summaryrefslogtreecommitdiffstats
path: root/src/backend/storage/page
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/storage/page
parentInitial commit. (diff)
downloadpostgresql-14-upstream.tar.xz
postgresql-14-upstream.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/storage/page')
-rw-r--r--src/backend/storage/page/Makefile23
-rw-r--r--src/backend/storage/page/README64
-rw-r--r--src/backend/storage/page/bufpage.c1539
-rw-r--r--src/backend/storage/page/checksum.c22
-rw-r--r--src/backend/storage/page/itemptr.c132
5 files changed, 1780 insertions, 0 deletions
diff --git a/src/backend/storage/page/Makefile b/src/backend/storage/page/Makefile
new file mode 100644
index 0000000..da539b1
--- /dev/null
+++ b/src/backend/storage/page/Makefile
@@ -0,0 +1,23 @@
+#-------------------------------------------------------------------------
+#
+# Makefile--
+# Makefile for storage/page
+#
+# IDENTIFICATION
+# src/backend/storage/page/Makefile
+#
+#-------------------------------------------------------------------------
+
+subdir = src/backend/storage/page
+top_builddir = ../../../..
+include $(top_builddir)/src/Makefile.global
+
+OBJS = \
+ bufpage.o \
+ checksum.o \
+ itemptr.o
+
+include $(top_srcdir)/src/backend/common.mk
+
+# Provide special optimization flags for checksum.c
+checksum.o: CFLAGS += ${CFLAGS_UNROLL_LOOPS} ${CFLAGS_VECTORIZE}
diff --git a/src/backend/storage/page/README b/src/backend/storage/page/README
new file mode 100644
index 0000000..e30d7ac
--- /dev/null
+++ b/src/backend/storage/page/README
@@ -0,0 +1,64 @@
+src/backend/storage/page/README
+
+Checksums
+---------
+
+Checksums on data pages are designed to detect corruption by the I/O system.
+We do not protect buffers against uncorrectable memory errors, since these
+have a very low measured incidence according to research on large server farms,
+http://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf, discussed
+2010/12/22 on -hackers list.
+
+Current implementation requires this be enabled system-wide at initdb time, or
+by using the pg_checksums tool on an offline cluster.
+
+The checksum is not valid at all times on a data page!!
+The checksum is valid when the page leaves the shared pool and is checked
+when it later re-enters the shared pool as a result of I/O.
+We set the checksum on a buffer in the shared pool immediately before we
+flush the buffer. As a result we implicitly invalidate the page's checksum
+when we modify the page for a data change or even a hint. This means that
+many or even most pages in shared buffers have invalid page checksums,
+so be careful how you interpret the pd_checksum field.
+
+That means that WAL-logged changes to a page do NOT update the page checksum,
+so full page images may not have a valid checksum. But those page images have
+the WAL CRC covering them and so are verified separately from this
+mechanism. WAL replay should not test the checksum of a full-page image.
+
+The best way to understand this is that WAL CRCs protect records entering the
+WAL stream, and data page verification protects blocks entering the shared
+buffer pool. They are similar in purpose, yet completely separate. Together
+they ensure we are able to detect errors in data re-entering
+PostgreSQL-controlled memory. Note also that the WAL checksum is a 32-bit CRC,
+whereas the page checksum is only 16-bits.
+
+Any write of a data block can cause a torn page if the write is unsuccessful.
+Full page writes protect us from that, which are stored in WAL. Setting hint
+bits when a page is already dirty is OK because a full page write must already
+have been written for it since the last checkpoint. Setting hint bits on an
+otherwise clean page can allow torn pages; this doesn't normally matter since
+they are just hints, but when the page has checksums, then losing a few bits
+would cause the checksum to be invalid. So if we have full_page_writes = on
+and checksums enabled then we must write a WAL record specifically so that we
+record a full page image in WAL. Hint bits updates should be protected using
+MarkBufferDirtyHint(), which is responsible for writing the full-page image
+when necessary.
+
+Note that when we write a page checksum we include the hopefully zeroed bytes
+that form the hole in the centre of a standard page. Thus, when we read the
+block back from storage we implicitly check that the hole is still all zeroes.
+We do this to ensure that we spot errors that could have destroyed data even
+if they haven't actually done so. Full page images stored in WAL do *not*
+check that the hole is all zero; the data in the hole is simply skipped and
+re-zeroed if the backup block is reapplied. We do this because a failure in
+WAL is a fatal error and prevents further recovery, whereas a checksum failure
+on a normal data block is a hard error but not a critical one for the server,
+even if it is a very bad thing for the user.
+
+New WAL records cannot be written during recovery, so hint bits set during
+recovery must not dirty the page if the buffer is not already dirty, when
+checksums are enabled. Systems in Hot-Standby mode may benefit from hint bits
+being set, but with checksums enabled, a page cannot be dirtied after setting a
+hint bit (due to the torn page risk). So, it must wait for full-page images
+containing the hint bit updates to arrive from the primary.
diff --git a/src/backend/storage/page/bufpage.c b/src/backend/storage/page/bufpage.c
new file mode 100644
index 0000000..82ca91f
--- /dev/null
+++ b/src/backend/storage/page/bufpage.c
@@ -0,0 +1,1539 @@
+/*-------------------------------------------------------------------------
+ *
+ * bufpage.c
+ * POSTGRES standard buffer page code.
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/storage/page/bufpage.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "access/htup_details.h"
+#include "access/itup.h"
+#include "access/xlog.h"
+#include "pgstat.h"
+#include "storage/checksum.h"
+#include "utils/memdebug.h"
+#include "utils/memutils.h"
+
+
+/* GUC variable */
+bool ignore_checksum_failure = false;
+
+
+/* ----------------------------------------------------------------
+ * Page support functions
+ * ----------------------------------------------------------------
+ */
+
+/*
+ * PageInit
+ * Initializes the contents of a page.
+ * Note that we don't calculate an initial checksum here; that's not done
+ * until it's time to write.
+ */
+void
+PageInit(Page page, Size pageSize, Size specialSize)
+{
+ PageHeader p = (PageHeader) page;
+
+ specialSize = MAXALIGN(specialSize);
+
+ Assert(pageSize == BLCKSZ);
+ Assert(pageSize > specialSize + SizeOfPageHeaderData);
+
+ /* Make sure all fields of page are zero, as well as unused space */
+ MemSet(p, 0, pageSize);
+
+ p->pd_flags = 0;
+ p->pd_lower = SizeOfPageHeaderData;
+ p->pd_upper = pageSize - specialSize;
+ p->pd_special = pageSize - specialSize;
+ PageSetPageSizeAndVersion(page, pageSize, PG_PAGE_LAYOUT_VERSION);
+ /* p->pd_prune_xid = InvalidTransactionId; done by above MemSet */
+}
+
+
+/*
+ * PageIsVerifiedExtended
+ * Check that the page header and checksum (if any) appear valid.
+ *
+ * This is called when a page has just been read in from disk. The idea is
+ * to cheaply detect trashed pages before we go nuts following bogus line
+ * pointers, testing invalid transaction identifiers, etc.
+ *
+ * It turns out to be necessary to allow zeroed pages here too. Even though
+ * this routine is *not* called when deliberately adding a page to a relation,
+ * there are scenarios in which a zeroed page might be found in a table.
+ * (Example: a backend extends a relation, then crashes before it can write
+ * any WAL entry about the new page. The kernel will already have the
+ * zeroed page in the file, and it will stay that way after restart.) So we
+ * allow zeroed pages here, and are careful that the page access macros
+ * treat such a page as empty and without free space. Eventually, VACUUM
+ * will clean up such a page and make it usable.
+ *
+ * If flag PIV_LOG_WARNING is set, a WARNING is logged in the event of
+ * a checksum failure.
+ *
+ * If flag PIV_REPORT_STAT is set, a checksum failure is reported directly
+ * to pgstat.
+ */
+bool
+PageIsVerifiedExtended(Page page, BlockNumber blkno, int flags)
+{
+ PageHeader p = (PageHeader) page;
+ size_t *pagebytes;
+ int i;
+ bool checksum_failure = false;
+ bool header_sane = false;
+ bool all_zeroes = false;
+ uint16 checksum = 0;
+
+ /*
+ * Don't verify page data unless the page passes basic non-zero test
+ */
+ if (!PageIsNew(page))
+ {
+ if (DataChecksumsEnabled())
+ {
+ checksum = pg_checksum_page((char *) page, blkno);
+
+ if (checksum != p->pd_checksum)
+ checksum_failure = true;
+ }
+
+ /*
+ * The following checks don't prove the header is correct, only that
+ * it looks sane enough to allow into the buffer pool. Later usage of
+ * the block can still reveal problems, which is why we offer the
+ * checksum option.
+ */
+ if ((p->pd_flags & ~PD_VALID_FLAG_BITS) == 0 &&
+ p->pd_lower <= p->pd_upper &&
+ p->pd_upper <= p->pd_special &&
+ p->pd_special <= BLCKSZ &&
+ p->pd_special == MAXALIGN(p->pd_special))
+ header_sane = true;
+
+ if (header_sane && !checksum_failure)
+ return true;
+ }
+
+ /* Check all-zeroes case */
+ all_zeroes = true;
+ pagebytes = (size_t *) page;
+ for (i = 0; i < (BLCKSZ / sizeof(size_t)); i++)
+ {
+ if (pagebytes[i] != 0)
+ {
+ all_zeroes = false;
+ break;
+ }
+ }
+
+ if (all_zeroes)
+ return true;
+
+ /*
+ * Throw a WARNING if the checksum fails, but only after we've checked for
+ * the all-zeroes case.
+ */
+ if (checksum_failure)
+ {
+ if ((flags & PIV_LOG_WARNING) != 0)
+ ereport(WARNING,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("page verification failed, calculated checksum %u but expected %u",
+ checksum, p->pd_checksum)));
+
+ if ((flags & PIV_REPORT_STAT) != 0)
+ pgstat_report_checksum_failure();
+
+ if (header_sane && ignore_checksum_failure)
+ return true;
+ }
+
+ return false;
+}
+
+
+/*
+ * PageAddItemExtended
+ *
+ * Add an item to a page. Return value is the offset at which it was
+ * inserted, or InvalidOffsetNumber if the item is not inserted for any
+ * reason. A WARNING is issued indicating the reason for the refusal.
+ *
+ * offsetNumber must be either InvalidOffsetNumber to specify finding a
+ * free line pointer, or a value between FirstOffsetNumber and one past
+ * the last existing item, to specify using that particular line pointer.
+ *
+ * If offsetNumber is valid and flag PAI_OVERWRITE is set, we just store
+ * the item at the specified offsetNumber, which must be either a
+ * currently-unused line pointer, or one past the last existing item.
+ *
+ * If offsetNumber is valid and flag PAI_OVERWRITE is not set, insert
+ * the item at the specified offsetNumber, moving existing items later
+ * in the array to make room.
+ *
+ * If offsetNumber is not valid, then assign a slot by finding the first
+ * one that is both unused and deallocated.
+ *
+ * If flag PAI_IS_HEAP is set, we enforce that there can't be more than
+ * MaxHeapTuplesPerPage line pointers on the page.
+ *
+ * !!! EREPORT(ERROR) IS DISALLOWED HERE !!!
+ */
+OffsetNumber
+PageAddItemExtended(Page page,
+ Item item,
+ Size size,
+ OffsetNumber offsetNumber,
+ int flags)
+{
+ PageHeader phdr = (PageHeader) page;
+ Size alignedSize;
+ int lower;
+ int upper;
+ ItemId itemId;
+ OffsetNumber limit;
+ bool needshuffle = false;
+
+ /*
+ * Be wary about corrupted page pointers
+ */
+ if (phdr->pd_lower < SizeOfPageHeaderData ||
+ phdr->pd_lower > phdr->pd_upper ||
+ phdr->pd_upper > phdr->pd_special ||
+ phdr->pd_special > BLCKSZ)
+ ereport(PANIC,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
+ phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
+
+ /*
+ * Select offsetNumber to place the new item at
+ */
+ limit = OffsetNumberNext(PageGetMaxOffsetNumber(page));
+
+ /* was offsetNumber passed in? */
+ if (OffsetNumberIsValid(offsetNumber))
+ {
+ /* yes, check it */
+ if ((flags & PAI_OVERWRITE) != 0)
+ {
+ if (offsetNumber < limit)
+ {
+ itemId = PageGetItemId(phdr, offsetNumber);
+ if (ItemIdIsUsed(itemId) || ItemIdHasStorage(itemId))
+ {
+ elog(WARNING, "will not overwrite a used ItemId");
+ return InvalidOffsetNumber;
+ }
+ }
+ }
+ else
+ {
+ if (offsetNumber < limit)
+ needshuffle = true; /* need to move existing linp's */
+ }
+ }
+ else
+ {
+ /* offsetNumber was not passed in, so find a free slot */
+ /* if no free slot, we'll put it at limit (1st open slot) */
+ if (PageHasFreeLinePointers(phdr))
+ {
+ /*
+ * Scan line pointer array to locate a "recyclable" (unused)
+ * ItemId.
+ *
+ * Always use earlier items first. PageTruncateLinePointerArray
+ * can only truncate unused items when they appear as a contiguous
+ * group at the end of the line pointer array.
+ */
+ for (offsetNumber = FirstOffsetNumber;
+ offsetNumber < limit; /* limit is maxoff+1 */
+ offsetNumber++)
+ {
+ itemId = PageGetItemId(phdr, offsetNumber);
+
+ /*
+ * We check for no storage as well, just to be paranoid;
+ * unused items should never have storage. Assert() that the
+ * invariant is respected too.
+ */
+ Assert(ItemIdIsUsed(itemId) || !ItemIdHasStorage(itemId));
+
+ if (!ItemIdIsUsed(itemId) && !ItemIdHasStorage(itemId))
+ break;
+ }
+ if (offsetNumber >= limit)
+ {
+ /* the hint is wrong, so reset it */
+ PageClearHasFreeLinePointers(phdr);
+ }
+ }
+ else
+ {
+ /* don't bother searching if hint says there's no free slot */
+ offsetNumber = limit;
+ }
+ }
+
+ /* Reject placing items beyond the first unused line pointer */
+ if (offsetNumber > limit)
+ {
+ elog(WARNING, "specified item offset is too large");
+ return InvalidOffsetNumber;
+ }
+
+ /* Reject placing items beyond heap boundary, if heap */
+ if ((flags & PAI_IS_HEAP) != 0 && offsetNumber > MaxHeapTuplesPerPage)
+ {
+ elog(WARNING, "can't put more than MaxHeapTuplesPerPage items in a heap page");
+ return InvalidOffsetNumber;
+ }
+
+ /*
+ * Compute new lower and upper pointers for page, see if it'll fit.
+ *
+ * Note: do arithmetic as signed ints, to avoid mistakes if, say,
+ * alignedSize > pd_upper.
+ */
+ if (offsetNumber == limit || needshuffle)
+ lower = phdr->pd_lower + sizeof(ItemIdData);
+ else
+ lower = phdr->pd_lower;
+
+ alignedSize = MAXALIGN(size);
+
+ upper = (int) phdr->pd_upper - (int) alignedSize;
+
+ if (lower > upper)
+ return InvalidOffsetNumber;
+
+ /*
+ * OK to insert the item. First, shuffle the existing pointers if needed.
+ */
+ itemId = PageGetItemId(phdr, offsetNumber);
+
+ if (needshuffle)
+ memmove(itemId + 1, itemId,
+ (limit - offsetNumber) * sizeof(ItemIdData));
+
+ /* set the line pointer */
+ ItemIdSetNormal(itemId, upper, size);
+
+ /*
+ * Items normally contain no uninitialized bytes. Core bufpage consumers
+ * conform, but this is not a necessary coding rule; a new index AM could
+ * opt to depart from it. However, data type input functions and other
+ * C-language functions that synthesize datums should initialize all
+ * bytes; datumIsEqual() relies on this. Testing here, along with the
+ * similar check in printtup(), helps to catch such mistakes.
+ *
+ * Values of the "name" type retrieved via index-only scans may contain
+ * uninitialized bytes; see comment in btrescan(). Valgrind will report
+ * this as an error, but it is safe to ignore.
+ */
+ VALGRIND_CHECK_MEM_IS_DEFINED(item, size);
+
+ /* copy the item's data onto the page */
+ memcpy((char *) page + upper, item, size);
+
+ /* adjust page header */
+ phdr->pd_lower = (LocationIndex) lower;
+ phdr->pd_upper = (LocationIndex) upper;
+
+ return offsetNumber;
+}
+
+
+/*
+ * PageGetTempPage
+ * Get a temporary page in local memory for special processing.
+ * The returned page is not initialized at all; caller must do that.
+ */
+Page
+PageGetTempPage(Page page)
+{
+ Size pageSize;
+ Page temp;
+
+ pageSize = PageGetPageSize(page);
+ temp = (Page) palloc(pageSize);
+
+ return temp;
+}
+
+/*
+ * PageGetTempPageCopy
+ * Get a temporary page in local memory for special processing.
+ * The page is initialized by copying the contents of the given page.
+ */
+Page
+PageGetTempPageCopy(Page page)
+{
+ Size pageSize;
+ Page temp;
+
+ pageSize = PageGetPageSize(page);
+ temp = (Page) palloc(pageSize);
+
+ memcpy(temp, page, pageSize);
+
+ return temp;
+}
+
+/*
+ * PageGetTempPageCopySpecial
+ * Get a temporary page in local memory for special processing.
+ * The page is PageInit'd with the same special-space size as the
+ * given page, and the special space is copied from the given page.
+ */
+Page
+PageGetTempPageCopySpecial(Page page)
+{
+ Size pageSize;
+ Page temp;
+
+ pageSize = PageGetPageSize(page);
+ temp = (Page) palloc(pageSize);
+
+ PageInit(temp, pageSize, PageGetSpecialSize(page));
+ memcpy(PageGetSpecialPointer(temp),
+ PageGetSpecialPointer(page),
+ PageGetSpecialSize(page));
+
+ return temp;
+}
+
+/*
+ * PageRestoreTempPage
+ * Copy temporary page back to permanent page after special processing
+ * and release the temporary page.
+ */
+void
+PageRestoreTempPage(Page tempPage, Page oldPage)
+{
+ Size pageSize;
+
+ pageSize = PageGetPageSize(tempPage);
+ memcpy((char *) oldPage, (char *) tempPage, pageSize);
+
+ pfree(tempPage);
+}
+
+/*
+ * Tuple defrag support for PageRepairFragmentation and PageIndexMultiDelete
+ */
+typedef struct itemIdCompactData
+{
+ uint16 offsetindex; /* linp array index */
+ int16 itemoff; /* page offset of item data */
+ uint16 alignedlen; /* MAXALIGN(item data len) */
+} itemIdCompactData;
+typedef itemIdCompactData *itemIdCompact;
+
+/*
+ * After removing or marking some line pointers unused, move the tuples to
+ * remove the gaps caused by the removed items and reorder them back into
+ * reverse line pointer order in the page.
+ *
+ * This function can often be fairly hot, so it pays to take some measures to
+ * make it as optimal as possible.
+ *
+ * Callers may pass 'presorted' as true if the 'itemidbase' array is sorted in
+ * descending order of itemoff. When this is true we can just memmove()
+ * tuples towards the end of the page. This is quite a common case as it's
+ * the order that tuples are initially inserted into pages. When we call this
+ * function to defragment the tuples in the page then any new line pointers
+ * added to the page will keep that presorted order, so hitting this case is
+ * still very common for tables that are commonly updated.
+ *
+ * When the 'itemidbase' array is not presorted then we're unable to just
+ * memmove() tuples around freely. Doing so could cause us to overwrite the
+ * memory belonging to a tuple we've not moved yet. In this case, we copy all
+ * the tuples that need to be moved into a temporary buffer. We can then
+ * simply memcpy() out of that temp buffer back into the page at the correct
+ * location. Tuples are copied back into the page in the same order as the
+ * 'itemidbase' array, so we end up reordering the tuples back into reverse
+ * line pointer order. This will increase the chances of hitting the
+ * presorted case the next time around.
+ *
+ * Callers must ensure that nitems is > 0
+ */
+static void
+compactify_tuples(itemIdCompact itemidbase, int nitems, Page page, bool presorted)
+{
+ PageHeader phdr = (PageHeader) page;
+ Offset upper;
+ Offset copy_tail;
+ Offset copy_head;
+ itemIdCompact itemidptr;
+ int i;
+
+ /* Code within will not work correctly if nitems == 0 */
+ Assert(nitems > 0);
+
+ if (presorted)
+ {
+
+#ifdef USE_ASSERT_CHECKING
+ {
+ /*
+ * Verify we've not gotten any new callers that are incorrectly
+ * passing a true presorted value.
+ */
+ Offset lastoff = phdr->pd_special;
+
+ for (i = 0; i < nitems; i++)
+ {
+ itemidptr = &itemidbase[i];
+
+ Assert(lastoff > itemidptr->itemoff);
+
+ lastoff = itemidptr->itemoff;
+ }
+ }
+#endif /* USE_ASSERT_CHECKING */
+
+ /*
+ * 'itemidbase' is already in the optimal order, i.e, lower item
+ * pointers have a higher offset. This allows us to memmove() the
+ * tuples up to the end of the page without having to worry about
+ * overwriting other tuples that have not been moved yet.
+ *
+ * There's a good chance that there are tuples already right at the
+ * end of the page that we can simply skip over because they're
+ * already in the correct location within the page. We'll do that
+ * first...
+ */
+ upper = phdr->pd_special;
+ i = 0;
+ do
+ {
+ itemidptr = &itemidbase[i];
+ if (upper != itemidptr->itemoff + itemidptr->alignedlen)
+ break;
+ upper -= itemidptr->alignedlen;
+
+ i++;
+ } while (i < nitems);
+
+ /*
+ * Now that we've found the first tuple that needs to be moved, we can
+ * do the tuple compactification. We try and make the least number of
+ * memmove() calls and only call memmove() when there's a gap. When
+ * we see a gap we just move all tuples after the gap up until the
+ * point of the last move operation.
+ */
+ copy_tail = copy_head = itemidptr->itemoff + itemidptr->alignedlen;
+ for (; i < nitems; i++)
+ {
+ ItemId lp;
+
+ itemidptr = &itemidbase[i];
+ lp = PageGetItemId(page, itemidptr->offsetindex + 1);
+
+ if (copy_head != itemidptr->itemoff + itemidptr->alignedlen)
+ {
+ memmove((char *) page + upper,
+ page + copy_head,
+ copy_tail - copy_head);
+
+ /*
+ * We've now moved all tuples already seen, but not the
+ * current tuple, so we set the copy_tail to the end of this
+ * tuple so it can be moved in another iteration of the loop.
+ */
+ copy_tail = itemidptr->itemoff + itemidptr->alignedlen;
+ }
+ /* shift the target offset down by the length of this tuple */
+ upper -= itemidptr->alignedlen;
+ /* point the copy_head to the start of this tuple */
+ copy_head = itemidptr->itemoff;
+
+ /* update the line pointer to reference the new offset */
+ lp->lp_off = upper;
+
+ }
+
+ /* move the remaining tuples. */
+ memmove((char *) page + upper,
+ page + copy_head,
+ copy_tail - copy_head);
+ }
+ else
+ {
+ PGAlignedBlock scratch;
+ char *scratchptr = scratch.data;
+
+ /*
+ * Non-presorted case: The tuples in the itemidbase array may be in
+ * any order. So, in order to move these to the end of the page we
+ * must make a temp copy of each tuple that needs to be moved before
+ * we copy them back into the page at the new offset.
+ *
+ * If a large percentage of tuples have been pruned (>75%) then we'll
+ * copy these into the temp buffer tuple-by-tuple, otherwise, we'll
+ * just do a single memcpy() for all tuples that need to be moved.
+ * When so many tuples have been removed there's likely to be a lot of
+ * gaps and it's unlikely that many non-movable tuples remain at the
+ * end of the page.
+ */
+ if (nitems < PageGetMaxOffsetNumber(page) / 4)
+ {
+ i = 0;
+ do
+ {
+ itemidptr = &itemidbase[i];
+ memcpy(scratchptr + itemidptr->itemoff, page + itemidptr->itemoff,
+ itemidptr->alignedlen);
+ i++;
+ } while (i < nitems);
+
+ /* Set things up for the compactification code below */
+ i = 0;
+ itemidptr = &itemidbase[0];
+ upper = phdr->pd_special;
+ }
+ else
+ {
+ upper = phdr->pd_special;
+
+ /*
+ * Many tuples are likely to already be in the correct location.
+ * There's no need to copy these into the temp buffer. Instead
+ * we'll just skip forward in the itemidbase array to the position
+ * that we do need to move tuples from so that the code below just
+ * leaves these ones alone.
+ */
+ i = 0;
+ do
+ {
+ itemidptr = &itemidbase[i];
+ if (upper != itemidptr->itemoff + itemidptr->alignedlen)
+ break;
+ upper -= itemidptr->alignedlen;
+
+ i++;
+ } while (i < nitems);
+
+ /* Copy all tuples that need to be moved into the temp buffer */
+ memcpy(scratchptr + phdr->pd_upper,
+ page + phdr->pd_upper,
+ upper - phdr->pd_upper);
+ }
+
+ /*
+ * Do the tuple compactification. itemidptr is already pointing to
+ * the first tuple that we're going to move. Here we collapse the
+ * memcpy calls for adjacent tuples into a single call. This is done
+ * by delaying the memcpy call until we find a gap that needs to be
+ * closed.
+ */
+ copy_tail = copy_head = itemidptr->itemoff + itemidptr->alignedlen;
+ for (; i < nitems; i++)
+ {
+ ItemId lp;
+
+ itemidptr = &itemidbase[i];
+ lp = PageGetItemId(page, itemidptr->offsetindex + 1);
+
+ /* copy pending tuples when we detect a gap */
+ if (copy_head != itemidptr->itemoff + itemidptr->alignedlen)
+ {
+ memcpy((char *) page + upper,
+ scratchptr + copy_head,
+ copy_tail - copy_head);
+
+ /*
+ * We've now copied all tuples already seen, but not the
+ * current tuple, so we set the copy_tail to the end of this
+ * tuple.
+ */
+ copy_tail = itemidptr->itemoff + itemidptr->alignedlen;
+ }
+ /* shift the target offset down by the length of this tuple */
+ upper -= itemidptr->alignedlen;
+ /* point the copy_head to the start of this tuple */
+ copy_head = itemidptr->itemoff;
+
+ /* update the line pointer to reference the new offset */
+ lp->lp_off = upper;
+
+ }
+
+ /* Copy the remaining chunk */
+ memcpy((char *) page + upper,
+ scratchptr + copy_head,
+ copy_tail - copy_head);
+ }
+
+ phdr->pd_upper = upper;
+}
+
+/*
+ * PageRepairFragmentation
+ *
+ * Frees fragmented space on a heap page following pruning.
+ *
+ * This routine is usable for heap pages only, but see PageIndexMultiDelete.
+ *
+ * Never removes unused line pointers. PageTruncateLinePointerArray can
+ * safely remove some unused line pointers. It ought to be safe for this
+ * routine to free unused line pointers in roughly the same way, but it's not
+ * clear that that would be beneficial.
+ *
+ * PageTruncateLinePointerArray is only called during VACUUM's second pass
+ * over the heap. Any unused line pointers that it sees are likely to have
+ * been set to LP_UNUSED (from LP_DEAD) immediately before the time it is
+ * called. On the other hand, many tables have the vast majority of all
+ * required pruning performed opportunistically (not during VACUUM). And so
+ * there is, in general, a good chance that even large groups of unused line
+ * pointers that we see here will be recycled quickly.
+ *
+ * Caller had better have a super-exclusive lock on page's buffer. As a side
+ * effect the page's PD_HAS_FREE_LINES hint bit will be set or unset as
+ * needed.
+ */
+void
+PageRepairFragmentation(Page page)
+{
+ Offset pd_lower = ((PageHeader) page)->pd_lower;
+ Offset pd_upper = ((PageHeader) page)->pd_upper;
+ Offset pd_special = ((PageHeader) page)->pd_special;
+ Offset last_offset;
+ itemIdCompactData itemidbase[MaxHeapTuplesPerPage];
+ itemIdCompact itemidptr;
+ ItemId lp;
+ int nline,
+ nstorage,
+ nunused;
+ int i;
+ Size totallen;
+ bool presorted = true; /* For now */
+
+ /*
+ * It's worth the trouble to be more paranoid here than in most places,
+ * because we are about to reshuffle data in (what is usually) a shared
+ * disk buffer. If we aren't careful then corrupted pointers, lengths,
+ * etc could cause us to clobber adjacent disk buffers, spreading the data
+ * loss further. So, check everything.
+ */
+ if (pd_lower < SizeOfPageHeaderData ||
+ pd_lower > pd_upper ||
+ pd_upper > pd_special ||
+ pd_special > BLCKSZ ||
+ pd_special != MAXALIGN(pd_special))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
+ pd_lower, pd_upper, pd_special)));
+
+ /*
+ * Run through the line pointer array and collect data about live items.
+ */
+ nline = PageGetMaxOffsetNumber(page);
+ itemidptr = itemidbase;
+ nunused = totallen = 0;
+ last_offset = pd_special;
+ for (i = FirstOffsetNumber; i <= nline; i++)
+ {
+ lp = PageGetItemId(page, i);
+ if (ItemIdIsUsed(lp))
+ {
+ if (ItemIdHasStorage(lp))
+ {
+ itemidptr->offsetindex = i - 1;
+ itemidptr->itemoff = ItemIdGetOffset(lp);
+
+ if (last_offset > itemidptr->itemoff)
+ last_offset = itemidptr->itemoff;
+ else
+ presorted = false;
+
+ if (unlikely(itemidptr->itemoff < (int) pd_upper ||
+ itemidptr->itemoff >= (int) pd_special))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted line pointer: %u",
+ itemidptr->itemoff)));
+ itemidptr->alignedlen = MAXALIGN(ItemIdGetLength(lp));
+ totallen += itemidptr->alignedlen;
+ itemidptr++;
+ }
+ }
+ else
+ {
+ /* Unused entries should have lp_len = 0, but make sure */
+ ItemIdSetUnused(lp);
+ nunused++;
+ }
+ }
+
+ nstorage = itemidptr - itemidbase;
+ if (nstorage == 0)
+ {
+ /* Page is completely empty, so just reset it quickly */
+ ((PageHeader) page)->pd_upper = pd_special;
+ }
+ else
+ {
+ /* Need to compact the page the hard way */
+ if (totallen > (Size) (pd_special - pd_lower))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted item lengths: total %u, available space %u",
+ (unsigned int) totallen, pd_special - pd_lower)));
+
+ compactify_tuples(itemidbase, nstorage, page, presorted);
+ }
+
+ /* Set hint bit for PageAddItemExtended */
+ if (nunused > 0)
+ PageSetHasFreeLinePointers(page);
+ else
+ PageClearHasFreeLinePointers(page);
+}
+
+/*
+ * PageTruncateLinePointerArray
+ *
+ * Removes unused line pointers at the end of the line pointer array.
+ *
+ * This routine is usable for heap pages only. It is called by VACUUM during
+ * its second pass over the heap. We expect at least one LP_UNUSED line
+ * pointer on the page (if VACUUM didn't have an LP_DEAD item on the page that
+ * it just set to LP_UNUSED then it should not call here).
+ *
+ * We avoid truncating the line pointer array to 0 items, if necessary by
+ * leaving behind a single remaining LP_UNUSED item. This is a little
+ * arbitrary, but it seems like a good idea to avoid leaving a PageIsEmpty()
+ * page behind.
+ *
+ * Caller can have either an exclusive lock or a super-exclusive lock on
+ * page's buffer. The page's PD_HAS_FREE_LINES hint bit will be set or unset
+ * based on whether or not we leave behind any remaining LP_UNUSED items.
+ */
+void
+PageTruncateLinePointerArray(Page page)
+{
+ PageHeader phdr = (PageHeader) page;
+ bool countdone = false,
+ sethint = false;
+ int nunusedend = 0;
+
+ /* Scan line pointer array back-to-front */
+ for (int i = PageGetMaxOffsetNumber(page); i >= FirstOffsetNumber; i--)
+ {
+ ItemId lp = PageGetItemId(page, i);
+
+ if (!countdone && i > FirstOffsetNumber)
+ {
+ /*
+ * Still determining which line pointers from the end of the array
+ * will be truncated away. Either count another line pointer as
+ * safe to truncate, or notice that it's not safe to truncate
+ * additional line pointers (stop counting line pointers).
+ */
+ if (!ItemIdIsUsed(lp))
+ nunusedend++;
+ else
+ countdone = true;
+ }
+ else
+ {
+ /*
+ * Once we've stopped counting we still need to figure out if
+ * there are any remaining LP_UNUSED line pointers somewhere more
+ * towards the front of the array.
+ */
+ if (!ItemIdIsUsed(lp))
+ {
+ /*
+ * This is an unused line pointer that we won't be truncating
+ * away -- so there is at least one. Set hint on page.
+ */
+ sethint = true;
+ break;
+ }
+ }
+ }
+
+ if (nunusedend > 0)
+ {
+ phdr->pd_lower -= sizeof(ItemIdData) * nunusedend;
+
+#ifdef CLOBBER_FREED_MEMORY
+ memset((char *) page + phdr->pd_lower, 0x7F,
+ sizeof(ItemIdData) * nunusedend);
+#endif
+ }
+ else
+ Assert(sethint);
+
+ /* Set hint bit for PageAddItemExtended */
+ if (sethint)
+ PageSetHasFreeLinePointers(page);
+ else
+ PageClearHasFreeLinePointers(page);
+}
+
+/*
+ * PageGetFreeSpace
+ * Returns the size of the free (allocatable) space on a page,
+ * reduced by the space needed for a new line pointer.
+ *
+ * Note: this should usually only be used on index pages. Use
+ * PageGetHeapFreeSpace on heap pages.
+ */
+Size
+PageGetFreeSpace(Page page)
+{
+ int space;
+
+ /*
+ * Use signed arithmetic here so that we behave sensibly if pd_lower >
+ * pd_upper.
+ */
+ space = (int) ((PageHeader) page)->pd_upper -
+ (int) ((PageHeader) page)->pd_lower;
+
+ if (space < (int) sizeof(ItemIdData))
+ return 0;
+ space -= sizeof(ItemIdData);
+
+ return (Size) space;
+}
+
+/*
+ * PageGetFreeSpaceForMultipleTuples
+ * Returns the size of the free (allocatable) space on a page,
+ * reduced by the space needed for multiple new line pointers.
+ *
+ * Note: this should usually only be used on index pages. Use
+ * PageGetHeapFreeSpace on heap pages.
+ */
+Size
+PageGetFreeSpaceForMultipleTuples(Page page, int ntups)
+{
+ int space;
+
+ /*
+ * Use signed arithmetic here so that we behave sensibly if pd_lower >
+ * pd_upper.
+ */
+ space = (int) ((PageHeader) page)->pd_upper -
+ (int) ((PageHeader) page)->pd_lower;
+
+ if (space < (int) (ntups * sizeof(ItemIdData)))
+ return 0;
+ space -= ntups * sizeof(ItemIdData);
+
+ return (Size) space;
+}
+
+/*
+ * PageGetExactFreeSpace
+ * Returns the size of the free (allocatable) space on a page,
+ * without any consideration for adding/removing line pointers.
+ */
+Size
+PageGetExactFreeSpace(Page page)
+{
+ int space;
+
+ /*
+ * Use signed arithmetic here so that we behave sensibly if pd_lower >
+ * pd_upper.
+ */
+ space = (int) ((PageHeader) page)->pd_upper -
+ (int) ((PageHeader) page)->pd_lower;
+
+ if (space < 0)
+ return 0;
+
+ return (Size) space;
+}
+
+
+/*
+ * PageGetHeapFreeSpace
+ * Returns the size of the free (allocatable) space on a page,
+ * reduced by the space needed for a new line pointer.
+ *
+ * The difference between this and PageGetFreeSpace is that this will return
+ * zero if there are already MaxHeapTuplesPerPage line pointers in the page
+ * and none are free. We use this to enforce that no more than
+ * MaxHeapTuplesPerPage line pointers are created on a heap page. (Although
+ * no more tuples than that could fit anyway, in the presence of redirected
+ * or dead line pointers it'd be possible to have too many line pointers.
+ * To avoid breaking code that assumes MaxHeapTuplesPerPage is a hard limit
+ * on the number of line pointers, we make this extra check.)
+ */
+Size
+PageGetHeapFreeSpace(Page page)
+{
+ Size space;
+
+ space = PageGetFreeSpace(page);
+ if (space > 0)
+ {
+ OffsetNumber offnum,
+ nline;
+
+ /*
+ * Are there already MaxHeapTuplesPerPage line pointers in the page?
+ */
+ nline = PageGetMaxOffsetNumber(page);
+ if (nline >= MaxHeapTuplesPerPage)
+ {
+ if (PageHasFreeLinePointers((PageHeader) page))
+ {
+ /*
+ * Since this is just a hint, we must confirm that there is
+ * indeed a free line pointer
+ */
+ for (offnum = FirstOffsetNumber; offnum <= nline; offnum = OffsetNumberNext(offnum))
+ {
+ ItemId lp = PageGetItemId(page, offnum);
+
+ if (!ItemIdIsUsed(lp))
+ break;
+ }
+
+ if (offnum > nline)
+ {
+ /*
+ * The hint is wrong, but we can't clear it here since we
+ * don't have the ability to mark the page dirty.
+ */
+ space = 0;
+ }
+ }
+ else
+ {
+ /*
+ * Although the hint might be wrong, PageAddItem will believe
+ * it anyway, so we must believe it too.
+ */
+ space = 0;
+ }
+ }
+ }
+ return space;
+}
+
+
+/*
+ * PageIndexTupleDelete
+ *
+ * This routine does the work of removing a tuple from an index page.
+ *
+ * Unlike heap pages, we compact out the line pointer for the removed tuple.
+ */
+void
+PageIndexTupleDelete(Page page, OffsetNumber offnum)
+{
+ PageHeader phdr = (PageHeader) page;
+ char *addr;
+ ItemId tup;
+ Size size;
+ unsigned offset;
+ int nbytes;
+ int offidx;
+ int nline;
+
+ /*
+ * As with PageRepairFragmentation, paranoia seems justified.
+ */
+ if (phdr->pd_lower < SizeOfPageHeaderData ||
+ phdr->pd_lower > phdr->pd_upper ||
+ phdr->pd_upper > phdr->pd_special ||
+ phdr->pd_special > BLCKSZ ||
+ phdr->pd_special != MAXALIGN(phdr->pd_special))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
+ phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
+
+ nline = PageGetMaxOffsetNumber(page);
+ if ((int) offnum <= 0 || (int) offnum > nline)
+ elog(ERROR, "invalid index offnum: %u", offnum);
+
+ /* change offset number to offset index */
+ offidx = offnum - 1;
+
+ tup = PageGetItemId(page, offnum);
+ Assert(ItemIdHasStorage(tup));
+ size = ItemIdGetLength(tup);
+ offset = ItemIdGetOffset(tup);
+
+ if (offset < phdr->pd_upper || (offset + size) > phdr->pd_special ||
+ offset != MAXALIGN(offset))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted line pointer: offset = %u, size = %u",
+ offset, (unsigned int) size)));
+
+ /* Amount of space to actually be deleted */
+ size = MAXALIGN(size);
+
+ /*
+ * First, we want to get rid of the pd_linp entry for the index tuple. We
+ * copy all subsequent linp's back one slot in the array. We don't use
+ * PageGetItemId, because we are manipulating the _array_, not individual
+ * linp's.
+ */
+ nbytes = phdr->pd_lower -
+ ((char *) &phdr->pd_linp[offidx + 1] - (char *) phdr);
+
+ if (nbytes > 0)
+ memmove((char *) &(phdr->pd_linp[offidx]),
+ (char *) &(phdr->pd_linp[offidx + 1]),
+ nbytes);
+
+ /*
+ * Now move everything between the old upper bound (beginning of tuple
+ * space) and the beginning of the deleted tuple forward, so that space in
+ * the middle of the page is left free. If we've just deleted the tuple
+ * at the beginning of tuple space, then there's no need to do the copy.
+ */
+
+ /* beginning of tuple space */
+ addr = (char *) page + phdr->pd_upper;
+
+ if (offset > phdr->pd_upper)
+ memmove(addr + size, addr, offset - phdr->pd_upper);
+
+ /* adjust free space boundary pointers */
+ phdr->pd_upper += size;
+ phdr->pd_lower -= sizeof(ItemIdData);
+
+ /*
+ * Finally, we need to adjust the linp entries that remain.
+ *
+ * Anything that used to be before the deleted tuple's data was moved
+ * forward by the size of the deleted tuple.
+ */
+ if (!PageIsEmpty(page))
+ {
+ int i;
+
+ nline--; /* there's one less than when we started */
+ for (i = 1; i <= nline; i++)
+ {
+ ItemId ii = PageGetItemId(phdr, i);
+
+ Assert(ItemIdHasStorage(ii));
+ if (ItemIdGetOffset(ii) <= offset)
+ ii->lp_off += size;
+ }
+ }
+}
+
+
+/*
+ * PageIndexMultiDelete
+ *
+ * This routine handles the case of deleting multiple tuples from an
+ * index page at once. It is considerably faster than a loop around
+ * PageIndexTupleDelete ... however, the caller *must* supply the array
+ * of item numbers to be deleted in item number order!
+ */
+void
+PageIndexMultiDelete(Page page, OffsetNumber *itemnos, int nitems)
+{
+ PageHeader phdr = (PageHeader) page;
+ Offset pd_lower = phdr->pd_lower;
+ Offset pd_upper = phdr->pd_upper;
+ Offset pd_special = phdr->pd_special;
+ Offset last_offset;
+ itemIdCompactData itemidbase[MaxIndexTuplesPerPage];
+ ItemIdData newitemids[MaxIndexTuplesPerPage];
+ itemIdCompact itemidptr;
+ ItemId lp;
+ int nline,
+ nused;
+ Size totallen;
+ Size size;
+ unsigned offset;
+ int nextitm;
+ OffsetNumber offnum;
+ bool presorted = true; /* For now */
+
+ Assert(nitems <= MaxIndexTuplesPerPage);
+
+ /*
+ * If there aren't very many items to delete, then retail
+ * PageIndexTupleDelete is the best way. Delete the items in reverse
+ * order so we don't have to think about adjusting item numbers for
+ * previous deletions.
+ *
+ * TODO: tune the magic number here
+ */
+ if (nitems <= 2)
+ {
+ while (--nitems >= 0)
+ PageIndexTupleDelete(page, itemnos[nitems]);
+ return;
+ }
+
+ /*
+ * As with PageRepairFragmentation, paranoia seems justified.
+ */
+ if (pd_lower < SizeOfPageHeaderData ||
+ pd_lower > pd_upper ||
+ pd_upper > pd_special ||
+ pd_special > BLCKSZ ||
+ pd_special != MAXALIGN(pd_special))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
+ pd_lower, pd_upper, pd_special)));
+
+ /*
+ * Scan the line pointer array and build a list of just the ones we are
+ * going to keep. Notice we do not modify the page yet, since we are
+ * still validity-checking.
+ */
+ nline = PageGetMaxOffsetNumber(page);
+ itemidptr = itemidbase;
+ totallen = 0;
+ nused = 0;
+ nextitm = 0;
+ last_offset = pd_special;
+ for (offnum = FirstOffsetNumber; offnum <= nline; offnum = OffsetNumberNext(offnum))
+ {
+ lp = PageGetItemId(page, offnum);
+ Assert(ItemIdHasStorage(lp));
+ size = ItemIdGetLength(lp);
+ offset = ItemIdGetOffset(lp);
+ if (offset < pd_upper ||
+ (offset + size) > pd_special ||
+ offset != MAXALIGN(offset))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted line pointer: offset = %u, size = %u",
+ offset, (unsigned int) size)));
+
+ if (nextitm < nitems && offnum == itemnos[nextitm])
+ {
+ /* skip item to be deleted */
+ nextitm++;
+ }
+ else
+ {
+ itemidptr->offsetindex = nused; /* where it will go */
+ itemidptr->itemoff = offset;
+
+ if (last_offset > itemidptr->itemoff)
+ last_offset = itemidptr->itemoff;
+ else
+ presorted = false;
+
+ itemidptr->alignedlen = MAXALIGN(size);
+ totallen += itemidptr->alignedlen;
+ newitemids[nused] = *lp;
+ itemidptr++;
+ nused++;
+ }
+ }
+
+ /* this will catch invalid or out-of-order itemnos[] */
+ if (nextitm != nitems)
+ elog(ERROR, "incorrect index offsets supplied");
+
+ if (totallen > (Size) (pd_special - pd_lower))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted item lengths: total %u, available space %u",
+ (unsigned int) totallen, pd_special - pd_lower)));
+
+ /*
+ * Looks good. Overwrite the line pointers with the copy, from which we've
+ * removed all the unused items.
+ */
+ memcpy(phdr->pd_linp, newitemids, nused * sizeof(ItemIdData));
+ phdr->pd_lower = SizeOfPageHeaderData + nused * sizeof(ItemIdData);
+
+ /* and compactify the tuple data */
+ if (nused > 0)
+ compactify_tuples(itemidbase, nused, page, presorted);
+ else
+ phdr->pd_upper = pd_special;
+}
+
+
+/*
+ * PageIndexTupleDeleteNoCompact
+ *
+ * Remove the specified tuple from an index page, but set its line pointer
+ * to "unused" instead of compacting it out, except that it can be removed
+ * if it's the last line pointer on the page.
+ *
+ * This is used for index AMs that require that existing TIDs of live tuples
+ * remain unchanged, and are willing to allow unused line pointers instead.
+ */
+void
+PageIndexTupleDeleteNoCompact(Page page, OffsetNumber offnum)
+{
+ PageHeader phdr = (PageHeader) page;
+ char *addr;
+ ItemId tup;
+ Size size;
+ unsigned offset;
+ int nline;
+
+ /*
+ * As with PageRepairFragmentation, paranoia seems justified.
+ */
+ if (phdr->pd_lower < SizeOfPageHeaderData ||
+ phdr->pd_lower > phdr->pd_upper ||
+ phdr->pd_upper > phdr->pd_special ||
+ phdr->pd_special > BLCKSZ ||
+ phdr->pd_special != MAXALIGN(phdr->pd_special))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
+ phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
+
+ nline = PageGetMaxOffsetNumber(page);
+ if ((int) offnum <= 0 || (int) offnum > nline)
+ elog(ERROR, "invalid index offnum: %u", offnum);
+
+ tup = PageGetItemId(page, offnum);
+ Assert(ItemIdHasStorage(tup));
+ size = ItemIdGetLength(tup);
+ offset = ItemIdGetOffset(tup);
+
+ if (offset < phdr->pd_upper || (offset + size) > phdr->pd_special ||
+ offset != MAXALIGN(offset))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted line pointer: offset = %u, size = %u",
+ offset, (unsigned int) size)));
+
+ /* Amount of space to actually be deleted */
+ size = MAXALIGN(size);
+
+ /*
+ * Either set the line pointer to "unused", or zap it if it's the last
+ * one. (Note: it's possible that the next-to-last one(s) are already
+ * unused, but we do not trouble to try to compact them out if so.)
+ */
+ if ((int) offnum < nline)
+ ItemIdSetUnused(tup);
+ else
+ {
+ phdr->pd_lower -= sizeof(ItemIdData);
+ nline--; /* there's one less than when we started */
+ }
+
+ /*
+ * Now move everything between the old upper bound (beginning of tuple
+ * space) and the beginning of the deleted tuple forward, so that space in
+ * the middle of the page is left free. If we've just deleted the tuple
+ * at the beginning of tuple space, then there's no need to do the copy.
+ */
+
+ /* beginning of tuple space */
+ addr = (char *) page + phdr->pd_upper;
+
+ if (offset > phdr->pd_upper)
+ memmove(addr + size, addr, offset - phdr->pd_upper);
+
+ /* adjust free space boundary pointer */
+ phdr->pd_upper += size;
+
+ /*
+ * Finally, we need to adjust the linp entries that remain.
+ *
+ * Anything that used to be before the deleted tuple's data was moved
+ * forward by the size of the deleted tuple.
+ */
+ if (!PageIsEmpty(page))
+ {
+ int i;
+
+ for (i = 1; i <= nline; i++)
+ {
+ ItemId ii = PageGetItemId(phdr, i);
+
+ if (ItemIdHasStorage(ii) && ItemIdGetOffset(ii) <= offset)
+ ii->lp_off += size;
+ }
+ }
+}
+
+
+/*
+ * PageIndexTupleOverwrite
+ *
+ * Replace a specified tuple on an index page.
+ *
+ * The new tuple is placed exactly where the old one had been, shifting
+ * other tuples' data up or down as needed to keep the page compacted.
+ * This is better than deleting and reinserting the tuple, because it
+ * avoids any data shifting when the tuple size doesn't change; and
+ * even when it does, we avoid moving the line pointers around.
+ * This could be used by an index AM that doesn't want to unset the
+ * LP_DEAD bit when it happens to be set. It could conceivably also be
+ * used by an index AM that cares about the physical order of tuples as
+ * well as their logical/ItemId order.
+ *
+ * If there's insufficient space for the new tuple, return false. Other
+ * errors represent data-corruption problems, so we just elog.
+ */
+bool
+PageIndexTupleOverwrite(Page page, OffsetNumber offnum,
+ Item newtup, Size newsize)
+{
+ PageHeader phdr = (PageHeader) page;
+ ItemId tupid;
+ int oldsize;
+ unsigned offset;
+ Size alignednewsize;
+ int size_diff;
+ int itemcount;
+
+ /*
+ * As with PageRepairFragmentation, paranoia seems justified.
+ */
+ if (phdr->pd_lower < SizeOfPageHeaderData ||
+ phdr->pd_lower > phdr->pd_upper ||
+ phdr->pd_upper > phdr->pd_special ||
+ phdr->pd_special > BLCKSZ ||
+ phdr->pd_special != MAXALIGN(phdr->pd_special))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
+ phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
+
+ itemcount = PageGetMaxOffsetNumber(page);
+ if ((int) offnum <= 0 || (int) offnum > itemcount)
+ elog(ERROR, "invalid index offnum: %u", offnum);
+
+ tupid = PageGetItemId(page, offnum);
+ Assert(ItemIdHasStorage(tupid));
+ oldsize = ItemIdGetLength(tupid);
+ offset = ItemIdGetOffset(tupid);
+
+ if (offset < phdr->pd_upper || (offset + oldsize) > phdr->pd_special ||
+ offset != MAXALIGN(offset))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("corrupted line pointer: offset = %u, size = %u",
+ offset, (unsigned int) oldsize)));
+
+ /*
+ * Determine actual change in space requirement, check for page overflow.
+ */
+ oldsize = MAXALIGN(oldsize);
+ alignednewsize = MAXALIGN(newsize);
+ if (alignednewsize > oldsize + (phdr->pd_upper - phdr->pd_lower))
+ return false;
+
+ /*
+ * Relocate existing data and update line pointers, unless the new tuple
+ * is the same size as the old (after alignment), in which case there's
+ * nothing to do. Notice that what we have to relocate is data before the
+ * target tuple, not data after, so it's convenient to express size_diff
+ * as the amount by which the tuple's size is decreasing, making it the
+ * delta to add to pd_upper and affected line pointers.
+ */
+ size_diff = oldsize - (int) alignednewsize;
+ if (size_diff != 0)
+ {
+ char *addr = (char *) page + phdr->pd_upper;
+ int i;
+
+ /* relocate all tuple data before the target tuple */
+ memmove(addr + size_diff, addr, offset - phdr->pd_upper);
+
+ /* adjust free space boundary pointer */
+ phdr->pd_upper += size_diff;
+
+ /* adjust affected line pointers too */
+ for (i = FirstOffsetNumber; i <= itemcount; i++)
+ {
+ ItemId ii = PageGetItemId(phdr, i);
+
+ /* Allow items without storage; currently only BRIN needs that */
+ if (ItemIdHasStorage(ii) && ItemIdGetOffset(ii) <= offset)
+ ii->lp_off += size_diff;
+ }
+ }
+
+ /* Update the item's tuple length without changing its lp_flags field */
+ tupid->lp_off = offset + size_diff;
+ tupid->lp_len = newsize;
+
+ /* Copy new tuple data onto page */
+ memcpy(PageGetItem(page, tupid), newtup, newsize);
+
+ return true;
+}
+
+
+/*
+ * Set checksum for a page in shared buffers.
+ *
+ * If checksums are disabled, or if the page is not initialized, just return
+ * the input. Otherwise, we must make a copy of the page before calculating
+ * the checksum, to prevent concurrent modifications (e.g. setting hint bits)
+ * from making the final checksum invalid. It doesn't matter if we include or
+ * exclude hints during the copy, as long as we write a valid page and
+ * associated checksum.
+ *
+ * Returns a pointer to the block-sized data that needs to be written. Uses
+ * statically-allocated memory, so the caller must immediately write the
+ * returned page and not refer to it again.
+ */
+char *
+PageSetChecksumCopy(Page page, BlockNumber blkno)
+{
+ static char *pageCopy = NULL;
+
+ /* If we don't need a checksum, just return the passed-in data */
+ if (PageIsNew(page) || !DataChecksumsEnabled())
+ return (char *) page;
+
+ /*
+ * We allocate the copy space once and use it over on each subsequent
+ * call. The point of palloc'ing here, rather than having a static char
+ * array, is first to ensure adequate alignment for the checksumming code
+ * and second to avoid wasting space in processes that never call this.
+ */
+ if (pageCopy == NULL)
+ pageCopy = MemoryContextAlloc(TopMemoryContext, BLCKSZ);
+
+ memcpy(pageCopy, (char *) page, BLCKSZ);
+ ((PageHeader) pageCopy)->pd_checksum = pg_checksum_page(pageCopy, blkno);
+ return pageCopy;
+}
+
+/*
+ * Set checksum for a page in private memory.
+ *
+ * This must only be used when we know that no other process can be modifying
+ * the page buffer.
+ */
+void
+PageSetChecksumInplace(Page page, BlockNumber blkno)
+{
+ /* If we don't need a checksum, just return */
+ if (PageIsNew(page) || !DataChecksumsEnabled())
+ return;
+
+ ((PageHeader) page)->pd_checksum = pg_checksum_page((char *) page, blkno);
+}
diff --git a/src/backend/storage/page/checksum.c b/src/backend/storage/page/checksum.c
new file mode 100644
index 0000000..6462ddd
--- /dev/null
+++ b/src/backend/storage/page/checksum.c
@@ -0,0 +1,22 @@
+/*-------------------------------------------------------------------------
+ *
+ * checksum.c
+ * Checksum implementation for data pages.
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ * src/backend/storage/page/checksum.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "storage/checksum.h"
+/*
+ * The actual code is in storage/checksum_impl.h. This is done so that
+ * external programs can incorporate the checksum code by #include'ing
+ * that file from the exported Postgres headers. (Compare our CRC code.)
+ */
+#include "storage/checksum_impl.h"
diff --git a/src/backend/storage/page/itemptr.c b/src/backend/storage/page/itemptr.c
new file mode 100644
index 0000000..f40d6c2
--- /dev/null
+++ b/src/backend/storage/page/itemptr.c
@@ -0,0 +1,132 @@
+/*-------------------------------------------------------------------------
+ *
+ * itemptr.c
+ * POSTGRES disk item pointer code.
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/storage/page/itemptr.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "storage/itemptr.h"
+
+
+/*
+ * ItemPointerEquals
+ * Returns true if both item pointers point to the same item,
+ * otherwise returns false.
+ *
+ * Note:
+ * Asserts that the disk item pointers are both valid!
+ */
+bool
+ItemPointerEquals(ItemPointer pointer1, ItemPointer pointer2)
+{
+ /*
+ * We really want ItemPointerData to be exactly 6 bytes. This is rather a
+ * random place to check, but there is no better place.
+ */
+ StaticAssertStmt(sizeof(ItemPointerData) == 3 * sizeof(uint16),
+ "ItemPointerData struct is improperly padded");
+
+ if (ItemPointerGetBlockNumber(pointer1) ==
+ ItemPointerGetBlockNumber(pointer2) &&
+ ItemPointerGetOffsetNumber(pointer1) ==
+ ItemPointerGetOffsetNumber(pointer2))
+ return true;
+ else
+ return false;
+}
+
+/*
+ * ItemPointerCompare
+ * Generic btree-style comparison for item pointers.
+ */
+int32
+ItemPointerCompare(ItemPointer arg1, ItemPointer arg2)
+{
+ /*
+ * Use ItemPointerGet{Offset,Block}NumberNoCheck to avoid asserting
+ * ip_posid != 0, which may not be true for a user-supplied TID.
+ */
+ BlockNumber b1 = ItemPointerGetBlockNumberNoCheck(arg1);
+ BlockNumber b2 = ItemPointerGetBlockNumberNoCheck(arg2);
+
+ if (b1 < b2)
+ return -1;
+ else if (b1 > b2)
+ return 1;
+ else if (ItemPointerGetOffsetNumberNoCheck(arg1) <
+ ItemPointerGetOffsetNumberNoCheck(arg2))
+ return -1;
+ else if (ItemPointerGetOffsetNumberNoCheck(arg1) >
+ ItemPointerGetOffsetNumberNoCheck(arg2))
+ return 1;
+ else
+ return 0;
+}
+
+/*
+ * ItemPointerInc
+ * Increment 'pointer' by 1 only paying attention to the ItemPointer's
+ * type's range limits and not MaxOffsetNumber and FirstOffsetNumber.
+ * This may result in 'pointer' becoming !OffsetNumberIsValid.
+ *
+ * If the pointer is already the maximum possible values permitted by the
+ * range of the ItemPointer's types, then do nothing.
+ */
+void
+ItemPointerInc(ItemPointer pointer)
+{
+ BlockNumber blk = ItemPointerGetBlockNumberNoCheck(pointer);
+ OffsetNumber off = ItemPointerGetOffsetNumberNoCheck(pointer);
+
+ if (off == PG_UINT16_MAX)
+ {
+ if (blk != InvalidBlockNumber)
+ {
+ off = 0;
+ blk++;
+ }
+ }
+ else
+ off++;
+
+ ItemPointerSet(pointer, blk, off);
+}
+
+/*
+ * ItemPointerDec
+ * Decrement 'pointer' by 1 only paying attention to the ItemPointer's
+ * type's range limits and not MaxOffsetNumber and FirstOffsetNumber.
+ * This may result in 'pointer' becoming !OffsetNumberIsValid.
+ *
+ * If the pointer is already the minimum possible values permitted by the
+ * range of the ItemPointer's types, then do nothing. This does rely on
+ * FirstOffsetNumber being 1 rather than 0.
+ */
+void
+ItemPointerDec(ItemPointer pointer)
+{
+ BlockNumber blk = ItemPointerGetBlockNumberNoCheck(pointer);
+ OffsetNumber off = ItemPointerGetOffsetNumberNoCheck(pointer);
+
+ if (off == 0)
+ {
+ if (blk != 0)
+ {
+ off = PG_UINT16_MAX;
+ blk--;
+ }
+ }
+ else
+ off--;
+
+ ItemPointerSet(pointer, blk, off);
+}