summaryrefslogtreecommitdiffstats
path: root/src/backend/utils/adt/ri_triggers.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/backend/utils/adt/ri_triggers.c
parentInitial commit. (diff)
downloadpostgresql-14-upstream.tar.xz
postgresql-14-upstream.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/utils/adt/ri_triggers.c')
-rw-r--r--src/backend/utils/adt/ri_triggers.c2952
1 files changed, 2952 insertions, 0 deletions
diff --git a/src/backend/utils/adt/ri_triggers.c b/src/backend/utils/adt/ri_triggers.c
new file mode 100644
index 0000000..96269fc
--- /dev/null
+++ b/src/backend/utils/adt/ri_triggers.c
@@ -0,0 +1,2952 @@
+/*-------------------------------------------------------------------------
+ *
+ * ri_triggers.c
+ *
+ * Generic trigger procedures for referential integrity constraint
+ * checks.
+ *
+ * Note about memory management: the private hashtables kept here live
+ * across query and transaction boundaries, in fact they live as long as
+ * the backend does. This works because the hashtable structures
+ * themselves are allocated by dynahash.c in its permanent DynaHashCxt,
+ * and the SPI plans they point to are saved using SPI_keepplan().
+ * There is not currently any provision for throwing away a no-longer-needed
+ * plan --- consider improving this someday.
+ *
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ *
+ * src/backend/utils/adt/ri_triggers.c
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#include "postgres.h"
+
+#include "access/htup_details.h"
+#include "access/sysattr.h"
+#include "access/table.h"
+#include "access/tableam.h"
+#include "access/xact.h"
+#include "catalog/pg_collation.h"
+#include "catalog/pg_constraint.h"
+#include "catalog/pg_operator.h"
+#include "catalog/pg_type.h"
+#include "commands/trigger.h"
+#include "executor/executor.h"
+#include "executor/spi.h"
+#include "lib/ilist.h"
+#include "miscadmin.h"
+#include "parser/parse_coerce.h"
+#include "parser/parse_relation.h"
+#include "storage/bufmgr.h"
+#include "utils/acl.h"
+#include "utils/builtins.h"
+#include "utils/datum.h"
+#include "utils/fmgroids.h"
+#include "utils/guc.h"
+#include "utils/inval.h"
+#include "utils/lsyscache.h"
+#include "utils/memutils.h"
+#include "utils/rel.h"
+#include "utils/rls.h"
+#include "utils/ruleutils.h"
+#include "utils/snapmgr.h"
+#include "utils/syscache.h"
+
+/*
+ * Local definitions
+ */
+
+#define RI_MAX_NUMKEYS INDEX_MAX_KEYS
+
+#define RI_INIT_CONSTRAINTHASHSIZE 64
+#define RI_INIT_QUERYHASHSIZE (RI_INIT_CONSTRAINTHASHSIZE * 4)
+
+#define RI_KEYS_ALL_NULL 0
+#define RI_KEYS_SOME_NULL 1
+#define RI_KEYS_NONE_NULL 2
+
+/* RI query type codes */
+/* these queries are executed against the PK (referenced) table: */
+#define RI_PLAN_CHECK_LOOKUPPK 1
+#define RI_PLAN_CHECK_LOOKUPPK_FROM_PK 2
+#define RI_PLAN_LAST_ON_PK RI_PLAN_CHECK_LOOKUPPK_FROM_PK
+/* these queries are executed against the FK (referencing) table: */
+#define RI_PLAN_CASCADE_DEL_DODELETE 3
+#define RI_PLAN_CASCADE_UPD_DOUPDATE 4
+#define RI_PLAN_RESTRICT_CHECKREF 5
+#define RI_PLAN_SETNULL_DOUPDATE 6
+#define RI_PLAN_SETDEFAULT_DOUPDATE 7
+
+#define MAX_QUOTED_NAME_LEN (NAMEDATALEN*2+3)
+#define MAX_QUOTED_REL_NAME_LEN (MAX_QUOTED_NAME_LEN*2)
+
+#define RIAttName(rel, attnum) NameStr(*attnumAttName(rel, attnum))
+#define RIAttType(rel, attnum) attnumTypeId(rel, attnum)
+#define RIAttCollation(rel, attnum) attnumCollationId(rel, attnum)
+
+#define RI_TRIGTYPE_INSERT 1
+#define RI_TRIGTYPE_UPDATE 2
+#define RI_TRIGTYPE_DELETE 3
+
+
+/*
+ * RI_ConstraintInfo
+ *
+ * Information extracted from an FK pg_constraint entry. This is cached in
+ * ri_constraint_cache.
+ */
+typedef struct RI_ConstraintInfo
+{
+ Oid constraint_id; /* OID of pg_constraint entry (hash key) */
+ bool valid; /* successfully initialized? */
+ Oid constraint_root_id; /* OID of topmost ancestor constraint;
+ * same as constraint_id if not inherited */
+ uint32 oidHashValue; /* hash value of constraint_id */
+ uint32 rootHashValue; /* hash value of constraint_root_id */
+ NameData conname; /* name of the FK constraint */
+ Oid pk_relid; /* referenced relation */
+ Oid fk_relid; /* referencing relation */
+ char confupdtype; /* foreign key's ON UPDATE action */
+ char confdeltype; /* foreign key's ON DELETE action */
+ char confmatchtype; /* foreign key's match type */
+ int nkeys; /* number of key columns */
+ int16 pk_attnums[RI_MAX_NUMKEYS]; /* attnums of referenced cols */
+ int16 fk_attnums[RI_MAX_NUMKEYS]; /* attnums of referencing cols */
+ Oid pf_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = FK) */
+ Oid pp_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = PK) */
+ Oid ff_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (FK = FK) */
+ dlist_node valid_link; /* Link in list of valid entries */
+} RI_ConstraintInfo;
+
+/*
+ * RI_QueryKey
+ *
+ * The key identifying a prepared SPI plan in our query hashtable
+ */
+typedef struct RI_QueryKey
+{
+ Oid constr_id; /* OID of pg_constraint entry */
+ int32 constr_queryno; /* query type ID, see RI_PLAN_XXX above */
+} RI_QueryKey;
+
+/*
+ * RI_QueryHashEntry
+ */
+typedef struct RI_QueryHashEntry
+{
+ RI_QueryKey key;
+ SPIPlanPtr plan;
+} RI_QueryHashEntry;
+
+/*
+ * RI_CompareKey
+ *
+ * The key identifying an entry showing how to compare two values
+ */
+typedef struct RI_CompareKey
+{
+ Oid eq_opr; /* the equality operator to apply */
+ Oid typeid; /* the data type to apply it to */
+} RI_CompareKey;
+
+/*
+ * RI_CompareHashEntry
+ */
+typedef struct RI_CompareHashEntry
+{
+ RI_CompareKey key;
+ bool valid; /* successfully initialized? */
+ FmgrInfo eq_opr_finfo; /* call info for equality fn */
+ FmgrInfo cast_func_finfo; /* in case we must coerce input */
+} RI_CompareHashEntry;
+
+
+/*
+ * Local data
+ */
+static HTAB *ri_constraint_cache = NULL;
+static HTAB *ri_query_cache = NULL;
+static HTAB *ri_compare_cache = NULL;
+static dlist_head ri_constraint_cache_valid_list;
+static int ri_constraint_cache_valid_count = 0;
+
+
+/*
+ * Local function prototypes
+ */
+static bool ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel,
+ TupleTableSlot *oldslot,
+ const RI_ConstraintInfo *riinfo);
+static Datum ri_restrict(TriggerData *trigdata, bool is_no_action);
+static Datum ri_set(TriggerData *trigdata, bool is_set_null);
+static void quoteOneName(char *buffer, const char *name);
+static void quoteRelationName(char *buffer, Relation rel);
+static void ri_GenerateQual(StringInfo buf,
+ const char *sep,
+ const char *leftop, Oid leftoptype,
+ Oid opoid,
+ const char *rightop, Oid rightoptype);
+static void ri_GenerateQualCollation(StringInfo buf, Oid collation);
+static int ri_NullCheck(TupleDesc tupdesc, TupleTableSlot *slot,
+ const RI_ConstraintInfo *riinfo, bool rel_is_pk);
+static void ri_BuildQueryKey(RI_QueryKey *key,
+ const RI_ConstraintInfo *riinfo,
+ int32 constr_queryno);
+static bool ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot,
+ const RI_ConstraintInfo *riinfo, bool rel_is_pk);
+static bool ri_AttributesEqual(Oid eq_opr, Oid typeid,
+ Datum oldvalue, Datum newvalue);
+
+static void ri_InitHashTables(void);
+static void InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue);
+static SPIPlanPtr ri_FetchPreparedPlan(RI_QueryKey *key);
+static void ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan);
+static RI_CompareHashEntry *ri_HashCompareOp(Oid eq_opr, Oid typeid);
+
+static void ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname,
+ int tgkind);
+static const RI_ConstraintInfo *ri_FetchConstraintInfo(Trigger *trigger,
+ Relation trig_rel, bool rel_is_pk);
+static const RI_ConstraintInfo *ri_LoadConstraintInfo(Oid constraintOid);
+static Oid get_ri_constraint_root(Oid constrOid);
+static SPIPlanPtr ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
+ RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel);
+static bool ri_PerformCheck(const RI_ConstraintInfo *riinfo,
+ RI_QueryKey *qkey, SPIPlanPtr qplan,
+ Relation fk_rel, Relation pk_rel,
+ TupleTableSlot *oldslot, TupleTableSlot *newslot,
+ bool detectNewRows, int expect_OK);
+static void ri_ExtractValues(Relation rel, TupleTableSlot *slot,
+ const RI_ConstraintInfo *riinfo, bool rel_is_pk,
+ Datum *vals, char *nulls);
+static void ri_ReportViolation(const RI_ConstraintInfo *riinfo,
+ Relation pk_rel, Relation fk_rel,
+ TupleTableSlot *violatorslot, TupleDesc tupdesc,
+ int queryno, bool partgone) pg_attribute_noreturn();
+
+
+/*
+ * RI_FKey_check -
+ *
+ * Check foreign key existence (combined for INSERT and UPDATE).
+ */
+static Datum
+RI_FKey_check(TriggerData *trigdata)
+{
+ const RI_ConstraintInfo *riinfo;
+ Relation fk_rel;
+ Relation pk_rel;
+ TupleTableSlot *newslot;
+ RI_QueryKey qkey;
+ SPIPlanPtr qplan;
+
+ riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
+ trigdata->tg_relation, false);
+
+ if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
+ newslot = trigdata->tg_newslot;
+ else
+ newslot = trigdata->tg_trigslot;
+
+ /*
+ * We should not even consider checking the row if it is no longer valid,
+ * since it was either deleted (so the deferred check should be skipped)
+ * or updated (in which case only the latest version of the row should be
+ * checked). Test its liveness according to SnapshotSelf. We need pin
+ * and lock on the buffer to call HeapTupleSatisfiesVisibility. Caller
+ * should be holding pin, but not lock.
+ */
+ if (!table_tuple_satisfies_snapshot(trigdata->tg_relation, newslot, SnapshotSelf))
+ return PointerGetDatum(NULL);
+
+ /*
+ * Get the relation descriptors of the FK and PK tables.
+ *
+ * pk_rel is opened in RowShareLock mode since that's what our eventual
+ * SELECT FOR KEY SHARE will get on it.
+ */
+ fk_rel = trigdata->tg_relation;
+ pk_rel = table_open(riinfo->pk_relid, RowShareLock);
+
+ switch (ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false))
+ {
+ case RI_KEYS_ALL_NULL:
+
+ /*
+ * No further check needed - an all-NULL key passes every type of
+ * foreign key constraint.
+ */
+ table_close(pk_rel, RowShareLock);
+ return PointerGetDatum(NULL);
+
+ case RI_KEYS_SOME_NULL:
+
+ /*
+ * This is the only case that differs between the three kinds of
+ * MATCH.
+ */
+ switch (riinfo->confmatchtype)
+ {
+ case FKCONSTR_MATCH_FULL:
+
+ /*
+ * Not allowed - MATCH FULL says either all or none of the
+ * attributes can be NULLs
+ */
+ ereport(ERROR,
+ (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
+ errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
+ RelationGetRelationName(fk_rel),
+ NameStr(riinfo->conname)),
+ errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
+ errtableconstraint(fk_rel,
+ NameStr(riinfo->conname))));
+ table_close(pk_rel, RowShareLock);
+ return PointerGetDatum(NULL);
+
+ case FKCONSTR_MATCH_SIMPLE:
+
+ /*
+ * MATCH SIMPLE - if ANY column is null, the key passes
+ * the constraint.
+ */
+ table_close(pk_rel, RowShareLock);
+ return PointerGetDatum(NULL);
+
+#ifdef NOT_USED
+ case FKCONSTR_MATCH_PARTIAL:
+
+ /*
+ * MATCH PARTIAL - all non-null columns must match. (not
+ * implemented, can be done by modifying the query below
+ * to only include non-null columns, or by writing a
+ * special version here)
+ */
+ break;
+#endif
+ }
+
+ case RI_KEYS_NONE_NULL:
+
+ /*
+ * Have a full qualified key - continue below for all three kinds
+ * of MATCH.
+ */
+ break;
+ }
+
+ if (SPI_connect() != SPI_OK_CONNECT)
+ elog(ERROR, "SPI_connect failed");
+
+ /* Fetch or prepare a saved plan for the real check */
+ ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CHECK_LOOKUPPK);
+
+ if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
+ {
+ StringInfoData querybuf;
+ char pkrelname[MAX_QUOTED_REL_NAME_LEN];
+ char attname[MAX_QUOTED_NAME_LEN];
+ char paramname[16];
+ const char *querysep;
+ Oid queryoids[RI_MAX_NUMKEYS];
+ const char *pk_only;
+
+ /* ----------
+ * The query string built is
+ * SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
+ * FOR KEY SHARE OF x
+ * The type id's for the $ parameters are those of the
+ * corresponding FK attributes.
+ * ----------
+ */
+ initStringInfo(&querybuf);
+ pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
+ "" : "ONLY ";
+ quoteRelationName(pkrelname, pk_rel);
+ appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
+ pk_only, pkrelname);
+ querysep = "WHERE";
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
+
+ quoteOneName(attname,
+ RIAttName(pk_rel, riinfo->pk_attnums[i]));
+ sprintf(paramname, "$%d", i + 1);
+ ri_GenerateQual(&querybuf, querysep,
+ attname, pk_type,
+ riinfo->pf_eq_oprs[i],
+ paramname, fk_type);
+ querysep = "AND";
+ queryoids[i] = fk_type;
+ }
+ appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
+
+ /* Prepare and save the plan */
+ qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
+ &qkey, fk_rel, pk_rel);
+ }
+
+ /*
+ * Now check that foreign key exists in PK table
+ *
+ * XXX detectNewRows must be true when a partitioned table is on the
+ * referenced side. The reason is that our snapshot must be fresh in
+ * order for the hack in find_inheritance_children() to work.
+ */
+ ri_PerformCheck(riinfo, &qkey, qplan,
+ fk_rel, pk_rel,
+ NULL, newslot,
+ pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE,
+ SPI_OK_SELECT);
+
+ if (SPI_finish() != SPI_OK_FINISH)
+ elog(ERROR, "SPI_finish failed");
+
+ table_close(pk_rel, RowShareLock);
+
+ return PointerGetDatum(NULL);
+}
+
+
+/*
+ * RI_FKey_check_ins -
+ *
+ * Check foreign key existence at insert event on FK table.
+ */
+Datum
+RI_FKey_check_ins(PG_FUNCTION_ARGS)
+{
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_check_ins", RI_TRIGTYPE_INSERT);
+
+ /* Share code with UPDATE case. */
+ return RI_FKey_check((TriggerData *) fcinfo->context);
+}
+
+
+/*
+ * RI_FKey_check_upd -
+ *
+ * Check foreign key existence at update event on FK table.
+ */
+Datum
+RI_FKey_check_upd(PG_FUNCTION_ARGS)
+{
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_check_upd", RI_TRIGTYPE_UPDATE);
+
+ /* Share code with INSERT case. */
+ return RI_FKey_check((TriggerData *) fcinfo->context);
+}
+
+
+/*
+ * ri_Check_Pk_Match
+ *
+ * Check to see if another PK row has been created that provides the same
+ * key values as the "oldslot" that's been modified or deleted in our trigger
+ * event. Returns true if a match is found in the PK table.
+ *
+ * We assume the caller checked that the oldslot contains no NULL key values,
+ * since otherwise a match is impossible.
+ */
+static bool
+ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel,
+ TupleTableSlot *oldslot,
+ const RI_ConstraintInfo *riinfo)
+{
+ SPIPlanPtr qplan;
+ RI_QueryKey qkey;
+ bool result;
+
+ /* Only called for non-null rows */
+ Assert(ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) == RI_KEYS_NONE_NULL);
+
+ if (SPI_connect() != SPI_OK_CONNECT)
+ elog(ERROR, "SPI_connect failed");
+
+ /*
+ * Fetch or prepare a saved plan for checking PK table with values coming
+ * from a PK row
+ */
+ ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CHECK_LOOKUPPK_FROM_PK);
+
+ if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
+ {
+ StringInfoData querybuf;
+ char pkrelname[MAX_QUOTED_REL_NAME_LEN];
+ char attname[MAX_QUOTED_NAME_LEN];
+ char paramname[16];
+ const char *querysep;
+ const char *pk_only;
+ Oid queryoids[RI_MAX_NUMKEYS];
+
+ /* ----------
+ * The query string built is
+ * SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
+ * FOR KEY SHARE OF x
+ * The type id's for the $ parameters are those of the
+ * PK attributes themselves.
+ * ----------
+ */
+ initStringInfo(&querybuf);
+ pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
+ "" : "ONLY ";
+ quoteRelationName(pkrelname, pk_rel);
+ appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
+ pk_only, pkrelname);
+ querysep = "WHERE";
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
+
+ quoteOneName(attname,
+ RIAttName(pk_rel, riinfo->pk_attnums[i]));
+ sprintf(paramname, "$%d", i + 1);
+ ri_GenerateQual(&querybuf, querysep,
+ attname, pk_type,
+ riinfo->pp_eq_oprs[i],
+ paramname, pk_type);
+ querysep = "AND";
+ queryoids[i] = pk_type;
+ }
+ appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
+
+ /* Prepare and save the plan */
+ qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
+ &qkey, fk_rel, pk_rel);
+ }
+
+ /*
+ * We have a plan now. Run it.
+ */
+ result = ri_PerformCheck(riinfo, &qkey, qplan,
+ fk_rel, pk_rel,
+ oldslot, NULL,
+ true, /* treat like update */
+ SPI_OK_SELECT);
+
+ if (SPI_finish() != SPI_OK_FINISH)
+ elog(ERROR, "SPI_finish failed");
+
+ return result;
+}
+
+
+/*
+ * RI_FKey_noaction_del -
+ *
+ * Give an error and roll back the current transaction if the
+ * delete has resulted in a violation of the given referential
+ * integrity constraint.
+ */
+Datum
+RI_FKey_noaction_del(PG_FUNCTION_ARGS)
+{
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_noaction_del", RI_TRIGTYPE_DELETE);
+
+ /* Share code with RESTRICT/UPDATE cases. */
+ return ri_restrict((TriggerData *) fcinfo->context, true);
+}
+
+/*
+ * RI_FKey_restrict_del -
+ *
+ * Restrict delete from PK table to rows unreferenced by foreign key.
+ *
+ * The SQL standard intends that this referential action occur exactly when
+ * the delete is performed, rather than after. This appears to be
+ * the only difference between "NO ACTION" and "RESTRICT". In Postgres
+ * we still implement this as an AFTER trigger, but it's non-deferrable.
+ */
+Datum
+RI_FKey_restrict_del(PG_FUNCTION_ARGS)
+{
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_restrict_del", RI_TRIGTYPE_DELETE);
+
+ /* Share code with NO ACTION/UPDATE cases. */
+ return ri_restrict((TriggerData *) fcinfo->context, false);
+}
+
+/*
+ * RI_FKey_noaction_upd -
+ *
+ * Give an error and roll back the current transaction if the
+ * update has resulted in a violation of the given referential
+ * integrity constraint.
+ */
+Datum
+RI_FKey_noaction_upd(PG_FUNCTION_ARGS)
+{
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_noaction_upd", RI_TRIGTYPE_UPDATE);
+
+ /* Share code with RESTRICT/DELETE cases. */
+ return ri_restrict((TriggerData *) fcinfo->context, true);
+}
+
+/*
+ * RI_FKey_restrict_upd -
+ *
+ * Restrict update of PK to rows unreferenced by foreign key.
+ *
+ * The SQL standard intends that this referential action occur exactly when
+ * the update is performed, rather than after. This appears to be
+ * the only difference between "NO ACTION" and "RESTRICT". In Postgres
+ * we still implement this as an AFTER trigger, but it's non-deferrable.
+ */
+Datum
+RI_FKey_restrict_upd(PG_FUNCTION_ARGS)
+{
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_restrict_upd", RI_TRIGTYPE_UPDATE);
+
+ /* Share code with NO ACTION/DELETE cases. */
+ return ri_restrict((TriggerData *) fcinfo->context, false);
+}
+
+/*
+ * ri_restrict -
+ *
+ * Common code for ON DELETE RESTRICT, ON DELETE NO ACTION,
+ * ON UPDATE RESTRICT, and ON UPDATE NO ACTION.
+ */
+static Datum
+ri_restrict(TriggerData *trigdata, bool is_no_action)
+{
+ const RI_ConstraintInfo *riinfo;
+ Relation fk_rel;
+ Relation pk_rel;
+ TupleTableSlot *oldslot;
+ RI_QueryKey qkey;
+ SPIPlanPtr qplan;
+
+ riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
+ trigdata->tg_relation, true);
+
+ /*
+ * Get the relation descriptors of the FK and PK tables and the old tuple.
+ *
+ * fk_rel is opened in RowShareLock mode since that's what our eventual
+ * SELECT FOR KEY SHARE will get on it.
+ */
+ fk_rel = table_open(riinfo->fk_relid, RowShareLock);
+ pk_rel = trigdata->tg_relation;
+ oldslot = trigdata->tg_trigslot;
+
+ /*
+ * If another PK row now exists providing the old key values, we should
+ * not do anything. However, this check should only be made in the NO
+ * ACTION case; in RESTRICT cases we don't wish to allow another row to be
+ * substituted.
+ */
+ if (is_no_action &&
+ ri_Check_Pk_Match(pk_rel, fk_rel, oldslot, riinfo))
+ {
+ table_close(fk_rel, RowShareLock);
+ return PointerGetDatum(NULL);
+ }
+
+ if (SPI_connect() != SPI_OK_CONNECT)
+ elog(ERROR, "SPI_connect failed");
+
+ /*
+ * Fetch or prepare a saved plan for the restrict lookup (it's the same
+ * query for delete and update cases)
+ */
+ ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_RESTRICT_CHECKREF);
+
+ if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
+ {
+ StringInfoData querybuf;
+ char fkrelname[MAX_QUOTED_REL_NAME_LEN];
+ char attname[MAX_QUOTED_NAME_LEN];
+ char paramname[16];
+ const char *querysep;
+ Oid queryoids[RI_MAX_NUMKEYS];
+ const char *fk_only;
+
+ /* ----------
+ * The query string built is
+ * SELECT 1 FROM [ONLY] <fktable> x WHERE $1 = fkatt1 [AND ...]
+ * FOR KEY SHARE OF x
+ * The type id's for the $ parameters are those of the
+ * corresponding PK attributes.
+ * ----------
+ */
+ initStringInfo(&querybuf);
+ fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
+ "" : "ONLY ";
+ quoteRelationName(fkrelname, fk_rel);
+ appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
+ fk_only, fkrelname);
+ querysep = "WHERE";
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
+ Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
+
+ quoteOneName(attname,
+ RIAttName(fk_rel, riinfo->fk_attnums[i]));
+ sprintf(paramname, "$%d", i + 1);
+ ri_GenerateQual(&querybuf, querysep,
+ paramname, pk_type,
+ riinfo->pf_eq_oprs[i],
+ attname, fk_type);
+ if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
+ ri_GenerateQualCollation(&querybuf, pk_coll);
+ querysep = "AND";
+ queryoids[i] = pk_type;
+ }
+ appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
+
+ /* Prepare and save the plan */
+ qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
+ &qkey, fk_rel, pk_rel);
+ }
+
+ /*
+ * We have a plan now. Run it to check for existing references.
+ */
+ ri_PerformCheck(riinfo, &qkey, qplan,
+ fk_rel, pk_rel,
+ oldslot, NULL,
+ true, /* must detect new rows */
+ SPI_OK_SELECT);
+
+ if (SPI_finish() != SPI_OK_FINISH)
+ elog(ERROR, "SPI_finish failed");
+
+ table_close(fk_rel, RowShareLock);
+
+ return PointerGetDatum(NULL);
+}
+
+
+/*
+ * RI_FKey_cascade_del -
+ *
+ * Cascaded delete foreign key references at delete event on PK table.
+ */
+Datum
+RI_FKey_cascade_del(PG_FUNCTION_ARGS)
+{
+ TriggerData *trigdata = (TriggerData *) fcinfo->context;
+ const RI_ConstraintInfo *riinfo;
+ Relation fk_rel;
+ Relation pk_rel;
+ TupleTableSlot *oldslot;
+ RI_QueryKey qkey;
+ SPIPlanPtr qplan;
+
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_cascade_del", RI_TRIGTYPE_DELETE);
+
+ riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
+ trigdata->tg_relation, true);
+
+ /*
+ * Get the relation descriptors of the FK and PK tables and the old tuple.
+ *
+ * fk_rel is opened in RowExclusiveLock mode since that's what our
+ * eventual DELETE will get on it.
+ */
+ fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
+ pk_rel = trigdata->tg_relation;
+ oldslot = trigdata->tg_trigslot;
+
+ if (SPI_connect() != SPI_OK_CONNECT)
+ elog(ERROR, "SPI_connect failed");
+
+ /* Fetch or prepare a saved plan for the cascaded delete */
+ ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CASCADE_DEL_DODELETE);
+
+ if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
+ {
+ StringInfoData querybuf;
+ char fkrelname[MAX_QUOTED_REL_NAME_LEN];
+ char attname[MAX_QUOTED_NAME_LEN];
+ char paramname[16];
+ const char *querysep;
+ Oid queryoids[RI_MAX_NUMKEYS];
+ const char *fk_only;
+
+ /* ----------
+ * The query string built is
+ * DELETE FROM [ONLY] <fktable> WHERE $1 = fkatt1 [AND ...]
+ * The type id's for the $ parameters are those of the
+ * corresponding PK attributes.
+ * ----------
+ */
+ initStringInfo(&querybuf);
+ fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
+ "" : "ONLY ";
+ quoteRelationName(fkrelname, fk_rel);
+ appendStringInfo(&querybuf, "DELETE FROM %s%s",
+ fk_only, fkrelname);
+ querysep = "WHERE";
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
+ Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
+
+ quoteOneName(attname,
+ RIAttName(fk_rel, riinfo->fk_attnums[i]));
+ sprintf(paramname, "$%d", i + 1);
+ ri_GenerateQual(&querybuf, querysep,
+ paramname, pk_type,
+ riinfo->pf_eq_oprs[i],
+ attname, fk_type);
+ if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
+ ri_GenerateQualCollation(&querybuf, pk_coll);
+ querysep = "AND";
+ queryoids[i] = pk_type;
+ }
+
+ /* Prepare and save the plan */
+ qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
+ &qkey, fk_rel, pk_rel);
+ }
+
+ /*
+ * We have a plan now. Build up the arguments from the key values in the
+ * deleted PK tuple and delete the referencing rows
+ */
+ ri_PerformCheck(riinfo, &qkey, qplan,
+ fk_rel, pk_rel,
+ oldslot, NULL,
+ true, /* must detect new rows */
+ SPI_OK_DELETE);
+
+ if (SPI_finish() != SPI_OK_FINISH)
+ elog(ERROR, "SPI_finish failed");
+
+ table_close(fk_rel, RowExclusiveLock);
+
+ return PointerGetDatum(NULL);
+}
+
+
+/*
+ * RI_FKey_cascade_upd -
+ *
+ * Cascaded update foreign key references at update event on PK table.
+ */
+Datum
+RI_FKey_cascade_upd(PG_FUNCTION_ARGS)
+{
+ TriggerData *trigdata = (TriggerData *) fcinfo->context;
+ const RI_ConstraintInfo *riinfo;
+ Relation fk_rel;
+ Relation pk_rel;
+ TupleTableSlot *newslot;
+ TupleTableSlot *oldslot;
+ RI_QueryKey qkey;
+ SPIPlanPtr qplan;
+
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_cascade_upd", RI_TRIGTYPE_UPDATE);
+
+ riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
+ trigdata->tg_relation, true);
+
+ /*
+ * Get the relation descriptors of the FK and PK tables and the new and
+ * old tuple.
+ *
+ * fk_rel is opened in RowExclusiveLock mode since that's what our
+ * eventual UPDATE will get on it.
+ */
+ fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
+ pk_rel = trigdata->tg_relation;
+ newslot = trigdata->tg_newslot;
+ oldslot = trigdata->tg_trigslot;
+
+ if (SPI_connect() != SPI_OK_CONNECT)
+ elog(ERROR, "SPI_connect failed");
+
+ /* Fetch or prepare a saved plan for the cascaded update */
+ ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CASCADE_UPD_DOUPDATE);
+
+ if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
+ {
+ StringInfoData querybuf;
+ StringInfoData qualbuf;
+ char fkrelname[MAX_QUOTED_REL_NAME_LEN];
+ char attname[MAX_QUOTED_NAME_LEN];
+ char paramname[16];
+ const char *querysep;
+ const char *qualsep;
+ Oid queryoids[RI_MAX_NUMKEYS * 2];
+ const char *fk_only;
+
+ /* ----------
+ * The query string built is
+ * UPDATE [ONLY] <fktable> SET fkatt1 = $1 [, ...]
+ * WHERE $n = fkatt1 [AND ...]
+ * The type id's for the $ parameters are those of the
+ * corresponding PK attributes. Note that we are assuming
+ * there is an assignment cast from the PK to the FK type;
+ * else the parser will fail.
+ * ----------
+ */
+ initStringInfo(&querybuf);
+ initStringInfo(&qualbuf);
+ fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
+ "" : "ONLY ";
+ quoteRelationName(fkrelname, fk_rel);
+ appendStringInfo(&querybuf, "UPDATE %s%s SET",
+ fk_only, fkrelname);
+ querysep = "";
+ qualsep = "WHERE";
+ for (int i = 0, j = riinfo->nkeys; i < riinfo->nkeys; i++, j++)
+ {
+ Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
+ Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
+
+ quoteOneName(attname,
+ RIAttName(fk_rel, riinfo->fk_attnums[i]));
+ appendStringInfo(&querybuf,
+ "%s %s = $%d",
+ querysep, attname, i + 1);
+ sprintf(paramname, "$%d", j + 1);
+ ri_GenerateQual(&qualbuf, qualsep,
+ paramname, pk_type,
+ riinfo->pf_eq_oprs[i],
+ attname, fk_type);
+ if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
+ ri_GenerateQualCollation(&querybuf, pk_coll);
+ querysep = ",";
+ qualsep = "AND";
+ queryoids[i] = pk_type;
+ queryoids[j] = pk_type;
+ }
+ appendBinaryStringInfo(&querybuf, qualbuf.data, qualbuf.len);
+
+ /* Prepare and save the plan */
+ qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys * 2, queryoids,
+ &qkey, fk_rel, pk_rel);
+ }
+
+ /*
+ * We have a plan now. Run it to update the existing references.
+ */
+ ri_PerformCheck(riinfo, &qkey, qplan,
+ fk_rel, pk_rel,
+ oldslot, newslot,
+ true, /* must detect new rows */
+ SPI_OK_UPDATE);
+
+ if (SPI_finish() != SPI_OK_FINISH)
+ elog(ERROR, "SPI_finish failed");
+
+ table_close(fk_rel, RowExclusiveLock);
+
+ return PointerGetDatum(NULL);
+}
+
+
+/*
+ * RI_FKey_setnull_del -
+ *
+ * Set foreign key references to NULL values at delete event on PK table.
+ */
+Datum
+RI_FKey_setnull_del(PG_FUNCTION_ARGS)
+{
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_setnull_del", RI_TRIGTYPE_DELETE);
+
+ /* Share code with UPDATE case */
+ return ri_set((TriggerData *) fcinfo->context, true);
+}
+
+/*
+ * RI_FKey_setnull_upd -
+ *
+ * Set foreign key references to NULL at update event on PK table.
+ */
+Datum
+RI_FKey_setnull_upd(PG_FUNCTION_ARGS)
+{
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_setnull_upd", RI_TRIGTYPE_UPDATE);
+
+ /* Share code with DELETE case */
+ return ri_set((TriggerData *) fcinfo->context, true);
+}
+
+/*
+ * RI_FKey_setdefault_del -
+ *
+ * Set foreign key references to defaults at delete event on PK table.
+ */
+Datum
+RI_FKey_setdefault_del(PG_FUNCTION_ARGS)
+{
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_del", RI_TRIGTYPE_DELETE);
+
+ /* Share code with UPDATE case */
+ return ri_set((TriggerData *) fcinfo->context, false);
+}
+
+/*
+ * RI_FKey_setdefault_upd -
+ *
+ * Set foreign key references to defaults at update event on PK table.
+ */
+Datum
+RI_FKey_setdefault_upd(PG_FUNCTION_ARGS)
+{
+ /* Check that this is a valid trigger call on the right time and event. */
+ ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_upd", RI_TRIGTYPE_UPDATE);
+
+ /* Share code with DELETE case */
+ return ri_set((TriggerData *) fcinfo->context, false);
+}
+
+/*
+ * ri_set -
+ *
+ * Common code for ON DELETE SET NULL, ON DELETE SET DEFAULT, ON UPDATE SET
+ * NULL, and ON UPDATE SET DEFAULT.
+ */
+static Datum
+ri_set(TriggerData *trigdata, bool is_set_null)
+{
+ const RI_ConstraintInfo *riinfo;
+ Relation fk_rel;
+ Relation pk_rel;
+ TupleTableSlot *oldslot;
+ RI_QueryKey qkey;
+ SPIPlanPtr qplan;
+
+ riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
+ trigdata->tg_relation, true);
+
+ /*
+ * Get the relation descriptors of the FK and PK tables and the old tuple.
+ *
+ * fk_rel is opened in RowExclusiveLock mode since that's what our
+ * eventual UPDATE will get on it.
+ */
+ fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
+ pk_rel = trigdata->tg_relation;
+ oldslot = trigdata->tg_trigslot;
+
+ if (SPI_connect() != SPI_OK_CONNECT)
+ elog(ERROR, "SPI_connect failed");
+
+ /*
+ * Fetch or prepare a saved plan for the set null/default operation (it's
+ * the same query for delete and update cases)
+ */
+ ri_BuildQueryKey(&qkey, riinfo,
+ (is_set_null
+ ? RI_PLAN_SETNULL_DOUPDATE
+ : RI_PLAN_SETDEFAULT_DOUPDATE));
+
+ if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
+ {
+ StringInfoData querybuf;
+ StringInfoData qualbuf;
+ char fkrelname[MAX_QUOTED_REL_NAME_LEN];
+ char attname[MAX_QUOTED_NAME_LEN];
+ char paramname[16];
+ const char *querysep;
+ const char *qualsep;
+ Oid queryoids[RI_MAX_NUMKEYS];
+ const char *fk_only;
+
+ /* ----------
+ * The query string built is
+ * UPDATE [ONLY] <fktable> SET fkatt1 = {NULL|DEFAULT} [, ...]
+ * WHERE $1 = fkatt1 [AND ...]
+ * The type id's for the $ parameters are those of the
+ * corresponding PK attributes.
+ * ----------
+ */
+ initStringInfo(&querybuf);
+ initStringInfo(&qualbuf);
+ fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
+ "" : "ONLY ";
+ quoteRelationName(fkrelname, fk_rel);
+ appendStringInfo(&querybuf, "UPDATE %s%s SET",
+ fk_only, fkrelname);
+ querysep = "";
+ qualsep = "WHERE";
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
+ Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
+
+ quoteOneName(attname,
+ RIAttName(fk_rel, riinfo->fk_attnums[i]));
+ appendStringInfo(&querybuf,
+ "%s %s = %s",
+ querysep, attname,
+ is_set_null ? "NULL" : "DEFAULT");
+ sprintf(paramname, "$%d", i + 1);
+ ri_GenerateQual(&qualbuf, qualsep,
+ paramname, pk_type,
+ riinfo->pf_eq_oprs[i],
+ attname, fk_type);
+ if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
+ ri_GenerateQualCollation(&querybuf, pk_coll);
+ querysep = ",";
+ qualsep = "AND";
+ queryoids[i] = pk_type;
+ }
+ appendBinaryStringInfo(&querybuf, qualbuf.data, qualbuf.len);
+
+ /* Prepare and save the plan */
+ qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
+ &qkey, fk_rel, pk_rel);
+ }
+
+ /*
+ * We have a plan now. Run it to update the existing references.
+ */
+ ri_PerformCheck(riinfo, &qkey, qplan,
+ fk_rel, pk_rel,
+ oldslot, NULL,
+ true, /* must detect new rows */
+ SPI_OK_UPDATE);
+
+ if (SPI_finish() != SPI_OK_FINISH)
+ elog(ERROR, "SPI_finish failed");
+
+ table_close(fk_rel, RowExclusiveLock);
+
+ if (is_set_null)
+ return PointerGetDatum(NULL);
+ else
+ {
+ /*
+ * If we just deleted or updated the PK row whose key was equal to the
+ * FK columns' default values, and a referencing row exists in the FK
+ * table, we would have updated that row to the same values it already
+ * had --- and RI_FKey_fk_upd_check_required would hence believe no
+ * check is necessary. So we need to do another lookup now and in
+ * case a reference still exists, abort the operation. That is
+ * already implemented in the NO ACTION trigger, so just run it. (This
+ * recheck is only needed in the SET DEFAULT case, since CASCADE would
+ * remove such rows in case of a DELETE operation or would change the
+ * FK key values in case of an UPDATE, while SET NULL is certain to
+ * result in rows that satisfy the FK constraint.)
+ */
+ return ri_restrict(trigdata, true);
+ }
+}
+
+
+/*
+ * RI_FKey_pk_upd_check_required -
+ *
+ * Check if we really need to fire the RI trigger for an update or delete to a PK
+ * relation. This is called by the AFTER trigger queue manager to see if
+ * it can skip queuing an instance of an RI trigger. Returns true if the
+ * trigger must be fired, false if we can prove the constraint will still
+ * be satisfied.
+ *
+ * newslot will be NULL if this is called for a delete.
+ */
+bool
+RI_FKey_pk_upd_check_required(Trigger *trigger, Relation pk_rel,
+ TupleTableSlot *oldslot, TupleTableSlot *newslot)
+{
+ const RI_ConstraintInfo *riinfo;
+
+ riinfo = ri_FetchConstraintInfo(trigger, pk_rel, true);
+
+ /*
+ * If any old key value is NULL, the row could not have been referenced by
+ * an FK row, so no check is needed.
+ */
+ if (ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) != RI_KEYS_NONE_NULL)
+ return false;
+
+ /* If all old and new key values are equal, no check is needed */
+ if (newslot && ri_KeysEqual(pk_rel, oldslot, newslot, riinfo, true))
+ return false;
+
+ /* Else we need to fire the trigger. */
+ return true;
+}
+
+/*
+ * RI_FKey_fk_upd_check_required -
+ *
+ * Check if we really need to fire the RI trigger for an update to an FK
+ * relation. This is called by the AFTER trigger queue manager to see if
+ * it can skip queuing an instance of an RI trigger. Returns true if the
+ * trigger must be fired, false if we can prove the constraint will still
+ * be satisfied.
+ */
+bool
+RI_FKey_fk_upd_check_required(Trigger *trigger, Relation fk_rel,
+ TupleTableSlot *oldslot, TupleTableSlot *newslot)
+{
+ const RI_ConstraintInfo *riinfo;
+ int ri_nullcheck;
+ Datum xminDatum;
+ TransactionId xmin;
+ bool isnull;
+
+ riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
+
+ ri_nullcheck = ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false);
+
+ /*
+ * If all new key values are NULL, the row satisfies the constraint, so no
+ * check is needed.
+ */
+ if (ri_nullcheck == RI_KEYS_ALL_NULL)
+ return false;
+
+ /*
+ * If some new key values are NULL, the behavior depends on the match
+ * type.
+ */
+ else if (ri_nullcheck == RI_KEYS_SOME_NULL)
+ {
+ switch (riinfo->confmatchtype)
+ {
+ case FKCONSTR_MATCH_SIMPLE:
+
+ /*
+ * If any new key value is NULL, the row must satisfy the
+ * constraint, so no check is needed.
+ */
+ return false;
+
+ case FKCONSTR_MATCH_PARTIAL:
+
+ /*
+ * Don't know, must run full check.
+ */
+ break;
+
+ case FKCONSTR_MATCH_FULL:
+
+ /*
+ * If some new key values are NULL, the row fails the
+ * constraint. We must not throw error here, because the row
+ * might get invalidated before the constraint is to be
+ * checked, but we should queue the event to apply the check
+ * later.
+ */
+ return true;
+ }
+ }
+
+ /*
+ * Continues here for no new key values are NULL, or we couldn't decide
+ * yet.
+ */
+
+ /*
+ * If the original row was inserted by our own transaction, we must fire
+ * the trigger whether or not the keys are equal. This is because our
+ * UPDATE will invalidate the INSERT so that the INSERT RI trigger will
+ * not do anything; so we had better do the UPDATE check. (We could skip
+ * this if we knew the INSERT trigger already fired, but there is no easy
+ * way to know that.)
+ */
+ xminDatum = slot_getsysattr(oldslot, MinTransactionIdAttributeNumber, &isnull);
+ Assert(!isnull);
+ xmin = DatumGetTransactionId(xminDatum);
+ if (TransactionIdIsCurrentTransactionId(xmin))
+ return true;
+
+ /* If all old and new key values are equal, no check is needed */
+ if (ri_KeysEqual(fk_rel, oldslot, newslot, riinfo, false))
+ return false;
+
+ /* Else we need to fire the trigger. */
+ return true;
+}
+
+/*
+ * RI_Initial_Check -
+ *
+ * Check an entire table for non-matching values using a single query.
+ * This is not a trigger procedure, but is called during ALTER TABLE
+ * ADD FOREIGN KEY to validate the initial table contents.
+ *
+ * We expect that the caller has made provision to prevent any problems
+ * caused by concurrent actions. This could be either by locking rel and
+ * pkrel at ShareRowExclusiveLock or higher, or by otherwise ensuring
+ * that triggers implementing the checks are already active.
+ * Hence, we do not need to lock individual rows for the check.
+ *
+ * If the check fails because the current user doesn't have permissions
+ * to read both tables, return false to let our caller know that they will
+ * need to do something else to check the constraint.
+ */
+bool
+RI_Initial_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
+{
+ const RI_ConstraintInfo *riinfo;
+ StringInfoData querybuf;
+ char pkrelname[MAX_QUOTED_REL_NAME_LEN];
+ char fkrelname[MAX_QUOTED_REL_NAME_LEN];
+ char pkattname[MAX_QUOTED_NAME_LEN + 3];
+ char fkattname[MAX_QUOTED_NAME_LEN + 3];
+ RangeTblEntry *pkrte;
+ RangeTblEntry *fkrte;
+ const char *sep;
+ const char *fk_only;
+ const char *pk_only;
+ int save_nestlevel;
+ char workmembuf[32];
+ int spi_result;
+ SPIPlanPtr qplan;
+
+ riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
+
+ /*
+ * Check to make sure current user has enough permissions to do the test
+ * query. (If not, caller can fall back to the trigger method, which
+ * works because it changes user IDs on the fly.)
+ *
+ * XXX are there any other show-stopper conditions to check?
+ */
+ pkrte = makeNode(RangeTblEntry);
+ pkrte->rtekind = RTE_RELATION;
+ pkrte->relid = RelationGetRelid(pk_rel);
+ pkrte->relkind = pk_rel->rd_rel->relkind;
+ pkrte->rellockmode = AccessShareLock;
+ pkrte->requiredPerms = ACL_SELECT;
+
+ fkrte = makeNode(RangeTblEntry);
+ fkrte->rtekind = RTE_RELATION;
+ fkrte->relid = RelationGetRelid(fk_rel);
+ fkrte->relkind = fk_rel->rd_rel->relkind;
+ fkrte->rellockmode = AccessShareLock;
+ fkrte->requiredPerms = ACL_SELECT;
+
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ int attno;
+
+ attno = riinfo->pk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
+ pkrte->selectedCols = bms_add_member(pkrte->selectedCols, attno);
+
+ attno = riinfo->fk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
+ fkrte->selectedCols = bms_add_member(fkrte->selectedCols, attno);
+ }
+
+ if (!ExecCheckRTPerms(list_make2(fkrte, pkrte), false))
+ return false;
+
+ /*
+ * Also punt if RLS is enabled on either table unless this role has the
+ * bypassrls right or is the table owner of the table(s) involved which
+ * have RLS enabled.
+ */
+ if (!has_bypassrls_privilege(GetUserId()) &&
+ ((pk_rel->rd_rel->relrowsecurity &&
+ !pg_class_ownercheck(pkrte->relid, GetUserId())) ||
+ (fk_rel->rd_rel->relrowsecurity &&
+ !pg_class_ownercheck(fkrte->relid, GetUserId()))))
+ return false;
+
+ /*----------
+ * The query string built is:
+ * SELECT fk.keycols FROM [ONLY] relname fk
+ * LEFT OUTER JOIN [ONLY] pkrelname pk
+ * ON (pk.pkkeycol1=fk.keycol1 [AND ...])
+ * WHERE pk.pkkeycol1 IS NULL AND
+ * For MATCH SIMPLE:
+ * (fk.keycol1 IS NOT NULL [AND ...])
+ * For MATCH FULL:
+ * (fk.keycol1 IS NOT NULL [OR ...])
+ *
+ * We attach COLLATE clauses to the operators when comparing columns
+ * that have different collations.
+ *----------
+ */
+ initStringInfo(&querybuf);
+ appendStringInfoString(&querybuf, "SELECT ");
+ sep = "";
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ quoteOneName(fkattname,
+ RIAttName(fk_rel, riinfo->fk_attnums[i]));
+ appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
+ sep = ", ";
+ }
+
+ quoteRelationName(pkrelname, pk_rel);
+ quoteRelationName(fkrelname, fk_rel);
+ fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
+ "" : "ONLY ";
+ pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
+ "" : "ONLY ";
+ appendStringInfo(&querybuf,
+ " FROM %s%s fk LEFT OUTER JOIN %s%s pk ON",
+ fk_only, fkrelname, pk_only, pkrelname);
+
+ strcpy(pkattname, "pk.");
+ strcpy(fkattname, "fk.");
+ sep = "(";
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
+ Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
+
+ quoteOneName(pkattname + 3,
+ RIAttName(pk_rel, riinfo->pk_attnums[i]));
+ quoteOneName(fkattname + 3,
+ RIAttName(fk_rel, riinfo->fk_attnums[i]));
+ ri_GenerateQual(&querybuf, sep,
+ pkattname, pk_type,
+ riinfo->pf_eq_oprs[i],
+ fkattname, fk_type);
+ if (pk_coll != fk_coll)
+ ri_GenerateQualCollation(&querybuf, pk_coll);
+ sep = "AND";
+ }
+
+ /*
+ * It's sufficient to test any one pk attribute for null to detect a join
+ * failure.
+ */
+ quoteOneName(pkattname, RIAttName(pk_rel, riinfo->pk_attnums[0]));
+ appendStringInfo(&querybuf, ") WHERE pk.%s IS NULL AND (", pkattname);
+
+ sep = "";
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
+ appendStringInfo(&querybuf,
+ "%sfk.%s IS NOT NULL",
+ sep, fkattname);
+ switch (riinfo->confmatchtype)
+ {
+ case FKCONSTR_MATCH_SIMPLE:
+ sep = " AND ";
+ break;
+ case FKCONSTR_MATCH_FULL:
+ sep = " OR ";
+ break;
+ }
+ }
+ appendStringInfoChar(&querybuf, ')');
+
+ /*
+ * Temporarily increase work_mem so that the check query can be executed
+ * more efficiently. It seems okay to do this because the query is simple
+ * enough to not use a multiple of work_mem, and one typically would not
+ * have many large foreign-key validations happening concurrently. So
+ * this seems to meet the criteria for being considered a "maintenance"
+ * operation, and accordingly we use maintenance_work_mem. However, we
+ * must also set hash_mem_multiplier to 1, since it is surely not okay to
+ * let that get applied to the maintenance_work_mem value.
+ *
+ * We use the equivalent of a function SET option to allow the setting to
+ * persist for exactly the duration of the check query. guc.c also takes
+ * care of undoing the setting on error.
+ */
+ save_nestlevel = NewGUCNestLevel();
+
+ snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
+ (void) set_config_option("work_mem", workmembuf,
+ PGC_USERSET, PGC_S_SESSION,
+ GUC_ACTION_SAVE, true, 0, false);
+ (void) set_config_option("hash_mem_multiplier", "1",
+ PGC_USERSET, PGC_S_SESSION,
+ GUC_ACTION_SAVE, true, 0, false);
+
+ if (SPI_connect() != SPI_OK_CONNECT)
+ elog(ERROR, "SPI_connect failed");
+
+ /*
+ * Generate the plan. We don't need to cache it, and there are no
+ * arguments to the plan.
+ */
+ qplan = SPI_prepare(querybuf.data, 0, NULL);
+
+ if (qplan == NULL)
+ elog(ERROR, "SPI_prepare returned %s for %s",
+ SPI_result_code_string(SPI_result), querybuf.data);
+
+ /*
+ * Run the plan. For safety we force a current snapshot to be used. (In
+ * transaction-snapshot mode, this arguably violates transaction isolation
+ * rules, but we really haven't got much choice.) We don't need to
+ * register the snapshot, because SPI_execute_snapshot will see to it. We
+ * need at most one tuple returned, so pass limit = 1.
+ */
+ spi_result = SPI_execute_snapshot(qplan,
+ NULL, NULL,
+ GetLatestSnapshot(),
+ InvalidSnapshot,
+ true, false, 1);
+
+ /* Check result */
+ if (spi_result != SPI_OK_SELECT)
+ elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
+
+ /* Did we find a tuple violating the constraint? */
+ if (SPI_processed > 0)
+ {
+ TupleTableSlot *slot;
+ HeapTuple tuple = SPI_tuptable->vals[0];
+ TupleDesc tupdesc = SPI_tuptable->tupdesc;
+ RI_ConstraintInfo fake_riinfo;
+
+ slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
+
+ heap_deform_tuple(tuple, tupdesc,
+ slot->tts_values, slot->tts_isnull);
+ ExecStoreVirtualTuple(slot);
+
+ /*
+ * The columns to look at in the result tuple are 1..N, not whatever
+ * they are in the fk_rel. Hack up riinfo so that the subroutines
+ * called here will behave properly.
+ *
+ * In addition to this, we have to pass the correct tupdesc to
+ * ri_ReportViolation, overriding its normal habit of using the pk_rel
+ * or fk_rel's tupdesc.
+ */
+ memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
+ for (int i = 0; i < fake_riinfo.nkeys; i++)
+ fake_riinfo.fk_attnums[i] = i + 1;
+
+ /*
+ * If it's MATCH FULL, and there are any nulls in the FK keys,
+ * complain about that rather than the lack of a match. MATCH FULL
+ * disallows partially-null FK rows.
+ */
+ if (fake_riinfo.confmatchtype == FKCONSTR_MATCH_FULL &&
+ ri_NullCheck(tupdesc, slot, &fake_riinfo, false) != RI_KEYS_NONE_NULL)
+ ereport(ERROR,
+ (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
+ errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
+ RelationGetRelationName(fk_rel),
+ NameStr(fake_riinfo.conname)),
+ errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
+ errtableconstraint(fk_rel,
+ NameStr(fake_riinfo.conname))));
+
+ /*
+ * We tell ri_ReportViolation we were doing the RI_PLAN_CHECK_LOOKUPPK
+ * query, which isn't true, but will cause it to use
+ * fake_riinfo.fk_attnums as we need.
+ */
+ ri_ReportViolation(&fake_riinfo,
+ pk_rel, fk_rel,
+ slot, tupdesc,
+ RI_PLAN_CHECK_LOOKUPPK, false);
+
+ ExecDropSingleTupleTableSlot(slot);
+ }
+
+ if (SPI_finish() != SPI_OK_FINISH)
+ elog(ERROR, "SPI_finish failed");
+
+ /*
+ * Restore work_mem and hash_mem_multiplier.
+ */
+ AtEOXact_GUC(true, save_nestlevel);
+
+ return true;
+}
+
+/*
+ * RI_PartitionRemove_Check -
+ *
+ * Verify no referencing values exist, when a partition is detached on
+ * the referenced side of a foreign key constraint.
+ */
+void
+RI_PartitionRemove_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
+{
+ const RI_ConstraintInfo *riinfo;
+ StringInfoData querybuf;
+ char *constraintDef;
+ char pkrelname[MAX_QUOTED_REL_NAME_LEN];
+ char fkrelname[MAX_QUOTED_REL_NAME_LEN];
+ char pkattname[MAX_QUOTED_NAME_LEN + 3];
+ char fkattname[MAX_QUOTED_NAME_LEN + 3];
+ const char *sep;
+ const char *fk_only;
+ int save_nestlevel;
+ char workmembuf[32];
+ int spi_result;
+ SPIPlanPtr qplan;
+ int i;
+
+ riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
+
+ /*
+ * We don't check permissions before displaying the error message, on the
+ * assumption that the user detaching the partition must have enough
+ * privileges to examine the table contents anyhow.
+ */
+
+ /*----------
+ * The query string built is:
+ * SELECT fk.keycols FROM [ONLY] relname fk
+ * JOIN pkrelname pk
+ * ON (pk.pkkeycol1=fk.keycol1 [AND ...])
+ * WHERE (<partition constraint>) AND
+ * For MATCH SIMPLE:
+ * (fk.keycol1 IS NOT NULL [AND ...])
+ * For MATCH FULL:
+ * (fk.keycol1 IS NOT NULL [OR ...])
+ *
+ * We attach COLLATE clauses to the operators when comparing columns
+ * that have different collations.
+ *----------
+ */
+ initStringInfo(&querybuf);
+ appendStringInfoString(&querybuf, "SELECT ");
+ sep = "";
+ for (i = 0; i < riinfo->nkeys; i++)
+ {
+ quoteOneName(fkattname,
+ RIAttName(fk_rel, riinfo->fk_attnums[i]));
+ appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
+ sep = ", ";
+ }
+
+ quoteRelationName(pkrelname, pk_rel);
+ quoteRelationName(fkrelname, fk_rel);
+ fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
+ "" : "ONLY ";
+ appendStringInfo(&querybuf,
+ " FROM %s%s fk JOIN %s pk ON",
+ fk_only, fkrelname, pkrelname);
+ strcpy(pkattname, "pk.");
+ strcpy(fkattname, "fk.");
+ sep = "(";
+ for (i = 0; i < riinfo->nkeys; i++)
+ {
+ Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
+ Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
+ Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
+
+ quoteOneName(pkattname + 3,
+ RIAttName(pk_rel, riinfo->pk_attnums[i]));
+ quoteOneName(fkattname + 3,
+ RIAttName(fk_rel, riinfo->fk_attnums[i]));
+ ri_GenerateQual(&querybuf, sep,
+ pkattname, pk_type,
+ riinfo->pf_eq_oprs[i],
+ fkattname, fk_type);
+ if (pk_coll != fk_coll)
+ ri_GenerateQualCollation(&querybuf, pk_coll);
+ sep = "AND";
+ }
+
+ /*
+ * Start the WHERE clause with the partition constraint (except if this is
+ * the default partition and there's no other partition, because the
+ * partition constraint is the empty string in that case.)
+ */
+ constraintDef = pg_get_partconstrdef_string(RelationGetRelid(pk_rel), "pk");
+ if (constraintDef && constraintDef[0] != '\0')
+ appendStringInfo(&querybuf, ") WHERE %s AND (",
+ constraintDef);
+ else
+ appendStringInfoString(&querybuf, ") WHERE (");
+
+ sep = "";
+ for (i = 0; i < riinfo->nkeys; i++)
+ {
+ quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
+ appendStringInfo(&querybuf,
+ "%sfk.%s IS NOT NULL",
+ sep, fkattname);
+ switch (riinfo->confmatchtype)
+ {
+ case FKCONSTR_MATCH_SIMPLE:
+ sep = " AND ";
+ break;
+ case FKCONSTR_MATCH_FULL:
+ sep = " OR ";
+ break;
+ }
+ }
+ appendStringInfoChar(&querybuf, ')');
+
+ /*
+ * Temporarily increase work_mem so that the check query can be executed
+ * more efficiently. It seems okay to do this because the query is simple
+ * enough to not use a multiple of work_mem, and one typically would not
+ * have many large foreign-key validations happening concurrently. So
+ * this seems to meet the criteria for being considered a "maintenance"
+ * operation, and accordingly we use maintenance_work_mem. However, we
+ * must also set hash_mem_multiplier to 1, since it is surely not okay to
+ * let that get applied to the maintenance_work_mem value.
+ *
+ * We use the equivalent of a function SET option to allow the setting to
+ * persist for exactly the duration of the check query. guc.c also takes
+ * care of undoing the setting on error.
+ */
+ save_nestlevel = NewGUCNestLevel();
+
+ snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
+ (void) set_config_option("work_mem", workmembuf,
+ PGC_USERSET, PGC_S_SESSION,
+ GUC_ACTION_SAVE, true, 0, false);
+ (void) set_config_option("hash_mem_multiplier", "1",
+ PGC_USERSET, PGC_S_SESSION,
+ GUC_ACTION_SAVE, true, 0, false);
+
+ if (SPI_connect() != SPI_OK_CONNECT)
+ elog(ERROR, "SPI_connect failed");
+
+ /*
+ * Generate the plan. We don't need to cache it, and there are no
+ * arguments to the plan.
+ */
+ qplan = SPI_prepare(querybuf.data, 0, NULL);
+
+ if (qplan == NULL)
+ elog(ERROR, "SPI_prepare returned %s for %s",
+ SPI_result_code_string(SPI_result), querybuf.data);
+
+ /*
+ * Run the plan. For safety we force a current snapshot to be used. (In
+ * transaction-snapshot mode, this arguably violates transaction isolation
+ * rules, but we really haven't got much choice.) We don't need to
+ * register the snapshot, because SPI_execute_snapshot will see to it. We
+ * need at most one tuple returned, so pass limit = 1.
+ */
+ spi_result = SPI_execute_snapshot(qplan,
+ NULL, NULL,
+ GetLatestSnapshot(),
+ InvalidSnapshot,
+ true, false, 1);
+
+ /* Check result */
+ if (spi_result != SPI_OK_SELECT)
+ elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
+
+ /* Did we find a tuple that would violate the constraint? */
+ if (SPI_processed > 0)
+ {
+ TupleTableSlot *slot;
+ HeapTuple tuple = SPI_tuptable->vals[0];
+ TupleDesc tupdesc = SPI_tuptable->tupdesc;
+ RI_ConstraintInfo fake_riinfo;
+
+ slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
+
+ heap_deform_tuple(tuple, tupdesc,
+ slot->tts_values, slot->tts_isnull);
+ ExecStoreVirtualTuple(slot);
+
+ /*
+ * The columns to look at in the result tuple are 1..N, not whatever
+ * they are in the fk_rel. Hack up riinfo so that ri_ReportViolation
+ * will behave properly.
+ *
+ * In addition to this, we have to pass the correct tupdesc to
+ * ri_ReportViolation, overriding its normal habit of using the pk_rel
+ * or fk_rel's tupdesc.
+ */
+ memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
+ for (i = 0; i < fake_riinfo.nkeys; i++)
+ fake_riinfo.pk_attnums[i] = i + 1;
+
+ ri_ReportViolation(&fake_riinfo, pk_rel, fk_rel,
+ slot, tupdesc, 0, true);
+ }
+
+ if (SPI_finish() != SPI_OK_FINISH)
+ elog(ERROR, "SPI_finish failed");
+
+ /*
+ * Restore work_mem and hash_mem_multiplier.
+ */
+ AtEOXact_GUC(true, save_nestlevel);
+}
+
+
+/* ----------
+ * Local functions below
+ * ----------
+ */
+
+
+/*
+ * quoteOneName --- safely quote a single SQL name
+ *
+ * buffer must be MAX_QUOTED_NAME_LEN long (includes room for \0)
+ */
+static void
+quoteOneName(char *buffer, const char *name)
+{
+ /* Rather than trying to be smart, just always quote it. */
+ *buffer++ = '"';
+ while (*name)
+ {
+ if (*name == '"')
+ *buffer++ = '"';
+ *buffer++ = *name++;
+ }
+ *buffer++ = '"';
+ *buffer = '\0';
+}
+
+/*
+ * quoteRelationName --- safely quote a fully qualified relation name
+ *
+ * buffer must be MAX_QUOTED_REL_NAME_LEN long (includes room for \0)
+ */
+static void
+quoteRelationName(char *buffer, Relation rel)
+{
+ quoteOneName(buffer, get_namespace_name(RelationGetNamespace(rel)));
+ buffer += strlen(buffer);
+ *buffer++ = '.';
+ quoteOneName(buffer, RelationGetRelationName(rel));
+}
+
+/*
+ * ri_GenerateQual --- generate a WHERE clause equating two variables
+ *
+ * This basically appends " sep leftop op rightop" to buf, adding casts
+ * and schema qualification as needed to ensure that the parser will select
+ * the operator we specify. leftop and rightop should be parenthesized
+ * if they aren't variables or parameters.
+ */
+static void
+ri_GenerateQual(StringInfo buf,
+ const char *sep,
+ const char *leftop, Oid leftoptype,
+ Oid opoid,
+ const char *rightop, Oid rightoptype)
+{
+ appendStringInfo(buf, " %s ", sep);
+ generate_operator_clause(buf, leftop, leftoptype, opoid,
+ rightop, rightoptype);
+}
+
+/*
+ * ri_GenerateQualCollation --- add a COLLATE spec to a WHERE clause
+ *
+ * At present, we intentionally do not use this function for RI queries that
+ * compare a variable to a $n parameter. Since parameter symbols always have
+ * default collation, the effect will be to use the variable's collation.
+ * Now that is only strictly correct when testing the referenced column, since
+ * the SQL standard specifies that RI comparisons should use the referenced
+ * column's collation. However, so long as all collations have the same
+ * notion of equality (which they do, because texteq reduces to bitwise
+ * equality), there's no visible semantic impact from using the referencing
+ * column's collation when testing it, and this is a good thing to do because
+ * it lets us use a normal index on the referencing column. However, we do
+ * have to use this function when directly comparing the referencing and
+ * referenced columns, if they are of different collations; else the parser
+ * will fail to resolve the collation to use.
+ */
+static void
+ri_GenerateQualCollation(StringInfo buf, Oid collation)
+{
+ HeapTuple tp;
+ Form_pg_collation colltup;
+ char *collname;
+ char onename[MAX_QUOTED_NAME_LEN];
+
+ /* Nothing to do if it's a noncollatable data type */
+ if (!OidIsValid(collation))
+ return;
+
+ tp = SearchSysCache1(COLLOID, ObjectIdGetDatum(collation));
+ if (!HeapTupleIsValid(tp))
+ elog(ERROR, "cache lookup failed for collation %u", collation);
+ colltup = (Form_pg_collation) GETSTRUCT(tp);
+ collname = NameStr(colltup->collname);
+
+ /*
+ * We qualify the name always, for simplicity and to ensure the query is
+ * not search-path-dependent.
+ */
+ quoteOneName(onename, get_namespace_name(colltup->collnamespace));
+ appendStringInfo(buf, " COLLATE %s", onename);
+ quoteOneName(onename, collname);
+ appendStringInfo(buf, ".%s", onename);
+
+ ReleaseSysCache(tp);
+}
+
+/* ----------
+ * ri_BuildQueryKey -
+ *
+ * Construct a hashtable key for a prepared SPI plan of an FK constraint.
+ *
+ * key: output argument, *key is filled in based on the other arguments
+ * riinfo: info derived from pg_constraint entry
+ * constr_queryno: an internal number identifying the query type
+ * (see RI_PLAN_XXX constants at head of file)
+ * ----------
+ */
+static void
+ri_BuildQueryKey(RI_QueryKey *key, const RI_ConstraintInfo *riinfo,
+ int32 constr_queryno)
+{
+ /*
+ * Inherited constraints with a common ancestor can share ri_query_cache
+ * entries for all query types except RI_PLAN_CHECK_LOOKUPPK_FROM_PK.
+ * Except in that case, the query processes the other table involved in
+ * the FK constraint (i.e., not the table on which the trigger has been
+ * fired), and so it will be the same for all members of the inheritance
+ * tree. So we may use the root constraint's OID in the hash key, rather
+ * than the constraint's own OID. This avoids creating duplicate SPI
+ * plans, saving lots of work and memory when there are many partitions
+ * with similar FK constraints.
+ *
+ * (Note that we must still have a separate RI_ConstraintInfo for each
+ * constraint, because partitions can have different column orders,
+ * resulting in different pk_attnums[] or fk_attnums[] array contents.)
+ *
+ * We assume struct RI_QueryKey contains no padding bytes, else we'd need
+ * to use memset to clear them.
+ */
+ if (constr_queryno != RI_PLAN_CHECK_LOOKUPPK_FROM_PK)
+ key->constr_id = riinfo->constraint_root_id;
+ else
+ key->constr_id = riinfo->constraint_id;
+ key->constr_queryno = constr_queryno;
+}
+
+/*
+ * Check that RI trigger function was called in expected context
+ */
+static void
+ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname, int tgkind)
+{
+ TriggerData *trigdata = (TriggerData *) fcinfo->context;
+
+ if (!CALLED_AS_TRIGGER(fcinfo))
+ ereport(ERROR,
+ (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
+ errmsg("function \"%s\" was not called by trigger manager", funcname)));
+
+ /*
+ * Check proper event
+ */
+ if (!TRIGGER_FIRED_AFTER(trigdata->tg_event) ||
+ !TRIGGER_FIRED_FOR_ROW(trigdata->tg_event))
+ ereport(ERROR,
+ (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
+ errmsg("function \"%s\" must be fired AFTER ROW", funcname)));
+
+ switch (tgkind)
+ {
+ case RI_TRIGTYPE_INSERT:
+ if (!TRIGGER_FIRED_BY_INSERT(trigdata->tg_event))
+ ereport(ERROR,
+ (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
+ errmsg("function \"%s\" must be fired for INSERT", funcname)));
+ break;
+ case RI_TRIGTYPE_UPDATE:
+ if (!TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
+ ereport(ERROR,
+ (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
+ errmsg("function \"%s\" must be fired for UPDATE", funcname)));
+ break;
+ case RI_TRIGTYPE_DELETE:
+ if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event))
+ ereport(ERROR,
+ (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
+ errmsg("function \"%s\" must be fired for DELETE", funcname)));
+ break;
+ }
+}
+
+
+/*
+ * Fetch the RI_ConstraintInfo struct for the trigger's FK constraint.
+ */
+static const RI_ConstraintInfo *
+ri_FetchConstraintInfo(Trigger *trigger, Relation trig_rel, bool rel_is_pk)
+{
+ Oid constraintOid = trigger->tgconstraint;
+ const RI_ConstraintInfo *riinfo;
+
+ /*
+ * Check that the FK constraint's OID is available; it might not be if
+ * we've been invoked via an ordinary trigger or an old-style "constraint
+ * trigger".
+ */
+ if (!OidIsValid(constraintOid))
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
+ errmsg("no pg_constraint entry for trigger \"%s\" on table \"%s\"",
+ trigger->tgname, RelationGetRelationName(trig_rel)),
+ errhint("Remove this referential integrity trigger and its mates, then do ALTER TABLE ADD CONSTRAINT.")));
+
+ /* Find or create a hashtable entry for the constraint */
+ riinfo = ri_LoadConstraintInfo(constraintOid);
+
+ /* Do some easy cross-checks against the trigger call data */
+ if (rel_is_pk)
+ {
+ if (riinfo->fk_relid != trigger->tgconstrrelid ||
+ riinfo->pk_relid != RelationGetRelid(trig_rel))
+ elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
+ trigger->tgname, RelationGetRelationName(trig_rel));
+ }
+ else
+ {
+ if (riinfo->fk_relid != RelationGetRelid(trig_rel) ||
+ riinfo->pk_relid != trigger->tgconstrrelid)
+ elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
+ trigger->tgname, RelationGetRelationName(trig_rel));
+ }
+
+ if (riinfo->confmatchtype != FKCONSTR_MATCH_FULL &&
+ riinfo->confmatchtype != FKCONSTR_MATCH_PARTIAL &&
+ riinfo->confmatchtype != FKCONSTR_MATCH_SIMPLE)
+ elog(ERROR, "unrecognized confmatchtype: %d",
+ riinfo->confmatchtype);
+
+ if (riinfo->confmatchtype == FKCONSTR_MATCH_PARTIAL)
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("MATCH PARTIAL not yet implemented")));
+
+ return riinfo;
+}
+
+/*
+ * Fetch or create the RI_ConstraintInfo struct for an FK constraint.
+ */
+static const RI_ConstraintInfo *
+ri_LoadConstraintInfo(Oid constraintOid)
+{
+ RI_ConstraintInfo *riinfo;
+ bool found;
+ HeapTuple tup;
+ Form_pg_constraint conForm;
+
+ /*
+ * On the first call initialize the hashtable
+ */
+ if (!ri_constraint_cache)
+ ri_InitHashTables();
+
+ /*
+ * Find or create a hash entry. If we find a valid one, just return it.
+ */
+ riinfo = (RI_ConstraintInfo *) hash_search(ri_constraint_cache,
+ (void *) &constraintOid,
+ HASH_ENTER, &found);
+ if (!found)
+ riinfo->valid = false;
+ else if (riinfo->valid)
+ return riinfo;
+
+ /*
+ * Fetch the pg_constraint row so we can fill in the entry.
+ */
+ tup = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constraintOid));
+ if (!HeapTupleIsValid(tup)) /* should not happen */
+ elog(ERROR, "cache lookup failed for constraint %u", constraintOid);
+ conForm = (Form_pg_constraint) GETSTRUCT(tup);
+
+ if (conForm->contype != CONSTRAINT_FOREIGN) /* should not happen */
+ elog(ERROR, "constraint %u is not a foreign key constraint",
+ constraintOid);
+
+ /* And extract data */
+ Assert(riinfo->constraint_id == constraintOid);
+ if (OidIsValid(conForm->conparentid))
+ riinfo->constraint_root_id =
+ get_ri_constraint_root(conForm->conparentid);
+ else
+ riinfo->constraint_root_id = constraintOid;
+ riinfo->oidHashValue = GetSysCacheHashValue1(CONSTROID,
+ ObjectIdGetDatum(constraintOid));
+ riinfo->rootHashValue = GetSysCacheHashValue1(CONSTROID,
+ ObjectIdGetDatum(riinfo->constraint_root_id));
+ memcpy(&riinfo->conname, &conForm->conname, sizeof(NameData));
+ riinfo->pk_relid = conForm->confrelid;
+ riinfo->fk_relid = conForm->conrelid;
+ riinfo->confupdtype = conForm->confupdtype;
+ riinfo->confdeltype = conForm->confdeltype;
+ riinfo->confmatchtype = conForm->confmatchtype;
+
+ DeconstructFkConstraintRow(tup,
+ &riinfo->nkeys,
+ riinfo->fk_attnums,
+ riinfo->pk_attnums,
+ riinfo->pf_eq_oprs,
+ riinfo->pp_eq_oprs,
+ riinfo->ff_eq_oprs);
+
+ ReleaseSysCache(tup);
+
+ /*
+ * For efficient processing of invalidation messages below, we keep a
+ * doubly-linked list, and a count, of all currently valid entries.
+ */
+ dlist_push_tail(&ri_constraint_cache_valid_list, &riinfo->valid_link);
+ ri_constraint_cache_valid_count++;
+
+ riinfo->valid = true;
+
+ return riinfo;
+}
+
+/*
+ * get_ri_constraint_root
+ * Returns the OID of the constraint's root parent
+ */
+static Oid
+get_ri_constraint_root(Oid constrOid)
+{
+ for (;;)
+ {
+ HeapTuple tuple;
+ Oid constrParentOid;
+
+ tuple = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constrOid));
+ if (!HeapTupleIsValid(tuple))
+ elog(ERROR, "cache lookup failed for constraint %u", constrOid);
+ constrParentOid = ((Form_pg_constraint) GETSTRUCT(tuple))->conparentid;
+ ReleaseSysCache(tuple);
+ if (!OidIsValid(constrParentOid))
+ break; /* we reached the root constraint */
+ constrOid = constrParentOid;
+ }
+ return constrOid;
+}
+
+/*
+ * Callback for pg_constraint inval events
+ *
+ * While most syscache callbacks just flush all their entries, pg_constraint
+ * gets enough update traffic that it's probably worth being smarter.
+ * Invalidate any ri_constraint_cache entry associated with the syscache
+ * entry with the specified hash value, or all entries if hashvalue == 0.
+ *
+ * Note: at the time a cache invalidation message is processed there may be
+ * active references to the cache. Because of this we never remove entries
+ * from the cache, but only mark them invalid, which is harmless to active
+ * uses. (Any query using an entry should hold a lock sufficient to keep that
+ * data from changing under it --- but we may get cache flushes anyway.)
+ */
+static void
+InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue)
+{
+ dlist_mutable_iter iter;
+
+ Assert(ri_constraint_cache != NULL);
+
+ /*
+ * If the list of currently valid entries gets excessively large, we mark
+ * them all invalid so we can empty the list. This arrangement avoids
+ * O(N^2) behavior in situations where a session touches many foreign keys
+ * and also does many ALTER TABLEs, such as a restore from pg_dump.
+ */
+ if (ri_constraint_cache_valid_count > 1000)
+ hashvalue = 0; /* pretend it's a cache reset */
+
+ dlist_foreach_modify(iter, &ri_constraint_cache_valid_list)
+ {
+ RI_ConstraintInfo *riinfo = dlist_container(RI_ConstraintInfo,
+ valid_link, iter.cur);
+
+ /*
+ * We must invalidate not only entries directly matching the given
+ * hash value, but also child entries, in case the invalidation
+ * affects a root constraint.
+ */
+ if (hashvalue == 0 ||
+ riinfo->oidHashValue == hashvalue ||
+ riinfo->rootHashValue == hashvalue)
+ {
+ riinfo->valid = false;
+ /* Remove invalidated entries from the list, too */
+ dlist_delete(iter.cur);
+ ri_constraint_cache_valid_count--;
+ }
+ }
+}
+
+
+/*
+ * Prepare execution plan for a query to enforce an RI restriction
+ */
+static SPIPlanPtr
+ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
+ RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel)
+{
+ SPIPlanPtr qplan;
+ Relation query_rel;
+ Oid save_userid;
+ int save_sec_context;
+
+ /*
+ * Use the query type code to determine whether the query is run against
+ * the PK or FK table; we'll do the check as that table's owner
+ */
+ if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
+ query_rel = pk_rel;
+ else
+ query_rel = fk_rel;
+
+ /* Switch to proper UID to perform check as */
+ GetUserIdAndSecContext(&save_userid, &save_sec_context);
+ SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
+ save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
+ SECURITY_NOFORCE_RLS);
+
+ /* Create the plan */
+ qplan = SPI_prepare(querystr, nargs, argtypes);
+
+ if (qplan == NULL)
+ elog(ERROR, "SPI_prepare returned %s for %s", SPI_result_code_string(SPI_result), querystr);
+
+ /* Restore UID and security context */
+ SetUserIdAndSecContext(save_userid, save_sec_context);
+
+ /* Save the plan */
+ SPI_keepplan(qplan);
+ ri_HashPreparedPlan(qkey, qplan);
+
+ return qplan;
+}
+
+/*
+ * Perform a query to enforce an RI restriction
+ */
+static bool
+ri_PerformCheck(const RI_ConstraintInfo *riinfo,
+ RI_QueryKey *qkey, SPIPlanPtr qplan,
+ Relation fk_rel, Relation pk_rel,
+ TupleTableSlot *oldslot, TupleTableSlot *newslot,
+ bool detectNewRows, int expect_OK)
+{
+ Relation query_rel,
+ source_rel;
+ bool source_is_pk;
+ Snapshot test_snapshot;
+ Snapshot crosscheck_snapshot;
+ int limit;
+ int spi_result;
+ Oid save_userid;
+ int save_sec_context;
+ Datum vals[RI_MAX_NUMKEYS * 2];
+ char nulls[RI_MAX_NUMKEYS * 2];
+
+ /*
+ * Use the query type code to determine whether the query is run against
+ * the PK or FK table; we'll do the check as that table's owner
+ */
+ if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
+ query_rel = pk_rel;
+ else
+ query_rel = fk_rel;
+
+ /*
+ * The values for the query are taken from the table on which the trigger
+ * is called - it is normally the other one with respect to query_rel. An
+ * exception is ri_Check_Pk_Match(), which uses the PK table for both (and
+ * sets queryno to RI_PLAN_CHECK_LOOKUPPK_FROM_PK). We might eventually
+ * need some less klugy way to determine this.
+ */
+ if (qkey->constr_queryno == RI_PLAN_CHECK_LOOKUPPK)
+ {
+ source_rel = fk_rel;
+ source_is_pk = false;
+ }
+ else
+ {
+ source_rel = pk_rel;
+ source_is_pk = true;
+ }
+
+ /* Extract the parameters to be passed into the query */
+ if (newslot)
+ {
+ ri_ExtractValues(source_rel, newslot, riinfo, source_is_pk,
+ vals, nulls);
+ if (oldslot)
+ ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
+ vals + riinfo->nkeys, nulls + riinfo->nkeys);
+ }
+ else
+ {
+ ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
+ vals, nulls);
+ }
+
+ /*
+ * In READ COMMITTED mode, we just need to use an up-to-date regular
+ * snapshot, and we will see all rows that could be interesting. But in
+ * transaction-snapshot mode, we can't change the transaction snapshot. If
+ * the caller passes detectNewRows == false then it's okay to do the query
+ * with the transaction snapshot; otherwise we use a current snapshot, and
+ * tell the executor to error out if it finds any rows under the current
+ * snapshot that wouldn't be visible per the transaction snapshot. Note
+ * that SPI_execute_snapshot will register the snapshots, so we don't need
+ * to bother here.
+ */
+ if (IsolationUsesXactSnapshot() && detectNewRows)
+ {
+ CommandCounterIncrement(); /* be sure all my own work is visible */
+ test_snapshot = GetLatestSnapshot();
+ crosscheck_snapshot = GetTransactionSnapshot();
+ }
+ else
+ {
+ /* the default SPI behavior is okay */
+ test_snapshot = InvalidSnapshot;
+ crosscheck_snapshot = InvalidSnapshot;
+ }
+
+ /*
+ * If this is a select query (e.g., for a 'no action' or 'restrict'
+ * trigger), we only need to see if there is a single row in the table,
+ * matching the key. Otherwise, limit = 0 - because we want the query to
+ * affect ALL the matching rows.
+ */
+ limit = (expect_OK == SPI_OK_SELECT) ? 1 : 0;
+
+ /* Switch to proper UID to perform check as */
+ GetUserIdAndSecContext(&save_userid, &save_sec_context);
+ SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
+ save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
+ SECURITY_NOFORCE_RLS);
+
+ /* Finally we can run the query. */
+ spi_result = SPI_execute_snapshot(qplan,
+ vals, nulls,
+ test_snapshot, crosscheck_snapshot,
+ false, false, limit);
+
+ /* Restore UID and security context */
+ SetUserIdAndSecContext(save_userid, save_sec_context);
+
+ /* Check result */
+ if (spi_result < 0)
+ elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
+
+ if (expect_OK >= 0 && spi_result != expect_OK)
+ ereport(ERROR,
+ (errcode(ERRCODE_INTERNAL_ERROR),
+ errmsg("referential integrity query on \"%s\" from constraint \"%s\" on \"%s\" gave unexpected result",
+ RelationGetRelationName(pk_rel),
+ NameStr(riinfo->conname),
+ RelationGetRelationName(fk_rel)),
+ errhint("This is most likely due to a rule having rewritten the query.")));
+
+ /* XXX wouldn't it be clearer to do this part at the caller? */
+ if (qkey->constr_queryno != RI_PLAN_CHECK_LOOKUPPK_FROM_PK &&
+ expect_OK == SPI_OK_SELECT &&
+ (SPI_processed == 0) == (qkey->constr_queryno == RI_PLAN_CHECK_LOOKUPPK))
+ ri_ReportViolation(riinfo,
+ pk_rel, fk_rel,
+ newslot ? newslot : oldslot,
+ NULL,
+ qkey->constr_queryno, false);
+
+ return SPI_processed != 0;
+}
+
+/*
+ * Extract fields from a tuple into Datum/nulls arrays
+ */
+static void
+ri_ExtractValues(Relation rel, TupleTableSlot *slot,
+ const RI_ConstraintInfo *riinfo, bool rel_is_pk,
+ Datum *vals, char *nulls)
+{
+ const int16 *attnums;
+ bool isnull;
+
+ if (rel_is_pk)
+ attnums = riinfo->pk_attnums;
+ else
+ attnums = riinfo->fk_attnums;
+
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ vals[i] = slot_getattr(slot, attnums[i], &isnull);
+ nulls[i] = isnull ? 'n' : ' ';
+ }
+}
+
+/*
+ * Produce an error report
+ *
+ * If the failed constraint was on insert/update to the FK table,
+ * we want the key names and values extracted from there, and the error
+ * message to look like 'key blah is not present in PK'.
+ * Otherwise, the attr names and values come from the PK table and the
+ * message looks like 'key blah is still referenced from FK'.
+ */
+static void
+ri_ReportViolation(const RI_ConstraintInfo *riinfo,
+ Relation pk_rel, Relation fk_rel,
+ TupleTableSlot *violatorslot, TupleDesc tupdesc,
+ int queryno, bool partgone)
+{
+ StringInfoData key_names;
+ StringInfoData key_values;
+ bool onfk;
+ const int16 *attnums;
+ Oid rel_oid;
+ AclResult aclresult;
+ bool has_perm = true;
+
+ /*
+ * Determine which relation to complain about. If tupdesc wasn't passed
+ * by caller, assume the violator tuple came from there.
+ */
+ onfk = (queryno == RI_PLAN_CHECK_LOOKUPPK);
+ if (onfk)
+ {
+ attnums = riinfo->fk_attnums;
+ rel_oid = fk_rel->rd_id;
+ if (tupdesc == NULL)
+ tupdesc = fk_rel->rd_att;
+ }
+ else
+ {
+ attnums = riinfo->pk_attnums;
+ rel_oid = pk_rel->rd_id;
+ if (tupdesc == NULL)
+ tupdesc = pk_rel->rd_att;
+ }
+
+ /*
+ * Check permissions- if the user does not have access to view the data in
+ * any of the key columns then we don't include the errdetail() below.
+ *
+ * Check if RLS is enabled on the relation first. If so, we don't return
+ * any specifics to avoid leaking data.
+ *
+ * Check table-level permissions next and, failing that, column-level
+ * privileges.
+ *
+ * When a partition at the referenced side is being detached/dropped, we
+ * needn't check, since the user must be the table owner anyway.
+ */
+ if (partgone)
+ has_perm = true;
+ else if (check_enable_rls(rel_oid, InvalidOid, true) != RLS_ENABLED)
+ {
+ aclresult = pg_class_aclcheck(rel_oid, GetUserId(), ACL_SELECT);
+ if (aclresult != ACLCHECK_OK)
+ {
+ /* Try for column-level permissions */
+ for (int idx = 0; idx < riinfo->nkeys; idx++)
+ {
+ aclresult = pg_attribute_aclcheck(rel_oid, attnums[idx],
+ GetUserId(),
+ ACL_SELECT);
+
+ /* No access to the key */
+ if (aclresult != ACLCHECK_OK)
+ {
+ has_perm = false;
+ break;
+ }
+ }
+ }
+ }
+ else
+ has_perm = false;
+
+ if (has_perm)
+ {
+ /* Get printable versions of the keys involved */
+ initStringInfo(&key_names);
+ initStringInfo(&key_values);
+ for (int idx = 0; idx < riinfo->nkeys; idx++)
+ {
+ int fnum = attnums[idx];
+ Form_pg_attribute att = TupleDescAttr(tupdesc, fnum - 1);
+ char *name,
+ *val;
+ Datum datum;
+ bool isnull;
+
+ name = NameStr(att->attname);
+
+ datum = slot_getattr(violatorslot, fnum, &isnull);
+ if (!isnull)
+ {
+ Oid foutoid;
+ bool typisvarlena;
+
+ getTypeOutputInfo(att->atttypid, &foutoid, &typisvarlena);
+ val = OidOutputFunctionCall(foutoid, datum);
+ }
+ else
+ val = "null";
+
+ if (idx > 0)
+ {
+ appendStringInfoString(&key_names, ", ");
+ appendStringInfoString(&key_values, ", ");
+ }
+ appendStringInfoString(&key_names, name);
+ appendStringInfoString(&key_values, val);
+ }
+ }
+
+ if (partgone)
+ ereport(ERROR,
+ (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
+ errmsg("removing partition \"%s\" violates foreign key constraint \"%s\"",
+ RelationGetRelationName(pk_rel),
+ NameStr(riinfo->conname)),
+ errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
+ key_names.data, key_values.data,
+ RelationGetRelationName(fk_rel)),
+ errtableconstraint(fk_rel, NameStr(riinfo->conname))));
+ else if (onfk)
+ ereport(ERROR,
+ (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
+ errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
+ RelationGetRelationName(fk_rel),
+ NameStr(riinfo->conname)),
+ has_perm ?
+ errdetail("Key (%s)=(%s) is not present in table \"%s\".",
+ key_names.data, key_values.data,
+ RelationGetRelationName(pk_rel)) :
+ errdetail("Key is not present in table \"%s\".",
+ RelationGetRelationName(pk_rel)),
+ errtableconstraint(fk_rel, NameStr(riinfo->conname))));
+ else
+ ereport(ERROR,
+ (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
+ errmsg("update or delete on table \"%s\" violates foreign key constraint \"%s\" on table \"%s\"",
+ RelationGetRelationName(pk_rel),
+ NameStr(riinfo->conname),
+ RelationGetRelationName(fk_rel)),
+ has_perm ?
+ errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
+ key_names.data, key_values.data,
+ RelationGetRelationName(fk_rel)) :
+ errdetail("Key is still referenced from table \"%s\".",
+ RelationGetRelationName(fk_rel)),
+ errtableconstraint(fk_rel, NameStr(riinfo->conname))));
+}
+
+
+/*
+ * ri_NullCheck -
+ *
+ * Determine the NULL state of all key values in a tuple
+ *
+ * Returns one of RI_KEYS_ALL_NULL, RI_KEYS_NONE_NULL or RI_KEYS_SOME_NULL.
+ */
+static int
+ri_NullCheck(TupleDesc tupDesc,
+ TupleTableSlot *slot,
+ const RI_ConstraintInfo *riinfo, bool rel_is_pk)
+{
+ const int16 *attnums;
+ bool allnull = true;
+ bool nonenull = true;
+
+ if (rel_is_pk)
+ attnums = riinfo->pk_attnums;
+ else
+ attnums = riinfo->fk_attnums;
+
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ if (slot_attisnull(slot, attnums[i]))
+ nonenull = false;
+ else
+ allnull = false;
+ }
+
+ if (allnull)
+ return RI_KEYS_ALL_NULL;
+
+ if (nonenull)
+ return RI_KEYS_NONE_NULL;
+
+ return RI_KEYS_SOME_NULL;
+}
+
+
+/*
+ * ri_InitHashTables -
+ *
+ * Initialize our internal hash tables.
+ */
+static void
+ri_InitHashTables(void)
+{
+ HASHCTL ctl;
+
+ ctl.keysize = sizeof(Oid);
+ ctl.entrysize = sizeof(RI_ConstraintInfo);
+ ri_constraint_cache = hash_create("RI constraint cache",
+ RI_INIT_CONSTRAINTHASHSIZE,
+ &ctl, HASH_ELEM | HASH_BLOBS);
+
+ /* Arrange to flush cache on pg_constraint changes */
+ CacheRegisterSyscacheCallback(CONSTROID,
+ InvalidateConstraintCacheCallBack,
+ (Datum) 0);
+
+ ctl.keysize = sizeof(RI_QueryKey);
+ ctl.entrysize = sizeof(RI_QueryHashEntry);
+ ri_query_cache = hash_create("RI query cache",
+ RI_INIT_QUERYHASHSIZE,
+ &ctl, HASH_ELEM | HASH_BLOBS);
+
+ ctl.keysize = sizeof(RI_CompareKey);
+ ctl.entrysize = sizeof(RI_CompareHashEntry);
+ ri_compare_cache = hash_create("RI compare cache",
+ RI_INIT_QUERYHASHSIZE,
+ &ctl, HASH_ELEM | HASH_BLOBS);
+}
+
+
+/*
+ * ri_FetchPreparedPlan -
+ *
+ * Lookup for a query key in our private hash table of prepared
+ * and saved SPI execution plans. Return the plan if found or NULL.
+ */
+static SPIPlanPtr
+ri_FetchPreparedPlan(RI_QueryKey *key)
+{
+ RI_QueryHashEntry *entry;
+ SPIPlanPtr plan;
+
+ /*
+ * On the first call initialize the hashtable
+ */
+ if (!ri_query_cache)
+ ri_InitHashTables();
+
+ /*
+ * Lookup for the key
+ */
+ entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
+ (void *) key,
+ HASH_FIND, NULL);
+ if (entry == NULL)
+ return NULL;
+
+ /*
+ * Check whether the plan is still valid. If it isn't, we don't want to
+ * simply rely on plancache.c to regenerate it; rather we should start
+ * from scratch and rebuild the query text too. This is to cover cases
+ * such as table/column renames. We depend on the plancache machinery to
+ * detect possible invalidations, though.
+ *
+ * CAUTION: this check is only trustworthy if the caller has already
+ * locked both FK and PK rels.
+ */
+ plan = entry->plan;
+ if (plan && SPI_plan_is_valid(plan))
+ return plan;
+
+ /*
+ * Otherwise we might as well flush the cached plan now, to free a little
+ * memory space before we make a new one.
+ */
+ entry->plan = NULL;
+ if (plan)
+ SPI_freeplan(plan);
+
+ return NULL;
+}
+
+
+/*
+ * ri_HashPreparedPlan -
+ *
+ * Add another plan to our private SPI query plan hashtable.
+ */
+static void
+ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan)
+{
+ RI_QueryHashEntry *entry;
+ bool found;
+
+ /*
+ * On the first call initialize the hashtable
+ */
+ if (!ri_query_cache)
+ ri_InitHashTables();
+
+ /*
+ * Add the new plan. We might be overwriting an entry previously found
+ * invalid by ri_FetchPreparedPlan.
+ */
+ entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
+ (void *) key,
+ HASH_ENTER, &found);
+ Assert(!found || entry->plan == NULL);
+ entry->plan = plan;
+}
+
+
+/*
+ * ri_KeysEqual -
+ *
+ * Check if all key values in OLD and NEW are equal.
+ *
+ * Note: at some point we might wish to redefine this as checking for
+ * "IS NOT DISTINCT" rather than "=", that is, allow two nulls to be
+ * considered equal. Currently there is no need since all callers have
+ * previously found at least one of the rows to contain no nulls.
+ */
+static bool
+ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot,
+ const RI_ConstraintInfo *riinfo, bool rel_is_pk)
+{
+ const int16 *attnums;
+
+ if (rel_is_pk)
+ attnums = riinfo->pk_attnums;
+ else
+ attnums = riinfo->fk_attnums;
+
+ /* XXX: could be worthwhile to fetch all necessary attrs at once */
+ for (int i = 0; i < riinfo->nkeys; i++)
+ {
+ Datum oldvalue;
+ Datum newvalue;
+ bool isnull;
+
+ /*
+ * Get one attribute's oldvalue. If it is NULL - they're not equal.
+ */
+ oldvalue = slot_getattr(oldslot, attnums[i], &isnull);
+ if (isnull)
+ return false;
+
+ /*
+ * Get one attribute's newvalue. If it is NULL - they're not equal.
+ */
+ newvalue = slot_getattr(newslot, attnums[i], &isnull);
+ if (isnull)
+ return false;
+
+ if (rel_is_pk)
+ {
+ /*
+ * If we are looking at the PK table, then do a bytewise
+ * comparison. We must propagate PK changes if the value is
+ * changed to one that "looks" different but would compare as
+ * equal using the equality operator. This only makes a
+ * difference for ON UPDATE CASCADE, but for consistency we treat
+ * all changes to the PK the same.
+ */
+ Form_pg_attribute att = TupleDescAttr(oldslot->tts_tupleDescriptor, attnums[i] - 1);
+
+ if (!datum_image_eq(oldvalue, newvalue, att->attbyval, att->attlen))
+ return false;
+ }
+ else
+ {
+ /*
+ * For the FK table, compare with the appropriate equality
+ * operator. Changes that compare equal will still satisfy the
+ * constraint after the update.
+ */
+ if (!ri_AttributesEqual(riinfo->ff_eq_oprs[i], RIAttType(rel, attnums[i]),
+ oldvalue, newvalue))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+/*
+ * ri_AttributesEqual -
+ *
+ * Call the appropriate equality comparison operator for two values.
+ *
+ * NB: we have already checked that neither value is null.
+ */
+static bool
+ri_AttributesEqual(Oid eq_opr, Oid typeid,
+ Datum oldvalue, Datum newvalue)
+{
+ RI_CompareHashEntry *entry = ri_HashCompareOp(eq_opr, typeid);
+
+ /* Do we need to cast the values? */
+ if (OidIsValid(entry->cast_func_finfo.fn_oid))
+ {
+ oldvalue = FunctionCall3(&entry->cast_func_finfo,
+ oldvalue,
+ Int32GetDatum(-1), /* typmod */
+ BoolGetDatum(false)); /* implicit coercion */
+ newvalue = FunctionCall3(&entry->cast_func_finfo,
+ newvalue,
+ Int32GetDatum(-1), /* typmod */
+ BoolGetDatum(false)); /* implicit coercion */
+ }
+
+ /*
+ * Apply the comparison operator.
+ *
+ * Note: This function is part of a call stack that determines whether an
+ * update to a row is significant enough that it needs checking or action
+ * on the other side of a foreign-key constraint. Therefore, the
+ * comparison here would need to be done with the collation of the *other*
+ * table. For simplicity (e.g., we might not even have the other table
+ * open), we'll just use the default collation here, which could lead to
+ * some false negatives. All this would break if we ever allow
+ * database-wide collations to be nondeterministic.
+ */
+ return DatumGetBool(FunctionCall2Coll(&entry->eq_opr_finfo,
+ DEFAULT_COLLATION_OID,
+ oldvalue, newvalue));
+}
+
+/*
+ * ri_HashCompareOp -
+ *
+ * See if we know how to compare two values, and create a new hash entry
+ * if not.
+ */
+static RI_CompareHashEntry *
+ri_HashCompareOp(Oid eq_opr, Oid typeid)
+{
+ RI_CompareKey key;
+ RI_CompareHashEntry *entry;
+ bool found;
+
+ /*
+ * On the first call initialize the hashtable
+ */
+ if (!ri_compare_cache)
+ ri_InitHashTables();
+
+ /*
+ * Find or create a hash entry. Note we're assuming RI_CompareKey
+ * contains no struct padding.
+ */
+ key.eq_opr = eq_opr;
+ key.typeid = typeid;
+ entry = (RI_CompareHashEntry *) hash_search(ri_compare_cache,
+ (void *) &key,
+ HASH_ENTER, &found);
+ if (!found)
+ entry->valid = false;
+
+ /*
+ * If not already initialized, do so. Since we'll keep this hash entry
+ * for the life of the backend, put any subsidiary info for the function
+ * cache structs into TopMemoryContext.
+ */
+ if (!entry->valid)
+ {
+ Oid lefttype,
+ righttype,
+ castfunc;
+ CoercionPathType pathtype;
+
+ /* We always need to know how to call the equality operator */
+ fmgr_info_cxt(get_opcode(eq_opr), &entry->eq_opr_finfo,
+ TopMemoryContext);
+
+ /*
+ * If we chose to use a cast from FK to PK type, we may have to apply
+ * the cast function to get to the operator's input type.
+ *
+ * XXX eventually it would be good to support array-coercion cases
+ * here and in ri_AttributesEqual(). At the moment there is no point
+ * because cases involving nonidentical array types will be rejected
+ * at constraint creation time.
+ *
+ * XXX perhaps also consider supporting CoerceViaIO? No need at the
+ * moment since that will never be generated for implicit coercions.
+ */
+ op_input_types(eq_opr, &lefttype, &righttype);
+ Assert(lefttype == righttype);
+ if (typeid == lefttype)
+ castfunc = InvalidOid; /* simplest case */
+ else
+ {
+ pathtype = find_coercion_pathway(lefttype, typeid,
+ COERCION_IMPLICIT,
+ &castfunc);
+ if (pathtype != COERCION_PATH_FUNC &&
+ pathtype != COERCION_PATH_RELABELTYPE)
+ {
+ /*
+ * The declared input type of the eq_opr might be a
+ * polymorphic type such as ANYARRAY or ANYENUM, or other
+ * special cases such as RECORD; find_coercion_pathway
+ * currently doesn't subsume these special cases.
+ */
+ if (!IsBinaryCoercible(typeid, lefttype))
+ elog(ERROR, "no conversion function from %s to %s",
+ format_type_be(typeid),
+ format_type_be(lefttype));
+ }
+ }
+ if (OidIsValid(castfunc))
+ fmgr_info_cxt(castfunc, &entry->cast_func_finfo,
+ TopMemoryContext);
+ else
+ entry->cast_func_finfo.fn_oid = InvalidOid;
+ entry->valid = true;
+ }
+
+ return entry;
+}
+
+
+/*
+ * Given a trigger function OID, determine whether it is an RI trigger,
+ * and if so whether it is attached to PK or FK relation.
+ */
+int
+RI_FKey_trigger_type(Oid tgfoid)
+{
+ switch (tgfoid)
+ {
+ case F_RI_FKEY_CASCADE_DEL:
+ case F_RI_FKEY_CASCADE_UPD:
+ case F_RI_FKEY_RESTRICT_DEL:
+ case F_RI_FKEY_RESTRICT_UPD:
+ case F_RI_FKEY_SETNULL_DEL:
+ case F_RI_FKEY_SETNULL_UPD:
+ case F_RI_FKEY_SETDEFAULT_DEL:
+ case F_RI_FKEY_SETDEFAULT_UPD:
+ case F_RI_FKEY_NOACTION_DEL:
+ case F_RI_FKEY_NOACTION_UPD:
+ return RI_TRIGGER_PK;
+
+ case F_RI_FKEY_CHECK_INS:
+ case F_RI_FKEY_CHECK_UPD:
+ return RI_TRIGGER_FK;
+ }
+
+ return RI_TRIGGER_NONE;
+}