* translator: first %s is name of a SQL construct, eg LIMIT */ + errmsg("argument of %s must be type %s, not type %s", + constructName, + format_type_be(targetTypeId), + format_type_be(inputTypeId)), + parser_errposition(pstate, exprLocation(node)))); + node = newnode; + } + + if (expression_returns_set(node)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + /* translator: %s is name of a SQL construct, eg LIMIT */ + errmsg("argument of %s must not return a set", + constructName), + parser_errposition(pstate, exprLocation(node)))); + + return node; +} + +/* + * coerce_to_specific_type() + * Coerce an argument of a construct that requires a specific data type. + * Also check that input is not a set. + * + * Returns the possibly-transformed node tree. + * + * As with coerce_type, pstate may be NULL if no special unknown-Param + * processing is wanted. + */ +Node * +coerce_to_specific_type(ParseState *pstate, Node *node, + Oid targetTypeId, + const char *constructName) +{ + return coerce_to_specific_type_typmod(pstate, node, + targetTypeId, -1, + constructName); +} + +/* + * parser_coercion_errposition - report coercion error location, if possible + * + * We prefer to point at the coercion request (CAST, ::, etc) if possible; + * but there may be no such location in the case of an implicit coercion. + * In that case point at the input expression. + * + * XXX possibly this is more generally useful than coercion errors; + * if so, should rename and place with parser_errposition. + */ +int +parser_coercion_errposition(ParseState *pstate, + int coerce_location, + Node *input_expr) +{ + if (coerce_location >= 0) + return parser_errposition(pstate, coerce_location); + else + return parser_errposition(pstate, exprLocation(input_expr)); +} + + +/* + * select_common_type() + * Determine the common supertype of a list of input expressions. + * This is used for determining the output type of CASE, UNION, + * and similar constructs. + * + * 'exprs' is a *nonempty* list of expressions. Note that earlier items + * in the list will be preferred if there is doubt. + * 'context' is a phrase to use in the error message if we fail to select + * a usable type. Pass NULL to have the routine return InvalidOid + * rather than throwing an error on failure. + * 'which_expr': if not NULL, receives a pointer to the particular input + * expression from which the result type was taken. + * + * Caution: "failure" just means that there were inputs of different type + * categories. It is not guaranteed that all the inputs are coercible to the + * selected type; caller must check that (see verify_common_type). + */ +Oid +select_common_type(ParseState *pstate, List *exprs, const char *context, + Node **which_expr) +{ + Node *pexpr; + Oid ptype; + TYPCATEGORY pcategory; + bool pispreferred; + ListCell *lc; + + Assert(exprs != NIL); + pexpr = (Node *) linitial(exprs); + lc = list_second_cell(exprs); + ptype = exprType(pexpr); + + /* + * If all input types are valid and exactly the same, just pick that type. + * This is the only way that we will resolve the result as being a domain + * type; otherwise domains are smashed to their base types for comparison. + */ + if (ptype != UNKNOWNOID) + { + for_each_cell(lc, exprs, lc) + { + Node *nexpr = (Node *) lfirst(lc); + Oid ntype = exprType(nexpr); + + if (ntype != ptype) + break; + } + if (lc == NULL) /* got to the end of the list? */ + { + if (which_expr) + *which_expr = pexpr; + return ptype; + } + } + + /* + * Nope, so set up for the full algorithm. Note that at this point, lc + * points to the first list item with type different from pexpr's; we need + * not re-examine any items the previous loop advanced over. + */ + ptype = getBaseType(ptype); + get_type_category_preferred(ptype, &pcategory, &pispreferred); + + for_each_cell(lc, exprs, lc) + { + Node *nexpr = (Node *) lfirst(lc); + Oid ntype = getBaseType(exprType(nexpr)); + + /* move on to next one if no new information... */ + if (ntype != UNKNOWNOID && ntype != ptype) + { + TYPCATEGORY ncategory; + bool nispreferred; + + get_type_category_preferred(ntype, &ncategory, &nispreferred); + if (ptype == UNKNOWNOID) + { + /* so far, only unknowns so take anything... */ + pexpr = nexpr; + ptype = ntype; + pcategory = ncategory; + pispreferred = nispreferred; + } + else if (ncategory != pcategory) + { + /* + * both types in different categories? then not much hope... + */ + if (context == NULL) + return InvalidOid; + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + /*------ + translator: first %s is name of a SQL construct, eg CASE */ + errmsg("%s types %s and %s cannot be matched", + context, + format_type_be(ptype), + format_type_be(ntype)), + parser_errposition(pstate, exprLocation(nexpr)))); + } + else if (!pispreferred && + can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) && + !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT)) + { + /* + * take new type if can coerce to it implicitly but not the + * other way; but if we have a preferred type, stay on it. + */ + pexpr = nexpr; + ptype = ntype; + pcategory = ncategory; + pispreferred = nispreferred; + } + } + } + + /* + * If all the inputs were UNKNOWN type --- ie, unknown-type literals --- + * then resolve as type TEXT. This situation comes up with constructs + * like SELECT (CASE WHEN foo THEN 'bar' ELSE 'baz' END); SELECT 'foo' + * UNION SELECT 'bar'; It might seem desirable to leave the construct's + * output type as UNKNOWN, but that really doesn't work, because we'd + * probably end up needing a runtime coercion from UNKNOWN to something + * else, and we usually won't have it. We need to coerce the unknown + * literals while they are still literals, so a decision has to be made + * now. + */ + if (ptype == UNKNOWNOID) + ptype = TEXTOID; + + if (which_expr) + *which_expr = pexpr; + return ptype; +} + +/* + * select_common_type_from_oids() + * Determine the common supertype of an array of type OIDs. + * + * This is the same logic as select_common_type(), but working from + * an array of type OIDs not a list of expressions. As in that function, + * earlier entries in the array have some preference over later ones. + * On failure, return InvalidOid if noerror is true, else throw an error. + * + * Caution: "failure" just means that there were inputs of different type + * categories. It is not guaranteed that all the inputs are coercible to the + * selected type; caller must check that (see verify_common_type_from_oids). + * + * Note: neither caller will pass any UNKNOWNOID entries, so the tests + * for that in this function are dead code. However, they don't cost much, + * and it seems better to keep this logic as close to select_common_type() + * as possible. + */ +static Oid +select_common_type_from_oids(int nargs, const Oid *typeids, bool noerror) +{ + Oid ptype; + TYPCATEGORY pcategory; + bool pispreferred; + int i = 1; + + Assert(nargs > 0); + ptype = typeids[0]; + + /* If all input types are valid and exactly the same, pick that type. */ + if (ptype != UNKNOWNOID) + { + for (; i < nargs; i++) + { + if (typeids[i] != ptype) + break; + } + if (i == nargs) + return ptype; + } + + /* + * Nope, so set up for the full algorithm. Note that at this point, we + * can skip array entries before "i"; they are all equal to ptype. + */ + ptype = getBaseType(ptype); + get_type_category_preferred(ptype, &pcategory, &pispreferred); + + for (; i < nargs; i++) + { + Oid ntype = getBaseType(typeids[i]); + + /* move on to next one if no new information... */ + if (ntype != UNKNOWNOID && ntype != ptype) + { + TYPCATEGORY ncategory; + bool nispreferred; + + get_type_category_preferred(ntype, &ncategory, &nispreferred); + if (ptype == UNKNOWNOID) + { + /* so far, only unknowns so take anything... */ + ptype = ntype; + pcategory = ncategory; + pispreferred = nispreferred; + } + else if (ncategory != pcategory) + { + /* + * both types in different categories? then not much hope... + */ + if (noerror) + return InvalidOid; + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument types %s and %s cannot be matched", + format_type_be(ptype), + format_type_be(ntype)))); + } + else if (!pispreferred && + can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) && + !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT)) + { + /* + * take new type if can coerce to it implicitly but not the + * other way; but if we have a preferred type, stay on it. + */ + ptype = ntype; + pcategory = ncategory; + pispreferred = nispreferred; + } + } + } + + /* Like select_common_type(), choose TEXT if all inputs were UNKNOWN */ + if (ptype == UNKNOWNOID) + ptype = TEXTOID; + + return ptype; +} + +/* + * coerce_to_common_type() + * Coerce an expression to the given type. + * + * This is used following select_common_type() to coerce the individual + * expressions to the desired type. 'context' is a phrase to use in the + * error message if we fail to coerce. + * + * As with coerce_type, pstate may be NULL if no special unknown-Param + * processing is wanted. + */ +Node * +coerce_to_common_type(ParseState *pstate, Node *node, + Oid targetTypeId, const char *context) +{ + Oid inputTypeId = exprType(node); + + if (inputTypeId == targetTypeId) + return node; /* no work */ + if (can_coerce_type(1, &inputTypeId, &targetTypeId, COERCION_IMPLICIT)) + node = coerce_type(pstate, node, inputTypeId, targetTypeId, -1, + COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1); + else + ereport(ERROR, + (errcode(ERRCODE_CANNOT_COERCE), + /* translator: first %s is name of a SQL construct, eg CASE */ + errmsg("%s could not convert type %s to %s", + context, + format_type_be(inputTypeId), + format_type_be(targetTypeId)), + parser_errposition(pstate, exprLocation(node)))); + return node; +} + +/* + * verify_common_type() + * Verify that all input types can be coerced to a proposed common type. + * Return true if so, false if not all coercions are possible. + * + * Most callers of select_common_type() don't need to do this explicitly + * because the checks will happen while trying to convert input expressions + * to the right type, e.g. in coerce_to_common_type(). However, if a separate + * check step is needed to validate the applicability of the common type, call + * this. + */ +bool +verify_common_type(Oid common_type, List *exprs) +{ + ListCell *lc; + + foreach(lc, exprs) + { + Node *nexpr = (Node *) lfirst(lc); + Oid ntype = exprType(nexpr); + + if (!can_coerce_type(1, &ntype, &common_type, COERCION_IMPLICIT)) + return false; + } + return true; +} + +/* + * verify_common_type_from_oids() + * As above, but work from an array of type OIDs. + */ +static bool +verify_common_type_from_oids(Oid common_type, int nargs, const Oid *typeids) +{ + for (int i = 0; i < nargs; i++) + { + if (!can_coerce_type(1, &typeids[i], &common_type, COERCION_IMPLICIT)) + return false; + } + return true; +} + +/* + * select_common_typmod() + * Determine the common typmod of a list of input expressions. + * + * common_type is the selected common type of the expressions, typically + * computed using select_common_type(). + */ +int32 +select_common_typmod(ParseState *pstate, List *exprs, Oid common_type) +{ + ListCell *lc; + bool first = true; + int32 result = -1; + + foreach(lc, exprs) + { + Node *expr = (Node *) lfirst(lc); + + /* Types must match */ + if (exprType(expr) != common_type) + return -1; + else if (first) + { + result = exprTypmod(expr); + first = false; + } + else + { + /* As soon as we see a non-matching typmod, fall back to -1 */ + if (result != exprTypmod(expr)) + return -1; + } + } + + return result; +} + +/* + * check_generic_type_consistency() + * Are the actual arguments potentially compatible with a + * polymorphic function? + * + * The argument consistency rules are: + * + * 1) All arguments declared ANYELEMENT must have the same datatype. + * 2) All arguments declared ANYARRAY must have the same datatype, + * which must be a varlena array type. + * 3) All arguments declared ANYRANGE must be the same range type. + * Similarly, all arguments declared ANYMULTIRANGE must be the same + * multirange type; and if both of these appear, the ANYRANGE type + * must be the element type of the ANYMULTIRANGE type. + * 4) If there are arguments of more than one of these polymorphic types, + * the array element type and/or range subtype must be the same as each + * other and the same as the ANYELEMENT type. + * 5) ANYENUM is treated the same as ANYELEMENT except that if it is used + * (alone or in combination with plain ANYELEMENT), we add the extra + * condition that the ANYELEMENT type must be an enum. + * 6) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used, + * we add the extra condition that the ANYELEMENT type must not be an array. + * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but + * is an extra restriction if not.) + * 7) All arguments declared ANYCOMPATIBLE must be implicitly castable + * to a common supertype (chosen as per select_common_type's rules). + * ANYCOMPATIBLENONARRAY works like ANYCOMPATIBLE but also requires the + * common supertype to not be an array. If there are ANYCOMPATIBLEARRAY + * or ANYCOMPATIBLERANGE or ANYCOMPATIBLEMULTIRANGE arguments, their element + * types or subtypes are included while making the choice of common supertype. + * 8) The resolved type of ANYCOMPATIBLEARRAY arguments will be the array + * type over the common supertype (which might not be the same array type + * as any of the original arrays). + * 9) All ANYCOMPATIBLERANGE arguments must be the exact same range type + * (after domain flattening), since we have no preference rule that would + * let us choose one over another. Furthermore, that range's subtype + * must exactly match the common supertype chosen by rule 7. + * 10) All ANYCOMPATIBLEMULTIRANGE arguments must be the exact same multirange + * type (after domain flattening), since we have no preference rule that + * would let us choose one over another. Furthermore, if ANYCOMPATIBLERANGE + * also appears, that range type must be the multirange's element type; + * otherwise, the multirange's range's subtype must exactly match the + * common supertype chosen by rule 7. + * + * Domains over arrays match ANYARRAY, and are immediately flattened to their + * base type. (Thus, for example, we will consider it a match if one ANYARRAY + * argument is a domain over int4[] while another one is just int4[].) Also + * notice that such a domain does *not* match ANYNONARRAY. The same goes + * for ANYCOMPATIBLEARRAY and ANYCOMPATIBLENONARRAY. + * + * Similarly, domains over ranges match ANYRANGE or ANYCOMPATIBLERANGE, + * and are immediately flattened to their base type. Likewise, domains + * over multiranges match ANYMULTIRANGE or ANYCOMPATIBLEMULTIRANGE and are + * immediately flattened to their base type. + * + * Note that domains aren't currently considered to match ANYENUM, + * even if their base type would match. + * + * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic + * argument, assume it is okay. + * + * We do not ereport here, but just return false if a rule is violated. + */ +bool +check_generic_type_consistency(const Oid *actual_arg_types, + const Oid *declared_arg_types, + int nargs) +{ + Oid elem_typeid = InvalidOid; + Oid array_typeid = InvalidOid; + Oid range_typeid = InvalidOid; + Oid multirange_typeid = InvalidOid; + Oid anycompatible_range_typeid = InvalidOid; + Oid anycompatible_range_typelem = InvalidOid; + Oid anycompatible_multirange_typeid = InvalidOid; + Oid anycompatible_multirange_typelem = InvalidOid; + Oid range_typelem = InvalidOid; + bool have_anynonarray = false; + bool have_anyenum = false; + bool have_anycompatible_nonarray = false; + int n_anycompatible_args = 0; + Oid anycompatible_actual_types[FUNC_MAX_ARGS]; + + /* + * Loop through the arguments to see if we have any that are polymorphic. + * If so, require the actual types to be consistent. + */ + Assert(nargs <= FUNC_MAX_ARGS); + for (int j = 0; j < nargs; j++) + { + Oid decl_type = declared_arg_types[j]; + Oid actual_type = actual_arg_types[j]; + + if (decl_type == ANYELEMENTOID || + decl_type == ANYNONARRAYOID || + decl_type == ANYENUMOID) + { + if (decl_type == ANYNONARRAYOID) + have_anynonarray = true; + else if (decl_type == ANYENUMOID) + have_anyenum = true; + if (actual_type == UNKNOWNOID) + continue; + if (OidIsValid(elem_typeid) && actual_type != elem_typeid) + return false; + elem_typeid = actual_type; + } + else if (decl_type == ANYARRAYOID) + { + if (actual_type == UNKNOWNOID) + continue; + actual_type = getBaseType(actual_type); /* flatten domains */ + if (OidIsValid(array_typeid) && actual_type != array_typeid) + return false; + array_typeid = actual_type; + } + else if (decl_type == ANYRANGEOID) + { + if (actual_type == UNKNOWNOID) + continue; + actual_type = getBaseType(actual_type); /* flatten domains */ + if (OidIsValid(range_typeid) && actual_type != range_typeid) + return false; + range_typeid = actual_type; + } + else if (decl_type == ANYMULTIRANGEOID) + { + if (actual_type == UNKNOWNOID) + continue; + actual_type = getBaseType(actual_type); /* flatten domains */ + if (OidIsValid(multirange_typeid) && actual_type != multirange_typeid) + return false; + multirange_typeid = actual_type; + } + else if (decl_type == ANYCOMPATIBLEOID || + decl_type == ANYCOMPATIBLENONARRAYOID) + { + if (decl_type == ANYCOMPATIBLENONARRAYOID) + have_anycompatible_nonarray = true; + if (actual_type == UNKNOWNOID) + continue; + /* collect the actual types of non-unknown COMPATIBLE args */ + anycompatible_actual_types[n_anycompatible_args++] = actual_type; + } + else if (decl_type == ANYCOMPATIBLEARRAYOID) + { + Oid elem_type; + + if (actual_type == UNKNOWNOID) + continue; + actual_type = getBaseType(actual_type); /* flatten domains */ + elem_type = get_element_type(actual_type); + if (!OidIsValid(elem_type)) + return false; /* not an array */ + /* collect the element type for common-supertype choice */ + anycompatible_actual_types[n_anycompatible_args++] = elem_type; + } + else if (decl_type == ANYCOMPATIBLERANGEOID) + { + if (actual_type == UNKNOWNOID) + continue; + actual_type = getBaseType(actual_type); /* flatten domains */ + if (OidIsValid(anycompatible_range_typeid)) + { + /* All ANYCOMPATIBLERANGE arguments must be the same type */ + if (anycompatible_range_typeid != actual_type) + return false; + } + else + { + anycompatible_range_typeid = actual_type; + anycompatible_range_typelem = get_range_subtype(actual_type); + if (!OidIsValid(anycompatible_range_typelem)) + return false; /* not a range type */ + /* collect the subtype for common-supertype choice */ + anycompatible_actual_types[n_anycompatible_args++] = anycompatible_range_typelem; + } + } + else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID) + { + if (actual_type == UNKNOWNOID) + continue; + actual_type = getBaseType(actual_type); /* flatten domains */ + if (OidIsValid(anycompatible_multirange_typeid)) + { + /* All ANYCOMPATIBLEMULTIRANGE arguments must be the same type */ + if (anycompatible_multirange_typeid != actual_type) + return false; + } + else + { + anycompatible_multirange_typeid = actual_type; + anycompatible_multirange_typelem = get_multirange_range(actual_type); + if (!OidIsValid(anycompatible_multirange_typelem)) + return false; /* not a multirange type */ + /* we'll consider the subtype below */ + } + } + } + + /* Get the element type based on the array type, if we have one */ + if (OidIsValid(array_typeid)) + { + if (array_typeid == ANYARRAYOID) + { + /* + * Special case for matching ANYARRAY input to an ANYARRAY + * argument: allow it for now. enforce_generic_type_consistency() + * might complain later, depending on the presence of other + * polymorphic arguments or results, but it will deliver a less + * surprising error message than "function does not exist". + * + * (If you think to change this, note that can_coerce_type will + * consider such a situation as a match, so that we might not even + * get here.) + */ + } + else + { + Oid array_typelem; + + array_typelem = get_element_type(array_typeid); + if (!OidIsValid(array_typelem)) + return false; /* should be an array, but isn't */ + + if (!OidIsValid(elem_typeid)) + { + /* + * if we don't have an element type yet, use the one we just + * got + */ + elem_typeid = array_typelem; + } + else if (array_typelem != elem_typeid) + { + /* otherwise, they better match */ + return false; + } + } + } + + /* Deduce range type from multirange type, or check that they agree */ + if (OidIsValid(multirange_typeid)) + { + Oid multirange_typelem; + + multirange_typelem = get_multirange_range(multirange_typeid); + if (!OidIsValid(multirange_typelem)) + return false; /* should be a multirange, but isn't */ + + if (!OidIsValid(range_typeid)) + { + /* If we don't have a range type yet, use the one we just got */ + range_typeid = multirange_typelem; + range_typelem = get_range_subtype(multirange_typelem); + if (!OidIsValid(range_typelem)) + return false; /* should be a range, but isn't */ + } + else if (multirange_typelem != range_typeid) + { + /* otherwise, they better match */ + return false; + } + } + + /* Get the element type based on the range type, if we have one */ + if (OidIsValid(range_typeid)) + { + range_typelem = get_range_subtype(range_typeid); + if (!OidIsValid(range_typelem)) + return false; /* should be a range, but isn't */ + + if (!OidIsValid(elem_typeid)) + { + /* + * If we don't have an element type yet, use the one we just got + */ + elem_typeid = range_typelem; + } + else if (range_typelem != elem_typeid) + { + /* otherwise, they better match */ + return false; + } + } + + if (have_anynonarray) + { + /* require the element type to not be an array or domain over array */ + if (type_is_array_domain(elem_typeid)) + return false; + } + + if (have_anyenum) + { + /* require the element type to be an enum */ + if (!type_is_enum(elem_typeid)) + return false; + } + + /* Deduce range type from multirange type, or check that they agree */ + if (OidIsValid(anycompatible_multirange_typeid)) + { + if (OidIsValid(anycompatible_range_typeid)) + { + if (anycompatible_multirange_typelem != + anycompatible_range_typeid) + return false; + } + else + { + anycompatible_range_typeid = anycompatible_multirange_typelem; + anycompatible_range_typelem = get_range_subtype(anycompatible_range_typeid); + if (!OidIsValid(anycompatible_range_typelem)) + return false; /* not a range type */ + /* collect the subtype for common-supertype choice */ + anycompatible_actual_types[n_anycompatible_args++] = + anycompatible_range_typelem; + } + } + + /* Check matching of ANYCOMPATIBLE-family arguments, if any */ + if (n_anycompatible_args > 0) + { + Oid anycompatible_typeid; + + anycompatible_typeid = + select_common_type_from_oids(n_anycompatible_args, + anycompatible_actual_types, + true); + + if (!OidIsValid(anycompatible_typeid)) + return false; /* there's definitely no common supertype */ + + /* We have to verify that the selected type actually works */ + if (!verify_common_type_from_oids(anycompatible_typeid, + n_anycompatible_args, + anycompatible_actual_types)) + return false; + + if (have_anycompatible_nonarray) + { + /* + * require the anycompatible type to not be an array or domain + * over array + */ + if (type_is_array_domain(anycompatible_typeid)) + return false; + } + + /* + * The anycompatible type must exactly match the range element type, + * if we were able to identify one. This checks compatibility for + * anycompatiblemultirange too since that also sets + * anycompatible_range_typelem above. + */ + if (OidIsValid(anycompatible_range_typelem) && + anycompatible_range_typelem != anycompatible_typeid) + return false; + } + + /* Looks valid */ + return true; +} + +/* + * enforce_generic_type_consistency() + * Make sure a polymorphic function is legally callable, and + * deduce actual argument and result types. + * + * If any polymorphic pseudotype is used in a function's arguments or + * return type, we make sure the actual data types are consistent with + * each other. The argument consistency rules are shown above for + * check_generic_type_consistency(). + * + * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic + * argument, we attempt to deduce the actual type it should have. If + * successful, we alter that position of declared_arg_types[] so that + * make_fn_arguments will coerce the literal to the right thing. + * + * If we have polymorphic arguments of the ANYCOMPATIBLE family, + * we similarly alter declared_arg_types[] entries to show the resolved + * common supertype, so that make_fn_arguments will coerce the actual + * arguments to the proper type. + * + * Rules are applied to the function's return type (possibly altering it) + * if it is declared as a polymorphic type and there is at least one + * polymorphic argument type: + * + * 1) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the + * argument's actual type as the function's return type. + * 2) If return type is ANYARRAY, and any argument is ANYARRAY, use the + * argument's actual type as the function's return type. + * 3) Similarly, if return type is ANYRANGE or ANYMULTIRANGE, and any + * argument is ANYRANGE or ANYMULTIRANGE, use that argument's actual type + * (or the corresponding range or multirange type) as the function's return + * type. + * 4) Otherwise, if return type is ANYELEMENT or ANYARRAY, and there is + * at least one ANYELEMENT, ANYARRAY, ANYRANGE, or ANYMULTIRANGE input, + * deduce the return type from those inputs, or throw error if we can't. + * 5) Otherwise, if return type is ANYRANGE or ANYMULTIRANGE, throw error. + * (We have no way to select a specific range type if the arguments don't + * include ANYRANGE or ANYMULTIRANGE.) + * 6) ANYENUM is treated the same as ANYELEMENT except that if it is used + * (alone or in combination with plain ANYELEMENT), we add the extra + * condition that the ANYELEMENT type must be an enum. + * 7) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used, + * we add the extra condition that the ANYELEMENT type must not be an array. + * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but + * is an extra restriction if not.) + * 8) ANYCOMPATIBLE, ANYCOMPATIBLEARRAY, and ANYCOMPATIBLENONARRAY are handled + * by resolving the common supertype of those arguments (or their element + * types, for array inputs), and then coercing all those arguments to the + * common supertype, or the array type over the common supertype for + * ANYCOMPATIBLEARRAY. + * 9) For ANYCOMPATIBLERANGE and ANYCOMPATIBLEMULTIRANGE, there must be at + * least one non-UNKNOWN input matching those arguments, and all such + * inputs must be the same range type (or its multirange type, as + * appropriate), since we cannot deduce a range type from non-range types. + * Furthermore, the range type's subtype is included while choosing the + * common supertype for ANYCOMPATIBLE et al, and it must exactly match + * that common supertype. + * + * Domains over arrays or ranges match ANYARRAY or ANYRANGE arguments, + * respectively, and are immediately flattened to their base type. (In + * particular, if the return type is also ANYARRAY or ANYRANGE, we'll set + * it to the base type not the domain type.) The same is true for + * ANYMULTIRANGE, ANYCOMPATIBLEARRAY, ANYCOMPATIBLERANGE, and + * ANYCOMPATIBLEMULTIRANGE. + * + * When allow_poly is false, we are not expecting any of the actual_arg_types + * to be polymorphic, and we should not return a polymorphic result type + * either. When allow_poly is true, it is okay to have polymorphic "actual" + * arg types, and we can return a matching polymorphic type as the result. + * (This case is currently used only to check compatibility of an aggregate's + * declaration with the underlying transfn.) + * + * A special case is that we could see ANYARRAY as an actual_arg_type even + * when allow_poly is false (this is possible only because pg_statistic has + * columns shown as anyarray in the catalogs). We allow this to match a + * declared ANYARRAY argument, but only if there is no other polymorphic + * argument that we would need to match it with, and no need to determine + * the element type to infer the result type. Note this means that functions + * taking ANYARRAY had better behave sanely if applied to the pg_statistic + * columns; they can't just assume that successive inputs are of the same + * actual element type. There is no similar logic for ANYCOMPATIBLEARRAY; + * there isn't a need for it since there are no catalog columns of that type, + * so we won't see it as input. We could consider matching an actual ANYARRAY + * input to an ANYCOMPATIBLEARRAY argument, but at present that seems useless + * as well, since there's no value in using ANYCOMPATIBLEARRAY unless there's + * at least one other ANYCOMPATIBLE-family argument or result. + * + * Also, if there are no arguments declared to be of polymorphic types, + * we'll return the rettype unmodified even if it's polymorphic. This should + * never occur for user-declared functions, because CREATE FUNCTION prevents + * it. But it does happen for some built-in functions, such as array_in(). + */ +Oid +enforce_generic_type_consistency(const Oid *actual_arg_types, + Oid *declared_arg_types, + int nargs, + Oid rettype, + bool allow_poly) +{ + bool have_poly_anycompatible = false; + bool have_poly_unknowns = false; + Oid elem_typeid = InvalidOid; + Oid array_typeid = InvalidOid; + Oid range_typeid = InvalidOid; + Oid multirange_typeid = InvalidOid; + Oid anycompatible_typeid = InvalidOid; + Oid anycompatible_array_typeid = InvalidOid; + Oid anycompatible_range_typeid = InvalidOid; + Oid anycompatible_range_typelem = InvalidOid; + Oid anycompatible_multirange_typeid = InvalidOid; + Oid anycompatible_multirange_typelem = InvalidOid; + bool have_anynonarray = (rettype == ANYNONARRAYOID); + bool have_anyenum = (rettype == ANYENUMOID); + bool have_anymultirange = (rettype == ANYMULTIRANGEOID); + bool have_anycompatible_nonarray = (rettype == ANYCOMPATIBLENONARRAYOID); + bool have_anycompatible_array = (rettype == ANYCOMPATIBLEARRAYOID); + bool have_anycompatible_range = (rettype == ANYCOMPATIBLERANGEOID); + bool have_anycompatible_multirange = (rettype == ANYCOMPATIBLEMULTIRANGEOID); + int n_poly_args = 0; /* this counts all family-1 arguments */ + int n_anycompatible_args = 0; /* this counts only non-unknowns */ + Oid anycompatible_actual_types[FUNC_MAX_ARGS]; + + /* + * Loop through the arguments to see if we have any that are polymorphic. + * If so, require the actual types to be consistent. + */ + Assert(nargs <= FUNC_MAX_ARGS); + for (int j = 0; j < nargs; j++) + { + Oid decl_type = declared_arg_types[j]; + Oid actual_type = actual_arg_types[j]; + + if (decl_type == ANYELEMENTOID || + decl_type == ANYNONARRAYOID || + decl_type == ANYENUMOID) + { + n_poly_args++; + if (decl_type == ANYNONARRAYOID) + have_anynonarray = true; + else if (decl_type == ANYENUMOID) + have_anyenum = true; + if (actual_type == UNKNOWNOID) + { + have_poly_unknowns = true; + continue; + } + if (allow_poly && decl_type == actual_type) + continue; /* no new information here */ + if (OidIsValid(elem_typeid) && actual_type != elem_typeid) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("arguments declared \"%s\" are not all alike", "anyelement"), + errdetail("%s versus %s", + format_type_be(elem_typeid), + format_type_be(actual_type)))); + elem_typeid = actual_type; + } + else if (decl_type == ANYARRAYOID) + { + n_poly_args++; + if (actual_type == UNKNOWNOID) + { + have_poly_unknowns = true; + continue; + } + if (allow_poly && decl_type == actual_type) + continue; /* no new information here */ + actual_type = getBaseType(actual_type); /* flatten domains */ + if (OidIsValid(array_typeid) && actual_type != array_typeid) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("arguments declared \"%s\" are not all alike", "anyarray"), + errdetail("%s versus %s", + format_type_be(array_typeid), + format_type_be(actual_type)))); + array_typeid = actual_type; + } + else if (decl_type == ANYRANGEOID) + { + n_poly_args++; + if (actual_type == UNKNOWNOID) + { + have_poly_unknowns = true; + continue; + } + if (allow_poly && decl_type == actual_type) + continue; /* no new information here */ + actual_type = getBaseType(actual_type); /* flatten domains */ + if (OidIsValid(range_typeid) && actual_type != range_typeid) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("arguments declared \"%s\" are not all alike", "anyrange"), + errdetail("%s versus %s", + format_type_be(range_typeid), + format_type_be(actual_type)))); + range_typeid = actual_type; + } + else if (decl_type == ANYMULTIRANGEOID) + { + n_poly_args++; + have_anymultirange = true; + if (actual_type == UNKNOWNOID) + { + have_poly_unknowns = true; + continue; + } + if (allow_poly && decl_type == actual_type) + continue; /* no new information here */ + actual_type = getBaseType(actual_type); /* flatten domains */ + if (OidIsValid(multirange_typeid) && actual_type != multirange_typeid) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("arguments declared \"%s\" are not all alike", "anymultirange"), + errdetail("%s versus %s", + format_type_be(multirange_typeid), + format_type_be(actual_type)))); + multirange_typeid = actual_type; + } + else if (decl_type == ANYCOMPATIBLEOID || + decl_type == ANYCOMPATIBLENONARRAYOID) + { + have_poly_anycompatible = true; + if (decl_type == ANYCOMPATIBLENONARRAYOID) + have_anycompatible_nonarray = true; + if (actual_type == UNKNOWNOID) + continue; + if (allow_poly && decl_type == actual_type) + continue; /* no new information here */ + /* collect the actual types of non-unknown COMPATIBLE args */ + anycompatible_actual_types[n_anycompatible_args++] = actual_type; + } + else if (decl_type == ANYCOMPATIBLEARRAYOID) + { + Oid anycompatible_elem_type; + + have_poly_anycompatible = true; + have_anycompatible_array = true; + if (actual_type == UNKNOWNOID) + continue; + if (allow_poly && decl_type == actual_type) + continue; /* no new information here */ + actual_type = getBaseType(actual_type); /* flatten domains */ + anycompatible_elem_type = get_element_type(actual_type); + if (!OidIsValid(anycompatible_elem_type)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not an array but type %s", + "anycompatiblearray", + format_type_be(actual_type)))); + /* collect the element type for common-supertype choice */ + anycompatible_actual_types[n_anycompatible_args++] = anycompatible_elem_type; + } + else if (decl_type == ANYCOMPATIBLERANGEOID) + { + have_poly_anycompatible = true; + have_anycompatible_range = true; + if (actual_type == UNKNOWNOID) + continue; + if (allow_poly && decl_type == actual_type) + continue; /* no new information here */ + actual_type = getBaseType(actual_type); /* flatten domains */ + if (OidIsValid(anycompatible_range_typeid)) + { + /* All ANYCOMPATIBLERANGE arguments must be the same type */ + if (anycompatible_range_typeid != actual_type) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("arguments declared \"%s\" are not all alike", "anycompatiblerange"), + errdetail("%s versus %s", + format_type_be(anycompatible_range_typeid), + format_type_be(actual_type)))); + } + else + { + anycompatible_range_typeid = actual_type; + anycompatible_range_typelem = get_range_subtype(actual_type); + if (!OidIsValid(anycompatible_range_typelem)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not a range type but type %s", + "anycompatiblerange", + format_type_be(actual_type)))); + /* collect the subtype for common-supertype choice */ + anycompatible_actual_types[n_anycompatible_args++] = anycompatible_range_typelem; + } + } + else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID) + { + have_poly_anycompatible = true; + have_anycompatible_multirange = true; + if (actual_type == UNKNOWNOID) + continue; + if (allow_poly && decl_type == actual_type) + continue; /* no new information here */ + actual_type = getBaseType(actual_type); /* flatten domains */ + if (OidIsValid(anycompatible_multirange_typeid)) + { + /* All ANYCOMPATIBLEMULTIRANGE arguments must be the same type */ + if (anycompatible_multirange_typeid != actual_type) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("arguments declared \"%s\" are not all alike", "anycompatiblemultirange"), + errdetail("%s versus %s", + format_type_be(anycompatible_multirange_typeid), + format_type_be(actual_type)))); + } + else + { + anycompatible_multirange_typeid = actual_type; + anycompatible_multirange_typelem = get_multirange_range(actual_type); + if (!OidIsValid(anycompatible_multirange_typelem)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not a multirange type but type %s", + "anycompatiblemultirange", + format_type_be(actual_type)))); + /* we'll consider the subtype below */ + } + } + } + + /* + * Fast Track: if none of the arguments are polymorphic, return the + * unmodified rettype. Not our job to resolve it if it's polymorphic. + */ + if (n_poly_args == 0 && !have_poly_anycompatible) + return rettype; + + /* Check matching of family-1 polymorphic arguments, if any */ + if (n_poly_args) + { + /* Get the element type based on the array type, if we have one */ + if (OidIsValid(array_typeid)) + { + Oid array_typelem; + + if (array_typeid == ANYARRAYOID) + { + /* + * Special case for matching ANYARRAY input to an ANYARRAY + * argument: allow it iff no other arguments are family-1 + * polymorphics (otherwise we couldn't be sure whether the + * array element type matches up) and the result type doesn't + * require us to infer a specific element type. + */ + if (n_poly_args != 1 || + (rettype != ANYARRAYOID && + IsPolymorphicTypeFamily1(rettype))) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("cannot determine element type of \"anyarray\" argument"))); + array_typelem = ANYELEMENTOID; + } + else + { + array_typelem = get_element_type(array_typeid); + if (!OidIsValid(array_typelem)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not an array but type %s", + "anyarray", format_type_be(array_typeid)))); + } + + if (!OidIsValid(elem_typeid)) + { + /* + * if we don't have an element type yet, use the one we just + * got + */ + elem_typeid = array_typelem; + } + else if (array_typelem != elem_typeid) + { + /* otherwise, they better match */ + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not consistent with argument declared %s", + "anyarray", "anyelement"), + errdetail("%s versus %s", + format_type_be(array_typeid), + format_type_be(elem_typeid)))); + } + } + + /* Deduce range type from multirange type, or vice versa */ + if (OidIsValid(multirange_typeid)) + { + Oid multirange_typelem; + + multirange_typelem = get_multirange_range(multirange_typeid); + if (!OidIsValid(multirange_typelem)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not a multirange type but type %s", + "anymultirange", + format_type_be(multirange_typeid)))); + + if (!OidIsValid(range_typeid)) + { + /* if we don't have a range type yet, use the one we just got */ + range_typeid = multirange_typelem; + } + else if (multirange_typelem != range_typeid) + { + /* otherwise, they better match */ + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not consistent with argument declared %s", + "anymultirange", "anyrange"), + errdetail("%s versus %s", + format_type_be(multirange_typeid), + format_type_be(range_typeid)))); + } + } + else if (have_anymultirange && OidIsValid(range_typeid)) + { + multirange_typeid = get_range_multirange(range_typeid); + /* We'll complain below if that didn't work */ + } + + /* Get the element type based on the range type, if we have one */ + if (OidIsValid(range_typeid)) + { + Oid range_typelem; + + range_typelem = get_range_subtype(range_typeid); + if (!OidIsValid(range_typelem)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not a range type but type %s", + "anyrange", + format_type_be(range_typeid)))); + + if (!OidIsValid(elem_typeid)) + { + /* + * if we don't have an element type yet, use the one we just + * got + */ + elem_typeid = range_typelem; + } + else if (range_typelem != elem_typeid) + { + /* otherwise, they better match */ + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not consistent with argument declared %s", + "anyrange", "anyelement"), + errdetail("%s versus %s", + format_type_be(range_typeid), + format_type_be(elem_typeid)))); + } + } + + if (!OidIsValid(elem_typeid)) + { + if (allow_poly) + { + elem_typeid = ANYELEMENTOID; + array_typeid = ANYARRAYOID; + range_typeid = ANYRANGEOID; + multirange_typeid = ANYMULTIRANGEOID; + } + else + { + /* + * Only way to get here is if all the family-1 polymorphic + * arguments have UNKNOWN inputs. + */ + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("could not determine polymorphic type because input has type %s", + "unknown"))); + } + } + + if (have_anynonarray && elem_typeid != ANYELEMENTOID) + { + /* + * require the element type to not be an array or domain over + * array + */ + if (type_is_array_domain(elem_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("type matched to anynonarray is an array type: %s", + format_type_be(elem_typeid)))); + } + + if (have_anyenum && elem_typeid != ANYELEMENTOID) + { + /* require the element type to be an enum */ + if (!type_is_enum(elem_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("type matched to anyenum is not an enum type: %s", + format_type_be(elem_typeid)))); + } + } + + /* Check matching of family-2 polymorphic arguments, if any */ + if (have_poly_anycompatible) + { + /* Deduce range type from multirange type, or vice versa */ + if (OidIsValid(anycompatible_multirange_typeid)) + { + if (OidIsValid(anycompatible_range_typeid)) + { + if (anycompatible_multirange_typelem != + anycompatible_range_typeid) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not consistent with argument declared %s", + "anycompatiblemultirange", + "anycompatiblerange"), + errdetail("%s versus %s", + format_type_be(anycompatible_multirange_typeid), + format_type_be(anycompatible_range_typeid)))); + } + else + { + anycompatible_range_typeid = anycompatible_multirange_typelem; + anycompatible_range_typelem = get_range_subtype(anycompatible_range_typeid); + if (!OidIsValid(anycompatible_range_typelem)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("argument declared %s is not a multirange type but type %s", + "anycompatiblemultirange", + format_type_be(anycompatible_multirange_typeid)))); + /* this enables element type matching check below */ + have_anycompatible_range = true; + /* collect the subtype for common-supertype choice */ + anycompatible_actual_types[n_anycompatible_args++] = + anycompatible_range_typelem; + } + } + else if (have_anycompatible_multirange && + OidIsValid(anycompatible_range_typeid)) + { + anycompatible_multirange_typeid = get_range_multirange(anycompatible_range_typeid); + /* We'll complain below if that didn't work */ + } + + if (n_anycompatible_args > 0) + { + anycompatible_typeid = + select_common_type_from_oids(n_anycompatible_args, + anycompatible_actual_types, + false); + + /* We have to verify that the selected type actually works */ + if (!verify_common_type_from_oids(anycompatible_typeid, + n_anycompatible_args, + anycompatible_actual_types)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("arguments of anycompatible family cannot be cast to a common type"))); + + if (have_anycompatible_array) + { + anycompatible_array_typeid = get_array_type(anycompatible_typeid); + if (!OidIsValid(anycompatible_array_typeid)) + ereport(ERROR, + (errcode(ERRCODE_UNDEFINED_OBJECT), + errmsg("could not find array type for data type %s", + format_type_be(anycompatible_typeid)))); + } + + if (have_anycompatible_range) + { + /* we can't infer a range type from the others */ + if (!OidIsValid(anycompatible_range_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("could not determine polymorphic type %s because input has type %s", + "anycompatiblerange", "unknown"))); + + /* + * the anycompatible type must exactly match the range element + * type + */ + if (anycompatible_range_typelem != anycompatible_typeid) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("anycompatiblerange type %s does not match anycompatible type %s", + format_type_be(anycompatible_range_typeid), + format_type_be(anycompatible_typeid)))); + } + + if (have_anycompatible_multirange) + { + /* we can't infer a multirange type from the others */ + if (!OidIsValid(anycompatible_multirange_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("could not determine polymorphic type %s because input has type %s", + "anycompatiblemultirange", "unknown"))); + + /* + * the anycompatible type must exactly match the multirange + * element type + */ + if (anycompatible_range_typelem != anycompatible_typeid) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("anycompatiblemultirange type %s does not match anycompatible type %s", + format_type_be(anycompatible_multirange_typeid), + format_type_be(anycompatible_typeid)))); + } + + if (have_anycompatible_nonarray) + { + /* + * require the element type to not be an array or domain over + * array + */ + if (type_is_array_domain(anycompatible_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("type matched to anycompatiblenonarray is an array type: %s", + format_type_be(anycompatible_typeid)))); + } + } + else + { + if (allow_poly) + { + anycompatible_typeid = ANYCOMPATIBLEOID; + anycompatible_array_typeid = ANYCOMPATIBLEARRAYOID; + anycompatible_range_typeid = ANYCOMPATIBLERANGEOID; + anycompatible_multirange_typeid = ANYCOMPATIBLEMULTIRANGEOID; + } + else + { + /* + * Only way to get here is if all the family-2 polymorphic + * arguments have UNKNOWN inputs. Resolve to TEXT as + * select_common_type() would do. That doesn't license us to + * use TEXTRANGE or TEXTMULTIRANGE, though. + */ + anycompatible_typeid = TEXTOID; + anycompatible_array_typeid = TEXTARRAYOID; + if (have_anycompatible_range) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("could not determine polymorphic type %s because input has type %s", + "anycompatiblerange", "unknown"))); + if (have_anycompatible_multirange) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("could not determine polymorphic type %s because input has type %s", + "anycompatiblemultirange", "unknown"))); + } + } + + /* replace family-2 polymorphic types by selected types */ + for (int j = 0; j < nargs; j++) + { + Oid decl_type = declared_arg_types[j]; + + if (decl_type == ANYCOMPATIBLEOID || + decl_type == ANYCOMPATIBLENONARRAYOID) + declared_arg_types[j] = anycompatible_typeid; + else if (decl_type == ANYCOMPATIBLEARRAYOID) + declared_arg_types[j] = anycompatible_array_typeid; + else if (decl_type == ANYCOMPATIBLERANGEOID) + declared_arg_types[j] = anycompatible_range_typeid; + else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID) + declared_arg_types[j] = anycompatible_multirange_typeid; + } + } + + /* + * If we had any UNKNOWN inputs for family-1 polymorphic arguments, + * re-scan to assign correct types to them. + * + * Note: we don't have to consider unknown inputs that were matched to + * family-2 polymorphic arguments, because we forcibly updated their + * declared_arg_types[] positions just above. + */ + if (have_poly_unknowns) + { + for (int j = 0; j < nargs; j++) + { + Oid decl_type = declared_arg_types[j]; + Oid actual_type = actual_arg_types[j]; + + if (actual_type != UNKNOWNOID) + continue; + + if (decl_type == ANYELEMENTOID || + decl_type == ANYNONARRAYOID || + decl_type == ANYENUMOID) + declared_arg_types[j] = elem_typeid; + else if (decl_type == ANYARRAYOID) + { + if (!OidIsValid(array_typeid)) + { + array_typeid = get_array_type(elem_typeid); + if (!OidIsValid(array_typeid)) + ereport(ERROR, + (errcode(ERRCODE_UNDEFINED_OBJECT), + errmsg("could not find array type for data type %s", + format_type_be(elem_typeid)))); + } + declared_arg_types[j] = array_typeid; + } + else if (decl_type == ANYRANGEOID) + { + if (!OidIsValid(range_typeid)) + { + /* we can't infer a range type from the others */ + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("could not determine polymorphic type %s because input has type %s", + "anyrange", "unknown"))); + } + declared_arg_types[j] = range_typeid; + } + else if (decl_type == ANYMULTIRANGEOID) + { + if (!OidIsValid(multirange_typeid)) + { + /* we can't infer a multirange type from the others */ + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg("could not determine polymorphic type %s because input has type %s", + "anymultirange", "unknown"))); + } + declared_arg_types[j] = multirange_typeid; + } + } + } + + /* if we return ANYELEMENT use the appropriate argument type */ + if (rettype == ANYELEMENTOID || + rettype == ANYNONARRAYOID || + rettype == ANYENUMOID) + return elem_typeid; + + /* if we return ANYARRAY use the appropriate argument type */ + if (rettype == ANYARRAYOID) + { + if (!OidIsValid(array_typeid)) + { + array_typeid = get_array_type(elem_typeid); + if (!OidIsValid(array_typeid)) + ereport(ERROR, + (errcode(ERRCODE_UNDEFINED_OBJECT), + errmsg("could not find array type for data type %s", + format_type_be(elem_typeid)))); + } + return array_typeid; + } + + /* if we return ANYRANGE use the appropriate argument type */ + if (rettype == ANYRANGEOID) + { + /* this error is unreachable if the function signature is valid: */ + if (!OidIsValid(range_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg_internal("could not determine polymorphic type %s because input has type %s", + "anyrange", "unknown"))); + return range_typeid; + } + + /* if we return ANYMULTIRANGE use the appropriate argument type */ + if (rettype == ANYMULTIRANGEOID) + { + /* this error is unreachable if the function signature is valid: */ + if (!OidIsValid(multirange_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg_internal("could not determine polymorphic type %s because input has type %s", + "anymultirange", "unknown"))); + return multirange_typeid; + } + + /* if we return ANYCOMPATIBLE use the appropriate type */ + if (rettype == ANYCOMPATIBLEOID || + rettype == ANYCOMPATIBLENONARRAYOID) + { + /* this error is unreachable if the function signature is valid: */ + if (!OidIsValid(anycompatible_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg_internal("could not identify anycompatible type"))); + return anycompatible_typeid; + } + + /* if we return ANYCOMPATIBLEARRAY use the appropriate type */ + if (rettype == ANYCOMPATIBLEARRAYOID) + { + /* this error is unreachable if the function signature is valid: */ + if (!OidIsValid(anycompatible_array_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg_internal("could not identify anycompatiblearray type"))); + return anycompatible_array_typeid; + } + + /* if we return ANYCOMPATIBLERANGE use the appropriate argument type */ + if (rettype == ANYCOMPATIBLERANGEOID) + { + /* this error is unreachable if the function signature is valid: */ + if (!OidIsValid(anycompatible_range_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg_internal("could not identify anycompatiblerange type"))); + return anycompatible_range_typeid; + } + + /* if we return ANYCOMPATIBLEMULTIRANGE use the appropriate argument type */ + if (rettype == ANYCOMPATIBLEMULTIRANGEOID) + { + /* this error is unreachable if the function signature is valid: */ + if (!OidIsValid(anycompatible_multirange_typeid)) + ereport(ERROR, + (errcode(ERRCODE_DATATYPE_MISMATCH), + errmsg_internal("could not identify anycompatiblemultirange type"))); + return anycompatible_multirange_typeid; + } + + /* we don't return a generic type; send back the original return type */ + return rettype; +} + +/* + * check_valid_polymorphic_signature() + * Is a proposed function signature valid per polymorphism rules? + * + * Returns NULL if the signature is valid (either ret_type is not polymorphic, + * or it can be deduced from the given declared argument types). Otherwise, + * returns a palloc'd, already translated errdetail string saying why not. + */ +char * +check_valid_polymorphic_signature(Oid ret_type, + const Oid *declared_arg_types, + int nargs) +{ + if (ret_type == ANYRANGEOID || ret_type == ANYMULTIRANGEOID) + { + /* + * ANYRANGE and ANYMULTIRANGE require an ANYRANGE or ANYMULTIRANGE + * input, else we can't tell which of several range types with the + * same element type to use. + */ + for (int i = 0; i < nargs; i++) + { + if (declared_arg_types[i] == ANYRANGEOID || + declared_arg_types[i] == ANYMULTIRANGEOID) + return NULL; /* OK */ + } + return psprintf(_("A result of type %s requires at least one input of type anyrange or anymultirange."), + format_type_be(ret_type)); + } + else if (ret_type == ANYCOMPATIBLERANGEOID || ret_type == ANYCOMPATIBLEMULTIRANGEOID) + { + /* + * ANYCOMPATIBLERANGE and ANYCOMPATIBLEMULTIRANGE require an + * ANYCOMPATIBLERANGE or ANYCOMPATIBLEMULTIRANGE input, else we can't + * tell which of several range types with the same element type to + * use. + */ + for (int i = 0; i < nargs; i++) + { + if (declared_arg_types[i] == ANYCOMPATIBLERANGEOID || + declared_arg_types[i] == ANYCOMPATIBLEMULTIRANGEOID) + return NULL; /* OK */ + } + return psprintf(_("A result of type %s requires at least one input of type anycompatiblerange or anycompatiblemultirange."), + format_type_be(ret_type)); + } + else if (IsPolymorphicTypeFamily1(ret_type)) + { + /* Otherwise, any family-1 type can be deduced from any other */ + for (int i = 0; i < nargs; i++) + { + if (IsPolymorphicTypeFamily1(declared_arg_types[i])) + return NULL; /* OK */ + } + /* Keep this list in sync with IsPolymorphicTypeFamily1! */ + return psprintf(_("A result of type %s requires at least one input of type anyelement, anyarray, anynonarray, anyenum, anyrange, or anymultirange."), + format_type_be(ret_type)); + } + else if (IsPolymorphicTypeFamily2(ret_type)) + { + /* Otherwise, any family-2 type can be deduced from any other */ + for (int i = 0; i < nargs; i++) + { + if (IsPolymorphicTypeFamily2(declared_arg_types[i])) + return NULL; /* OK */ + } + /* Keep this list in sync with IsPolymorphicTypeFamily2! */ + return psprintf(_("A result of type %s requires at least one input of type anycompatible, anycompatiblearray, anycompatiblenonarray, anycompatiblerange, or anycompatiblemultirange."), + format_type_be(ret_type)); + } + else + return NULL; /* OK, ret_type is not polymorphic */ +} + +/* + * check_valid_internal_signature() + * Is a proposed function signature valid per INTERNAL safety rules? + * + * Returns NULL if OK, or a suitable error message if ret_type is INTERNAL but + * none of the declared arg types are. (It's unsafe to create such a function + * since it would allow invocation of INTERNAL-consuming functions directly + * from SQL.) It's overkill to return the error detail message, since there + * is only one possibility, but we do it like this to keep the API similar to + * check_valid_polymorphic_signature(). + */ +char * +check_valid_internal_signature(Oid ret_type, + const Oid *declared_arg_types, + int nargs) +{ + if (ret_type == INTERNALOID) + { + for (int i = 0; i < nargs; i++) + { + if (declared_arg_types[i] == ret_type) + return NULL; /* OK */ + } + return pstrdup(_("A result of type internal requires at least one input of type internal.")); + } + else + return NULL; /* OK, ret_type is not INTERNAL */ +} + + +/* TypeCategory() + * Assign a category to the specified type OID. + * + * NB: this must not return TYPCATEGORY_INVALID. + */ +TYPCATEGORY +TypeCategory(Oid type) +{ + char typcategory; + bool typispreferred; + + get_type_category_preferred(type, &typcategory, &typispreferred); + Assert(typcategory != TYPCATEGORY_INVALID); + return (TYPCATEGORY) typcategory; +} + + +/* IsPreferredType() + * Check if this type is a preferred type for the given category. + * + * If category is TYPCATEGORY_INVALID, then we'll return true for preferred + * types of any category; otherwise, only for preferred types of that + * category. + */ +bool +IsPreferredType(TYPCATEGORY category, Oid type) +{ + char typcategory; + bool typispreferred; + + get_type_category_preferred(type, &typcategory, &typispreferred); + if (category == typcategory || category == TYPCATEGORY_INVALID) + return typispreferred; + else + return false; +} + + +/* IsBinaryCoercible() + * Check if srctype is binary-coercible to targettype. + * + * This notion allows us to cheat and directly exchange values without + * going through the trouble of calling a conversion function. Note that + * in general, this should only be an implementation shortcut. Before 7.4, + * this was also used as a heuristic for resolving overloaded functions and + * operators, but that's basically a bad idea. + * + * As of 7.3, binary coercibility isn't hardwired into the code anymore. + * We consider two types binary-coercible if there is an implicitly + * invokable, no-function-needed pg_cast entry. Also, a domain is always + * binary-coercible to its base type, though *not* vice versa (in the other + * direction, one must apply domain constraint checks before accepting the + * value as legitimate). We also need to special-case various polymorphic + * types. + * + * This function replaces IsBinaryCompatible(), which was an inherently + * symmetric test. Since the pg_cast entries aren't necessarily symmetric, + * the order of the operands is now significant. + */ +bool +IsBinaryCoercible(Oid srctype, Oid targettype) +{ + HeapTuple tuple; + Form_pg_cast castForm; + bool result; + + /* Fast path if same type */ + if (srctype == targettype) + return true; + + /* Anything is coercible to ANY or ANYELEMENT or ANYCOMPATIBLE */ + if (targettype == ANYOID || targettype == ANYELEMENTOID || + targettype == ANYCOMPATIBLEOID) + return true; + + /* If srctype is a domain, reduce to its base type */ + if (OidIsValid(srctype)) + srctype = getBaseType(srctype); + + /* Somewhat-fast path for domain -> base type case */ + if (srctype == targettype) + return true; + + /* Also accept any array type as coercible to ANY[COMPATIBLE]ARRAY */ + if (targettype == ANYARRAYOID || targettype == ANYCOMPATIBLEARRAYOID) + if (type_is_array(srctype)) + return true; + + /* Also accept any non-array type as coercible to ANY[COMPATIBLE]NONARRAY */ + if (targettype == ANYNONARRAYOID || targettype == ANYCOMPATIBLENONARRAYOID) + if (!type_is_array(srctype)) + return true; + + /* Also accept any enum type as coercible to ANYENUM */ + if (targettype == ANYENUMOID) + if (type_is_enum(srctype)) + return true; + + /* Also accept any range type as coercible to ANY[COMPATIBLE]RANGE */ + if (targettype == ANYRANGEOID || targettype == ANYCOMPATIBLERANGEOID) + if (type_is_range(srctype)) + return true; + + /* Also, any multirange type is coercible to ANY[COMPATIBLE]MULTIRANGE */ + if (targettype == ANYMULTIRANGEOID || targettype == ANYCOMPATIBLEMULTIRANGEOID) + if (type_is_multirange(srctype)) + return true; + + /* Also accept any composite type as coercible to RECORD */ + if (targettype == RECORDOID) + if (ISCOMPLEX(srctype)) + return true; + + /* Also accept any composite array type as coercible to RECORD[] */ + if (targettype == RECORDARRAYOID) + if (is_complex_array(srctype)) + return true; + + /* Else look in pg_cast */ + tuple = SearchSysCache2(CASTSOURCETARGET, + ObjectIdGetDatum(srctype), + ObjectIdGetDatum(targettype)); + if (!HeapTupleIsValid(tuple)) + return false; /* no cast */ + castForm = (Form_pg_cast) GETSTRUCT(tuple); + + result = (castForm->castmethod == COERCION_METHOD_BINARY && + castForm->castcontext == COERCION_CODE_IMPLICIT); + + ReleaseSysCache(tuple); + + return result; +} + + +/* + * find_coercion_pathway + * Look for a coercion pathway between two types. + * + * Currently, this deals only with scalar-type cases; it does not consider + * polymorphic types nor casts between composite types. (Perhaps fold + * those in someday?) + * + * ccontext determines the set of available casts. + * + * The possible result codes are: + * COERCION_PATH_NONE: failed to find any coercion pathway + * *funcid is set to InvalidOid + * COERCION_PATH_FUNC: apply the coercion function returned in *funcid + * COERCION_PATH_RELABELTYPE: binary-compatible cast, no function needed + * *funcid is set to InvalidOid + * COERCION_PATH_ARRAYCOERCE: need an ArrayCoerceExpr node + * *funcid is set to InvalidOid + * COERCION_PATH_COERCEVIAIO: need a CoerceViaIO node + * *funcid is set to InvalidOid + * + * Note: COERCION_PATH_RELABELTYPE does not necessarily mean that no work is + * needed to do the coercion; if the target is a domain then we may need to + * apply domain constraint checking. If you want to check for a zero-effort + * conversion then use IsBinaryCoercible(). + */ +CoercionPathType +find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId, + CoercionContext ccontext, + Oid *funcid) +{ + CoercionPathType result = COERCION_PATH_NONE; + HeapTuple tuple; + + *funcid = InvalidOid; + + /* Perhaps the types are domains; if so, look at their base types */ + if (OidIsValid(sourceTypeId)) + sourceTypeId = getBaseType(sourceTypeId); + if (OidIsValid(targetTypeId)) + targetTypeId = getBaseType(targetTypeId); + + /* Domains are always coercible to and from their base type */ + if (sourceTypeId == targetTypeId) + return COERCION_PATH_RELABELTYPE; + + /* Look in pg_cast */ + tuple = SearchSysCache2(CASTSOURCETARGET, + ObjectIdGetDatum(sourceTypeId), + ObjectIdGetDatum(targetTypeId)); + + if (HeapTupleIsValid(tuple)) + { + Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple); + CoercionContext castcontext; + + /* convert char value for castcontext to CoercionContext enum */ + switch (castForm->castcontext) + { + case COERCION_CODE_IMPLICIT: + castcontext = COERCION_IMPLICIT; + break; + case COERCION_CODE_ASSIGNMENT: + castcontext = COERCION_ASSIGNMENT; + break; + case COERCION_CODE_EXPLICIT: + castcontext = COERCION_EXPLICIT; + break; + default: + elog(ERROR, "unrecognized castcontext: %d", + (int) castForm->castcontext); + castcontext = 0; /* keep compiler quiet */ + break; + } + + /* Rely on ordering of enum for correct behavior here */ + if (ccontext >= castcontext) + { + switch (castForm->castmethod) + { + case COERCION_METHOD_FUNCTION: + result = COERCION_PATH_FUNC; + *funcid = castForm->castfunc; + break; + case COERCION_METHOD_INOUT: + result = COERCION_PATH_COERCEVIAIO; + break; + case COERCION_METHOD_BINARY: + result = COERCION_PATH_RELABELTYPE; + break; + default: + elog(ERROR, "unrecognized castmethod: %d", + (int) castForm->castmethod); + break; + } + } + + ReleaseSysCache(tuple); + } + else + { + /* + * If there's no pg_cast entry, perhaps we are dealing with a pair of + * array types. If so, and if their element types have a conversion + * pathway, report that we can coerce with an ArrayCoerceExpr. + * + * Hack: disallow coercions to oidvector and int2vector, which + * otherwise tend to capture coercions that should go to "real" array + * types. We want those types to be considered "real" arrays for many + * purposes, but not this one. (Also, ArrayCoerceExpr isn't + * guaranteed to produce an output that meets the restrictions of + * these datatypes, such as being 1-dimensional.) + */ + if (targetTypeId != OIDVECTOROID && targetTypeId != INT2VECTOROID) + { + Oid targetElem; + Oid sourceElem; + + if ((targetElem = get_element_type(targetTypeId)) != InvalidOid && + (sourceElem = get_element_type(sourceTypeId)) != InvalidOid) + { + CoercionPathType elempathtype; + Oid elemfuncid; + + elempathtype = find_coercion_pathway(targetElem, + sourceElem, + ccontext, + &elemfuncid); + if (elempathtype != COERCION_PATH_NONE) + { + result = COERCION_PATH_ARRAYCOERCE; + } + } + } + + /* + * If we still haven't found a possibility, consider automatic casting + * using I/O functions. We allow assignment casts to string types and + * explicit casts from string types to be handled this way. (The + * CoerceViaIO mechanism is a lot more general than that, but this is + * all we want to allow in the absence of a pg_cast entry.) It would + * probably be better to insist on explicit casts in both directions, + * but this is a compromise to preserve something of the pre-8.3 + * behavior that many types had implicit (yipes!) casts to text. + */ + if (result == COERCION_PATH_NONE) + { + if (ccontext >= COERCION_ASSIGNMENT && + TypeCategory(targetTypeId) == TYPCATEGORY_STRING) + result = COERCION_PATH_COERCEVIAIO; + else if (ccontext >= COERCION_EXPLICIT && + TypeCategory(sourceTypeId) == TYPCATEGORY_STRING) + result = COERCION_PATH_COERCEVIAIO; + } + } + + /* + * When parsing PL/pgSQL assignments, allow an I/O cast to be used + * whenever no normal coercion is available. + */ + if (result == COERCION_PATH_NONE && + ccontext == COERCION_PLPGSQL) + result = COERCION_PATH_COERCEVIAIO; + + return result; +} + + +/* + * find_typmod_coercion_function -- does the given type need length coercion? + * + * If the target type possesses a pg_cast function from itself to itself, + * it must need length coercion. + * + * "bpchar" (ie, char(N)) and "numeric" are examples of such types. + * + * If the given type is a varlena array type, we do not look for a coercion + * function associated directly with the array type, but instead look for + * one associated with the element type. An ArrayCoerceExpr node must be + * used to apply such a function. (Note: currently, it's pointless to + * return the funcid in this case, because it'll just get looked up again + * in the recursive construction of the ArrayCoerceExpr's elemexpr.) + * + * We use the same result enum as find_coercion_pathway, but the only possible + * result codes are: + * COERCION_PATH_NONE: no length coercion needed + * COERCION_PATH_FUNC: apply the function returned in *funcid + * COERCION_PATH_ARRAYCOERCE: apply the function using ArrayCoerceExpr + */ +CoercionPathType +find_typmod_coercion_function(Oid typeId, + Oid *funcid) +{ + CoercionPathType result; + Type targetType; + Form_pg_type typeForm; + HeapTuple tuple; + + *funcid = InvalidOid; + result = COERCION_PATH_FUNC; + + targetType = typeidType(typeId); + typeForm = (Form_pg_type) GETSTRUCT(targetType); + + /* Check for a "true" array type */ + if (IsTrueArrayType(typeForm)) + { + /* Yes, switch our attention to the element type */ + typeId = typeForm->typelem; + result = COERCION_PATH_ARRAYCOERCE; + } + ReleaseSysCache(targetType); + + /* Look in pg_cast */ + tuple = SearchSysCache2(CASTSOURCETARGET, + ObjectIdGetDatum(typeId), + ObjectIdGetDatum(typeId)); + + if (HeapTupleIsValid(tuple)) + { + Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple); + + *funcid = castForm->castfunc; + ReleaseSysCache(tuple); + } + + if (!OidIsValid(*funcid)) + result = COERCION_PATH_NONE; + + return result; +} + +/* + * is_complex_array + * Is this type an array of composite? + * + * Note: this will not return true for record[]; check for RECORDARRAYOID + * separately if needed. + */ +static bool +is_complex_array(Oid typid) +{ + Oid elemtype = get_element_type(typid); + + return (OidIsValid(elemtype) && ISCOMPLEX(elemtype)); +} + + +/* + * Check whether reltypeId is the row type of a typed table of type + * reloftypeId, or is a domain over such a row type. (This is conceptually + * similar to the subtype relationship checked by typeInheritsFrom().) + */ +static bool +typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId) +{ + Oid relid = typeOrDomainTypeRelid(reltypeId); + bool result = false; + + if (relid) + { + HeapTuple tp; + Form_pg_class reltup; + + tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid)); + if (!HeapTupleIsValid(tp)) + elog(ERROR, "cache lookup failed for relation %u", relid); + + reltup = (Form_pg_class) GETSTRUCT(tp); + if (reltup->reloftype == reloftypeId) + result = true; + + ReleaseSysCache(tp); + } + + return result; +} |