summaryrefslogtreecommitdiffstats
path: root/src/include/lib/bipartite_match.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:15:05 +0000
commit46651ce6fe013220ed397add242004d764fc0153 (patch)
tree6e5299f990f88e60174a1d3ae6e48eedd2688b2b /src/include/lib/bipartite_match.h
parentInitial commit. (diff)
downloadpostgresql-14-46651ce6fe013220ed397add242004d764fc0153.tar.xz
postgresql-14-46651ce6fe013220ed397add242004d764fc0153.zip
Adding upstream version 14.5.upstream/14.5upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/include/lib/bipartite_match.h')
-rw-r--r--src/include/lib/bipartite_match.h46
1 files changed, 46 insertions, 0 deletions
diff --git a/src/include/lib/bipartite_match.h b/src/include/lib/bipartite_match.h
new file mode 100644
index 0000000..ee65ae2
--- /dev/null
+++ b/src/include/lib/bipartite_match.h
@@ -0,0 +1,46 @@
+/*
+ * bipartite_match.h
+ *
+ * Copyright (c) 2015-2021, PostgreSQL Global Development Group
+ *
+ * src/include/lib/bipartite_match.h
+ */
+#ifndef BIPARTITE_MATCH_H
+#define BIPARTITE_MATCH_H
+
+/*
+ * Given a bipartite graph consisting of nodes U numbered 1..nU, nodes V
+ * numbered 1..nV, and an adjacency map of undirected edges in the form
+ * adjacency[u] = [k, v1, v2, v3, ... vk], we wish to find a "maximum
+ * cardinality matching", which is defined as follows: a matching is a subset
+ * of the original edges such that no node has more than one edge, and a
+ * matching has maximum cardinality if there exists no other matching with a
+ * greater number of edges.
+ *
+ * This matching has various applications in graph theory, but the motivating
+ * example here is Dilworth's theorem: a partially-ordered set can be divided
+ * into the minimum number of chains (i.e. subsets X where x1 < x2 < x3 ...) by
+ * a bipartite graph construction. This gives us a polynomial-time solution to
+ * the problem of planning a collection of grouping sets with the provably
+ * minimal number of sort operations.
+ */
+typedef struct BipartiteMatchState
+{
+ /* inputs: */
+ int u_size; /* size of U */
+ int v_size; /* size of V */
+ short **adjacency; /* adjacency[u] = [k, v1,v2,v3,...,vk] */
+ /* outputs: */
+ int matching; /* number of edges in matching */
+ short *pair_uv; /* pair_uv[u] -> v */
+ short *pair_vu; /* pair_vu[v] -> u */
+ /* private state for matching algorithm: */
+ short *distance; /* distance[u] */
+ short *queue; /* queue storage for breadth search */
+} BipartiteMatchState;
+
+extern BipartiteMatchState *BipartiteMatch(int u_size, int v_size, short **adjacency);
+
+extern void BipartiteMatchFree(BipartiteMatchState *state);
+
+#endif /* BIPARTITE_MATCH_H */