summaryrefslogtreecommitdiffstats
path: root/src/backend/statistics/extended_stats.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/statistics/extended_stats.c
parentInitial commit. (diff)
downloadpostgresql-14-upstream.tar.xz
postgresql-14-upstream.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/statistics/extended_stats.c')
-rw-r--r--src/backend/statistics/extended_stats.c2675
1 files changed, 2675 insertions, 0 deletions
diff --git a/src/backend/statistics/extended_stats.c b/src/backend/statistics/extended_stats.c
new file mode 100644
index 0000000..d28c9d9
--- /dev/null
+++ b/src/backend/statistics/extended_stats.c
@@ -0,0 +1,2675 @@
+/*-------------------------------------------------------------------------
+ *
+ * extended_stats.c
+ * POSTGRES extended statistics
+ *
+ * Generic code supporting statistics objects created via CREATE STATISTICS.
+ *
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ * src/backend/statistics/extended_stats.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "access/detoast.h"
+#include "access/genam.h"
+#include "access/htup_details.h"
+#include "access/table.h"
+#include "catalog/indexing.h"
+#include "catalog/pg_collation.h"
+#include "catalog/pg_statistic_ext.h"
+#include "catalog/pg_statistic_ext_data.h"
+#include "executor/executor.h"
+#include "commands/progress.h"
+#include "miscadmin.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "optimizer/optimizer.h"
+#include "parser/parsetree.h"
+#include "pgstat.h"
+#include "postmaster/autovacuum.h"
+#include "statistics/extended_stats_internal.h"
+#include "statistics/statistics.h"
+#include "utils/acl.h"
+#include "utils/array.h"
+#include "utils/attoptcache.h"
+#include "utils/builtins.h"
+#include "utils/datum.h"
+#include "utils/fmgroids.h"
+#include "utils/lsyscache.h"
+#include "utils/memutils.h"
+#include "utils/rel.h"
+#include "utils/selfuncs.h"
+#include "utils/syscache.h"
+#include "utils/typcache.h"
+
+/*
+ * To avoid consuming too much memory during analysis and/or too much space
+ * in the resulting pg_statistic rows, we ignore varlena datums that are wider
+ * than WIDTH_THRESHOLD (after detoasting!). This is legitimate for MCV
+ * and distinct-value calculations since a wide value is unlikely to be
+ * duplicated at all, much less be a most-common value. For the same reason,
+ * ignoring wide values will not affect our estimates of histogram bin
+ * boundaries very much.
+ */
+#define WIDTH_THRESHOLD 1024
+
+/*
+ * Used internally to refer to an individual statistics object, i.e.,
+ * a pg_statistic_ext entry.
+ */
+typedef struct StatExtEntry
+{
+ Oid statOid; /* OID of pg_statistic_ext entry */
+ char *schema; /* statistics object's schema */
+ char *name; /* statistics object's name */
+ Bitmapset *columns; /* attribute numbers covered by the object */
+ List *types; /* 'char' list of enabled statistics kinds */
+ int stattarget; /* statistics target (-1 for default) */
+ List *exprs; /* expressions */
+} StatExtEntry;
+
+
+static List *fetch_statentries_for_relation(Relation pg_statext, Oid relid);
+static VacAttrStats **lookup_var_attr_stats(Relation rel, Bitmapset *attrs, List *exprs,
+ int nvacatts, VacAttrStats **vacatts);
+static void statext_store(Oid statOid,
+ MVNDistinct *ndistinct, MVDependencies *dependencies,
+ MCVList *mcv, Datum exprs, VacAttrStats **stats);
+static int statext_compute_stattarget(int stattarget,
+ int natts, VacAttrStats **stats);
+
+/* Information needed to analyze a single simple expression. */
+typedef struct AnlExprData
+{
+ Node *expr; /* expression to analyze */
+ VacAttrStats *vacattrstat; /* statistics attrs to analyze */
+} AnlExprData;
+
+static void compute_expr_stats(Relation onerel, double totalrows,
+ AnlExprData *exprdata, int nexprs,
+ HeapTuple *rows, int numrows);
+static Datum serialize_expr_stats(AnlExprData *exprdata, int nexprs);
+static Datum expr_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
+static AnlExprData *build_expr_data(List *exprs, int stattarget);
+
+static StatsBuildData *make_build_data(Relation onerel, StatExtEntry *stat,
+ int numrows, HeapTuple *rows,
+ VacAttrStats **stats, int stattarget);
+
+
+/*
+ * Compute requested extended stats, using the rows sampled for the plain
+ * (single-column) stats.
+ *
+ * This fetches a list of stats types from pg_statistic_ext, computes the
+ * requested stats, and serializes them back into the catalog.
+ */
+void
+BuildRelationExtStatistics(Relation onerel, double totalrows,
+ int numrows, HeapTuple *rows,
+ int natts, VacAttrStats **vacattrstats)
+{
+ Relation pg_stext;
+ ListCell *lc;
+ List *statslist;
+ MemoryContext cxt;
+ MemoryContext oldcxt;
+ int64 ext_cnt;
+
+ /* Do nothing if there are no columns to analyze. */
+ if (!natts)
+ return;
+
+ /* the list of stats has to be allocated outside the memory context */
+ pg_stext = table_open(StatisticExtRelationId, RowExclusiveLock);
+ statslist = fetch_statentries_for_relation(pg_stext, RelationGetRelid(onerel));
+
+ /* memory context for building each statistics object */
+ cxt = AllocSetContextCreate(CurrentMemoryContext,
+ "BuildRelationExtStatistics",
+ ALLOCSET_DEFAULT_SIZES);
+ oldcxt = MemoryContextSwitchTo(cxt);
+
+ /* report this phase */
+ if (statslist != NIL)
+ {
+ const int index[] = {
+ PROGRESS_ANALYZE_PHASE,
+ PROGRESS_ANALYZE_EXT_STATS_TOTAL
+ };
+ const int64 val[] = {
+ PROGRESS_ANALYZE_PHASE_COMPUTE_EXT_STATS,
+ list_length(statslist)
+ };
+
+ pgstat_progress_update_multi_param(2, index, val);
+ }
+
+ ext_cnt = 0;
+ foreach(lc, statslist)
+ {
+ StatExtEntry *stat = (StatExtEntry *) lfirst(lc);
+ MVNDistinct *ndistinct = NULL;
+ MVDependencies *dependencies = NULL;
+ MCVList *mcv = NULL;
+ Datum exprstats = (Datum) 0;
+ VacAttrStats **stats;
+ ListCell *lc2;
+ int stattarget;
+ StatsBuildData *data;
+
+ /*
+ * Check if we can build these stats based on the column analyzed. If
+ * not, report this fact (except in autovacuum) and move on.
+ */
+ stats = lookup_var_attr_stats(onerel, stat->columns, stat->exprs,
+ natts, vacattrstats);
+ if (!stats)
+ {
+ if (!IsAutoVacuumWorkerProcess())
+ ereport(WARNING,
+ (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
+ errmsg("statistics object \"%s.%s\" could not be computed for relation \"%s.%s\"",
+ stat->schema, stat->name,
+ get_namespace_name(onerel->rd_rel->relnamespace),
+ RelationGetRelationName(onerel)),
+ errtable(onerel)));
+ continue;
+ }
+
+ /* compute statistics target for this statistics object */
+ stattarget = statext_compute_stattarget(stat->stattarget,
+ bms_num_members(stat->columns),
+ stats);
+
+ /*
+ * Don't rebuild statistics objects with statistics target set to 0
+ * (we just leave the existing values around, just like we do for
+ * regular per-column statistics).
+ */
+ if (stattarget == 0)
+ continue;
+
+ /* evaluate expressions (if the statistics object has any) */
+ data = make_build_data(onerel, stat, numrows, rows, stats, stattarget);
+
+ /* compute statistic of each requested type */
+ foreach(lc2, stat->types)
+ {
+ char t = (char) lfirst_int(lc2);
+
+ if (t == STATS_EXT_NDISTINCT)
+ ndistinct = statext_ndistinct_build(totalrows, data);
+ else if (t == STATS_EXT_DEPENDENCIES)
+ dependencies = statext_dependencies_build(data);
+ else if (t == STATS_EXT_MCV)
+ mcv = statext_mcv_build(data, totalrows, stattarget);
+ else if (t == STATS_EXT_EXPRESSIONS)
+ {
+ AnlExprData *exprdata;
+ int nexprs;
+
+ /* should not happen, thanks to checks when defining stats */
+ if (!stat->exprs)
+ elog(ERROR, "requested expression stats, but there are no expressions");
+
+ exprdata = build_expr_data(stat->exprs, stattarget);
+ nexprs = list_length(stat->exprs);
+
+ compute_expr_stats(onerel, totalrows,
+ exprdata, nexprs,
+ rows, numrows);
+
+ exprstats = serialize_expr_stats(exprdata, nexprs);
+ }
+ }
+
+ /* store the statistics in the catalog */
+ statext_store(stat->statOid, ndistinct, dependencies, mcv, exprstats, stats);
+
+ /* for reporting progress */
+ pgstat_progress_update_param(PROGRESS_ANALYZE_EXT_STATS_COMPUTED,
+ ++ext_cnt);
+
+ /* free the data used for building this statistics object */
+ MemoryContextReset(cxt);
+ }
+
+ MemoryContextSwitchTo(oldcxt);
+ MemoryContextDelete(cxt);
+
+ list_free(statslist);
+
+ table_close(pg_stext, RowExclusiveLock);
+}
+
+/*
+ * ComputeExtStatisticsRows
+ * Compute number of rows required by extended statistics on a table.
+ *
+ * Computes number of rows we need to sample to build extended statistics on a
+ * table. This only looks at statistics we can actually build - for example
+ * when analyzing only some of the columns, this will skip statistics objects
+ * that would require additional columns.
+ *
+ * See statext_compute_stattarget for details about how we compute the
+ * statistics target for a statistics object (from the object target,
+ * attribute targets and default statistics target).
+ */
+int
+ComputeExtStatisticsRows(Relation onerel,
+ int natts, VacAttrStats **vacattrstats)
+{
+ Relation pg_stext;
+ ListCell *lc;
+ List *lstats;
+ MemoryContext cxt;
+ MemoryContext oldcxt;
+ int result = 0;
+
+ /* If there are no columns to analyze, just return 0. */
+ if (!natts)
+ return 0;
+
+ cxt = AllocSetContextCreate(CurrentMemoryContext,
+ "ComputeExtStatisticsRows",
+ ALLOCSET_DEFAULT_SIZES);
+ oldcxt = MemoryContextSwitchTo(cxt);
+
+ pg_stext = table_open(StatisticExtRelationId, RowExclusiveLock);
+ lstats = fetch_statentries_for_relation(pg_stext, RelationGetRelid(onerel));
+
+ foreach(lc, lstats)
+ {
+ StatExtEntry *stat = (StatExtEntry *) lfirst(lc);
+ int stattarget;
+ VacAttrStats **stats;
+ int nattrs = bms_num_members(stat->columns);
+
+ /*
+ * Check if we can build this statistics object based on the columns
+ * analyzed. If not, ignore it (don't report anything, we'll do that
+ * during the actual build BuildRelationExtStatistics).
+ */
+ stats = lookup_var_attr_stats(onerel, stat->columns, stat->exprs,
+ natts, vacattrstats);
+
+ if (!stats)
+ continue;
+
+ /*
+ * Compute statistics target, based on what's set for the statistic
+ * object itself, and for its attributes.
+ */
+ stattarget = statext_compute_stattarget(stat->stattarget,
+ nattrs, stats);
+
+ /* Use the largest value for all statistics objects. */
+ if (stattarget > result)
+ result = stattarget;
+ }
+
+ table_close(pg_stext, RowExclusiveLock);
+
+ MemoryContextSwitchTo(oldcxt);
+ MemoryContextDelete(cxt);
+
+ /* compute sample size based on the statistics target */
+ return (300 * result);
+}
+
+/*
+ * statext_compute_stattarget
+ * compute statistics target for an extended statistic
+ *
+ * When computing target for extended statistics objects, we consider three
+ * places where the target may be set - the statistics object itself,
+ * attributes the statistics object is defined on, and then the default
+ * statistics target.
+ *
+ * First we look at what's set for the statistics object itself, using the
+ * ALTER STATISTICS ... SET STATISTICS command. If we find a valid value
+ * there (i.e. not -1) we're done. Otherwise we look at targets set for any
+ * of the attributes the statistic is defined on, and if there are columns
+ * with defined target, we use the maximum value. We do this mostly for
+ * backwards compatibility, because this is what we did before having
+ * statistics target for extended statistics.
+ *
+ * And finally, if we still don't have a statistics target, we use the value
+ * set in default_statistics_target.
+ */
+static int
+statext_compute_stattarget(int stattarget, int nattrs, VacAttrStats **stats)
+{
+ int i;
+
+ /*
+ * If there's statistics target set for the statistics object, use it. It
+ * may be set to 0 which disables building of that statistic.
+ */
+ if (stattarget >= 0)
+ return stattarget;
+
+ /*
+ * The target for the statistics object is set to -1, in which case we
+ * look at the maximum target set for any of the attributes the object is
+ * defined on.
+ */
+ for (i = 0; i < nattrs; i++)
+ {
+ /* keep the maximum statistics target */
+ if (stats[i]->attr->attstattarget > stattarget)
+ stattarget = stats[i]->attr->attstattarget;
+ }
+
+ /*
+ * If the value is still negative (so neither the statistics object nor
+ * any of the columns have custom statistics target set), use the global
+ * default target.
+ */
+ if (stattarget < 0)
+ stattarget = default_statistics_target;
+
+ /* As this point we should have a valid statistics target. */
+ Assert((stattarget >= 0) && (stattarget <= 10000));
+
+ return stattarget;
+}
+
+/*
+ * statext_is_kind_built
+ * Is this stat kind built in the given pg_statistic_ext_data tuple?
+ */
+bool
+statext_is_kind_built(HeapTuple htup, char type)
+{
+ AttrNumber attnum;
+
+ switch (type)
+ {
+ case STATS_EXT_NDISTINCT:
+ attnum = Anum_pg_statistic_ext_data_stxdndistinct;
+ break;
+
+ case STATS_EXT_DEPENDENCIES:
+ attnum = Anum_pg_statistic_ext_data_stxddependencies;
+ break;
+
+ case STATS_EXT_MCV:
+ attnum = Anum_pg_statistic_ext_data_stxdmcv;
+ break;
+
+ case STATS_EXT_EXPRESSIONS:
+ attnum = Anum_pg_statistic_ext_data_stxdexpr;
+ break;
+
+ default:
+ elog(ERROR, "unexpected statistics type requested: %d", type);
+ }
+
+ return !heap_attisnull(htup, attnum, NULL);
+}
+
+/*
+ * Return a list (of StatExtEntry) of statistics objects for the given relation.
+ */
+static List *
+fetch_statentries_for_relation(Relation pg_statext, Oid relid)
+{
+ SysScanDesc scan;
+ ScanKeyData skey;
+ HeapTuple htup;
+ List *result = NIL;
+
+ /*
+ * Prepare to scan pg_statistic_ext for entries having stxrelid = this
+ * rel.
+ */
+ ScanKeyInit(&skey,
+ Anum_pg_statistic_ext_stxrelid,
+ BTEqualStrategyNumber, F_OIDEQ,
+ ObjectIdGetDatum(relid));
+
+ scan = systable_beginscan(pg_statext, StatisticExtRelidIndexId, true,
+ NULL, 1, &skey);
+
+ while (HeapTupleIsValid(htup = systable_getnext(scan)))
+ {
+ StatExtEntry *entry;
+ Datum datum;
+ bool isnull;
+ int i;
+ ArrayType *arr;
+ char *enabled;
+ Form_pg_statistic_ext staForm;
+ List *exprs = NIL;
+
+ entry = palloc0(sizeof(StatExtEntry));
+ staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
+ entry->statOid = staForm->oid;
+ entry->schema = get_namespace_name(staForm->stxnamespace);
+ entry->name = pstrdup(NameStr(staForm->stxname));
+ entry->stattarget = staForm->stxstattarget;
+ for (i = 0; i < staForm->stxkeys.dim1; i++)
+ {
+ entry->columns = bms_add_member(entry->columns,
+ staForm->stxkeys.values[i]);
+ }
+
+ /* decode the stxkind char array into a list of chars */
+ datum = SysCacheGetAttr(STATEXTOID, htup,
+ Anum_pg_statistic_ext_stxkind, &isnull);
+ Assert(!isnull);
+ arr = DatumGetArrayTypeP(datum);
+ if (ARR_NDIM(arr) != 1 ||
+ ARR_HASNULL(arr) ||
+ ARR_ELEMTYPE(arr) != CHAROID)
+ elog(ERROR, "stxkind is not a 1-D char array");
+ enabled = (char *) ARR_DATA_PTR(arr);
+ for (i = 0; i < ARR_DIMS(arr)[0]; i++)
+ {
+ Assert((enabled[i] == STATS_EXT_NDISTINCT) ||
+ (enabled[i] == STATS_EXT_DEPENDENCIES) ||
+ (enabled[i] == STATS_EXT_MCV) ||
+ (enabled[i] == STATS_EXT_EXPRESSIONS));
+ entry->types = lappend_int(entry->types, (int) enabled[i]);
+ }
+
+ /* decode expression (if any) */
+ datum = SysCacheGetAttr(STATEXTOID, htup,
+ Anum_pg_statistic_ext_stxexprs, &isnull);
+
+ if (!isnull)
+ {
+ char *exprsString;
+
+ exprsString = TextDatumGetCString(datum);
+ exprs = (List *) stringToNode(exprsString);
+
+ pfree(exprsString);
+
+ /*
+ * Run the expressions through eval_const_expressions. This is not
+ * just an optimization, but is necessary, because the planner
+ * will be comparing them to similarly-processed qual clauses, and
+ * may fail to detect valid matches without this. We must not use
+ * canonicalize_qual, however, since these aren't qual
+ * expressions.
+ */
+ exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);
+
+ /* May as well fix opfuncids too */
+ fix_opfuncids((Node *) exprs);
+ }
+
+ entry->exprs = exprs;
+
+ result = lappend(result, entry);
+ }
+
+ systable_endscan(scan);
+
+ return result;
+}
+
+/*
+ * examine_attribute -- pre-analysis of a single column
+ *
+ * Determine whether the column is analyzable; if so, create and initialize
+ * a VacAttrStats struct for it. If not, return NULL.
+ */
+static VacAttrStats *
+examine_attribute(Node *expr)
+{
+ HeapTuple typtuple;
+ VacAttrStats *stats;
+ int i;
+ bool ok;
+
+ /*
+ * Create the VacAttrStats struct. Note that we only have a copy of the
+ * fixed fields of the pg_attribute tuple.
+ */
+ stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
+
+ /* fake the attribute */
+ stats->attr = (Form_pg_attribute) palloc0(ATTRIBUTE_FIXED_PART_SIZE);
+ stats->attr->attstattarget = -1;
+
+ /*
+ * When analyzing an expression, believe the expression tree's type not
+ * the column datatype --- the latter might be the opckeytype storage type
+ * of the opclass, which is not interesting for our purposes. (Note: if
+ * we did anything with non-expression statistics columns, we'd need to
+ * figure out where to get the correct type info from, but for now that's
+ * not a problem.) It's not clear whether anyone will care about the
+ * typmod, but we store that too just in case.
+ */
+ stats->attrtypid = exprType(expr);
+ stats->attrtypmod = exprTypmod(expr);
+ stats->attrcollid = exprCollation(expr);
+
+ typtuple = SearchSysCacheCopy1(TYPEOID,
+ ObjectIdGetDatum(stats->attrtypid));
+ if (!HeapTupleIsValid(typtuple))
+ elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
+ stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
+
+ /*
+ * We don't actually analyze individual attributes, so no need to set the
+ * memory context.
+ */
+ stats->anl_context = NULL;
+ stats->tupattnum = InvalidAttrNumber;
+
+ /*
+ * The fields describing the stats->stavalues[n] element types default to
+ * the type of the data being analyzed, but the type-specific typanalyze
+ * function can change them if it wants to store something else.
+ */
+ for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
+ {
+ stats->statypid[i] = stats->attrtypid;
+ stats->statyplen[i] = stats->attrtype->typlen;
+ stats->statypbyval[i] = stats->attrtype->typbyval;
+ stats->statypalign[i] = stats->attrtype->typalign;
+ }
+
+ /*
+ * Call the type-specific typanalyze function. If none is specified, use
+ * std_typanalyze().
+ */
+ if (OidIsValid(stats->attrtype->typanalyze))
+ ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
+ PointerGetDatum(stats)));
+ else
+ ok = std_typanalyze(stats);
+
+ if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
+ {
+ heap_freetuple(typtuple);
+ pfree(stats->attr);
+ pfree(stats);
+ return NULL;
+ }
+
+ return stats;
+}
+
+/*
+ * examine_expression -- pre-analysis of a single expression
+ *
+ * Determine whether the expression is analyzable; if so, create and initialize
+ * a VacAttrStats struct for it. If not, return NULL.
+ */
+static VacAttrStats *
+examine_expression(Node *expr, int stattarget)
+{
+ HeapTuple typtuple;
+ VacAttrStats *stats;
+ int i;
+ bool ok;
+
+ Assert(expr != NULL);
+
+ /*
+ * Create the VacAttrStats struct.
+ */
+ stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
+
+ /*
+ * When analyzing an expression, believe the expression tree's type.
+ */
+ stats->attrtypid = exprType(expr);
+ stats->attrtypmod = exprTypmod(expr);
+
+ /*
+ * We don't allow collation to be specified in CREATE STATISTICS, so we
+ * have to use the collation specified for the expression. It's possible
+ * to specify the collation in the expression "(col COLLATE "en_US")" in
+ * which case exprCollation() does the right thing.
+ */
+ stats->attrcollid = exprCollation(expr);
+
+ /*
+ * We don't have any pg_attribute for expressions, so let's fake something
+ * reasonable into attstattarget, which is the only thing std_typanalyze
+ * needs.
+ */
+ stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_FIXED_PART_SIZE);
+
+ /*
+ * We can't have statistics target specified for the expression, so we
+ * could use either the default_statistics_target, or the target computed
+ * for the extended statistics. The second option seems more reasonable.
+ */
+ stats->attr->attstattarget = stattarget;
+
+ /* initialize some basic fields */
+ stats->attr->attrelid = InvalidOid;
+ stats->attr->attnum = InvalidAttrNumber;
+ stats->attr->atttypid = stats->attrtypid;
+
+ typtuple = SearchSysCacheCopy1(TYPEOID,
+ ObjectIdGetDatum(stats->attrtypid));
+ if (!HeapTupleIsValid(typtuple))
+ elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
+
+ stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
+ stats->anl_context = CurrentMemoryContext; /* XXX should be using
+ * something else? */
+ stats->tupattnum = InvalidAttrNumber;
+
+ /*
+ * The fields describing the stats->stavalues[n] element types default to
+ * the type of the data being analyzed, but the type-specific typanalyze
+ * function can change them if it wants to store something else.
+ */
+ for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
+ {
+ stats->statypid[i] = stats->attrtypid;
+ stats->statyplen[i] = stats->attrtype->typlen;
+ stats->statypbyval[i] = stats->attrtype->typbyval;
+ stats->statypalign[i] = stats->attrtype->typalign;
+ }
+
+ /*
+ * Call the type-specific typanalyze function. If none is specified, use
+ * std_typanalyze().
+ */
+ if (OidIsValid(stats->attrtype->typanalyze))
+ ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
+ PointerGetDatum(stats)));
+ else
+ ok = std_typanalyze(stats);
+
+ if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
+ {
+ heap_freetuple(typtuple);
+ pfree(stats);
+ return NULL;
+ }
+
+ return stats;
+}
+
+/*
+ * Using 'vacatts' of size 'nvacatts' as input data, return a newly built
+ * VacAttrStats array which includes only the items corresponding to
+ * attributes indicated by 'stxkeys'. If we don't have all of the per column
+ * stats available to compute the extended stats, then we return NULL to indicate
+ * to the caller that the stats should not be built.
+ */
+static VacAttrStats **
+lookup_var_attr_stats(Relation rel, Bitmapset *attrs, List *exprs,
+ int nvacatts, VacAttrStats **vacatts)
+{
+ int i = 0;
+ int x = -1;
+ int natts;
+ VacAttrStats **stats;
+ ListCell *lc;
+
+ natts = bms_num_members(attrs) + list_length(exprs);
+
+ stats = (VacAttrStats **) palloc(natts * sizeof(VacAttrStats *));
+
+ /* lookup VacAttrStats info for the requested columns (same attnum) */
+ while ((x = bms_next_member(attrs, x)) >= 0)
+ {
+ int j;
+
+ stats[i] = NULL;
+ for (j = 0; j < nvacatts; j++)
+ {
+ if (x == vacatts[j]->tupattnum)
+ {
+ stats[i] = vacatts[j];
+ break;
+ }
+ }
+
+ if (!stats[i])
+ {
+ /*
+ * Looks like stats were not gathered for one of the columns
+ * required. We'll be unable to build the extended stats without
+ * this column.
+ */
+ pfree(stats);
+ return NULL;
+ }
+
+ /*
+ * Sanity check that the column is not dropped - stats should have
+ * been removed in this case.
+ */
+ Assert(!stats[i]->attr->attisdropped);
+
+ i++;
+ }
+
+ /* also add info for expressions */
+ foreach(lc, exprs)
+ {
+ Node *expr = (Node *) lfirst(lc);
+
+ stats[i] = examine_attribute(expr);
+
+ /*
+ * XXX We need tuple descriptor later, and we just grab it from
+ * stats[0]->tupDesc (see e.g. statext_mcv_build). But as coded
+ * examine_attribute does not set that, so just grab it from the first
+ * vacatts element.
+ */
+ stats[i]->tupDesc = vacatts[0]->tupDesc;
+
+ i++;
+ }
+
+ return stats;
+}
+
+/*
+ * statext_store
+ * Serializes the statistics and stores them into the pg_statistic_ext_data
+ * tuple.
+ */
+static void
+statext_store(Oid statOid,
+ MVNDistinct *ndistinct, MVDependencies *dependencies,
+ MCVList *mcv, Datum exprs, VacAttrStats **stats)
+{
+ Relation pg_stextdata;
+ HeapTuple stup,
+ oldtup;
+ Datum values[Natts_pg_statistic_ext_data];
+ bool nulls[Natts_pg_statistic_ext_data];
+ bool replaces[Natts_pg_statistic_ext_data];
+
+ pg_stextdata = table_open(StatisticExtDataRelationId, RowExclusiveLock);
+
+ memset(nulls, true, sizeof(nulls));
+ memset(replaces, false, sizeof(replaces));
+ memset(values, 0, sizeof(values));
+
+ /*
+ * Construct a new pg_statistic_ext_data tuple, replacing the calculated
+ * stats.
+ */
+ if (ndistinct != NULL)
+ {
+ bytea *data = statext_ndistinct_serialize(ndistinct);
+
+ nulls[Anum_pg_statistic_ext_data_stxdndistinct - 1] = (data == NULL);
+ values[Anum_pg_statistic_ext_data_stxdndistinct - 1] = PointerGetDatum(data);
+ }
+
+ if (dependencies != NULL)
+ {
+ bytea *data = statext_dependencies_serialize(dependencies);
+
+ nulls[Anum_pg_statistic_ext_data_stxddependencies - 1] = (data == NULL);
+ values[Anum_pg_statistic_ext_data_stxddependencies - 1] = PointerGetDatum(data);
+ }
+ if (mcv != NULL)
+ {
+ bytea *data = statext_mcv_serialize(mcv, stats);
+
+ nulls[Anum_pg_statistic_ext_data_stxdmcv - 1] = (data == NULL);
+ values[Anum_pg_statistic_ext_data_stxdmcv - 1] = PointerGetDatum(data);
+ }
+ if (exprs != (Datum) 0)
+ {
+ nulls[Anum_pg_statistic_ext_data_stxdexpr - 1] = false;
+ values[Anum_pg_statistic_ext_data_stxdexpr - 1] = exprs;
+ }
+
+ /* always replace the value (either by bytea or NULL) */
+ replaces[Anum_pg_statistic_ext_data_stxdndistinct - 1] = true;
+ replaces[Anum_pg_statistic_ext_data_stxddependencies - 1] = true;
+ replaces[Anum_pg_statistic_ext_data_stxdmcv - 1] = true;
+ replaces[Anum_pg_statistic_ext_data_stxdexpr - 1] = true;
+
+ /* there should already be a pg_statistic_ext_data tuple */
+ oldtup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(statOid));
+ if (!HeapTupleIsValid(oldtup))
+ elog(ERROR, "cache lookup failed for statistics object %u", statOid);
+
+ /* replace it */
+ stup = heap_modify_tuple(oldtup,
+ RelationGetDescr(pg_stextdata),
+ values,
+ nulls,
+ replaces);
+ ReleaseSysCache(oldtup);
+ CatalogTupleUpdate(pg_stextdata, &stup->t_self, stup);
+
+ heap_freetuple(stup);
+
+ table_close(pg_stextdata, RowExclusiveLock);
+}
+
+/* initialize multi-dimensional sort */
+MultiSortSupport
+multi_sort_init(int ndims)
+{
+ MultiSortSupport mss;
+
+ Assert(ndims >= 2);
+
+ mss = (MultiSortSupport) palloc0(offsetof(MultiSortSupportData, ssup)
+ + sizeof(SortSupportData) * ndims);
+
+ mss->ndims = ndims;
+
+ return mss;
+}
+
+/*
+ * Prepare sort support info using the given sort operator and collation
+ * at the position 'sortdim'
+ */
+void
+multi_sort_add_dimension(MultiSortSupport mss, int sortdim,
+ Oid oper, Oid collation)
+{
+ SortSupport ssup = &mss->ssup[sortdim];
+
+ ssup->ssup_cxt = CurrentMemoryContext;
+ ssup->ssup_collation = collation;
+ ssup->ssup_nulls_first = false;
+
+ PrepareSortSupportFromOrderingOp(oper, ssup);
+}
+
+/* compare all the dimensions in the selected order */
+int
+multi_sort_compare(const void *a, const void *b, void *arg)
+{
+ MultiSortSupport mss = (MultiSortSupport) arg;
+ SortItem *ia = (SortItem *) a;
+ SortItem *ib = (SortItem *) b;
+ int i;
+
+ for (i = 0; i < mss->ndims; i++)
+ {
+ int compare;
+
+ compare = ApplySortComparator(ia->values[i], ia->isnull[i],
+ ib->values[i], ib->isnull[i],
+ &mss->ssup[i]);
+
+ if (compare != 0)
+ return compare;
+ }
+
+ /* equal by default */
+ return 0;
+}
+
+/* compare selected dimension */
+int
+multi_sort_compare_dim(int dim, const SortItem *a, const SortItem *b,
+ MultiSortSupport mss)
+{
+ return ApplySortComparator(a->values[dim], a->isnull[dim],
+ b->values[dim], b->isnull[dim],
+ &mss->ssup[dim]);
+}
+
+int
+multi_sort_compare_dims(int start, int end,
+ const SortItem *a, const SortItem *b,
+ MultiSortSupport mss)
+{
+ int dim;
+
+ for (dim = start; dim <= end; dim++)
+ {
+ int r = ApplySortComparator(a->values[dim], a->isnull[dim],
+ b->values[dim], b->isnull[dim],
+ &mss->ssup[dim]);
+
+ if (r != 0)
+ return r;
+ }
+
+ return 0;
+}
+
+int
+compare_scalars_simple(const void *a, const void *b, void *arg)
+{
+ return compare_datums_simple(*(Datum *) a,
+ *(Datum *) b,
+ (SortSupport) arg);
+}
+
+int
+compare_datums_simple(Datum a, Datum b, SortSupport ssup)
+{
+ return ApplySortComparator(a, false, b, false, ssup);
+}
+
+/*
+ * build_attnums_array
+ * Transforms a bitmap into an array of AttrNumber values.
+ *
+ * This is used for extended statistics only, so all the attribute must be
+ * user-defined. That means offsetting by FirstLowInvalidHeapAttributeNumber
+ * is not necessary here (and when querying the bitmap).
+ */
+AttrNumber *
+build_attnums_array(Bitmapset *attrs, int nexprs, int *numattrs)
+{
+ int i,
+ j;
+ AttrNumber *attnums;
+ int num = bms_num_members(attrs);
+
+ if (numattrs)
+ *numattrs = num;
+
+ /* build attnums from the bitmapset */
+ attnums = (AttrNumber *) palloc(sizeof(AttrNumber) * num);
+ i = 0;
+ j = -1;
+ while ((j = bms_next_member(attrs, j)) >= 0)
+ {
+ int attnum = (j - nexprs);
+
+ /*
+ * Make sure the bitmap contains only user-defined attributes. As
+ * bitmaps can't contain negative values, this can be violated in two
+ * ways. Firstly, the bitmap might contain 0 as a member, and secondly
+ * the integer value might be larger than MaxAttrNumber.
+ */
+ Assert(AttributeNumberIsValid(attnum));
+ Assert(attnum <= MaxAttrNumber);
+ Assert(attnum >= (-nexprs));
+
+ attnums[i++] = (AttrNumber) attnum;
+
+ /* protect against overflows */
+ Assert(i <= num);
+ }
+
+ return attnums;
+}
+
+/*
+ * build_sorted_items
+ * build a sorted array of SortItem with values from rows
+ *
+ * Note: All the memory is allocated in a single chunk, so that the caller
+ * can simply pfree the return value to release all of it.
+ */
+SortItem *
+build_sorted_items(StatsBuildData *data, int *nitems,
+ MultiSortSupport mss,
+ int numattrs, AttrNumber *attnums)
+{
+ int i,
+ j,
+ len,
+ nrows;
+ int nvalues = data->numrows * numattrs;
+
+ SortItem *items;
+ Datum *values;
+ bool *isnull;
+ char *ptr;
+ int *typlen;
+
+ /* Compute the total amount of memory we need (both items and values). */
+ len = data->numrows * sizeof(SortItem) + nvalues * (sizeof(Datum) + sizeof(bool));
+
+ /* Allocate the memory and split it into the pieces. */
+ ptr = palloc0(len);
+
+ /* items to sort */
+ items = (SortItem *) ptr;
+ ptr += data->numrows * sizeof(SortItem);
+
+ /* values and null flags */
+ values = (Datum *) ptr;
+ ptr += nvalues * sizeof(Datum);
+
+ isnull = (bool *) ptr;
+ ptr += nvalues * sizeof(bool);
+
+ /* make sure we consumed the whole buffer exactly */
+ Assert((ptr - (char *) items) == len);
+
+ /* fix the pointers to Datum and bool arrays */
+ nrows = 0;
+ for (i = 0; i < data->numrows; i++)
+ {
+ items[nrows].values = &values[nrows * numattrs];
+ items[nrows].isnull = &isnull[nrows * numattrs];
+
+ nrows++;
+ }
+
+ /* build a local cache of typlen for all attributes */
+ typlen = (int *) palloc(sizeof(int) * data->nattnums);
+ for (i = 0; i < data->nattnums; i++)
+ typlen[i] = get_typlen(data->stats[i]->attrtypid);
+
+ nrows = 0;
+ for (i = 0; i < data->numrows; i++)
+ {
+ bool toowide = false;
+
+ /* load the values/null flags from sample rows */
+ for (j = 0; j < numattrs; j++)
+ {
+ Datum value;
+ bool isnull;
+ int attlen;
+ AttrNumber attnum = attnums[j];
+
+ int idx;
+
+ /* match attnum to the pre-calculated data */
+ for (idx = 0; idx < data->nattnums; idx++)
+ {
+ if (attnum == data->attnums[idx])
+ break;
+ }
+
+ Assert(idx < data->nattnums);
+
+ value = data->values[idx][i];
+ isnull = data->nulls[idx][i];
+ attlen = typlen[idx];
+
+ /*
+ * If this is a varlena value, check if it's too wide and if yes
+ * then skip the whole item. Otherwise detoast the value.
+ *
+ * XXX It may happen that we've already detoasted some preceding
+ * values for the current item. We don't bother to cleanup those
+ * on the assumption that those are small (below WIDTH_THRESHOLD)
+ * and will be discarded at the end of analyze.
+ */
+ if ((!isnull) && (attlen == -1))
+ {
+ if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
+ {
+ toowide = true;
+ break;
+ }
+
+ value = PointerGetDatum(PG_DETOAST_DATUM(value));
+ }
+
+ items[nrows].values[j] = value;
+ items[nrows].isnull[j] = isnull;
+ }
+
+ if (toowide)
+ continue;
+
+ nrows++;
+ }
+
+ /* store the actual number of items (ignoring the too-wide ones) */
+ *nitems = nrows;
+
+ /* all items were too wide */
+ if (nrows == 0)
+ {
+ /* everything is allocated as a single chunk */
+ pfree(items);
+ return NULL;
+ }
+
+ /* do the sort, using the multi-sort */
+ qsort_interruptible((void *) items, nrows, sizeof(SortItem),
+ multi_sort_compare, mss);
+
+ return items;
+}
+
+/*
+ * has_stats_of_kind
+ * Check whether the list contains statistic of a given kind
+ */
+bool
+has_stats_of_kind(List *stats, char requiredkind)
+{
+ ListCell *l;
+
+ foreach(l, stats)
+ {
+ StatisticExtInfo *stat = (StatisticExtInfo *) lfirst(l);
+
+ if (stat->kind == requiredkind)
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * stat_find_expression
+ * Search for an expression in statistics object's list of expressions.
+ *
+ * Returns the index of the expression in the statistics object's list of
+ * expressions, or -1 if not found.
+ */
+static int
+stat_find_expression(StatisticExtInfo *stat, Node *expr)
+{
+ ListCell *lc;
+ int idx;
+
+ idx = 0;
+ foreach(lc, stat->exprs)
+ {
+ Node *stat_expr = (Node *) lfirst(lc);
+
+ if (equal(stat_expr, expr))
+ return idx;
+ idx++;
+ }
+
+ /* Expression not found */
+ return -1;
+}
+
+/*
+ * stat_covers_expressions
+ * Test whether a statistics object covers all expressions in a list.
+ *
+ * Returns true if all expressions are covered. If expr_idxs is non-NULL, it
+ * is populated with the indexes of the expressions found.
+ */
+static bool
+stat_covers_expressions(StatisticExtInfo *stat, List *exprs,
+ Bitmapset **expr_idxs)
+{
+ ListCell *lc;
+
+ foreach(lc, exprs)
+ {
+ Node *expr = (Node *) lfirst(lc);
+ int expr_idx;
+
+ expr_idx = stat_find_expression(stat, expr);
+ if (expr_idx == -1)
+ return false;
+
+ if (expr_idxs != NULL)
+ *expr_idxs = bms_add_member(*expr_idxs, expr_idx);
+ }
+
+ /* If we reach here, all expressions are covered */
+ return true;
+}
+
+/*
+ * choose_best_statistics
+ * Look for and return statistics with the specified 'requiredkind' which
+ * have keys that match at least two of the given attnums. Return NULL if
+ * there's no match.
+ *
+ * The current selection criteria is very simple - we choose the statistics
+ * object referencing the most attributes in covered (and still unestimated
+ * clauses), breaking ties in favor of objects with fewer keys overall.
+ *
+ * The clause_attnums is an array of bitmaps, storing attnums for individual
+ * clauses. A NULL element means the clause is either incompatible or already
+ * estimated.
+ *
+ * XXX If multiple statistics objects tie on both criteria, then which object
+ * is chosen depends on the order that they appear in the stats list. Perhaps
+ * further tiebreakers are needed.
+ */
+StatisticExtInfo *
+choose_best_statistics(List *stats, char requiredkind,
+ Bitmapset **clause_attnums, List **clause_exprs,
+ int nclauses)
+{
+ ListCell *lc;
+ StatisticExtInfo *best_match = NULL;
+ int best_num_matched = 2; /* goal #1: maximize */
+ int best_match_keys = (STATS_MAX_DIMENSIONS + 1); /* goal #2: minimize */
+
+ foreach(lc, stats)
+ {
+ int i;
+ StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
+ Bitmapset *matched_attnums = NULL;
+ Bitmapset *matched_exprs = NULL;
+ int num_matched;
+ int numkeys;
+
+ /* skip statistics that are not of the correct type */
+ if (info->kind != requiredkind)
+ continue;
+
+ /*
+ * Collect attributes and expressions in remaining (unestimated)
+ * clauses fully covered by this statistic object.
+ *
+ * We know already estimated clauses have both clause_attnums and
+ * clause_exprs set to NULL. We leave the pointers NULL if already
+ * estimated, or we reset them to NULL after estimating the clause.
+ */
+ for (i = 0; i < nclauses; i++)
+ {
+ Bitmapset *expr_idxs = NULL;
+
+ /* ignore incompatible/estimated clauses */
+ if (!clause_attnums[i] && !clause_exprs[i])
+ continue;
+
+ /* ignore clauses that are not covered by this object */
+ if (!bms_is_subset(clause_attnums[i], info->keys) ||
+ !stat_covers_expressions(info, clause_exprs[i], &expr_idxs))
+ continue;
+
+ /* record attnums and indexes of expressions covered */
+ matched_attnums = bms_add_members(matched_attnums, clause_attnums[i]);
+ matched_exprs = bms_add_members(matched_exprs, expr_idxs);
+ }
+
+ num_matched = bms_num_members(matched_attnums) + bms_num_members(matched_exprs);
+
+ bms_free(matched_attnums);
+ bms_free(matched_exprs);
+
+ /*
+ * save the actual number of keys in the stats so that we can choose
+ * the narrowest stats with the most matching keys.
+ */
+ numkeys = bms_num_members(info->keys) + list_length(info->exprs);
+
+ /*
+ * Use this object when it increases the number of matched attributes
+ * and expressions or when it matches the same number of attributes
+ * and expressions but these stats have fewer keys than any previous
+ * match.
+ */
+ if (num_matched > best_num_matched ||
+ (num_matched == best_num_matched && numkeys < best_match_keys))
+ {
+ best_match = info;
+ best_num_matched = num_matched;
+ best_match_keys = numkeys;
+ }
+ }
+
+ return best_match;
+}
+
+/*
+ * statext_is_compatible_clause_internal
+ * Determines if the clause is compatible with MCV lists.
+ *
+ * To be compatible, the given clause must be a combination of supported
+ * clauses built from Vars or sub-expressions (where a sub-expression is
+ * something that exactly matches an expression found in statistics objects).
+ * This function recursively examines the clause and extracts any
+ * sub-expressions that will need to be matched against statistics.
+ *
+ * Currently, we only support the following types of clauses:
+ *
+ * (a) OpExprs of the form (Var/Expr op Const), or (Const op Var/Expr), where
+ * the op is one of ("=", "<", ">", ">=", "<=")
+ *
+ * (b) (Var/Expr IS [NOT] NULL)
+ *
+ * (c) combinations using AND/OR/NOT
+ *
+ * (d) ScalarArrayOpExprs of the form (Var/Expr op ANY (Const)) or
+ * (Var/Expr op ALL (Const))
+ *
+ * In the future, the range of supported clauses may be expanded to more
+ * complex cases, for example (Var op Var).
+ *
+ * Arguments:
+ * clause: (sub)clause to be inspected (bare clause, not a RestrictInfo)
+ * relid: rel that all Vars in clause must belong to
+ * *attnums: input/output parameter collecting attribute numbers of all
+ * mentioned Vars. Note that we do not offset the attribute numbers,
+ * so we can't cope with system columns.
+ * *exprs: input/output parameter collecting primitive subclauses within
+ * the clause tree
+ *
+ * Returns false if there is something we definitively can't handle.
+ * On true return, we can proceed to match the *exprs against statistics.
+ */
+static bool
+statext_is_compatible_clause_internal(PlannerInfo *root, Node *clause,
+ Index relid, Bitmapset **attnums,
+ List **exprs)
+{
+ /* Look inside any binary-compatible relabeling (as in examine_variable) */
+ if (IsA(clause, RelabelType))
+ clause = (Node *) ((RelabelType *) clause)->arg;
+
+ /* plain Var references (boolean Vars or recursive checks) */
+ if (IsA(clause, Var))
+ {
+ Var *var = (Var *) clause;
+
+ /* Ensure var is from the correct relation */
+ if (var->varno != relid)
+ return false;
+
+ /* we also better ensure the Var is from the current level */
+ if (var->varlevelsup > 0)
+ return false;
+
+ /*
+ * Also reject system attributes and whole-row Vars (we don't allow
+ * stats on those).
+ */
+ if (!AttrNumberIsForUserDefinedAttr(var->varattno))
+ return false;
+
+ /* OK, record the attnum for later permissions checks. */
+ *attnums = bms_add_member(*attnums, var->varattno);
+
+ return true;
+ }
+
+ /* (Var/Expr op Const) or (Const op Var/Expr) */
+ if (is_opclause(clause))
+ {
+ RangeTblEntry *rte = root->simple_rte_array[relid];
+ OpExpr *expr = (OpExpr *) clause;
+ Node *clause_expr;
+
+ /* Only expressions with two arguments are considered compatible. */
+ if (list_length(expr->args) != 2)
+ return false;
+
+ /* Check if the expression has the right shape */
+ if (!examine_opclause_args(expr->args, &clause_expr, NULL, NULL))
+ return false;
+
+ /*
+ * If it's not one of the supported operators ("=", "<", ">", etc.),
+ * just ignore the clause, as it's not compatible with MCV lists.
+ *
+ * This uses the function for estimating selectivity, not the operator
+ * directly (a bit awkward, but well ...).
+ */
+ switch (get_oprrest(expr->opno))
+ {
+ case F_EQSEL:
+ case F_NEQSEL:
+ case F_SCALARLTSEL:
+ case F_SCALARLESEL:
+ case F_SCALARGTSEL:
+ case F_SCALARGESEL:
+ /* supported, will continue with inspection of the Var/Expr */
+ break;
+
+ default:
+ /* other estimators are considered unknown/unsupported */
+ return false;
+ }
+
+ /*
+ * If there are any securityQuals on the RTE from security barrier
+ * views or RLS policies, then the user may not have access to all the
+ * table's data, and we must check that the operator is leak-proof.
+ *
+ * If the operator is leaky, then we must ignore this clause for the
+ * purposes of estimating with MCV lists, otherwise the operator might
+ * reveal values from the MCV list that the user doesn't have
+ * permission to see.
+ */
+ if (rte->securityQuals != NIL &&
+ !get_func_leakproof(get_opcode(expr->opno)))
+ return false;
+
+ /* Check (Var op Const) or (Const op Var) clauses by recursing. */
+ if (IsA(clause_expr, Var))
+ return statext_is_compatible_clause_internal(root, clause_expr,
+ relid, attnums, exprs);
+
+ /* Otherwise we have (Expr op Const) or (Const op Expr). */
+ *exprs = lappend(*exprs, clause_expr);
+ return true;
+ }
+
+ /* Var/Expr IN Array */
+ if (IsA(clause, ScalarArrayOpExpr))
+ {
+ RangeTblEntry *rte = root->simple_rte_array[relid];
+ ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
+ Node *clause_expr;
+ bool expronleft;
+
+ /* Only expressions with two arguments are considered compatible. */
+ if (list_length(expr->args) != 2)
+ return false;
+
+ /* Check if the expression has the right shape (one Var, one Const) */
+ if (!examine_opclause_args(expr->args, &clause_expr, NULL, &expronleft))
+ return false;
+
+ /* We only support Var on left, Const on right */
+ if (!expronleft)
+ return false;
+
+ /*
+ * If it's not one of the supported operators ("=", "<", ">", etc.),
+ * just ignore the clause, as it's not compatible with MCV lists.
+ *
+ * This uses the function for estimating selectivity, not the operator
+ * directly (a bit awkward, but well ...).
+ */
+ switch (get_oprrest(expr->opno))
+ {
+ case F_EQSEL:
+ case F_NEQSEL:
+ case F_SCALARLTSEL:
+ case F_SCALARLESEL:
+ case F_SCALARGTSEL:
+ case F_SCALARGESEL:
+ /* supported, will continue with inspection of the Var/Expr */
+ break;
+
+ default:
+ /* other estimators are considered unknown/unsupported */
+ return false;
+ }
+
+ /*
+ * If there are any securityQuals on the RTE from security barrier
+ * views or RLS policies, then the user may not have access to all the
+ * table's data, and we must check that the operator is leak-proof.
+ *
+ * If the operator is leaky, then we must ignore this clause for the
+ * purposes of estimating with MCV lists, otherwise the operator might
+ * reveal values from the MCV list that the user doesn't have
+ * permission to see.
+ */
+ if (rte->securityQuals != NIL &&
+ !get_func_leakproof(get_opcode(expr->opno)))
+ return false;
+
+ /* Check Var IN Array clauses by recursing. */
+ if (IsA(clause_expr, Var))
+ return statext_is_compatible_clause_internal(root, clause_expr,
+ relid, attnums, exprs);
+
+ /* Otherwise we have Expr IN Array. */
+ *exprs = lappend(*exprs, clause_expr);
+ return true;
+ }
+
+ /* AND/OR/NOT clause */
+ if (is_andclause(clause) ||
+ is_orclause(clause) ||
+ is_notclause(clause))
+ {
+ /*
+ * AND/OR/NOT-clauses are supported if all sub-clauses are supported
+ *
+ * Perhaps we could improve this by handling mixed cases, when some of
+ * the clauses are supported and some are not. Selectivity for the
+ * supported subclauses would be computed using extended statistics,
+ * and the remaining clauses would be estimated using the traditional
+ * algorithm (product of selectivities).
+ *
+ * It however seems overly complex, and in a way we already do that
+ * because if we reject the whole clause as unsupported here, it will
+ * be eventually passed to clauselist_selectivity() which does exactly
+ * this (split into supported/unsupported clauses etc).
+ */
+ BoolExpr *expr = (BoolExpr *) clause;
+ ListCell *lc;
+
+ foreach(lc, expr->args)
+ {
+ /*
+ * If we find an incompatible clause in the arguments, treat the
+ * whole clause as incompatible.
+ */
+ if (!statext_is_compatible_clause_internal(root,
+ (Node *) lfirst(lc),
+ relid, attnums, exprs))
+ return false;
+ }
+
+ return true;
+ }
+
+ /* Var/Expr IS NULL */
+ if (IsA(clause, NullTest))
+ {
+ NullTest *nt = (NullTest *) clause;
+
+ /* Check Var IS NULL clauses by recursing. */
+ if (IsA(nt->arg, Var))
+ return statext_is_compatible_clause_internal(root, (Node *) (nt->arg),
+ relid, attnums, exprs);
+
+ /* Otherwise we have Expr IS NULL. */
+ *exprs = lappend(*exprs, nt->arg);
+ return true;
+ }
+
+ /*
+ * Treat any other expressions as bare expressions to be matched against
+ * expressions in statistics objects.
+ */
+ *exprs = lappend(*exprs, clause);
+ return true;
+}
+
+/*
+ * statext_is_compatible_clause
+ * Determines if the clause is compatible with MCV lists.
+ *
+ * See statext_is_compatible_clause_internal, above, for the basic rules.
+ * This layer deals with RestrictInfo superstructure and applies permissions
+ * checks to verify that it's okay to examine all mentioned Vars.
+ *
+ * Arguments:
+ * clause: clause to be inspected (in RestrictInfo form)
+ * relid: rel that all Vars in clause must belong to
+ * *attnums: input/output parameter collecting attribute numbers of all
+ * mentioned Vars. Note that we do not offset the attribute numbers,
+ * so we can't cope with system columns.
+ * *exprs: input/output parameter collecting primitive subclauses within
+ * the clause tree
+ *
+ * Returns false if there is something we definitively can't handle.
+ * On true return, we can proceed to match the *exprs against statistics.
+ */
+static bool
+statext_is_compatible_clause(PlannerInfo *root, Node *clause, Index relid,
+ Bitmapset **attnums, List **exprs)
+{
+ RangeTblEntry *rte = root->simple_rte_array[relid];
+ RestrictInfo *rinfo;
+ int clause_relid;
+ Oid userid;
+
+ /*
+ * Special-case handling for bare BoolExpr AND clauses, because the
+ * restrictinfo machinery doesn't build RestrictInfos on top of AND
+ * clauses.
+ */
+ if (is_andclause(clause))
+ {
+ BoolExpr *expr = (BoolExpr *) clause;
+ ListCell *lc;
+
+ /*
+ * Check that each sub-clause is compatible. We expect these to be
+ * RestrictInfos.
+ */
+ foreach(lc, expr->args)
+ {
+ if (!statext_is_compatible_clause(root, (Node *) lfirst(lc),
+ relid, attnums, exprs))
+ return false;
+ }
+
+ return true;
+ }
+
+ /* Otherwise it must be a RestrictInfo. */
+ if (!IsA(clause, RestrictInfo))
+ return false;
+ rinfo = (RestrictInfo *) clause;
+
+ /* Pseudoconstants are not really interesting here. */
+ if (rinfo->pseudoconstant)
+ return false;
+
+ /* Clauses referencing other varnos are incompatible. */
+ if (!bms_get_singleton_member(rinfo->clause_relids, &clause_relid) ||
+ clause_relid != relid)
+ return false;
+
+ /* Check the clause and determine what attributes it references. */
+ if (!statext_is_compatible_clause_internal(root, (Node *) rinfo->clause,
+ relid, attnums, exprs))
+ return false;
+
+ /*
+ * Check that the user has permission to read all required attributes. Use
+ * checkAsUser if it's set, in case we're accessing the table via a view.
+ */
+ userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
+
+ /* Table-level SELECT privilege is sufficient for all columns */
+ if (pg_class_aclcheck(rte->relid, userid, ACL_SELECT) != ACLCHECK_OK)
+ {
+ Bitmapset *clause_attnums = NULL;
+ int attnum = -1;
+
+ /*
+ * We have to check per-column privileges. *attnums has the attnums
+ * for individual Vars we saw, but there may also be Vars within
+ * subexpressions in *exprs. We can use pull_varattnos() to extract
+ * those, but there's an impedance mismatch: attnums returned by
+ * pull_varattnos() are offset by FirstLowInvalidHeapAttributeNumber,
+ * while attnums within *attnums aren't. Convert *attnums to the
+ * offset style so we can combine the results.
+ */
+ while ((attnum = bms_next_member(*attnums, attnum)) >= 0)
+ {
+ clause_attnums =
+ bms_add_member(clause_attnums,
+ attnum - FirstLowInvalidHeapAttributeNumber);
+ }
+
+ /* Now merge attnums from *exprs into clause_attnums */
+ if (*exprs != NIL)
+ pull_varattnos((Node *) *exprs, relid, &clause_attnums);
+
+ attnum = -1;
+ while ((attnum = bms_next_member(clause_attnums, attnum)) >= 0)
+ {
+ /* Undo the offset */
+ AttrNumber attno = attnum + FirstLowInvalidHeapAttributeNumber;
+
+ if (attno == InvalidAttrNumber)
+ {
+ /* Whole-row reference, so must have access to all columns */
+ if (pg_attribute_aclcheck_all(rte->relid, userid, ACL_SELECT,
+ ACLMASK_ALL) != ACLCHECK_OK)
+ return false;
+ }
+ else
+ {
+ if (pg_attribute_aclcheck(rte->relid, attno, userid,
+ ACL_SELECT) != ACLCHECK_OK)
+ return false;
+ }
+ }
+ }
+
+ /* If we reach here, the clause is OK */
+ return true;
+}
+
+/*
+ * statext_mcv_clauselist_selectivity
+ * Estimate clauses using the best multi-column statistics.
+ *
+ * Applies available extended (multi-column) statistics on a table. There may
+ * be multiple applicable statistics (with respect to the clauses), in which
+ * case we use greedy approach. In each round we select the best statistic on
+ * a table (measured by the number of attributes extracted from the clauses
+ * and covered by it), and compute the selectivity for the supplied clauses.
+ * We repeat this process with the remaining clauses (if any), until none of
+ * the available statistics can be used.
+ *
+ * One of the main challenges with using MCV lists is how to extrapolate the
+ * estimate to the data not covered by the MCV list. To do that, we compute
+ * not only the "MCV selectivity" (selectivities for MCV items matching the
+ * supplied clauses), but also the following related selectivities:
+ *
+ * - simple selectivity: Computed without extended statistics, i.e. as if the
+ * columns/clauses were independent.
+ *
+ * - base selectivity: Similar to simple selectivity, but is computed using
+ * the extended statistic by adding up the base frequencies (that we compute
+ * and store for each MCV item) of matching MCV items.
+ *
+ * - total selectivity: Selectivity covered by the whole MCV list.
+ *
+ * These are passed to mcv_combine_selectivities() which combines them to
+ * produce a selectivity estimate that makes use of both per-column statistics
+ * and the multi-column MCV statistics.
+ *
+ * 'estimatedclauses' is an input/output parameter. We set bits for the
+ * 0-based 'clauses' indexes we estimate for and also skip clause items that
+ * already have a bit set.
+ */
+static Selectivity
+statext_mcv_clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid,
+ JoinType jointype, SpecialJoinInfo *sjinfo,
+ RelOptInfo *rel, Bitmapset **estimatedclauses,
+ bool is_or)
+{
+ ListCell *l;
+ Bitmapset **list_attnums; /* attnums extracted from the clause */
+ List **list_exprs; /* expressions matched to any statistic */
+ int listidx;
+ Selectivity sel = (is_or) ? 0.0 : 1.0;
+ RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
+
+ /*
+ * When dealing with regular inheritance trees, ignore extended stats
+ * (which were built without data from child rels, and thus do not
+ * represent them). For partitioned tables data there's no data in the
+ * non-leaf relations, so we build stats only for the inheritance tree.
+ * So for partitioned tables we do consider extended stats.
+ */
+ if (rte->inh && rte->relkind != RELKIND_PARTITIONED_TABLE)
+ return sel;
+
+ /* check if there's any stats that might be useful for us. */
+ if (!has_stats_of_kind(rel->statlist, STATS_EXT_MCV))
+ return sel;
+
+ list_attnums = (Bitmapset **) palloc(sizeof(Bitmapset *) *
+ list_length(clauses));
+
+ /* expressions extracted from complex expressions */
+ list_exprs = (List **) palloc(sizeof(Node *) * list_length(clauses));
+
+ /*
+ * Pre-process the clauses list to extract the attnums and expressions
+ * seen in each item. We need to determine if there are any clauses which
+ * will be useful for selectivity estimations with extended stats. Along
+ * the way we'll record all of the attnums and expressions for each clause
+ * in lists which we'll reference later so we don't need to repeat the
+ * same work again.
+ *
+ * We also skip clauses that we already estimated using different types of
+ * statistics (we treat them as incompatible).
+ */
+ listidx = 0;
+ foreach(l, clauses)
+ {
+ Node *clause = (Node *) lfirst(l);
+ Bitmapset *attnums = NULL;
+ List *exprs = NIL;
+
+ if (!bms_is_member(listidx, *estimatedclauses) &&
+ statext_is_compatible_clause(root, clause, rel->relid, &attnums, &exprs))
+ {
+ list_attnums[listidx] = attnums;
+ list_exprs[listidx] = exprs;
+ }
+ else
+ {
+ list_attnums[listidx] = NULL;
+ list_exprs[listidx] = NIL;
+ }
+
+ listidx++;
+ }
+
+ /* apply as many extended statistics as possible */
+ while (true)
+ {
+ StatisticExtInfo *stat;
+ List *stat_clauses;
+ Bitmapset *simple_clauses;
+
+ /* find the best suited statistics object for these attnums */
+ stat = choose_best_statistics(rel->statlist, STATS_EXT_MCV,
+ list_attnums, list_exprs,
+ list_length(clauses));
+
+ /*
+ * if no (additional) matching stats could be found then we've nothing
+ * to do
+ */
+ if (!stat)
+ break;
+
+ /* Ensure choose_best_statistics produced an expected stats type. */
+ Assert(stat->kind == STATS_EXT_MCV);
+
+ /* now filter the clauses to be estimated using the selected MCV */
+ stat_clauses = NIL;
+
+ /* record which clauses are simple (single column or expression) */
+ simple_clauses = NULL;
+
+ listidx = -1;
+ foreach(l, clauses)
+ {
+ /* Increment the index before we decide if to skip the clause. */
+ listidx++;
+
+ /*
+ * Ignore clauses from which we did not extract any attnums or
+ * expressions (this needs to be consistent with what we do in
+ * choose_best_statistics).
+ *
+ * This also eliminates already estimated clauses - both those
+ * estimated before and during applying extended statistics.
+ *
+ * XXX This check is needed because both bms_is_subset and
+ * stat_covers_expressions return true for empty attnums and
+ * expressions.
+ */
+ if (!list_attnums[listidx] && !list_exprs[listidx])
+ continue;
+
+ /*
+ * The clause was not estimated yet, and we've extracted either
+ * attnums or expressions from it. Ignore it if it's not fully
+ * covered by the chosen statistics object.
+ *
+ * We need to check both attributes and expressions, and reject if
+ * either is not covered.
+ */
+ if (!bms_is_subset(list_attnums[listidx], stat->keys) ||
+ !stat_covers_expressions(stat, list_exprs[listidx], NULL))
+ continue;
+
+ /*
+ * Now we know the clause is compatible (we have either attnums or
+ * expressions extracted from it), and was not estimated yet.
+ */
+
+ /* record simple clauses (single column or expression) */
+ if ((list_attnums[listidx] == NULL &&
+ list_length(list_exprs[listidx]) == 1) ||
+ (list_exprs[listidx] == NIL &&
+ bms_membership(list_attnums[listidx]) == BMS_SINGLETON))
+ simple_clauses = bms_add_member(simple_clauses,
+ list_length(stat_clauses));
+
+ /* add clause to list and mark it as estimated */
+ stat_clauses = lappend(stat_clauses, (Node *) lfirst(l));
+ *estimatedclauses = bms_add_member(*estimatedclauses, listidx);
+
+ /*
+ * Reset the pointers, so that choose_best_statistics knows this
+ * clause was estimated and does not consider it again.
+ */
+ bms_free(list_attnums[listidx]);
+ list_attnums[listidx] = NULL;
+
+ list_free(list_exprs[listidx]);
+ list_exprs[listidx] = NULL;
+ }
+
+ if (is_or)
+ {
+ bool *or_matches = NULL;
+ Selectivity simple_or_sel = 0.0,
+ stat_sel = 0.0;
+ MCVList *mcv_list;
+
+ /* Load the MCV list stored in the statistics object */
+ mcv_list = statext_mcv_load(stat->statOid);
+
+ /*
+ * Compute the selectivity of the ORed list of clauses covered by
+ * this statistics object by estimating each in turn and combining
+ * them using the formula P(A OR B) = P(A) + P(B) - P(A AND B).
+ * This allows us to use the multivariate MCV stats to better
+ * estimate the individual terms and their overlap.
+ *
+ * Each time we iterate this formula, the clause "A" above is
+ * equal to all the clauses processed so far, combined with "OR".
+ */
+ listidx = 0;
+ foreach(l, stat_clauses)
+ {
+ Node *clause = (Node *) lfirst(l);
+ Selectivity simple_sel,
+ overlap_simple_sel,
+ mcv_sel,
+ mcv_basesel,
+ overlap_mcvsel,
+ overlap_basesel,
+ mcv_totalsel,
+ clause_sel,
+ overlap_sel;
+
+ /*
+ * "Simple" selectivity of the next clause and its overlap
+ * with any of the previous clauses. These are our initial
+ * estimates of P(B) and P(A AND B), assuming independence of
+ * columns/clauses.
+ */
+ simple_sel = clause_selectivity_ext(root, clause, varRelid,
+ jointype, sjinfo, false);
+
+ overlap_simple_sel = simple_or_sel * simple_sel;
+
+ /*
+ * New "simple" selectivity of all clauses seen so far,
+ * assuming independence.
+ */
+ simple_or_sel += simple_sel - overlap_simple_sel;
+ CLAMP_PROBABILITY(simple_or_sel);
+
+ /*
+ * Multi-column estimate of this clause using MCV statistics,
+ * along with base and total selectivities, and corresponding
+ * selectivities for the overlap term P(A AND B).
+ */
+ mcv_sel = mcv_clause_selectivity_or(root, stat, mcv_list,
+ clause, &or_matches,
+ &mcv_basesel,
+ &overlap_mcvsel,
+ &overlap_basesel,
+ &mcv_totalsel);
+
+ /*
+ * Combine the simple and multi-column estimates.
+ *
+ * If this clause is a simple single-column clause, then we
+ * just use the simple selectivity estimate for it, since the
+ * multi-column statistics are unlikely to improve on that
+ * (and in fact could make it worse). For the overlap, we
+ * always make use of the multi-column statistics.
+ */
+ if (bms_is_member(listidx, simple_clauses))
+ clause_sel = simple_sel;
+ else
+ clause_sel = mcv_combine_selectivities(simple_sel,
+ mcv_sel,
+ mcv_basesel,
+ mcv_totalsel);
+
+ overlap_sel = mcv_combine_selectivities(overlap_simple_sel,
+ overlap_mcvsel,
+ overlap_basesel,
+ mcv_totalsel);
+
+ /* Factor these into the result for this statistics object */
+ stat_sel += clause_sel - overlap_sel;
+ CLAMP_PROBABILITY(stat_sel);
+
+ listidx++;
+ }
+
+ /*
+ * Factor the result for this statistics object into the overall
+ * result. We treat the results from each separate statistics
+ * object as independent of one another.
+ */
+ sel = sel + stat_sel - sel * stat_sel;
+ }
+ else /* Implicitly-ANDed list of clauses */
+ {
+ Selectivity simple_sel,
+ mcv_sel,
+ mcv_basesel,
+ mcv_totalsel,
+ stat_sel;
+
+ /*
+ * "Simple" selectivity, i.e. without any extended statistics,
+ * essentially assuming independence of the columns/clauses.
+ */
+ simple_sel = clauselist_selectivity_ext(root, stat_clauses,
+ varRelid, jointype,
+ sjinfo, false);
+
+ /*
+ * Multi-column estimate using MCV statistics, along with base and
+ * total selectivities.
+ */
+ mcv_sel = mcv_clauselist_selectivity(root, stat, stat_clauses,
+ varRelid, jointype, sjinfo,
+ rel, &mcv_basesel,
+ &mcv_totalsel);
+
+ /* Combine the simple and multi-column estimates. */
+ stat_sel = mcv_combine_selectivities(simple_sel,
+ mcv_sel,
+ mcv_basesel,
+ mcv_totalsel);
+
+ /* Factor this into the overall result */
+ sel *= stat_sel;
+ }
+ }
+
+ return sel;
+}
+
+/*
+ * statext_clauselist_selectivity
+ * Estimate clauses using the best multi-column statistics.
+ */
+Selectivity
+statext_clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid,
+ JoinType jointype, SpecialJoinInfo *sjinfo,
+ RelOptInfo *rel, Bitmapset **estimatedclauses,
+ bool is_or)
+{
+ Selectivity sel;
+
+ /* First, try estimating clauses using a multivariate MCV list. */
+ sel = statext_mcv_clauselist_selectivity(root, clauses, varRelid, jointype,
+ sjinfo, rel, estimatedclauses, is_or);
+
+ /*
+ * Functional dependencies only work for clauses connected by AND, so for
+ * OR clauses we're done.
+ */
+ if (is_or)
+ return sel;
+
+ /*
+ * Then, apply functional dependencies on the remaining clauses by calling
+ * dependencies_clauselist_selectivity. Pass 'estimatedclauses' so the
+ * function can properly skip clauses already estimated above.
+ *
+ * The reasoning for applying dependencies last is that the more complex
+ * stats can track more complex correlations between the attributes, and
+ * so may be considered more reliable.
+ *
+ * For example, MCV list can give us an exact selectivity for values in
+ * two columns, while functional dependencies can only provide information
+ * about the overall strength of the dependency.
+ */
+ sel *= dependencies_clauselist_selectivity(root, clauses, varRelid,
+ jointype, sjinfo, rel,
+ estimatedclauses);
+
+ return sel;
+}
+
+/*
+ * examine_opclause_args
+ * Split an operator expression's arguments into Expr and Const parts.
+ *
+ * Attempts to match the arguments to either (Expr op Const) or (Const op
+ * Expr), possibly with a RelabelType on top. When the expression matches this
+ * form, returns true, otherwise returns false.
+ *
+ * Optionally returns pointers to the extracted Expr/Const nodes, when passed
+ * non-null pointers (exprp, cstp and expronleftp). The expronleftp flag
+ * specifies on which side of the operator we found the expression node.
+ */
+bool
+examine_opclause_args(List *args, Node **exprp, Const **cstp,
+ bool *expronleftp)
+{
+ Node *expr;
+ Const *cst;
+ bool expronleft;
+ Node *leftop,
+ *rightop;
+
+ /* enforced by statext_is_compatible_clause_internal */
+ Assert(list_length(args) == 2);
+
+ leftop = linitial(args);
+ rightop = lsecond(args);
+
+ /* strip RelabelType from either side of the expression */
+ if (IsA(leftop, RelabelType))
+ leftop = (Node *) ((RelabelType *) leftop)->arg;
+
+ if (IsA(rightop, RelabelType))
+ rightop = (Node *) ((RelabelType *) rightop)->arg;
+
+ if (IsA(rightop, Const))
+ {
+ expr = (Node *) leftop;
+ cst = (Const *) rightop;
+ expronleft = true;
+ }
+ else if (IsA(leftop, Const))
+ {
+ expr = (Node *) rightop;
+ cst = (Const *) leftop;
+ expronleft = false;
+ }
+ else
+ return false;
+
+ /* return pointers to the extracted parts if requested */
+ if (exprp)
+ *exprp = expr;
+
+ if (cstp)
+ *cstp = cst;
+
+ if (expronleftp)
+ *expronleftp = expronleft;
+
+ return true;
+}
+
+
+/*
+ * Compute statistics about expressions of a relation.
+ */
+static void
+compute_expr_stats(Relation onerel, double totalrows,
+ AnlExprData *exprdata, int nexprs,
+ HeapTuple *rows, int numrows)
+{
+ MemoryContext expr_context,
+ old_context;
+ int ind,
+ i;
+
+ expr_context = AllocSetContextCreate(CurrentMemoryContext,
+ "Analyze Expression",
+ ALLOCSET_DEFAULT_SIZES);
+ old_context = MemoryContextSwitchTo(expr_context);
+
+ for (ind = 0; ind < nexprs; ind++)
+ {
+ AnlExprData *thisdata = &exprdata[ind];
+ VacAttrStats *stats = thisdata->vacattrstat;
+ Node *expr = thisdata->expr;
+ TupleTableSlot *slot;
+ EState *estate;
+ ExprContext *econtext;
+ Datum *exprvals;
+ bool *exprnulls;
+ ExprState *exprstate;
+ int tcnt;
+
+ /* Are we still in the main context? */
+ Assert(CurrentMemoryContext == expr_context);
+
+ /*
+ * Need an EState for evaluation of expressions. Create it in the
+ * per-expression context to be sure it gets cleaned up at the bottom
+ * of the loop.
+ */
+ estate = CreateExecutorState();
+ econtext = GetPerTupleExprContext(estate);
+
+ /* Set up expression evaluation state */
+ exprstate = ExecPrepareExpr((Expr *) expr, estate);
+
+ /* Need a slot to hold the current heap tuple, too */
+ slot = MakeSingleTupleTableSlot(RelationGetDescr(onerel),
+ &TTSOpsHeapTuple);
+
+ /* Arrange for econtext's scan tuple to be the tuple under test */
+ econtext->ecxt_scantuple = slot;
+
+ /* Compute and save expression values */
+ exprvals = (Datum *) palloc(numrows * sizeof(Datum));
+ exprnulls = (bool *) palloc(numrows * sizeof(bool));
+
+ tcnt = 0;
+ for (i = 0; i < numrows; i++)
+ {
+ Datum datum;
+ bool isnull;
+
+ /*
+ * Reset the per-tuple context each time, to reclaim any cruft
+ * left behind by evaluating the statistics expressions.
+ */
+ ResetExprContext(econtext);
+
+ /* Set up for expression evaluation */
+ ExecStoreHeapTuple(rows[i], slot, false);
+
+ /*
+ * Evaluate the expression. We do this in the per-tuple context so
+ * as not to leak memory, and then copy the result into the
+ * context created at the beginning of this function.
+ */
+ datum = ExecEvalExprSwitchContext(exprstate,
+ GetPerTupleExprContext(estate),
+ &isnull);
+ if (isnull)
+ {
+ exprvals[tcnt] = (Datum) 0;
+ exprnulls[tcnt] = true;
+ }
+ else
+ {
+ /* Make sure we copy the data into the context. */
+ Assert(CurrentMemoryContext == expr_context);
+
+ exprvals[tcnt] = datumCopy(datum,
+ stats->attrtype->typbyval,
+ stats->attrtype->typlen);
+ exprnulls[tcnt] = false;
+ }
+
+ tcnt++;
+ }
+
+ /*
+ * Now we can compute the statistics for the expression columns.
+ *
+ * XXX Unlike compute_index_stats we don't need to switch and reset
+ * memory contexts here, because we're only computing stats for a
+ * single expression (and not iterating over many indexes), so we just
+ * do it in expr_context. Note that compute_stats copies the result
+ * into stats->anl_context, so it does not disappear.
+ */
+ if (tcnt > 0)
+ {
+ AttributeOpts *aopt =
+ get_attribute_options(stats->attr->attrelid,
+ stats->attr->attnum);
+
+ stats->exprvals = exprvals;
+ stats->exprnulls = exprnulls;
+ stats->rowstride = 1;
+ stats->compute_stats(stats,
+ expr_fetch_func,
+ tcnt,
+ tcnt);
+
+ /*
+ * If the n_distinct option is specified, it overrides the above
+ * computation.
+ */
+ if (aopt != NULL && aopt->n_distinct != 0.0)
+ stats->stadistinct = aopt->n_distinct;
+ }
+
+ /* And clean up */
+ MemoryContextSwitchTo(expr_context);
+
+ ExecDropSingleTupleTableSlot(slot);
+ FreeExecutorState(estate);
+ MemoryContextResetAndDeleteChildren(expr_context);
+ }
+
+ MemoryContextSwitchTo(old_context);
+ MemoryContextDelete(expr_context);
+}
+
+
+/*
+ * Fetch function for analyzing statistics object expressions.
+ *
+ * We have not bothered to construct tuples from the data, instead the data
+ * is just in Datum arrays.
+ */
+static Datum
+expr_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
+{
+ int i;
+
+ /* exprvals and exprnulls are already offset for proper column */
+ i = rownum * stats->rowstride;
+ *isNull = stats->exprnulls[i];
+ return stats->exprvals[i];
+}
+
+/*
+ * Build analyze data for a list of expressions. As this is not tied
+ * directly to a relation (table or index), we have to fake some of
+ * the fields in examine_expression().
+ */
+static AnlExprData *
+build_expr_data(List *exprs, int stattarget)
+{
+ int idx;
+ int nexprs = list_length(exprs);
+ AnlExprData *exprdata;
+ ListCell *lc;
+
+ exprdata = (AnlExprData *) palloc0(nexprs * sizeof(AnlExprData));
+
+ idx = 0;
+ foreach(lc, exprs)
+ {
+ Node *expr = (Node *) lfirst(lc);
+ AnlExprData *thisdata = &exprdata[idx];
+
+ thisdata->expr = expr;
+ thisdata->vacattrstat = examine_expression(expr, stattarget);
+ idx++;
+ }
+
+ return exprdata;
+}
+
+/* form an array of pg_statistic rows (per update_attstats) */
+static Datum
+serialize_expr_stats(AnlExprData *exprdata, int nexprs)
+{
+ int exprno;
+ Oid typOid;
+ Relation sd;
+
+ ArrayBuildState *astate = NULL;
+
+ sd = table_open(StatisticRelationId, RowExclusiveLock);
+
+ /* lookup OID of composite type for pg_statistic */
+ typOid = get_rel_type_id(StatisticRelationId);
+ if (!OidIsValid(typOid))
+ ereport(ERROR,
+ (errcode(ERRCODE_WRONG_OBJECT_TYPE),
+ errmsg("relation \"%s\" does not have a composite type",
+ "pg_statistic")));
+
+ for (exprno = 0; exprno < nexprs; exprno++)
+ {
+ int i,
+ k;
+ VacAttrStats *stats = exprdata[exprno].vacattrstat;
+
+ Datum values[Natts_pg_statistic];
+ bool nulls[Natts_pg_statistic];
+ HeapTuple stup;
+
+ if (!stats->stats_valid)
+ {
+ astate = accumArrayResult(astate,
+ (Datum) 0,
+ true,
+ typOid,
+ CurrentMemoryContext);
+ continue;
+ }
+
+ /*
+ * Construct a new pg_statistic tuple
+ */
+ for (i = 0; i < Natts_pg_statistic; ++i)
+ {
+ nulls[i] = false;
+ }
+
+ values[Anum_pg_statistic_starelid - 1] = ObjectIdGetDatum(InvalidOid);
+ values[Anum_pg_statistic_staattnum - 1] = Int16GetDatum(InvalidAttrNumber);
+ values[Anum_pg_statistic_stainherit - 1] = BoolGetDatum(false);
+ values[Anum_pg_statistic_stanullfrac - 1] = Float4GetDatum(stats->stanullfrac);
+ values[Anum_pg_statistic_stawidth - 1] = Int32GetDatum(stats->stawidth);
+ values[Anum_pg_statistic_stadistinct - 1] = Float4GetDatum(stats->stadistinct);
+ i = Anum_pg_statistic_stakind1 - 1;
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
+ }
+ i = Anum_pg_statistic_staop1 - 1;
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
+ }
+ i = Anum_pg_statistic_stacoll1 - 1;
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ values[i++] = ObjectIdGetDatum(stats->stacoll[k]); /* stacollN */
+ }
+ i = Anum_pg_statistic_stanumbers1 - 1;
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ int nnum = stats->numnumbers[k];
+
+ if (nnum > 0)
+ {
+ int n;
+ Datum *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
+ ArrayType *arry;
+
+ for (n = 0; n < nnum; n++)
+ numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
+ /* XXX knows more than it should about type float4: */
+ arry = construct_array(numdatums, nnum,
+ FLOAT4OID,
+ sizeof(float4), true, TYPALIGN_INT);
+ values[i++] = PointerGetDatum(arry); /* stanumbersN */
+ }
+ else
+ {
+ nulls[i] = true;
+ values[i++] = (Datum) 0;
+ }
+ }
+ i = Anum_pg_statistic_stavalues1 - 1;
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ if (stats->numvalues[k] > 0)
+ {
+ ArrayType *arry;
+
+ arry = construct_array(stats->stavalues[k],
+ stats->numvalues[k],
+ stats->statypid[k],
+ stats->statyplen[k],
+ stats->statypbyval[k],
+ stats->statypalign[k]);
+ values[i++] = PointerGetDatum(arry); /* stavaluesN */
+ }
+ else
+ {
+ nulls[i] = true;
+ values[i++] = (Datum) 0;
+ }
+ }
+
+ stup = heap_form_tuple(RelationGetDescr(sd), values, nulls);
+
+ astate = accumArrayResult(astate,
+ heap_copy_tuple_as_datum(stup, RelationGetDescr(sd)),
+ false,
+ typOid,
+ CurrentMemoryContext);
+ }
+
+ table_close(sd, RowExclusiveLock);
+
+ return makeArrayResult(astate, CurrentMemoryContext);
+}
+
+/*
+ * Loads pg_statistic record from expression statistics for expression
+ * identified by the supplied index.
+ */
+HeapTuple
+statext_expressions_load(Oid stxoid, int idx)
+{
+ bool isnull;
+ Datum value;
+ HeapTuple htup;
+ ExpandedArrayHeader *eah;
+ HeapTupleHeader td;
+ HeapTupleData tmptup;
+ HeapTuple tup;
+
+ htup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(stxoid));
+ if (!HeapTupleIsValid(htup))
+ elog(ERROR, "cache lookup failed for statistics object %u", stxoid);
+
+ value = SysCacheGetAttr(STATEXTDATASTXOID, htup,
+ Anum_pg_statistic_ext_data_stxdexpr, &isnull);
+ if (isnull)
+ elog(ERROR,
+ "requested statistics kind \"%c\" is not yet built for statistics object %u",
+ STATS_EXT_DEPENDENCIES, stxoid);
+
+ eah = DatumGetExpandedArray(value);
+
+ deconstruct_expanded_array(eah);
+
+ td = DatumGetHeapTupleHeader(eah->dvalues[idx]);
+
+ /* Build a temporary HeapTuple control structure */
+ tmptup.t_len = HeapTupleHeaderGetDatumLength(td);
+ ItemPointerSetInvalid(&(tmptup.t_self));
+ tmptup.t_tableOid = InvalidOid;
+ tmptup.t_data = td;
+
+ tup = heap_copytuple(&tmptup);
+
+ ReleaseSysCache(htup);
+
+ return tup;
+}
+
+/*
+ * Evaluate the expressions, so that we can use the results to build
+ * all the requested statistics types. This matters especially for
+ * expensive expressions, of course.
+ */
+static StatsBuildData *
+make_build_data(Relation rel, StatExtEntry *stat, int numrows, HeapTuple *rows,
+ VacAttrStats **stats, int stattarget)
+{
+ /* evaluated expressions */
+ StatsBuildData *result;
+ char *ptr;
+ Size len;
+
+ int i;
+ int k;
+ int idx;
+ TupleTableSlot *slot;
+ EState *estate;
+ ExprContext *econtext;
+ List *exprstates = NIL;
+ int nkeys = bms_num_members(stat->columns) + list_length(stat->exprs);
+ ListCell *lc;
+
+ /* allocate everything as a single chunk, so we can free it easily */
+ len = MAXALIGN(sizeof(StatsBuildData));
+ len += MAXALIGN(sizeof(AttrNumber) * nkeys); /* attnums */
+ len += MAXALIGN(sizeof(VacAttrStats *) * nkeys); /* stats */
+
+ /* values */
+ len += MAXALIGN(sizeof(Datum *) * nkeys);
+ len += nkeys * MAXALIGN(sizeof(Datum) * numrows);
+
+ /* nulls */
+ len += MAXALIGN(sizeof(bool *) * nkeys);
+ len += nkeys * MAXALIGN(sizeof(bool) * numrows);
+
+ ptr = palloc(len);
+
+ /* set the pointers */
+ result = (StatsBuildData *) ptr;
+ ptr += MAXALIGN(sizeof(StatsBuildData));
+
+ /* attnums */
+ result->attnums = (AttrNumber *) ptr;
+ ptr += MAXALIGN(sizeof(AttrNumber) * nkeys);
+
+ /* stats */
+ result->stats = (VacAttrStats **) ptr;
+ ptr += MAXALIGN(sizeof(VacAttrStats *) * nkeys);
+
+ /* values */
+ result->values = (Datum **) ptr;
+ ptr += MAXALIGN(sizeof(Datum *) * nkeys);
+
+ /* nulls */
+ result->nulls = (bool **) ptr;
+ ptr += MAXALIGN(sizeof(bool *) * nkeys);
+
+ for (i = 0; i < nkeys; i++)
+ {
+ result->values[i] = (Datum *) ptr;
+ ptr += MAXALIGN(sizeof(Datum) * numrows);
+
+ result->nulls[i] = (bool *) ptr;
+ ptr += MAXALIGN(sizeof(bool) * numrows);
+ }
+
+ Assert((ptr - (char *) result) == len);
+
+ /* we have it allocated, so let's fill the values */
+ result->nattnums = nkeys;
+ result->numrows = numrows;
+
+ /* fill the attribute info - first attributes, then expressions */
+ idx = 0;
+ k = -1;
+ while ((k = bms_next_member(stat->columns, k)) >= 0)
+ {
+ result->attnums[idx] = k;
+ result->stats[idx] = stats[idx];
+
+ idx++;
+ }
+
+ k = -1;
+ foreach(lc, stat->exprs)
+ {
+ Node *expr = (Node *) lfirst(lc);
+
+ result->attnums[idx] = k;
+ result->stats[idx] = examine_expression(expr, stattarget);
+
+ idx++;
+ k--;
+ }
+
+ /* first extract values for all the regular attributes */
+ for (i = 0; i < numrows; i++)
+ {
+ idx = 0;
+ k = -1;
+ while ((k = bms_next_member(stat->columns, k)) >= 0)
+ {
+ result->values[idx][i] = heap_getattr(rows[i], k,
+ result->stats[idx]->tupDesc,
+ &result->nulls[idx][i]);
+
+ idx++;
+ }
+ }
+
+ /* Need an EState for evaluation expressions. */
+ estate = CreateExecutorState();
+ econtext = GetPerTupleExprContext(estate);
+
+ /* Need a slot to hold the current heap tuple, too */
+ slot = MakeSingleTupleTableSlot(RelationGetDescr(rel),
+ &TTSOpsHeapTuple);
+
+ /* Arrange for econtext's scan tuple to be the tuple under test */
+ econtext->ecxt_scantuple = slot;
+
+ /* Set up expression evaluation state */
+ exprstates = ExecPrepareExprList(stat->exprs, estate);
+
+ for (i = 0; i < numrows; i++)
+ {
+ /*
+ * Reset the per-tuple context each time, to reclaim any cruft left
+ * behind by evaluating the statistics object expressions.
+ */
+ ResetExprContext(econtext);
+
+ /* Set up for expression evaluation */
+ ExecStoreHeapTuple(rows[i], slot, false);
+
+ idx = bms_num_members(stat->columns);
+ foreach(lc, exprstates)
+ {
+ Datum datum;
+ bool isnull;
+ ExprState *exprstate = (ExprState *) lfirst(lc);
+
+ /*
+ * XXX This probably leaks memory. Maybe we should use
+ * ExecEvalExprSwitchContext but then we need to copy the result
+ * somewhere else.
+ */
+ datum = ExecEvalExpr(exprstate,
+ GetPerTupleExprContext(estate),
+ &isnull);
+ if (isnull)
+ {
+ result->values[idx][i] = (Datum) 0;
+ result->nulls[idx][i] = true;
+ }
+ else
+ {
+ result->values[idx][i] = (Datum) datum;
+ result->nulls[idx][i] = false;
+ }
+
+ idx++;
+ }
+ }
+
+ ExecDropSingleTupleTableSlot(slot);
+ FreeExecutorState(estate);
+
+ return result;
+}