diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:15:05 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:15:05 +0000 |
commit | 46651ce6fe013220ed397add242004d764fc0153 (patch) | |
tree | 6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/utils/adt/network_selfuncs.c | |
parent | Initial commit. (diff) | |
download | postgresql-14-upstream.tar.xz postgresql-14-upstream.zip |
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/utils/adt/network_selfuncs.c')
-rw-r--r-- | src/backend/utils/adt/network_selfuncs.c | 972 |
1 files changed, 972 insertions, 0 deletions
diff --git a/src/backend/utils/adt/network_selfuncs.c b/src/backend/utils/adt/network_selfuncs.c new file mode 100644 index 0000000..dca2c63 --- /dev/null +++ b/src/backend/utils/adt/network_selfuncs.c @@ -0,0 +1,972 @@ +/*------------------------------------------------------------------------- + * + * network_selfuncs.c + * Functions for selectivity estimation of inet/cidr operators + * + * This module provides estimators for the subnet inclusion and overlap + * operators. Estimates are based on null fraction, most common values, + * and histogram of inet/cidr columns. + * + * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * + * IDENTIFICATION + * src/backend/utils/adt/network_selfuncs.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include <math.h> + +#include "access/htup_details.h" +#include "catalog/pg_operator.h" +#include "catalog/pg_statistic.h" +#include "utils/builtins.h" +#include "utils/inet.h" +#include "utils/lsyscache.h" +#include "utils/selfuncs.h" + + +/* Default selectivity for the inet overlap operator */ +#define DEFAULT_OVERLAP_SEL 0.01 + +/* Default selectivity for the various inclusion operators */ +#define DEFAULT_INCLUSION_SEL 0.005 + +/* Default selectivity for specified operator */ +#define DEFAULT_SEL(operator) \ + ((operator) == OID_INET_OVERLAP_OP ? \ + DEFAULT_OVERLAP_SEL : DEFAULT_INCLUSION_SEL) + +/* Maximum number of items to consider in join selectivity calculations */ +#define MAX_CONSIDERED_ELEMS 1024 + +static Selectivity networkjoinsel_inner(Oid operator, + VariableStatData *vardata1, VariableStatData *vardata2); +static Selectivity networkjoinsel_semi(Oid operator, + VariableStatData *vardata1, VariableStatData *vardata2); +static Selectivity mcv_population(float4 *mcv_numbers, int mcv_nvalues); +static Selectivity inet_hist_value_sel(Datum *values, int nvalues, + Datum constvalue, int opr_codenum); +static Selectivity inet_mcv_join_sel(Datum *mcv1_values, + float4 *mcv1_numbers, int mcv1_nvalues, Datum *mcv2_values, + float4 *mcv2_numbers, int mcv2_nvalues, Oid operator); +static Selectivity inet_mcv_hist_sel(Datum *mcv_values, float4 *mcv_numbers, + int mcv_nvalues, Datum *hist_values, int hist_nvalues, + int opr_codenum); +static Selectivity inet_hist_inclusion_join_sel(Datum *hist1_values, + int hist1_nvalues, + Datum *hist2_values, int hist2_nvalues, + int opr_codenum); +static Selectivity inet_semi_join_sel(Datum lhs_value, + bool mcv_exists, Datum *mcv_values, int mcv_nvalues, + bool hist_exists, Datum *hist_values, int hist_nvalues, + double hist_weight, + FmgrInfo *proc, int opr_codenum); +static int inet_opr_codenum(Oid operator); +static int inet_inclusion_cmp(inet *left, inet *right, int opr_codenum); +static int inet_masklen_inclusion_cmp(inet *left, inet *right, + int opr_codenum); +static int inet_hist_match_divider(inet *boundary, inet *query, + int opr_codenum); + +/* + * Selectivity estimation for the subnet inclusion/overlap operators + */ +Datum +networksel(PG_FUNCTION_ARGS) +{ + PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); + Oid operator = PG_GETARG_OID(1); + List *args = (List *) PG_GETARG_POINTER(2); + int varRelid = PG_GETARG_INT32(3); + VariableStatData vardata; + Node *other; + bool varonleft; + Selectivity selec, + mcv_selec, + non_mcv_selec; + Datum constvalue; + Form_pg_statistic stats; + AttStatsSlot hslot; + double sumcommon, + nullfrac; + FmgrInfo proc; + + /* + * If expression is not (variable op something) or (something op + * variable), then punt and return a default estimate. + */ + if (!get_restriction_variable(root, args, varRelid, + &vardata, &other, &varonleft)) + PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); + + /* + * Can't do anything useful if the something is not a constant, either. + */ + if (!IsA(other, Const)) + { + ReleaseVariableStats(vardata); + PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); + } + + /* All of the operators handled here are strict. */ + if (((Const *) other)->constisnull) + { + ReleaseVariableStats(vardata); + PG_RETURN_FLOAT8(0.0); + } + constvalue = ((Const *) other)->constvalue; + + /* Otherwise, we need stats in order to produce a non-default estimate. */ + if (!HeapTupleIsValid(vardata.statsTuple)) + { + ReleaseVariableStats(vardata); + PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); + } + + stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); + nullfrac = stats->stanullfrac; + + /* + * If we have most-common-values info, add up the fractions of the MCV + * entries that satisfy MCV OP CONST. These fractions contribute directly + * to the result selectivity. Also add up the total fraction represented + * by MCV entries. + */ + fmgr_info(get_opcode(operator), &proc); + mcv_selec = mcv_selectivity(&vardata, &proc, InvalidOid, + constvalue, varonleft, + &sumcommon); + + /* + * If we have a histogram, use it to estimate the proportion of the + * non-MCV population that satisfies the clause. If we don't, apply the + * default selectivity to that population. + */ + if (get_attstatsslot(&hslot, vardata.statsTuple, + STATISTIC_KIND_HISTOGRAM, InvalidOid, + ATTSTATSSLOT_VALUES)) + { + int opr_codenum = inet_opr_codenum(operator); + + /* Commute if needed, so we can consider histogram to be on the left */ + if (!varonleft) + opr_codenum = -opr_codenum; + non_mcv_selec = inet_hist_value_sel(hslot.values, hslot.nvalues, + constvalue, opr_codenum); + + free_attstatsslot(&hslot); + } + else + non_mcv_selec = DEFAULT_SEL(operator); + + /* Combine selectivities for MCV and non-MCV populations */ + selec = mcv_selec + (1.0 - nullfrac - sumcommon) * non_mcv_selec; + + /* Result should be in range, but make sure... */ + CLAMP_PROBABILITY(selec); + + ReleaseVariableStats(vardata); + + PG_RETURN_FLOAT8(selec); +} + +/* + * Join selectivity estimation for the subnet inclusion/overlap operators + * + * This function has the same structure as eqjoinsel() in selfuncs.c. + * + * Throughout networkjoinsel and its subroutines, we have a performance issue + * in that the amount of work to be done is O(N^2) in the length of the MCV + * and histogram arrays. To keep the runtime from getting out of hand when + * large statistics targets have been set, we arbitrarily limit the number of + * values considered to 1024 (MAX_CONSIDERED_ELEMS). For the MCV arrays, this + * is easy: just consider at most the first N elements. (Since the MCVs are + * sorted by decreasing frequency, this correctly gets us the first N MCVs.) + * For the histogram arrays, we decimate; that is consider only every k'th + * element, where k is chosen so that no more than MAX_CONSIDERED_ELEMS + * elements are considered. This should still give us a good random sample of + * the non-MCV population. Decimation is done on-the-fly in the loops that + * iterate over the histogram arrays. + */ +Datum +networkjoinsel(PG_FUNCTION_ARGS) +{ + PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); + Oid operator = PG_GETARG_OID(1); + List *args = (List *) PG_GETARG_POINTER(2); +#ifdef NOT_USED + JoinType jointype = (JoinType) PG_GETARG_INT16(3); +#endif + SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4); + double selec; + VariableStatData vardata1; + VariableStatData vardata2; + bool join_is_reversed; + + get_join_variables(root, args, sjinfo, + &vardata1, &vardata2, &join_is_reversed); + + switch (sjinfo->jointype) + { + case JOIN_INNER: + case JOIN_LEFT: + case JOIN_FULL: + + /* + * Selectivity for left/full join is not exactly the same as inner + * join, but we neglect the difference, as eqjoinsel does. + */ + selec = networkjoinsel_inner(operator, &vardata1, &vardata2); + break; + case JOIN_SEMI: + case JOIN_ANTI: + /* Here, it's important that we pass the outer var on the left. */ + if (!join_is_reversed) + selec = networkjoinsel_semi(operator, &vardata1, &vardata2); + else + selec = networkjoinsel_semi(get_commutator(operator), + &vardata2, &vardata1); + break; + default: + /* other values not expected here */ + elog(ERROR, "unrecognized join type: %d", + (int) sjinfo->jointype); + selec = 0; /* keep compiler quiet */ + break; + } + + ReleaseVariableStats(vardata1); + ReleaseVariableStats(vardata2); + + CLAMP_PROBABILITY(selec); + + PG_RETURN_FLOAT8((float8) selec); +} + +/* + * Inner join selectivity estimation for subnet inclusion/overlap operators + * + * Calculates MCV vs MCV, MCV vs histogram and histogram vs histogram + * selectivity for join using the subnet inclusion operators. Unlike the + * join selectivity function for the equality operator, eqjoinsel_inner(), + * one to one matching of the values is not enough. Network inclusion + * operators are likely to match many to many, so we must check all pairs. + * (Note: it might be possible to exploit understanding of the histogram's + * btree ordering to reduce the work needed, but we don't currently try.) + * Also, MCV vs histogram selectivity is not neglected as in eqjoinsel_inner(). + */ +static Selectivity +networkjoinsel_inner(Oid operator, + VariableStatData *vardata1, VariableStatData *vardata2) +{ + Form_pg_statistic stats; + double nullfrac1 = 0.0, + nullfrac2 = 0.0; + Selectivity selec = 0.0, + sumcommon1 = 0.0, + sumcommon2 = 0.0; + bool mcv1_exists = false, + mcv2_exists = false, + hist1_exists = false, + hist2_exists = false; + int opr_codenum; + int mcv1_length = 0, + mcv2_length = 0; + AttStatsSlot mcv1_slot; + AttStatsSlot mcv2_slot; + AttStatsSlot hist1_slot; + AttStatsSlot hist2_slot; + + if (HeapTupleIsValid(vardata1->statsTuple)) + { + stats = (Form_pg_statistic) GETSTRUCT(vardata1->statsTuple); + nullfrac1 = stats->stanullfrac; + + mcv1_exists = get_attstatsslot(&mcv1_slot, vardata1->statsTuple, + STATISTIC_KIND_MCV, InvalidOid, + ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS); + hist1_exists = get_attstatsslot(&hist1_slot, vardata1->statsTuple, + STATISTIC_KIND_HISTOGRAM, InvalidOid, + ATTSTATSSLOT_VALUES); + /* Arbitrarily limit number of MCVs considered */ + mcv1_length = Min(mcv1_slot.nvalues, MAX_CONSIDERED_ELEMS); + if (mcv1_exists) + sumcommon1 = mcv_population(mcv1_slot.numbers, mcv1_length); + } + else + { + memset(&mcv1_slot, 0, sizeof(mcv1_slot)); + memset(&hist1_slot, 0, sizeof(hist1_slot)); + } + + if (HeapTupleIsValid(vardata2->statsTuple)) + { + stats = (Form_pg_statistic) GETSTRUCT(vardata2->statsTuple); + nullfrac2 = stats->stanullfrac; + + mcv2_exists = get_attstatsslot(&mcv2_slot, vardata2->statsTuple, + STATISTIC_KIND_MCV, InvalidOid, + ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS); + hist2_exists = get_attstatsslot(&hist2_slot, vardata2->statsTuple, + STATISTIC_KIND_HISTOGRAM, InvalidOid, + ATTSTATSSLOT_VALUES); + /* Arbitrarily limit number of MCVs considered */ + mcv2_length = Min(mcv2_slot.nvalues, MAX_CONSIDERED_ELEMS); + if (mcv2_exists) + sumcommon2 = mcv_population(mcv2_slot.numbers, mcv2_length); + } + else + { + memset(&mcv2_slot, 0, sizeof(mcv2_slot)); + memset(&hist2_slot, 0, sizeof(hist2_slot)); + } + + opr_codenum = inet_opr_codenum(operator); + + /* + * Calculate selectivity for MCV vs MCV matches. + */ + if (mcv1_exists && mcv2_exists) + selec += inet_mcv_join_sel(mcv1_slot.values, mcv1_slot.numbers, + mcv1_length, + mcv2_slot.values, mcv2_slot.numbers, + mcv2_length, + operator); + + /* + * Add in selectivities for MCV vs histogram matches, scaling according to + * the fractions of the populations represented by the histograms. Note + * that the second case needs to commute the operator. + */ + if (mcv1_exists && hist2_exists) + selec += (1.0 - nullfrac2 - sumcommon2) * + inet_mcv_hist_sel(mcv1_slot.values, mcv1_slot.numbers, mcv1_length, + hist2_slot.values, hist2_slot.nvalues, + opr_codenum); + if (mcv2_exists && hist1_exists) + selec += (1.0 - nullfrac1 - sumcommon1) * + inet_mcv_hist_sel(mcv2_slot.values, mcv2_slot.numbers, mcv2_length, + hist1_slot.values, hist1_slot.nvalues, + -opr_codenum); + + /* + * Add in selectivity for histogram vs histogram matches, again scaling + * appropriately. + */ + if (hist1_exists && hist2_exists) + selec += (1.0 - nullfrac1 - sumcommon1) * + (1.0 - nullfrac2 - sumcommon2) * + inet_hist_inclusion_join_sel(hist1_slot.values, hist1_slot.nvalues, + hist2_slot.values, hist2_slot.nvalues, + opr_codenum); + + /* + * If useful statistics are not available then use the default estimate. + * We can apply null fractions if known, though. + */ + if ((!mcv1_exists && !hist1_exists) || (!mcv2_exists && !hist2_exists)) + selec = (1.0 - nullfrac1) * (1.0 - nullfrac2) * DEFAULT_SEL(operator); + + /* Release stats. */ + free_attstatsslot(&mcv1_slot); + free_attstatsslot(&mcv2_slot); + free_attstatsslot(&hist1_slot); + free_attstatsslot(&hist2_slot); + + return selec; +} + +/* + * Semi join selectivity estimation for subnet inclusion/overlap operators + * + * Calculates MCV vs MCV, MCV vs histogram, histogram vs MCV, and histogram vs + * histogram selectivity for semi/anti join cases. + */ +static Selectivity +networkjoinsel_semi(Oid operator, + VariableStatData *vardata1, VariableStatData *vardata2) +{ + Form_pg_statistic stats; + Selectivity selec = 0.0, + sumcommon1 = 0.0, + sumcommon2 = 0.0; + double nullfrac1 = 0.0, + nullfrac2 = 0.0, + hist2_weight = 0.0; + bool mcv1_exists = false, + mcv2_exists = false, + hist1_exists = false, + hist2_exists = false; + int opr_codenum; + FmgrInfo proc; + int i, + mcv1_length = 0, + mcv2_length = 0; + AttStatsSlot mcv1_slot; + AttStatsSlot mcv2_slot; + AttStatsSlot hist1_slot; + AttStatsSlot hist2_slot; + + if (HeapTupleIsValid(vardata1->statsTuple)) + { + stats = (Form_pg_statistic) GETSTRUCT(vardata1->statsTuple); + nullfrac1 = stats->stanullfrac; + + mcv1_exists = get_attstatsslot(&mcv1_slot, vardata1->statsTuple, + STATISTIC_KIND_MCV, InvalidOid, + ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS); + hist1_exists = get_attstatsslot(&hist1_slot, vardata1->statsTuple, + STATISTIC_KIND_HISTOGRAM, InvalidOid, + ATTSTATSSLOT_VALUES); + /* Arbitrarily limit number of MCVs considered */ + mcv1_length = Min(mcv1_slot.nvalues, MAX_CONSIDERED_ELEMS); + if (mcv1_exists) + sumcommon1 = mcv_population(mcv1_slot.numbers, mcv1_length); + } + else + { + memset(&mcv1_slot, 0, sizeof(mcv1_slot)); + memset(&hist1_slot, 0, sizeof(hist1_slot)); + } + + if (HeapTupleIsValid(vardata2->statsTuple)) + { + stats = (Form_pg_statistic) GETSTRUCT(vardata2->statsTuple); + nullfrac2 = stats->stanullfrac; + + mcv2_exists = get_attstatsslot(&mcv2_slot, vardata2->statsTuple, + STATISTIC_KIND_MCV, InvalidOid, + ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS); + hist2_exists = get_attstatsslot(&hist2_slot, vardata2->statsTuple, + STATISTIC_KIND_HISTOGRAM, InvalidOid, + ATTSTATSSLOT_VALUES); + /* Arbitrarily limit number of MCVs considered */ + mcv2_length = Min(mcv2_slot.nvalues, MAX_CONSIDERED_ELEMS); + if (mcv2_exists) + sumcommon2 = mcv_population(mcv2_slot.numbers, mcv2_length); + } + else + { + memset(&mcv2_slot, 0, sizeof(mcv2_slot)); + memset(&hist2_slot, 0, sizeof(hist2_slot)); + } + + opr_codenum = inet_opr_codenum(operator); + fmgr_info(get_opcode(operator), &proc); + + /* Estimate number of input rows represented by RHS histogram. */ + if (hist2_exists && vardata2->rel) + hist2_weight = (1.0 - nullfrac2 - sumcommon2) * vardata2->rel->rows; + + /* + * Consider each element of the LHS MCV list, matching it to whatever RHS + * stats we have. Scale according to the known frequency of the MCV. + */ + if (mcv1_exists && (mcv2_exists || hist2_exists)) + { + for (i = 0; i < mcv1_length; i++) + { + selec += mcv1_slot.numbers[i] * + inet_semi_join_sel(mcv1_slot.values[i], + mcv2_exists, mcv2_slot.values, mcv2_length, + hist2_exists, + hist2_slot.values, hist2_slot.nvalues, + hist2_weight, + &proc, opr_codenum); + } + } + + /* + * Consider each element of the LHS histogram, except for the first and + * last elements, which we exclude on the grounds that they're outliers + * and thus not very representative. Scale on the assumption that each + * such histogram element represents an equal share of the LHS histogram + * population (which is a bit bogus, because the members of its bucket may + * not all act the same with respect to the join clause, but it's hard to + * do better). + * + * If there are too many histogram elements, decimate to limit runtime. + */ + if (hist1_exists && hist1_slot.nvalues > 2 && (mcv2_exists || hist2_exists)) + { + double hist_selec_sum = 0.0; + int k, + n; + + k = (hist1_slot.nvalues - 3) / MAX_CONSIDERED_ELEMS + 1; + + n = 0; + for (i = 1; i < hist1_slot.nvalues - 1; i += k) + { + hist_selec_sum += + inet_semi_join_sel(hist1_slot.values[i], + mcv2_exists, mcv2_slot.values, mcv2_length, + hist2_exists, + hist2_slot.values, hist2_slot.nvalues, + hist2_weight, + &proc, opr_codenum); + n++; + } + + selec += (1.0 - nullfrac1 - sumcommon1) * hist_selec_sum / n; + } + + /* + * If useful statistics are not available then use the default estimate. + * We can apply null fractions if known, though. + */ + if ((!mcv1_exists && !hist1_exists) || (!mcv2_exists && !hist2_exists)) + selec = (1.0 - nullfrac1) * (1.0 - nullfrac2) * DEFAULT_SEL(operator); + + /* Release stats. */ + free_attstatsslot(&mcv1_slot); + free_attstatsslot(&mcv2_slot); + free_attstatsslot(&hist1_slot); + free_attstatsslot(&hist2_slot); + + return selec; +} + +/* + * Compute the fraction of a relation's population that is represented + * by the MCV list. + */ +static Selectivity +mcv_population(float4 *mcv_numbers, int mcv_nvalues) +{ + Selectivity sumcommon = 0.0; + int i; + + for (i = 0; i < mcv_nvalues; i++) + { + sumcommon += mcv_numbers[i]; + } + + return sumcommon; +} + +/* + * Inet histogram vs single value selectivity estimation + * + * Estimate the fraction of the histogram population that satisfies + * "value OPR CONST". (The result needs to be scaled to reflect the + * proportion of the total population represented by the histogram.) + * + * The histogram is originally for the inet btree comparison operators. + * Only the common bits of the network part and the length of the network part + * (masklen) are interesting for the subnet inclusion operators. Fortunately, + * btree comparison treats the network part as the major sort key. Even so, + * the length of the network part would not really be significant in the + * histogram. This would lead to big mistakes for data sets with uneven + * masklen distribution. To reduce this problem, comparisons with the left + * and the right sides of the buckets are used together. + * + * Histogram bucket matches are calculated in two forms. If the constant + * matches both bucket endpoints the bucket is considered as fully matched. + * The second form is to match the bucket partially; we recognize this when + * the constant matches just one endpoint, or the two endpoints fall on + * opposite sides of the constant. (Note that when the constant matches an + * interior histogram element, it gets credit for partial matches to the + * buckets on both sides, while a match to a histogram endpoint gets credit + * for only one partial match. This is desirable.) + * + * The divider in the partial bucket match is imagined as the distance + * between the decisive bits and the common bits of the addresses. It will + * be used as a power of two as it is the natural scale for the IP network + * inclusion. This partial bucket match divider calculation is an empirical + * formula and subject to change with more experiment. + * + * For a partial match, we try to calculate dividers for both of the + * boundaries. If the address family of a boundary value does not match the + * constant or comparison of the length of the network parts is not correct + * for the operator, the divider for that boundary will not be taken into + * account. If both of the dividers are valid, the greater one will be used + * to minimize the mistake in buckets that have disparate masklens. This + * calculation is unfair when dividers can be calculated for both of the + * boundaries but they are far from each other; but it is not a common + * situation as the boundaries are expected to share most of their significant + * bits of their masklens. The mistake would be greater, if we would use the + * minimum instead of the maximum, and we don't know a sensible way to combine + * them. + * + * For partial match in buckets that have different address families on the + * left and right sides, only the boundary with the same address family is + * taken into consideration. This can cause more mistakes for these buckets + * if the masklens of their boundaries are also disparate. But this can only + * happen in one bucket, since only two address families exist. It seems a + * better option than not considering these buckets at all. + */ +static Selectivity +inet_hist_value_sel(Datum *values, int nvalues, Datum constvalue, + int opr_codenum) +{ + Selectivity match = 0.0; + inet *query, + *left, + *right; + int i, + k, + n; + int left_order, + right_order, + left_divider, + right_divider; + + /* guard against zero-divide below */ + if (nvalues <= 1) + return 0.0; + + /* if there are too many histogram elements, decimate to limit runtime */ + k = (nvalues - 2) / MAX_CONSIDERED_ELEMS + 1; + + query = DatumGetInetPP(constvalue); + + /* "left" is the left boundary value of the current bucket ... */ + left = DatumGetInetPP(values[0]); + left_order = inet_inclusion_cmp(left, query, opr_codenum); + + n = 0; + for (i = k; i < nvalues; i += k) + { + /* ... and "right" is the right boundary value */ + right = DatumGetInetPP(values[i]); + right_order = inet_inclusion_cmp(right, query, opr_codenum); + + if (left_order == 0 && right_order == 0) + { + /* The whole bucket matches, since both endpoints do. */ + match += 1.0; + } + else if ((left_order <= 0 && right_order >= 0) || + (left_order >= 0 && right_order <= 0)) + { + /* Partial bucket match. */ + left_divider = inet_hist_match_divider(left, query, opr_codenum); + right_divider = inet_hist_match_divider(right, query, opr_codenum); + + if (left_divider >= 0 || right_divider >= 0) + match += 1.0 / pow(2.0, Max(left_divider, right_divider)); + } + + /* Shift the variables. */ + left = right; + left_order = right_order; + + /* Count the number of buckets considered. */ + n++; + } + + return match / n; +} + +/* + * Inet MCV vs MCV join selectivity estimation + * + * We simply add up the fractions of the populations that satisfy the clause. + * The result is exact and does not need to be scaled further. + */ +static Selectivity +inet_mcv_join_sel(Datum *mcv1_values, float4 *mcv1_numbers, int mcv1_nvalues, + Datum *mcv2_values, float4 *mcv2_numbers, int mcv2_nvalues, + Oid operator) +{ + Selectivity selec = 0.0; + FmgrInfo proc; + int i, + j; + + fmgr_info(get_opcode(operator), &proc); + + for (i = 0; i < mcv1_nvalues; i++) + { + for (j = 0; j < mcv2_nvalues; j++) + if (DatumGetBool(FunctionCall2(&proc, + mcv1_values[i], + mcv2_values[j]))) + selec += mcv1_numbers[i] * mcv2_numbers[j]; + } + return selec; +} + +/* + * Inet MCV vs histogram join selectivity estimation + * + * For each MCV on the lefthand side, estimate the fraction of the righthand's + * histogram population that satisfies the join clause, and add those up, + * scaling by the MCV's frequency. The result still needs to be scaled + * according to the fraction of the righthand's population represented by + * the histogram. + */ +static Selectivity +inet_mcv_hist_sel(Datum *mcv_values, float4 *mcv_numbers, int mcv_nvalues, + Datum *hist_values, int hist_nvalues, + int opr_codenum) +{ + Selectivity selec = 0.0; + int i; + + /* + * We'll call inet_hist_value_selec with the histogram on the left, so we + * must commute the operator. + */ + opr_codenum = -opr_codenum; + + for (i = 0; i < mcv_nvalues; i++) + { + selec += mcv_numbers[i] * + inet_hist_value_sel(hist_values, hist_nvalues, mcv_values[i], + opr_codenum); + } + return selec; +} + +/* + * Inet histogram vs histogram join selectivity estimation + * + * Here, we take all values listed in the second histogram (except for the + * first and last elements, which are excluded on the grounds of possibly + * not being very representative) and treat them as a uniform sample of + * the non-MCV population for that relation. For each one, we apply + * inet_hist_value_selec to see what fraction of the first histogram + * it matches. + * + * We could alternatively do this the other way around using the operator's + * commutator. XXX would it be worthwhile to do it both ways and take the + * average? That would at least avoid non-commutative estimation results. + */ +static Selectivity +inet_hist_inclusion_join_sel(Datum *hist1_values, int hist1_nvalues, + Datum *hist2_values, int hist2_nvalues, + int opr_codenum) +{ + double match = 0.0; + int i, + k, + n; + + if (hist2_nvalues <= 2) + return 0.0; /* no interior histogram elements */ + + /* if there are too many histogram elements, decimate to limit runtime */ + k = (hist2_nvalues - 3) / MAX_CONSIDERED_ELEMS + 1; + + n = 0; + for (i = 1; i < hist2_nvalues - 1; i += k) + { + match += inet_hist_value_sel(hist1_values, hist1_nvalues, + hist2_values[i], opr_codenum); + n++; + } + + return match / n; +} + +/* + * Inet semi join selectivity estimation for one value + * + * The function calculates the probability that there is at least one row + * in the RHS table that satisfies the "lhs_value op column" condition. + * It is used in semi join estimation to check a sample from the left hand + * side table. + * + * The MCV and histogram from the right hand side table should be provided as + * arguments with the lhs_value from the left hand side table for the join. + * hist_weight is the total number of rows represented by the histogram. + * For example, if the table has 1000 rows, and 10% of the rows are in the MCV + * list, and another 10% are NULLs, hist_weight would be 800. + * + * First, the lhs_value will be matched to the most common values. If it + * matches any of them, 1.0 will be returned, because then there is surely + * a match. + * + * Otherwise, the histogram will be used to estimate the number of rows in + * the second table that match the condition. If the estimate is greater + * than 1.0, 1.0 will be returned, because it means there is a greater chance + * that the lhs_value will match more than one row in the table. If it is + * between 0.0 and 1.0, it will be returned as the probability. + */ +static Selectivity +inet_semi_join_sel(Datum lhs_value, + bool mcv_exists, Datum *mcv_values, int mcv_nvalues, + bool hist_exists, Datum *hist_values, int hist_nvalues, + double hist_weight, + FmgrInfo *proc, int opr_codenum) +{ + if (mcv_exists) + { + int i; + + for (i = 0; i < mcv_nvalues; i++) + { + if (DatumGetBool(FunctionCall2(proc, + lhs_value, + mcv_values[i]))) + return 1.0; + } + } + + if (hist_exists && hist_weight > 0) + { + Selectivity hist_selec; + + /* Commute operator, since we're passing lhs_value on the right */ + hist_selec = inet_hist_value_sel(hist_values, hist_nvalues, + lhs_value, -opr_codenum); + + if (hist_selec > 0) + return Min(1.0, hist_weight * hist_selec); + } + + return 0.0; +} + +/* + * Assign useful code numbers for the subnet inclusion/overlap operators + * + * Only inet_masklen_inclusion_cmp() and inet_hist_match_divider() depend + * on the exact codes assigned here; but many other places in this file + * know that they can negate a code to obtain the code for the commutator + * operator. + */ +static int +inet_opr_codenum(Oid operator) +{ + switch (operator) + { + case OID_INET_SUP_OP: + return -2; + case OID_INET_SUPEQ_OP: + return -1; + case OID_INET_OVERLAP_OP: + return 0; + case OID_INET_SUBEQ_OP: + return 1; + case OID_INET_SUB_OP: + return 2; + default: + elog(ERROR, "unrecognized operator %u for inet selectivity", + operator); + } + return 0; /* unreached, but keep compiler quiet */ +} + +/* + * Comparison function for the subnet inclusion/overlap operators + * + * If the comparison is okay for the specified inclusion operator, the return + * value will be 0. Otherwise the return value will be less than or greater + * than 0 as appropriate for the operator. + * + * Comparison is compatible with the basic comparison function for the inet + * type. See network_cmp_internal() in network.c for the original. Basic + * comparison operators are implemented with the network_cmp_internal() + * function. It is possible to implement the subnet inclusion operators with + * this function. + * + * Comparison is first on the common bits of the network part, then on the + * length of the network part (masklen) as in the network_cmp_internal() + * function. Only the first part is in this function. The second part is + * separated to another function for reusability. The difference between the + * second part and the original network_cmp_internal() is that the inclusion + * operator is considered while comparing the lengths of the network parts. + * See the inet_masklen_inclusion_cmp() function below. + */ +static int +inet_inclusion_cmp(inet *left, inet *right, int opr_codenum) +{ + if (ip_family(left) == ip_family(right)) + { + int order; + + order = bitncmp(ip_addr(left), ip_addr(right), + Min(ip_bits(left), ip_bits(right))); + if (order != 0) + return order; + + return inet_masklen_inclusion_cmp(left, right, opr_codenum); + } + + return ip_family(left) - ip_family(right); +} + +/* + * Masklen comparison function for the subnet inclusion/overlap operators + * + * Compares the lengths of the network parts of the inputs. If the comparison + * is okay for the specified inclusion operator, the return value will be 0. + * Otherwise the return value will be less than or greater than 0 as + * appropriate for the operator. + */ +static int +inet_masklen_inclusion_cmp(inet *left, inet *right, int opr_codenum) +{ + int order; + + order = (int) ip_bits(left) - (int) ip_bits(right); + + /* + * Return 0 if the operator would accept this combination of masklens. + * Note that opr_codenum zero (overlaps) will accept all cases. + */ + if ((order > 0 && opr_codenum >= 0) || + (order == 0 && opr_codenum >= -1 && opr_codenum <= 1) || + (order < 0 && opr_codenum <= 0)) + return 0; + + /* + * Otherwise, return a negative value for sup/supeq (notionally, the RHS + * needs to have a larger masklen than it has, which would make it sort + * later), or a positive value for sub/subeq (vice versa). + */ + return opr_codenum; +} + +/* + * Inet histogram partial match divider calculation + * + * First the families and the lengths of the network parts are compared using + * the subnet inclusion operator. If those are acceptable for the operator, + * the divider will be calculated using the masklens and the common bits of + * the addresses. -1 will be returned if it cannot be calculated. + * + * See commentary for inet_hist_value_sel() for some rationale for this. + */ +static int +inet_hist_match_divider(inet *boundary, inet *query, int opr_codenum) +{ + if (ip_family(boundary) == ip_family(query) && + inet_masklen_inclusion_cmp(boundary, query, opr_codenum) == 0) + { + int min_bits, + decisive_bits; + + min_bits = Min(ip_bits(boundary), ip_bits(query)); + + /* + * Set decisive_bits to the masklen of the one that should contain the + * other according to the operator. + */ + if (opr_codenum < 0) + decisive_bits = ip_bits(boundary); + else if (opr_codenum > 0) + decisive_bits = ip_bits(query); + else + decisive_bits = min_bits; + + /* + * Now return the number of non-common decisive bits. (This will be + * zero if the boundary and query in fact match, else positive.) + */ + if (min_bits > 0) + return decisive_bits - bitncommon(ip_addr(boundary), + ip_addr(query), + min_bits); + return decisive_bits; + } + + return -1; +} |