summaryrefslogtreecommitdiffstats
path: root/src/backend/utils/adt/array_selfuncs.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/utils/adt/array_selfuncs.c
parentInitial commit. (diff)
downloadpostgresql-14-upstream.tar.xz
postgresql-14-upstream.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/utils/adt/array_selfuncs.c')
-rw-r--r--src/backend/utils/adt/array_selfuncs.c1193
1 files changed, 1193 insertions, 0 deletions
diff --git a/src/backend/utils/adt/array_selfuncs.c b/src/backend/utils/adt/array_selfuncs.c
new file mode 100644
index 0000000..23de5d9
--- /dev/null
+++ b/src/backend/utils/adt/array_selfuncs.c
@@ -0,0 +1,1193 @@
+/*-------------------------------------------------------------------------
+ *
+ * array_selfuncs.c
+ * Functions for selectivity estimation of array operators
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/utils/adt/array_selfuncs.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include <math.h>
+
+#include "access/htup_details.h"
+#include "catalog/pg_collation.h"
+#include "catalog/pg_operator.h"
+#include "catalog/pg_statistic.h"
+#include "utils/array.h"
+#include "utils/builtins.h"
+#include "utils/lsyscache.h"
+#include "utils/selfuncs.h"
+#include "utils/typcache.h"
+
+
+/* Default selectivity constant for "@>" and "<@" operators */
+#define DEFAULT_CONTAIN_SEL 0.005
+
+/* Default selectivity constant for "&&" operator */
+#define DEFAULT_OVERLAP_SEL 0.01
+
+/* Default selectivity for given operator */
+#define DEFAULT_SEL(operator) \
+ ((operator) == OID_ARRAY_OVERLAP_OP ? \
+ DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL)
+
+static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval,
+ Oid elemtype, Oid operator);
+static Selectivity mcelem_array_selec(ArrayType *array,
+ TypeCacheEntry *typentry,
+ Datum *mcelem, int nmcelem,
+ float4 *numbers, int nnumbers,
+ float4 *hist, int nhist,
+ Oid operator);
+static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
+ float4 *numbers, int nnumbers,
+ Datum *array_data, int nitems,
+ Oid operator, TypeCacheEntry *typentry);
+static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
+ float4 *numbers, int nnumbers,
+ Datum *array_data, int nitems,
+ float4 *hist, int nhist,
+ Oid operator, TypeCacheEntry *typentry);
+static float *calc_hist(const float4 *hist, int nhist, int n);
+static float *calc_distr(const float *p, int n, int m, float rest);
+static int floor_log2(uint32 n);
+static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value,
+ int *index, TypeCacheEntry *typentry);
+static int element_compare(const void *key1, const void *key2, void *arg);
+static int float_compare_desc(const void *key1, const void *key2);
+
+
+/*
+ * scalararraysel_containment
+ * Estimate selectivity of ScalarArrayOpExpr via array containment.
+ *
+ * If we have const =/<> ANY/ALL (array_var) then we can estimate the
+ * selectivity as though this were an array containment operator,
+ * array_var op ARRAY[const].
+ *
+ * scalararraysel() has already verified that the ScalarArrayOpExpr's operator
+ * is the array element type's default equality or inequality operator, and
+ * has aggressively simplified both inputs to constants.
+ *
+ * Returns selectivity (0..1), or -1 if we fail to estimate selectivity.
+ */
+Selectivity
+scalararraysel_containment(PlannerInfo *root,
+ Node *leftop, Node *rightop,
+ Oid elemtype, bool isEquality, bool useOr,
+ int varRelid)
+{
+ Selectivity selec;
+ VariableStatData vardata;
+ Datum constval;
+ TypeCacheEntry *typentry;
+ FmgrInfo *cmpfunc;
+
+ /*
+ * rightop must be a variable, else punt.
+ */
+ examine_variable(root, rightop, varRelid, &vardata);
+ if (!vardata.rel)
+ {
+ ReleaseVariableStats(vardata);
+ return -1.0;
+ }
+
+ /*
+ * leftop must be a constant, else punt.
+ */
+ if (!IsA(leftop, Const))
+ {
+ ReleaseVariableStats(vardata);
+ return -1.0;
+ }
+ if (((Const *) leftop)->constisnull)
+ {
+ /* qual can't succeed if null on left */
+ ReleaseVariableStats(vardata);
+ return (Selectivity) 0.0;
+ }
+ constval = ((Const *) leftop)->constvalue;
+
+ /* Get element type's default comparison function */
+ typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
+ if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
+ {
+ ReleaseVariableStats(vardata);
+ return -1.0;
+ }
+ cmpfunc = &typentry->cmp_proc_finfo;
+
+ /*
+ * If the operator is <>, swap ANY/ALL, then invert the result later.
+ */
+ if (!isEquality)
+ useOr = !useOr;
+
+ /* Get array element stats for var, if available */
+ if (HeapTupleIsValid(vardata.statsTuple) &&
+ statistic_proc_security_check(&vardata, cmpfunc->fn_oid))
+ {
+ Form_pg_statistic stats;
+ AttStatsSlot sslot;
+ AttStatsSlot hslot;
+
+ stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
+
+ /* MCELEM will be an array of same type as element */
+ if (get_attstatsslot(&sslot, vardata.statsTuple,
+ STATISTIC_KIND_MCELEM, InvalidOid,
+ ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
+ {
+ /* For ALL case, also get histogram of distinct-element counts */
+ if (useOr ||
+ !get_attstatsslot(&hslot, vardata.statsTuple,
+ STATISTIC_KIND_DECHIST, InvalidOid,
+ ATTSTATSSLOT_NUMBERS))
+ memset(&hslot, 0, sizeof(hslot));
+
+ /*
+ * For = ANY, estimate as var @> ARRAY[const].
+ *
+ * For = ALL, estimate as var <@ ARRAY[const].
+ */
+ if (useOr)
+ selec = mcelem_array_contain_overlap_selec(sslot.values,
+ sslot.nvalues,
+ sslot.numbers,
+ sslot.nnumbers,
+ &constval, 1,
+ OID_ARRAY_CONTAINS_OP,
+ typentry);
+ else
+ selec = mcelem_array_contained_selec(sslot.values,
+ sslot.nvalues,
+ sslot.numbers,
+ sslot.nnumbers,
+ &constval, 1,
+ hslot.numbers,
+ hslot.nnumbers,
+ OID_ARRAY_CONTAINED_OP,
+ typentry);
+
+ free_attstatsslot(&hslot);
+ free_attstatsslot(&sslot);
+ }
+ else
+ {
+ /* No most-common-elements info, so do without */
+ if (useOr)
+ selec = mcelem_array_contain_overlap_selec(NULL, 0,
+ NULL, 0,
+ &constval, 1,
+ OID_ARRAY_CONTAINS_OP,
+ typentry);
+ else
+ selec = mcelem_array_contained_selec(NULL, 0,
+ NULL, 0,
+ &constval, 1,
+ NULL, 0,
+ OID_ARRAY_CONTAINED_OP,
+ typentry);
+ }
+
+ /*
+ * MCE stats count only non-null rows, so adjust for null rows.
+ */
+ selec *= (1.0 - stats->stanullfrac);
+ }
+ else
+ {
+ /* No stats at all, so do without */
+ if (useOr)
+ selec = mcelem_array_contain_overlap_selec(NULL, 0,
+ NULL, 0,
+ &constval, 1,
+ OID_ARRAY_CONTAINS_OP,
+ typentry);
+ else
+ selec = mcelem_array_contained_selec(NULL, 0,
+ NULL, 0,
+ &constval, 1,
+ NULL, 0,
+ OID_ARRAY_CONTAINED_OP,
+ typentry);
+ /* we assume no nulls here, so no stanullfrac correction */
+ }
+
+ ReleaseVariableStats(vardata);
+
+ /*
+ * If the operator is <>, invert the results.
+ */
+ if (!isEquality)
+ selec = 1.0 - selec;
+
+ CLAMP_PROBABILITY(selec);
+
+ return selec;
+}
+
+/*
+ * arraycontsel -- restriction selectivity for array @>, &&, <@ operators
+ */
+Datum
+arraycontsel(PG_FUNCTION_ARGS)
+{
+ PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
+ Oid operator = PG_GETARG_OID(1);
+ List *args = (List *) PG_GETARG_POINTER(2);
+ int varRelid = PG_GETARG_INT32(3);
+ VariableStatData vardata;
+ Node *other;
+ bool varonleft;
+ Selectivity selec;
+ Oid element_typeid;
+
+ /*
+ * If expression is not (variable op something) or (something op
+ * variable), then punt and return a default estimate.
+ */
+ if (!get_restriction_variable(root, args, varRelid,
+ &vardata, &other, &varonleft))
+ PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
+
+ /*
+ * Can't do anything useful if the something is not a constant, either.
+ */
+ if (!IsA(other, Const))
+ {
+ ReleaseVariableStats(vardata);
+ PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
+ }
+
+ /*
+ * The "&&", "@>" and "<@" operators are strict, so we can cope with a
+ * NULL constant right away.
+ */
+ if (((Const *) other)->constisnull)
+ {
+ ReleaseVariableStats(vardata);
+ PG_RETURN_FLOAT8(0.0);
+ }
+
+ /*
+ * If var is on the right, commute the operator, so that we can assume the
+ * var is on the left in what follows.
+ */
+ if (!varonleft)
+ {
+ if (operator == OID_ARRAY_CONTAINS_OP)
+ operator = OID_ARRAY_CONTAINED_OP;
+ else if (operator == OID_ARRAY_CONTAINED_OP)
+ operator = OID_ARRAY_CONTAINS_OP;
+ }
+
+ /*
+ * OK, there's a Var and a Const we're dealing with here. We need the
+ * Const to be an array with same element type as column, else we can't do
+ * anything useful. (Such cases will likely fail at runtime, but here
+ * we'd rather just return a default estimate.)
+ */
+ element_typeid = get_base_element_type(((Const *) other)->consttype);
+ if (element_typeid != InvalidOid &&
+ element_typeid == get_base_element_type(vardata.vartype))
+ {
+ selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue,
+ element_typeid, operator);
+ }
+ else
+ {
+ selec = DEFAULT_SEL(operator);
+ }
+
+ ReleaseVariableStats(vardata);
+
+ CLAMP_PROBABILITY(selec);
+
+ PG_RETURN_FLOAT8((float8) selec);
+}
+
+/*
+ * arraycontjoinsel -- join selectivity for array @>, &&, <@ operators
+ */
+Datum
+arraycontjoinsel(PG_FUNCTION_ARGS)
+{
+ /* For the moment this is just a stub */
+ Oid operator = PG_GETARG_OID(1);
+
+ PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
+}
+
+/*
+ * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const"
+ * or "arraycolumn <@ const" based on the statistics
+ *
+ * This function is mainly responsible for extracting the pg_statistic data
+ * to be used; we then pass the problem on to mcelem_array_selec().
+ */
+static Selectivity
+calc_arraycontsel(VariableStatData *vardata, Datum constval,
+ Oid elemtype, Oid operator)
+{
+ Selectivity selec;
+ TypeCacheEntry *typentry;
+ FmgrInfo *cmpfunc;
+ ArrayType *array;
+
+ /* Get element type's default comparison function */
+ typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
+ if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
+ return DEFAULT_SEL(operator);
+ cmpfunc = &typentry->cmp_proc_finfo;
+
+ /*
+ * The caller made sure the const is an array with same element type, so
+ * get it now
+ */
+ array = DatumGetArrayTypeP(constval);
+
+ if (HeapTupleIsValid(vardata->statsTuple) &&
+ statistic_proc_security_check(vardata, cmpfunc->fn_oid))
+ {
+ Form_pg_statistic stats;
+ AttStatsSlot sslot;
+ AttStatsSlot hslot;
+
+ stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
+
+ /* MCELEM will be an array of same type as column */
+ if (get_attstatsslot(&sslot, vardata->statsTuple,
+ STATISTIC_KIND_MCELEM, InvalidOid,
+ ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
+ {
+ /*
+ * For "array <@ const" case we also need histogram of distinct
+ * element counts.
+ */
+ if (operator != OID_ARRAY_CONTAINED_OP ||
+ !get_attstatsslot(&hslot, vardata->statsTuple,
+ STATISTIC_KIND_DECHIST, InvalidOid,
+ ATTSTATSSLOT_NUMBERS))
+ memset(&hslot, 0, sizeof(hslot));
+
+ /* Use the most-common-elements slot for the array Var. */
+ selec = mcelem_array_selec(array, typentry,
+ sslot.values, sslot.nvalues,
+ sslot.numbers, sslot.nnumbers,
+ hslot.numbers, hslot.nnumbers,
+ operator);
+
+ free_attstatsslot(&hslot);
+ free_attstatsslot(&sslot);
+ }
+ else
+ {
+ /* No most-common-elements info, so do without */
+ selec = mcelem_array_selec(array, typentry,
+ NULL, 0, NULL, 0, NULL, 0,
+ operator);
+ }
+
+ /*
+ * MCE stats count only non-null rows, so adjust for null rows.
+ */
+ selec *= (1.0 - stats->stanullfrac);
+ }
+ else
+ {
+ /* No stats at all, so do without */
+ selec = mcelem_array_selec(array, typentry,
+ NULL, 0, NULL, 0, NULL, 0,
+ operator);
+ /* we assume no nulls here, so no stanullfrac correction */
+ }
+
+ /* If constant was toasted, release the copy we made */
+ if (PointerGetDatum(array) != constval)
+ pfree(array);
+
+ return selec;
+}
+
+/*
+ * Array selectivity estimation based on most common elements statistics
+ *
+ * This function just deconstructs and sorts the array constant's contents,
+ * and then passes the problem on to mcelem_array_contain_overlap_selec or
+ * mcelem_array_contained_selec depending on the operator.
+ */
+static Selectivity
+mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry,
+ Datum *mcelem, int nmcelem,
+ float4 *numbers, int nnumbers,
+ float4 *hist, int nhist,
+ Oid operator)
+{
+ Selectivity selec;
+ int num_elems;
+ Datum *elem_values;
+ bool *elem_nulls;
+ bool null_present;
+ int nonnull_nitems;
+ int i;
+
+ /*
+ * Prepare constant array data for sorting. Sorting lets us find unique
+ * elements and efficiently merge with the MCELEM array.
+ */
+ deconstruct_array(array,
+ typentry->type_id,
+ typentry->typlen,
+ typentry->typbyval,
+ typentry->typalign,
+ &elem_values, &elem_nulls, &num_elems);
+
+ /* Collapse out any null elements */
+ nonnull_nitems = 0;
+ null_present = false;
+ for (i = 0; i < num_elems; i++)
+ {
+ if (elem_nulls[i])
+ null_present = true;
+ else
+ elem_values[nonnull_nitems++] = elem_values[i];
+ }
+
+ /*
+ * Query "column @> '{anything, null}'" matches nothing. For the other
+ * two operators, presence of a null in the constant can be ignored.
+ */
+ if (null_present && operator == OID_ARRAY_CONTAINS_OP)
+ {
+ pfree(elem_values);
+ pfree(elem_nulls);
+ return (Selectivity) 0.0;
+ }
+
+ /* Sort extracted elements using their default comparison function. */
+ qsort_arg(elem_values, nonnull_nitems, sizeof(Datum),
+ element_compare, typentry);
+
+ /* Separate cases according to operator */
+ if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP)
+ selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem,
+ numbers, nnumbers,
+ elem_values, nonnull_nitems,
+ operator, typentry);
+ else if (operator == OID_ARRAY_CONTAINED_OP)
+ selec = mcelem_array_contained_selec(mcelem, nmcelem,
+ numbers, nnumbers,
+ elem_values, nonnull_nitems,
+ hist, nhist,
+ operator, typentry);
+ else
+ {
+ elog(ERROR, "arraycontsel called for unrecognized operator %u",
+ operator);
+ selec = 0.0; /* keep compiler quiet */
+ }
+
+ pfree(elem_values);
+ pfree(elem_nulls);
+ return selec;
+}
+
+/*
+ * Estimate selectivity of "column @> const" and "column && const" based on
+ * most common element statistics. This estimation assumes element
+ * occurrences are independent.
+ *
+ * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
+ * the array column's MCELEM statistics slot, or are NULL/0 if stats are
+ * not available. array_data (of length nitems) is the constant's elements.
+ *
+ * Both the mcelem and array_data arrays are assumed presorted according
+ * to the element type's cmpfunc. Null elements are not present.
+ *
+ * TODO: this estimate probably could be improved by using the distinct
+ * elements count histogram. For example, excepting the special case of
+ * "column @> '{}'", we can multiply the calculated selectivity by the
+ * fraction of nonempty arrays in the column.
+ */
+static Selectivity
+mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
+ float4 *numbers, int nnumbers,
+ Datum *array_data, int nitems,
+ Oid operator, TypeCacheEntry *typentry)
+{
+ Selectivity selec,
+ elem_selec;
+ int mcelem_index,
+ i;
+ bool use_bsearch;
+ float4 minfreq;
+
+ /*
+ * There should be three more Numbers than Values, because the last three
+ * cells should hold minimal and maximal frequency among the non-null
+ * elements, and then the frequency of null elements. Ignore the Numbers
+ * if not right.
+ */
+ if (nnumbers != nmcelem + 3)
+ {
+ numbers = NULL;
+ nnumbers = 0;
+ }
+
+ if (numbers)
+ {
+ /* Grab the lowest observed frequency */
+ minfreq = numbers[nmcelem];
+ }
+ else
+ {
+ /* Without statistics make some default assumptions */
+ minfreq = 2 * (float4) DEFAULT_CONTAIN_SEL;
+ }
+
+ /* Decide whether it is faster to use binary search or not. */
+ if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems)
+ use_bsearch = true;
+ else
+ use_bsearch = false;
+
+ if (operator == OID_ARRAY_CONTAINS_OP)
+ {
+ /*
+ * Initial selectivity for "column @> const" query is 1.0, and it will
+ * be decreased with each element of constant array.
+ */
+ selec = 1.0;
+ }
+ else
+ {
+ /*
+ * Initial selectivity for "column && const" query is 0.0, and it will
+ * be increased with each element of constant array.
+ */
+ selec = 0.0;
+ }
+
+ /* Scan mcelem and array in parallel. */
+ mcelem_index = 0;
+ for (i = 0; i < nitems; i++)
+ {
+ bool match = false;
+
+ /* Ignore any duplicates in the array data. */
+ if (i > 0 &&
+ element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
+ continue;
+
+ /* Find the smallest MCELEM >= this array item. */
+ if (use_bsearch)
+ {
+ match = find_next_mcelem(mcelem, nmcelem, array_data[i],
+ &mcelem_index, typentry);
+ }
+ else
+ {
+ while (mcelem_index < nmcelem)
+ {
+ int cmp = element_compare(&mcelem[mcelem_index],
+ &array_data[i],
+ typentry);
+
+ if (cmp < 0)
+ mcelem_index++;
+ else
+ {
+ if (cmp == 0)
+ match = true; /* mcelem is found */
+ break;
+ }
+ }
+ }
+
+ if (match && numbers)
+ {
+ /* MCELEM matches the array item; use its frequency. */
+ elem_selec = numbers[mcelem_index];
+ mcelem_index++;
+ }
+ else
+ {
+ /*
+ * The element is not in MCELEM. Punt, but assume that the
+ * selectivity cannot be more than minfreq / 2.
+ */
+ elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2);
+ }
+
+ /*
+ * Update overall selectivity using the current element's selectivity
+ * and an assumption of element occurrence independence.
+ */
+ if (operator == OID_ARRAY_CONTAINS_OP)
+ selec *= elem_selec;
+ else
+ selec = selec + elem_selec - selec * elem_selec;
+
+ /* Clamp intermediate results to stay sane despite roundoff error */
+ CLAMP_PROBABILITY(selec);
+ }
+
+ return selec;
+}
+
+/*
+ * Estimate selectivity of "column <@ const" based on most common element
+ * statistics.
+ *
+ * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
+ * the array column's MCELEM statistics slot, or are NULL/0 if stats are
+ * not available. array_data (of length nitems) is the constant's elements.
+ * hist (of length nhist) is from the array column's DECHIST statistics slot,
+ * or is NULL/0 if those stats are not available.
+ *
+ * Both the mcelem and array_data arrays are assumed presorted according
+ * to the element type's cmpfunc. Null elements are not present.
+ *
+ * Independent element occurrence would imply a particular distribution of
+ * distinct element counts among matching rows. Real data usually falsifies
+ * that assumption. For example, in a set of 11-element integer arrays having
+ * elements in the range [0..10], element occurrences are typically not
+ * independent. If they were, a sufficiently-large set would include all
+ * distinct element counts 0 through 11. We correct for this using the
+ * histogram of distinct element counts.
+ *
+ * In the "column @> const" and "column && const" cases, we usually have a
+ * "const" with low number of elements (otherwise we have selectivity close
+ * to 0 or 1 respectively). That's why the effect of dependence related
+ * to distinct element count distribution is negligible there. In the
+ * "column <@ const" case, number of elements is usually high (otherwise we
+ * have selectivity close to 0). That's why we should do a correction with
+ * the array distinct element count distribution here.
+ *
+ * Using the histogram of distinct element counts produces a different
+ * distribution law than independent occurrences of elements. This
+ * distribution law can be described as follows:
+ *
+ * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 *
+ * (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m]
+ *
+ * where:
+ * o1, o2, ..., on - occurrences of elements 1, 2, ..., n
+ * (1 - occurrence, 0 - no occurrence) in row
+ * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n
+ * (scalar values in [0..1]) according to collected statistics
+ * m = o1 + o2 + ... + on = total number of distinct elements in row
+ * hist[m] - histogram data for occurrence of m elements.
+ * ind[m] - probability of m occurrences from n events assuming their
+ * probabilities to be equal to frequencies of array elements.
+ *
+ * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) *
+ * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m
+ */
+static Selectivity
+mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
+ float4 *numbers, int nnumbers,
+ Datum *array_data, int nitems,
+ float4 *hist, int nhist,
+ Oid operator, TypeCacheEntry *typentry)
+{
+ int mcelem_index,
+ i,
+ unique_nitems = 0;
+ float selec,
+ minfreq,
+ nullelem_freq;
+ float *dist,
+ *mcelem_dist,
+ *hist_part;
+ float avg_count,
+ mult,
+ rest;
+ float *elem_selec;
+
+ /*
+ * There should be three more Numbers than Values in the MCELEM slot,
+ * because the last three cells should hold minimal and maximal frequency
+ * among the non-null elements, and then the frequency of null elements.
+ * Punt if not right, because we can't do much without the element freqs.
+ */
+ if (numbers == NULL || nnumbers != nmcelem + 3)
+ return DEFAULT_CONTAIN_SEL;
+
+ /* Can't do much without a count histogram, either */
+ if (hist == NULL || nhist < 3)
+ return DEFAULT_CONTAIN_SEL;
+
+ /*
+ * Grab some of the summary statistics that compute_array_stats() stores:
+ * lowest frequency, frequency of null elements, and average distinct
+ * element count.
+ */
+ minfreq = numbers[nmcelem];
+ nullelem_freq = numbers[nmcelem + 2];
+ avg_count = hist[nhist - 1];
+
+ /*
+ * "rest" will be the sum of the frequencies of all elements not
+ * represented in MCELEM. The average distinct element count is the sum
+ * of the frequencies of *all* elements. Begin with that; we will proceed
+ * to subtract the MCELEM frequencies.
+ */
+ rest = avg_count;
+
+ /*
+ * mult is a multiplier representing estimate of probability that each
+ * mcelem that is not present in constant doesn't occur.
+ */
+ mult = 1.0f;
+
+ /*
+ * elem_selec is array of estimated frequencies for elements in the
+ * constant.
+ */
+ elem_selec = (float *) palloc(sizeof(float) * nitems);
+
+ /* Scan mcelem and array in parallel. */
+ mcelem_index = 0;
+ for (i = 0; i < nitems; i++)
+ {
+ bool match = false;
+
+ /* Ignore any duplicates in the array data. */
+ if (i > 0 &&
+ element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
+ continue;
+
+ /*
+ * Iterate over MCELEM until we find an entry greater than or equal to
+ * this element of the constant. Update "rest" and "mult" for mcelem
+ * entries skipped over.
+ */
+ while (mcelem_index < nmcelem)
+ {
+ int cmp = element_compare(&mcelem[mcelem_index],
+ &array_data[i],
+ typentry);
+
+ if (cmp < 0)
+ {
+ mult *= (1.0f - numbers[mcelem_index]);
+ rest -= numbers[mcelem_index];
+ mcelem_index++;
+ }
+ else
+ {
+ if (cmp == 0)
+ match = true; /* mcelem is found */
+ break;
+ }
+ }
+
+ if (match)
+ {
+ /* MCELEM matches the array item. */
+ elem_selec[unique_nitems] = numbers[mcelem_index];
+ /* "rest" is decremented for all mcelems, matched or not */
+ rest -= numbers[mcelem_index];
+ mcelem_index++;
+ }
+ else
+ {
+ /*
+ * The element is not in MCELEM. Punt, but assume that the
+ * selectivity cannot be more than minfreq / 2.
+ */
+ elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL,
+ minfreq / 2);
+ }
+
+ unique_nitems++;
+ }
+
+ /*
+ * If we handled all constant elements without exhausting the MCELEM
+ * array, finish walking it to complete calculation of "rest" and "mult".
+ */
+ while (mcelem_index < nmcelem)
+ {
+ mult *= (1.0f - numbers[mcelem_index]);
+ rest -= numbers[mcelem_index];
+ mcelem_index++;
+ }
+
+ /*
+ * The presence of many distinct rare elements materially decreases
+ * selectivity. Use the Poisson distribution to estimate the probability
+ * of a column value having zero occurrences of such elements. See above
+ * for the definition of "rest".
+ */
+ mult *= exp(-rest);
+
+ /*----------
+ * Using the distinct element count histogram requires
+ * O(unique_nitems * (nmcelem + unique_nitems))
+ * operations. Beyond a certain computational cost threshold, it's
+ * reasonable to sacrifice accuracy for decreased planning time. We limit
+ * the number of operations to EFFORT * nmcelem; since nmcelem is limited
+ * by the column's statistics target, the work done is user-controllable.
+ *
+ * If the number of operations would be too large, we can reduce it
+ * without losing all accuracy by reducing unique_nitems and considering
+ * only the most-common elements of the constant array. To make the
+ * results exactly match what we would have gotten with only those
+ * elements to start with, we'd have to remove any discarded elements'
+ * frequencies from "mult", but since this is only an approximation
+ * anyway, we don't bother with that. Therefore it's sufficient to qsort
+ * elem_selec[] and take the largest elements. (They will no longer match
+ * up with the elements of array_data[], but we don't care.)
+ *----------
+ */
+#define EFFORT 100
+
+ if ((nmcelem + unique_nitems) > 0 &&
+ unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems))
+ {
+ /*
+ * Use the quadratic formula to solve for largest allowable N. We
+ * have A = 1, B = nmcelem, C = - EFFORT * nmcelem.
+ */
+ double b = (double) nmcelem;
+ int n;
+
+ n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2);
+
+ /* Sort, then take just the first n elements */
+ qsort(elem_selec, unique_nitems, sizeof(float),
+ float_compare_desc);
+ unique_nitems = n;
+ }
+
+ /*
+ * Calculate probabilities of each distinct element count for both mcelems
+ * and constant elements. At this point, assume independent element
+ * occurrence.
+ */
+ dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f);
+ mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest);
+
+ /* ignore hist[nhist-1], which is the average not a histogram member */
+ hist_part = calc_hist(hist, nhist - 1, unique_nitems);
+
+ selec = 0.0f;
+ for (i = 0; i <= unique_nitems; i++)
+ {
+ /*
+ * mult * dist[i] / mcelem_dist[i] gives us probability of qual
+ * matching from assumption of independent element occurrence with the
+ * condition that distinct element count = i.
+ */
+ if (mcelem_dist[i] > 0)
+ selec += hist_part[i] * mult * dist[i] / mcelem_dist[i];
+ }
+
+ pfree(dist);
+ pfree(mcelem_dist);
+ pfree(hist_part);
+ pfree(elem_selec);
+
+ /* Take into account occurrence of NULL element. */
+ selec *= (1.0f - nullelem_freq);
+
+ CLAMP_PROBABILITY(selec);
+
+ return selec;
+}
+
+/*
+ * Calculate the first n distinct element count probabilities from a
+ * histogram of distinct element counts.
+ *
+ * Returns a palloc'd array of n+1 entries, with array[k] being the
+ * probability of element count k, k in [0..n].
+ *
+ * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) *
+ * (nhist - 1)) probability to each value in (a,b) and an additional half of
+ * that to a and b themselves.
+ */
+static float *
+calc_hist(const float4 *hist, int nhist, int n)
+{
+ float *hist_part;
+ int k,
+ i = 0;
+ float prev_interval = 0,
+ next_interval;
+ float frac;
+
+ hist_part = (float *) palloc((n + 1) * sizeof(float));
+
+ /*
+ * frac is a probability contribution for each interval between histogram
+ * values. We have nhist - 1 intervals, so contribution of each one will
+ * be 1 / (nhist - 1).
+ */
+ frac = 1.0f / ((float) (nhist - 1));
+
+ for (k = 0; k <= n; k++)
+ {
+ int count = 0;
+
+ /*
+ * Count the histogram boundaries equal to k. (Although the histogram
+ * should theoretically contain only exact integers, entries are
+ * floats so there could be roundoff error in large values. Treat any
+ * fractional value as equal to the next larger k.)
+ */
+ while (i < nhist && hist[i] <= k)
+ {
+ count++;
+ i++;
+ }
+
+ if (count > 0)
+ {
+ /* k is an exact bound for at least one histogram box. */
+ float val;
+
+ /* Find length between current histogram value and the next one */
+ if (i < nhist)
+ next_interval = hist[i] - hist[i - 1];
+ else
+ next_interval = 0;
+
+ /*
+ * count - 1 histogram boxes contain k exclusively. They
+ * contribute a total of (count - 1) * frac probability. Also
+ * factor in the partial histogram boxes on either side.
+ */
+ val = (float) (count - 1);
+ if (next_interval > 0)
+ val += 0.5f / next_interval;
+ if (prev_interval > 0)
+ val += 0.5f / prev_interval;
+ hist_part[k] = frac * val;
+
+ prev_interval = next_interval;
+ }
+ else
+ {
+ /* k does not appear as an exact histogram bound. */
+ if (prev_interval > 0)
+ hist_part[k] = frac / prev_interval;
+ else
+ hist_part[k] = 0.0f;
+ }
+ }
+
+ return hist_part;
+}
+
+/*
+ * Consider n independent events with probabilities p[]. This function
+ * calculates probabilities of exact k of events occurrence for k in [0..m].
+ * Returns a palloc'd array of size m+1.
+ *
+ * "rest" is the sum of the probabilities of all low-probability events not
+ * included in p.
+ *
+ * Imagine matrix M of size (n + 1) x (m + 1). Element M[i,j] denotes the
+ * probability that exactly j of first i events occur. Obviously M[0,0] = 1.
+ * For any constant j, each increment of i increases the probability iff the
+ * event occurs. So, by the law of total probability:
+ * M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i]
+ * for i > 0, j > 0.
+ * M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0.
+ */
+static float *
+calc_distr(const float *p, int n, int m, float rest)
+{
+ float *row,
+ *prev_row,
+ *tmp;
+ int i,
+ j;
+
+ /*
+ * Since we return only the last row of the matrix and need only the
+ * current and previous row for calculations, allocate two rows.
+ */
+ row = (float *) palloc((m + 1) * sizeof(float));
+ prev_row = (float *) palloc((m + 1) * sizeof(float));
+
+ /* M[0,0] = 1 */
+ row[0] = 1.0f;
+ for (i = 1; i <= n; i++)
+ {
+ float t = p[i - 1];
+
+ /* Swap rows */
+ tmp = row;
+ row = prev_row;
+ prev_row = tmp;
+
+ /* Calculate next row */
+ for (j = 0; j <= i && j <= m; j++)
+ {
+ float val = 0.0f;
+
+ if (j < i)
+ val += prev_row[j] * (1.0f - t);
+ if (j > 0)
+ val += prev_row[j - 1] * t;
+ row[j] = val;
+ }
+ }
+
+ /*
+ * The presence of many distinct rare (not in "p") elements materially
+ * decreases selectivity. Model their collective occurrence with the
+ * Poisson distribution.
+ */
+ if (rest > DEFAULT_CONTAIN_SEL)
+ {
+ float t;
+
+ /* Swap rows */
+ tmp = row;
+ row = prev_row;
+ prev_row = tmp;
+
+ for (i = 0; i <= m; i++)
+ row[i] = 0.0f;
+
+ /* Value of Poisson distribution for 0 occurrences */
+ t = exp(-rest);
+
+ /*
+ * Calculate convolution of previously computed distribution and the
+ * Poisson distribution.
+ */
+ for (i = 0; i <= m; i++)
+ {
+ for (j = 0; j <= m - i; j++)
+ row[j + i] += prev_row[j] * t;
+
+ /* Get Poisson distribution value for (i + 1) occurrences */
+ t *= rest / (float) (i + 1);
+ }
+ }
+
+ pfree(prev_row);
+ return row;
+}
+
+/* Fast function for floor value of 2 based logarithm calculation. */
+static int
+floor_log2(uint32 n)
+{
+ int logval = 0;
+
+ if (n == 0)
+ return -1;
+ if (n >= (1 << 16))
+ {
+ n >>= 16;
+ logval += 16;
+ }
+ if (n >= (1 << 8))
+ {
+ n >>= 8;
+ logval += 8;
+ }
+ if (n >= (1 << 4))
+ {
+ n >>= 4;
+ logval += 4;
+ }
+ if (n >= (1 << 2))
+ {
+ n >>= 2;
+ logval += 2;
+ }
+ if (n >= (1 << 1))
+ {
+ logval += 1;
+ }
+ return logval;
+}
+
+/*
+ * find_next_mcelem binary-searches a most common elements array, starting
+ * from *index, for the first member >= value. It saves the position of the
+ * match into *index and returns true if it's an exact match. (Note: we
+ * assume the mcelem elements are distinct so there can't be more than one
+ * exact match.)
+ */
+static bool
+find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index,
+ TypeCacheEntry *typentry)
+{
+ int l = *index,
+ r = nmcelem - 1,
+ i,
+ res;
+
+ while (l <= r)
+ {
+ i = (l + r) / 2;
+ res = element_compare(&mcelem[i], &value, typentry);
+ if (res == 0)
+ {
+ *index = i;
+ return true;
+ }
+ else if (res < 0)
+ l = i + 1;
+ else
+ r = i - 1;
+ }
+ *index = l;
+ return false;
+}
+
+/*
+ * Comparison function for elements.
+ *
+ * We use the element type's default btree opclass, and its default collation
+ * if the type is collation-sensitive.
+ *
+ * XXX consider using SortSupport infrastructure
+ */
+static int
+element_compare(const void *key1, const void *key2, void *arg)
+{
+ Datum d1 = *((const Datum *) key1);
+ Datum d2 = *((const Datum *) key2);
+ TypeCacheEntry *typentry = (TypeCacheEntry *) arg;
+ FmgrInfo *cmpfunc = &typentry->cmp_proc_finfo;
+ Datum c;
+
+ c = FunctionCall2Coll(cmpfunc, typentry->typcollation, d1, d2);
+ return DatumGetInt32(c);
+}
+
+/*
+ * Comparison function for sorting floats into descending order.
+ */
+static int
+float_compare_desc(const void *key1, const void *key2)
+{
+ float d1 = *((const float *) key1);
+ float d2 = *((const float *) key2);
+
+ if (d1 > d2)
+ return -1;
+ else if (d1 < d2)
+ return 1;
+ else
+ return 0;
+}