summaryrefslogtreecommitdiffstats
path: root/src/backend/utils/adt/int8.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/utils/adt/int8.c
parentInitial commit. (diff)
downloadpostgresql-14-upstream.tar.xz
postgresql-14-upstream.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/utils/adt/int8.c')
-rw-r--r--src/backend/utils/adt/int8.c1566
1 files changed, 1566 insertions, 0 deletions
diff --git a/src/backend/utils/adt/int8.c b/src/backend/utils/adt/int8.c
new file mode 100644
index 0000000..2168080
--- /dev/null
+++ b/src/backend/utils/adt/int8.c
@@ -0,0 +1,1566 @@
+/*-------------------------------------------------------------------------
+ *
+ * int8.c
+ * Internal 64-bit integer operations
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ * src/backend/utils/adt/int8.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include <ctype.h>
+#include <limits.h>
+#include <math.h>
+
+#include "common/int.h"
+#include "funcapi.h"
+#include "libpq/pqformat.h"
+#include "nodes/nodeFuncs.h"
+#include "nodes/supportnodes.h"
+#include "optimizer/optimizer.h"
+#include "utils/builtins.h"
+#include "utils/int8.h"
+
+
+typedef struct
+{
+ int64 current;
+ int64 finish;
+ int64 step;
+} generate_series_fctx;
+
+
+/***********************************************************************
+ **
+ ** Routines for 64-bit integers.
+ **
+ ***********************************************************************/
+
+/*----------------------------------------------------------
+ * Formatting and conversion routines.
+ *---------------------------------------------------------*/
+
+/*
+ * scanint8 --- try to parse a string into an int8.
+ *
+ * If errorOK is false, ereport a useful error message if the string is bad.
+ * If errorOK is true, just return "false" for bad input.
+ */
+bool
+scanint8(const char *str, bool errorOK, int64 *result)
+{
+ const char *ptr = str;
+ int64 tmp = 0;
+ bool neg = false;
+
+ /*
+ * Do our own scan, rather than relying on sscanf which might be broken
+ * for long long.
+ *
+ * As INT64_MIN can't be stored as a positive 64 bit integer, accumulate
+ * value as a negative number.
+ */
+
+ /* skip leading spaces */
+ while (*ptr && isspace((unsigned char) *ptr))
+ ptr++;
+
+ /* handle sign */
+ if (*ptr == '-')
+ {
+ ptr++;
+ neg = true;
+ }
+ else if (*ptr == '+')
+ ptr++;
+
+ /* require at least one digit */
+ if (unlikely(!isdigit((unsigned char) *ptr)))
+ goto invalid_syntax;
+
+ /* process digits */
+ while (*ptr && isdigit((unsigned char) *ptr))
+ {
+ int8 digit = (*ptr++ - '0');
+
+ if (unlikely(pg_mul_s64_overflow(tmp, 10, &tmp)) ||
+ unlikely(pg_sub_s64_overflow(tmp, digit, &tmp)))
+ goto out_of_range;
+ }
+
+ /* allow trailing whitespace, but not other trailing chars */
+ while (*ptr != '\0' && isspace((unsigned char) *ptr))
+ ptr++;
+
+ if (unlikely(*ptr != '\0'))
+ goto invalid_syntax;
+
+ if (!neg)
+ {
+ /* could fail if input is most negative number */
+ if (unlikely(tmp == PG_INT64_MIN))
+ goto out_of_range;
+ tmp = -tmp;
+ }
+
+ *result = tmp;
+ return true;
+
+out_of_range:
+ if (!errorOK)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("value \"%s\" is out of range for type %s",
+ str, "bigint")));
+ return false;
+
+invalid_syntax:
+ if (!errorOK)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
+ errmsg("invalid input syntax for type %s: \"%s\"",
+ "bigint", str)));
+ return false;
+}
+
+/* int8in()
+ */
+Datum
+int8in(PG_FUNCTION_ARGS)
+{
+ char *str = PG_GETARG_CSTRING(0);
+ int64 result;
+
+ (void) scanint8(str, false, &result);
+ PG_RETURN_INT64(result);
+}
+
+
+/* int8out()
+ */
+Datum
+int8out(PG_FUNCTION_ARGS)
+{
+ int64 val = PG_GETARG_INT64(0);
+ char buf[MAXINT8LEN + 1];
+ char *result;
+ int len;
+
+ len = pg_lltoa(val, buf) + 1;
+
+ /*
+ * Since the length is already known, we do a manual palloc() and memcpy()
+ * to avoid the strlen() call that would otherwise be done in pstrdup().
+ */
+ result = palloc(len);
+ memcpy(result, buf, len);
+ PG_RETURN_CSTRING(result);
+}
+
+/*
+ * int8recv - converts external binary format to int8
+ */
+Datum
+int8recv(PG_FUNCTION_ARGS)
+{
+ StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
+
+ PG_RETURN_INT64(pq_getmsgint64(buf));
+}
+
+/*
+ * int8send - converts int8 to binary format
+ */
+Datum
+int8send(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ StringInfoData buf;
+
+ pq_begintypsend(&buf);
+ pq_sendint64(&buf, arg1);
+ PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
+}
+
+
+/*----------------------------------------------------------
+ * Relational operators for int8s, including cross-data-type comparisons.
+ *---------------------------------------------------------*/
+
+/* int8relop()
+ * Is val1 relop val2?
+ */
+Datum
+int8eq(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 == val2);
+}
+
+Datum
+int8ne(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 != val2);
+}
+
+Datum
+int8lt(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 < val2);
+}
+
+Datum
+int8gt(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 > val2);
+}
+
+Datum
+int8le(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 <= val2);
+}
+
+Datum
+int8ge(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 >= val2);
+}
+
+/* int84relop()
+ * Is 64-bit val1 relop 32-bit val2?
+ */
+Datum
+int84eq(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int32 val2 = PG_GETARG_INT32(1);
+
+ PG_RETURN_BOOL(val1 == val2);
+}
+
+Datum
+int84ne(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int32 val2 = PG_GETARG_INT32(1);
+
+ PG_RETURN_BOOL(val1 != val2);
+}
+
+Datum
+int84lt(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int32 val2 = PG_GETARG_INT32(1);
+
+ PG_RETURN_BOOL(val1 < val2);
+}
+
+Datum
+int84gt(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int32 val2 = PG_GETARG_INT32(1);
+
+ PG_RETURN_BOOL(val1 > val2);
+}
+
+Datum
+int84le(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int32 val2 = PG_GETARG_INT32(1);
+
+ PG_RETURN_BOOL(val1 <= val2);
+}
+
+Datum
+int84ge(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int32 val2 = PG_GETARG_INT32(1);
+
+ PG_RETURN_BOOL(val1 >= val2);
+}
+
+/* int48relop()
+ * Is 32-bit val1 relop 64-bit val2?
+ */
+Datum
+int48eq(PG_FUNCTION_ARGS)
+{
+ int32 val1 = PG_GETARG_INT32(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 == val2);
+}
+
+Datum
+int48ne(PG_FUNCTION_ARGS)
+{
+ int32 val1 = PG_GETARG_INT32(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 != val2);
+}
+
+Datum
+int48lt(PG_FUNCTION_ARGS)
+{
+ int32 val1 = PG_GETARG_INT32(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 < val2);
+}
+
+Datum
+int48gt(PG_FUNCTION_ARGS)
+{
+ int32 val1 = PG_GETARG_INT32(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 > val2);
+}
+
+Datum
+int48le(PG_FUNCTION_ARGS)
+{
+ int32 val1 = PG_GETARG_INT32(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 <= val2);
+}
+
+Datum
+int48ge(PG_FUNCTION_ARGS)
+{
+ int32 val1 = PG_GETARG_INT32(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 >= val2);
+}
+
+/* int82relop()
+ * Is 64-bit val1 relop 16-bit val2?
+ */
+Datum
+int82eq(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int16 val2 = PG_GETARG_INT16(1);
+
+ PG_RETURN_BOOL(val1 == val2);
+}
+
+Datum
+int82ne(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int16 val2 = PG_GETARG_INT16(1);
+
+ PG_RETURN_BOOL(val1 != val2);
+}
+
+Datum
+int82lt(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int16 val2 = PG_GETARG_INT16(1);
+
+ PG_RETURN_BOOL(val1 < val2);
+}
+
+Datum
+int82gt(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int16 val2 = PG_GETARG_INT16(1);
+
+ PG_RETURN_BOOL(val1 > val2);
+}
+
+Datum
+int82le(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int16 val2 = PG_GETARG_INT16(1);
+
+ PG_RETURN_BOOL(val1 <= val2);
+}
+
+Datum
+int82ge(PG_FUNCTION_ARGS)
+{
+ int64 val1 = PG_GETARG_INT64(0);
+ int16 val2 = PG_GETARG_INT16(1);
+
+ PG_RETURN_BOOL(val1 >= val2);
+}
+
+/* int28relop()
+ * Is 16-bit val1 relop 64-bit val2?
+ */
+Datum
+int28eq(PG_FUNCTION_ARGS)
+{
+ int16 val1 = PG_GETARG_INT16(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 == val2);
+}
+
+Datum
+int28ne(PG_FUNCTION_ARGS)
+{
+ int16 val1 = PG_GETARG_INT16(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 != val2);
+}
+
+Datum
+int28lt(PG_FUNCTION_ARGS)
+{
+ int16 val1 = PG_GETARG_INT16(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 < val2);
+}
+
+Datum
+int28gt(PG_FUNCTION_ARGS)
+{
+ int16 val1 = PG_GETARG_INT16(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 > val2);
+}
+
+Datum
+int28le(PG_FUNCTION_ARGS)
+{
+ int16 val1 = PG_GETARG_INT16(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 <= val2);
+}
+
+Datum
+int28ge(PG_FUNCTION_ARGS)
+{
+ int16 val1 = PG_GETARG_INT16(0);
+ int64 val2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_BOOL(val1 >= val2);
+}
+
+/*
+ * in_range support function for int8.
+ *
+ * Note: we needn't supply int8_int4 or int8_int2 variants, as implicit
+ * coercion of the offset value takes care of those scenarios just as well.
+ */
+Datum
+in_range_int8_int8(PG_FUNCTION_ARGS)
+{
+ int64 val = PG_GETARG_INT64(0);
+ int64 base = PG_GETARG_INT64(1);
+ int64 offset = PG_GETARG_INT64(2);
+ bool sub = PG_GETARG_BOOL(3);
+ bool less = PG_GETARG_BOOL(4);
+ int64 sum;
+
+ if (offset < 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
+ errmsg("invalid preceding or following size in window function")));
+
+ if (sub)
+ offset = -offset; /* cannot overflow */
+
+ if (unlikely(pg_add_s64_overflow(base, offset, &sum)))
+ {
+ /*
+ * If sub is false, the true sum is surely more than val, so correct
+ * answer is the same as "less". If sub is true, the true sum is
+ * surely less than val, so the answer is "!less".
+ */
+ PG_RETURN_BOOL(sub ? !less : less);
+ }
+
+ if (less)
+ PG_RETURN_BOOL(val <= sum);
+ else
+ PG_RETURN_BOOL(val >= sum);
+}
+
+
+/*----------------------------------------------------------
+ * Arithmetic operators on 64-bit integers.
+ *---------------------------------------------------------*/
+
+Datum
+int8um(PG_FUNCTION_ARGS)
+{
+ int64 arg = PG_GETARG_INT64(0);
+ int64 result;
+
+ if (unlikely(arg == PG_INT64_MIN))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ result = -arg;
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int8up(PG_FUNCTION_ARGS)
+{
+ int64 arg = PG_GETARG_INT64(0);
+
+ PG_RETURN_INT64(arg);
+}
+
+Datum
+int8pl(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ if (unlikely(pg_add_s64_overflow(arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int8mi(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ if (unlikely(pg_sub_s64_overflow(arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int8mul(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int8div(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ if (arg2 == 0)
+ {
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+ /* ensure compiler realizes we mustn't reach the division (gcc bug) */
+ PG_RETURN_NULL();
+ }
+
+ /*
+ * INT64_MIN / -1 is problematic, since the result can't be represented on
+ * a two's-complement machine. Some machines produce INT64_MIN, some
+ * produce zero, some throw an exception. We can dodge the problem by
+ * recognizing that division by -1 is the same as negation.
+ */
+ if (arg2 == -1)
+ {
+ if (unlikely(arg1 == PG_INT64_MIN))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ result = -arg1;
+ PG_RETURN_INT64(result);
+ }
+
+ /* No overflow is possible */
+
+ result = arg1 / arg2;
+
+ PG_RETURN_INT64(result);
+}
+
+/* int8abs()
+ * Absolute value
+ */
+Datum
+int8abs(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 result;
+
+ if (unlikely(arg1 == PG_INT64_MIN))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ result = (arg1 < 0) ? -arg1 : arg1;
+ PG_RETURN_INT64(result);
+}
+
+/* int8mod()
+ * Modulo operation.
+ */
+Datum
+int8mod(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+
+ if (unlikely(arg2 == 0))
+ {
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+ /* ensure compiler realizes we mustn't reach the division (gcc bug) */
+ PG_RETURN_NULL();
+ }
+
+ /*
+ * Some machines throw a floating-point exception for INT64_MIN % -1,
+ * which is a bit silly since the correct answer is perfectly
+ * well-defined, namely zero.
+ */
+ if (arg2 == -1)
+ PG_RETURN_INT64(0);
+
+ /* No overflow is possible */
+
+ PG_RETURN_INT64(arg1 % arg2);
+}
+
+/*
+ * Greatest Common Divisor
+ *
+ * Returns the largest positive integer that exactly divides both inputs.
+ * Special cases:
+ * - gcd(x, 0) = gcd(0, x) = abs(x)
+ * because 0 is divisible by anything
+ * - gcd(0, 0) = 0
+ * complies with the previous definition and is a common convention
+ *
+ * Special care must be taken if either input is INT64_MIN ---
+ * gcd(0, INT64_MIN), gcd(INT64_MIN, 0) and gcd(INT64_MIN, INT64_MIN) are
+ * all equal to abs(INT64_MIN), which cannot be represented as a 64-bit signed
+ * integer.
+ */
+static int64
+int8gcd_internal(int64 arg1, int64 arg2)
+{
+ int64 swap;
+ int64 a1,
+ a2;
+
+ /*
+ * Put the greater absolute value in arg1.
+ *
+ * This would happen automatically in the loop below, but avoids an
+ * expensive modulo operation, and simplifies the special-case handling
+ * for INT64_MIN below.
+ *
+ * We do this in negative space in order to handle INT64_MIN.
+ */
+ a1 = (arg1 < 0) ? arg1 : -arg1;
+ a2 = (arg2 < 0) ? arg2 : -arg2;
+ if (a1 > a2)
+ {
+ swap = arg1;
+ arg1 = arg2;
+ arg2 = swap;
+ }
+
+ /* Special care needs to be taken with INT64_MIN. See comments above. */
+ if (arg1 == PG_INT64_MIN)
+ {
+ if (arg2 == 0 || arg2 == PG_INT64_MIN)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ /*
+ * Some machines throw a floating-point exception for INT64_MIN % -1,
+ * which is a bit silly since the correct answer is perfectly
+ * well-defined, namely zero. Guard against this and just return the
+ * result, gcd(INT64_MIN, -1) = 1.
+ */
+ if (arg2 == -1)
+ return 1;
+ }
+
+ /* Use the Euclidean algorithm to find the GCD */
+ while (arg2 != 0)
+ {
+ swap = arg2;
+ arg2 = arg1 % arg2;
+ arg1 = swap;
+ }
+
+ /*
+ * Make sure the result is positive. (We know we don't have INT64_MIN
+ * anymore).
+ */
+ if (arg1 < 0)
+ arg1 = -arg1;
+
+ return arg1;
+}
+
+Datum
+int8gcd(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ result = int8gcd_internal(arg1, arg2);
+
+ PG_RETURN_INT64(result);
+}
+
+/*
+ * Least Common Multiple
+ */
+Datum
+int8lcm(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 gcd;
+ int64 result;
+
+ /*
+ * Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
+ * division-by-zero error below when x is zero, and an overflow error from
+ * the GCD computation when x = INT64_MIN.
+ */
+ if (arg1 == 0 || arg2 == 0)
+ PG_RETURN_INT64(0);
+
+ /* lcm(x, y) = abs(x / gcd(x, y) * y) */
+ gcd = int8gcd_internal(arg1, arg2);
+ arg1 = arg1 / gcd;
+
+ if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ /* If the result is INT64_MIN, it cannot be represented. */
+ if (unlikely(result == PG_INT64_MIN))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ if (result < 0)
+ result = -result;
+
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int8inc(PG_FUNCTION_ARGS)
+{
+ /*
+ * When int8 is pass-by-reference, we provide this special case to avoid
+ * palloc overhead for COUNT(): when called as an aggregate, we know that
+ * the argument is modifiable local storage, so just update it in-place.
+ * (If int8 is pass-by-value, then of course this is useless as well as
+ * incorrect, so just ifdef it out.)
+ */
+#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
+ if (AggCheckCallContext(fcinfo, NULL))
+ {
+ int64 *arg = (int64 *) PG_GETARG_POINTER(0);
+
+ if (unlikely(pg_add_s64_overflow(*arg, 1, arg)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ PG_RETURN_POINTER(arg);
+ }
+ else
+#endif
+ {
+ /* Not called as an aggregate, so just do it the dumb way */
+ int64 arg = PG_GETARG_INT64(0);
+ int64 result;
+
+ if (unlikely(pg_add_s64_overflow(arg, 1, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ PG_RETURN_INT64(result);
+ }
+}
+
+Datum
+int8dec(PG_FUNCTION_ARGS)
+{
+ /*
+ * When int8 is pass-by-reference, we provide this special case to avoid
+ * palloc overhead for COUNT(): when called as an aggregate, we know that
+ * the argument is modifiable local storage, so just update it in-place.
+ * (If int8 is pass-by-value, then of course this is useless as well as
+ * incorrect, so just ifdef it out.)
+ */
+#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
+ if (AggCheckCallContext(fcinfo, NULL))
+ {
+ int64 *arg = (int64 *) PG_GETARG_POINTER(0);
+
+ if (unlikely(pg_sub_s64_overflow(*arg, 1, arg)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_POINTER(arg);
+ }
+ else
+#endif
+ {
+ /* Not called as an aggregate, so just do it the dumb way */
+ int64 arg = PG_GETARG_INT64(0);
+ int64 result;
+
+ if (unlikely(pg_sub_s64_overflow(arg, 1, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ PG_RETURN_INT64(result);
+ }
+}
+
+
+/*
+ * These functions are exactly like int8inc/int8dec but are used for
+ * aggregates that count only non-null values. Since the functions are
+ * declared strict, the null checks happen before we ever get here, and all we
+ * need do is increment the state value. We could actually make these pg_proc
+ * entries point right at int8inc/int8dec, but then the opr_sanity regression
+ * test would complain about mismatched entries for a built-in function.
+ */
+
+Datum
+int8inc_any(PG_FUNCTION_ARGS)
+{
+ return int8inc(fcinfo);
+}
+
+Datum
+int8inc_float8_float8(PG_FUNCTION_ARGS)
+{
+ return int8inc(fcinfo);
+}
+
+Datum
+int8dec_any(PG_FUNCTION_ARGS)
+{
+ return int8dec(fcinfo);
+}
+
+
+Datum
+int8larger(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ result = ((arg1 > arg2) ? arg1 : arg2);
+
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int8smaller(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ result = ((arg1 < arg2) ? arg1 : arg2);
+
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int84pl(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int32 arg2 = PG_GETARG_INT32(1);
+ int64 result;
+
+ if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int84mi(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int32 arg2 = PG_GETARG_INT32(1);
+ int64 result;
+
+ if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int84mul(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int32 arg2 = PG_GETARG_INT32(1);
+ int64 result;
+
+ if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int84div(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int32 arg2 = PG_GETARG_INT32(1);
+ int64 result;
+
+ if (arg2 == 0)
+ {
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+ /* ensure compiler realizes we mustn't reach the division (gcc bug) */
+ PG_RETURN_NULL();
+ }
+
+ /*
+ * INT64_MIN / -1 is problematic, since the result can't be represented on
+ * a two's-complement machine. Some machines produce INT64_MIN, some
+ * produce zero, some throw an exception. We can dodge the problem by
+ * recognizing that division by -1 is the same as negation.
+ */
+ if (arg2 == -1)
+ {
+ if (unlikely(arg1 == PG_INT64_MIN))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ result = -arg1;
+ PG_RETURN_INT64(result);
+ }
+
+ /* No overflow is possible */
+
+ result = arg1 / arg2;
+
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int48pl(PG_FUNCTION_ARGS)
+{
+ int32 arg1 = PG_GETARG_INT32(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int48mi(PG_FUNCTION_ARGS)
+{
+ int32 arg1 = PG_GETARG_INT32(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int48mul(PG_FUNCTION_ARGS)
+{
+ int32 arg1 = PG_GETARG_INT32(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int48div(PG_FUNCTION_ARGS)
+{
+ int32 arg1 = PG_GETARG_INT32(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+
+ if (unlikely(arg2 == 0))
+ {
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+ /* ensure compiler realizes we mustn't reach the division (gcc bug) */
+ PG_RETURN_NULL();
+ }
+
+ /* No overflow is possible */
+ PG_RETURN_INT64((int64) arg1 / arg2);
+}
+
+Datum
+int82pl(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int82mi(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int82mul(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int82div(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ if (unlikely(arg2 == 0))
+ {
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+ /* ensure compiler realizes we mustn't reach the division (gcc bug) */
+ PG_RETURN_NULL();
+ }
+
+ /*
+ * INT64_MIN / -1 is problematic, since the result can't be represented on
+ * a two's-complement machine. Some machines produce INT64_MIN, some
+ * produce zero, some throw an exception. We can dodge the problem by
+ * recognizing that division by -1 is the same as negation.
+ */
+ if (arg2 == -1)
+ {
+ if (unlikely(arg1 == PG_INT64_MIN))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ result = -arg1;
+ PG_RETURN_INT64(result);
+ }
+
+ /* No overflow is possible */
+
+ result = arg1 / arg2;
+
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28pl(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28mi(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28mul(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28div(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+
+ if (unlikely(arg2 == 0))
+ {
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+ /* ensure compiler realizes we mustn't reach the division (gcc bug) */
+ PG_RETURN_NULL();
+ }
+
+ /* No overflow is possible */
+ PG_RETURN_INT64((int64) arg1 / arg2);
+}
+
+/* Binary arithmetics
+ *
+ * int8and - returns arg1 & arg2
+ * int8or - returns arg1 | arg2
+ * int8xor - returns arg1 # arg2
+ * int8not - returns ~arg1
+ * int8shl - returns arg1 << arg2
+ * int8shr - returns arg1 >> arg2
+ */
+
+Datum
+int8and(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_INT64(arg1 & arg2);
+}
+
+Datum
+int8or(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_INT64(arg1 | arg2);
+}
+
+Datum
+int8xor(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+
+ PG_RETURN_INT64(arg1 ^ arg2);
+}
+
+Datum
+int8not(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+
+ PG_RETURN_INT64(~arg1);
+}
+
+Datum
+int8shl(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int32 arg2 = PG_GETARG_INT32(1);
+
+ PG_RETURN_INT64(arg1 << arg2);
+}
+
+Datum
+int8shr(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int32 arg2 = PG_GETARG_INT32(1);
+
+ PG_RETURN_INT64(arg1 >> arg2);
+}
+
+/*----------------------------------------------------------
+ * Conversion operators.
+ *---------------------------------------------------------*/
+
+Datum
+int48(PG_FUNCTION_ARGS)
+{
+ int32 arg = PG_GETARG_INT32(0);
+
+ PG_RETURN_INT64((int64) arg);
+}
+
+Datum
+int84(PG_FUNCTION_ARGS)
+{
+ int64 arg = PG_GETARG_INT64(0);
+
+ if (unlikely(arg < PG_INT32_MIN) || unlikely(arg > PG_INT32_MAX))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("integer out of range")));
+
+ PG_RETURN_INT32((int32) arg);
+}
+
+Datum
+int28(PG_FUNCTION_ARGS)
+{
+ int16 arg = PG_GETARG_INT16(0);
+
+ PG_RETURN_INT64((int64) arg);
+}
+
+Datum
+int82(PG_FUNCTION_ARGS)
+{
+ int64 arg = PG_GETARG_INT64(0);
+
+ if (unlikely(arg < PG_INT16_MIN) || unlikely(arg > PG_INT16_MAX))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("smallint out of range")));
+
+ PG_RETURN_INT16((int16) arg);
+}
+
+Datum
+i8tod(PG_FUNCTION_ARGS)
+{
+ int64 arg = PG_GETARG_INT64(0);
+ float8 result;
+
+ result = arg;
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/* dtoi8()
+ * Convert float8 to 8-byte integer.
+ */
+Datum
+dtoi8(PG_FUNCTION_ARGS)
+{
+ float8 num = PG_GETARG_FLOAT8(0);
+
+ /*
+ * Get rid of any fractional part in the input. This is so we don't fail
+ * on just-out-of-range values that would round into range. Note
+ * assumption that rint() will pass through a NaN or Inf unchanged.
+ */
+ num = rint(num);
+
+ /* Range check */
+ if (unlikely(isnan(num) || !FLOAT8_FITS_IN_INT64(num)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ PG_RETURN_INT64((int64) num);
+}
+
+Datum
+i8tof(PG_FUNCTION_ARGS)
+{
+ int64 arg = PG_GETARG_INT64(0);
+ float4 result;
+
+ result = arg;
+
+ PG_RETURN_FLOAT4(result);
+}
+
+/* ftoi8()
+ * Convert float4 to 8-byte integer.
+ */
+Datum
+ftoi8(PG_FUNCTION_ARGS)
+{
+ float4 num = PG_GETARG_FLOAT4(0);
+
+ /*
+ * Get rid of any fractional part in the input. This is so we don't fail
+ * on just-out-of-range values that would round into range. Note
+ * assumption that rint() will pass through a NaN or Inf unchanged.
+ */
+ num = rint(num);
+
+ /* Range check */
+ if (unlikely(isnan(num) || !FLOAT4_FITS_IN_INT64(num)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ PG_RETURN_INT64((int64) num);
+}
+
+Datum
+i8tooid(PG_FUNCTION_ARGS)
+{
+ int64 arg = PG_GETARG_INT64(0);
+
+ if (unlikely(arg < 0) || unlikely(arg > PG_UINT32_MAX))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("OID out of range")));
+
+ PG_RETURN_OID((Oid) arg);
+}
+
+Datum
+oidtoi8(PG_FUNCTION_ARGS)
+{
+ Oid arg = PG_GETARG_OID(0);
+
+ PG_RETURN_INT64((int64) arg);
+}
+
+/*
+ * non-persistent numeric series generator
+ */
+Datum
+generate_series_int8(PG_FUNCTION_ARGS)
+{
+ return generate_series_step_int8(fcinfo);
+}
+
+Datum
+generate_series_step_int8(PG_FUNCTION_ARGS)
+{
+ FuncCallContext *funcctx;
+ generate_series_fctx *fctx;
+ int64 result;
+ MemoryContext oldcontext;
+
+ /* stuff done only on the first call of the function */
+ if (SRF_IS_FIRSTCALL())
+ {
+ int64 start = PG_GETARG_INT64(0);
+ int64 finish = PG_GETARG_INT64(1);
+ int64 step = 1;
+
+ /* see if we were given an explicit step size */
+ if (PG_NARGS() == 3)
+ step = PG_GETARG_INT64(2);
+ if (step == 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
+ errmsg("step size cannot equal zero")));
+
+ /* create a function context for cross-call persistence */
+ funcctx = SRF_FIRSTCALL_INIT();
+
+ /*
+ * switch to memory context appropriate for multiple function calls
+ */
+ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
+
+ /* allocate memory for user context */
+ fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
+
+ /*
+ * Use fctx to keep state from call to call. Seed current with the
+ * original start value
+ */
+ fctx->current = start;
+ fctx->finish = finish;
+ fctx->step = step;
+
+ funcctx->user_fctx = fctx;
+ MemoryContextSwitchTo(oldcontext);
+ }
+
+ /* stuff done on every call of the function */
+ funcctx = SRF_PERCALL_SETUP();
+
+ /*
+ * get the saved state and use current as the result for this iteration
+ */
+ fctx = funcctx->user_fctx;
+ result = fctx->current;
+
+ if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
+ (fctx->step < 0 && fctx->current >= fctx->finish))
+ {
+ /*
+ * Increment current in preparation for next iteration. If next-value
+ * computation overflows, this is the final result.
+ */
+ if (pg_add_s64_overflow(fctx->current, fctx->step, &fctx->current))
+ fctx->step = 0;
+
+ /* do when there is more left to send */
+ SRF_RETURN_NEXT(funcctx, Int64GetDatum(result));
+ }
+ else
+ /* do when there is no more left */
+ SRF_RETURN_DONE(funcctx);
+}
+
+/*
+ * Planner support function for generate_series(int8, int8 [, int8])
+ */
+Datum
+generate_series_int8_support(PG_FUNCTION_ARGS)
+{
+ Node *rawreq = (Node *) PG_GETARG_POINTER(0);
+ Node *ret = NULL;
+
+ if (IsA(rawreq, SupportRequestRows))
+ {
+ /* Try to estimate the number of rows returned */
+ SupportRequestRows *req = (SupportRequestRows *) rawreq;
+
+ if (is_funcclause(req->node)) /* be paranoid */
+ {
+ List *args = ((FuncExpr *) req->node)->args;
+ Node *arg1,
+ *arg2,
+ *arg3;
+
+ /* We can use estimated argument values here */
+ arg1 = estimate_expression_value(req->root, linitial(args));
+ arg2 = estimate_expression_value(req->root, lsecond(args));
+ if (list_length(args) >= 3)
+ arg3 = estimate_expression_value(req->root, lthird(args));
+ else
+ arg3 = NULL;
+
+ /*
+ * If any argument is constant NULL, we can safely assume that
+ * zero rows are returned. Otherwise, if they're all non-NULL
+ * constants, we can calculate the number of rows that will be
+ * returned. Use double arithmetic to avoid overflow hazards.
+ */
+ if ((IsA(arg1, Const) &&
+ ((Const *) arg1)->constisnull) ||
+ (IsA(arg2, Const) &&
+ ((Const *) arg2)->constisnull) ||
+ (arg3 != NULL && IsA(arg3, Const) &&
+ ((Const *) arg3)->constisnull))
+ {
+ req->rows = 0;
+ ret = (Node *) req;
+ }
+ else if (IsA(arg1, Const) &&
+ IsA(arg2, Const) &&
+ (arg3 == NULL || IsA(arg3, Const)))
+ {
+ double start,
+ finish,
+ step;
+
+ start = DatumGetInt64(((Const *) arg1)->constvalue);
+ finish = DatumGetInt64(((Const *) arg2)->constvalue);
+ step = arg3 ? DatumGetInt64(((Const *) arg3)->constvalue) : 1;
+
+ /* This equation works for either sign of step */
+ if (step != 0)
+ {
+ req->rows = floor((finish - start + step) / step);
+ ret = (Node *) req;
+ }
+ }
+ }
+ }
+
+ PG_RETURN_POINTER(ret);
+}