summaryrefslogtreecommitdiffstats
path: root/contrib/cube/cube.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/cube/cube.c')
-rw-r--r--contrib/cube/cube.c1908
1 files changed, 1908 insertions, 0 deletions
diff --git a/contrib/cube/cube.c b/contrib/cube/cube.c
new file mode 100644
index 0000000..a5d1ba6
--- /dev/null
+++ b/contrib/cube/cube.c
@@ -0,0 +1,1908 @@
+/******************************************************************************
+ contrib/cube/cube.c
+
+ This file contains routines that can be bound to a Postgres backend and
+ called by the backend in the process of processing queries. The calling
+ format for these routines is dictated by Postgres architecture.
+******************************************************************************/
+
+#include "postgres.h"
+
+#include <math.h>
+
+#include "access/gist.h"
+#include "access/stratnum.h"
+#include "cubedata.h"
+#include "libpq/pqformat.h"
+#include "utils/array.h"
+#include "utils/float.h"
+
+PG_MODULE_MAGIC;
+
+/*
+ * Taken from the intarray contrib header
+ */
+#define ARRPTR(x) ( (double *) ARR_DATA_PTR(x) )
+#define ARRNELEMS(x) ArrayGetNItems( ARR_NDIM(x), ARR_DIMS(x))
+
+/*
+** Input/Output routines
+*/
+PG_FUNCTION_INFO_V1(cube_in);
+PG_FUNCTION_INFO_V1(cube_a_f8_f8);
+PG_FUNCTION_INFO_V1(cube_a_f8);
+PG_FUNCTION_INFO_V1(cube_out);
+PG_FUNCTION_INFO_V1(cube_send);
+PG_FUNCTION_INFO_V1(cube_recv);
+PG_FUNCTION_INFO_V1(cube_f8);
+PG_FUNCTION_INFO_V1(cube_f8_f8);
+PG_FUNCTION_INFO_V1(cube_c_f8);
+PG_FUNCTION_INFO_V1(cube_c_f8_f8);
+PG_FUNCTION_INFO_V1(cube_dim);
+PG_FUNCTION_INFO_V1(cube_ll_coord);
+PG_FUNCTION_INFO_V1(cube_ur_coord);
+PG_FUNCTION_INFO_V1(cube_coord);
+PG_FUNCTION_INFO_V1(cube_coord_llur);
+PG_FUNCTION_INFO_V1(cube_subset);
+
+/*
+** GiST support methods
+*/
+
+PG_FUNCTION_INFO_V1(g_cube_consistent);
+PG_FUNCTION_INFO_V1(g_cube_compress);
+PG_FUNCTION_INFO_V1(g_cube_decompress);
+PG_FUNCTION_INFO_V1(g_cube_penalty);
+PG_FUNCTION_INFO_V1(g_cube_picksplit);
+PG_FUNCTION_INFO_V1(g_cube_union);
+PG_FUNCTION_INFO_V1(g_cube_same);
+PG_FUNCTION_INFO_V1(g_cube_distance);
+
+/*
+** B-tree support functions
+*/
+PG_FUNCTION_INFO_V1(cube_eq);
+PG_FUNCTION_INFO_V1(cube_ne);
+PG_FUNCTION_INFO_V1(cube_lt);
+PG_FUNCTION_INFO_V1(cube_gt);
+PG_FUNCTION_INFO_V1(cube_le);
+PG_FUNCTION_INFO_V1(cube_ge);
+PG_FUNCTION_INFO_V1(cube_cmp);
+
+/*
+** R-tree support functions
+*/
+
+PG_FUNCTION_INFO_V1(cube_contains);
+PG_FUNCTION_INFO_V1(cube_contained);
+PG_FUNCTION_INFO_V1(cube_overlap);
+PG_FUNCTION_INFO_V1(cube_union);
+PG_FUNCTION_INFO_V1(cube_inter);
+PG_FUNCTION_INFO_V1(cube_size);
+
+/*
+** miscellaneous
+*/
+PG_FUNCTION_INFO_V1(distance_taxicab);
+PG_FUNCTION_INFO_V1(cube_distance);
+PG_FUNCTION_INFO_V1(distance_chebyshev);
+PG_FUNCTION_INFO_V1(cube_is_point);
+PG_FUNCTION_INFO_V1(cube_enlarge);
+
+/*
+** For internal use only
+*/
+int32 cube_cmp_v0(NDBOX *a, NDBOX *b);
+bool cube_contains_v0(NDBOX *a, NDBOX *b);
+bool cube_overlap_v0(NDBOX *a, NDBOX *b);
+NDBOX *cube_union_v0(NDBOX *a, NDBOX *b);
+void rt_cube_size(NDBOX *a, double *sz);
+NDBOX *g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep);
+bool g_cube_leaf_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy);
+bool g_cube_internal_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy);
+
+/*
+** Auxiliary functions
+*/
+static double distance_1D(double a1, double a2, double b1, double b2);
+static bool cube_is_point_internal(NDBOX *cube);
+
+
+/*****************************************************************************
+ * Input/Output functions
+ *****************************************************************************/
+
+/* NdBox = [(lowerleft),(upperright)] */
+/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
+Datum
+cube_in(PG_FUNCTION_ARGS)
+{
+ char *str = PG_GETARG_CSTRING(0);
+ NDBOX *result;
+
+ cube_scanner_init(str);
+
+ if (cube_yyparse(&result) != 0)
+ cube_yyerror(&result, "cube parser failed");
+
+ cube_scanner_finish();
+
+ PG_RETURN_NDBOX_P(result);
+}
+
+
+/*
+** Allows the construction of a cube from 2 float[]'s
+*/
+Datum
+cube_a_f8_f8(PG_FUNCTION_ARGS)
+{
+ ArrayType *ur = PG_GETARG_ARRAYTYPE_P(0);
+ ArrayType *ll = PG_GETARG_ARRAYTYPE_P(1);
+ NDBOX *result;
+ int i;
+ int dim;
+ int size;
+ bool point;
+ double *dur,
+ *dll;
+
+ if (array_contains_nulls(ur) || array_contains_nulls(ll))
+ ereport(ERROR,
+ (errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
+ errmsg("cannot work with arrays containing NULLs")));
+
+ dim = ARRNELEMS(ur);
+ if (dim > CUBE_MAX_DIM)
+ ereport(ERROR,
+ (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
+ errmsg("can't extend cube"),
+ errdetail("A cube cannot have more than %d dimensions.",
+ CUBE_MAX_DIM)));
+
+ if (ARRNELEMS(ll) != dim)
+ ereport(ERROR,
+ (errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
+ errmsg("UR and LL arrays must be of same length")));
+
+ dur = ARRPTR(ur);
+ dll = ARRPTR(ll);
+
+ /* Check if it's a point */
+ point = true;
+ for (i = 0; i < dim; i++)
+ {
+ if (dur[i] != dll[i])
+ {
+ point = false;
+ break;
+ }
+ }
+
+ size = point ? POINT_SIZE(dim) : CUBE_SIZE(dim);
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, dim);
+
+ for (i = 0; i < dim; i++)
+ result->x[i] = dur[i];
+
+ if (!point)
+ {
+ for (i = 0; i < dim; i++)
+ result->x[i + dim] = dll[i];
+ }
+ else
+ SET_POINT_BIT(result);
+
+ PG_RETURN_NDBOX_P(result);
+}
+
+/*
+** Allows the construction of a zero-volume cube from a float[]
+*/
+Datum
+cube_a_f8(PG_FUNCTION_ARGS)
+{
+ ArrayType *ur = PG_GETARG_ARRAYTYPE_P(0);
+ NDBOX *result;
+ int i;
+ int dim;
+ int size;
+ double *dur;
+
+ if (array_contains_nulls(ur))
+ ereport(ERROR,
+ (errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
+ errmsg("cannot work with arrays containing NULLs")));
+
+ dim = ARRNELEMS(ur);
+ if (dim > CUBE_MAX_DIM)
+ ereport(ERROR,
+ (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
+ errmsg("array is too long"),
+ errdetail("A cube cannot have more than %d dimensions.",
+ CUBE_MAX_DIM)));
+
+ dur = ARRPTR(ur);
+
+ size = POINT_SIZE(dim);
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, dim);
+ SET_POINT_BIT(result);
+
+ for (i = 0; i < dim; i++)
+ result->x[i] = dur[i];
+
+ PG_RETURN_NDBOX_P(result);
+}
+
+Datum
+cube_subset(PG_FUNCTION_ARGS)
+{
+ NDBOX *c = PG_GETARG_NDBOX_P(0);
+ ArrayType *idx = PG_GETARG_ARRAYTYPE_P(1);
+ NDBOX *result;
+ int size,
+ dim,
+ i;
+ int *dx;
+
+ if (array_contains_nulls(idx))
+ ereport(ERROR,
+ (errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
+ errmsg("cannot work with arrays containing NULLs")));
+
+ dx = (int32 *) ARR_DATA_PTR(idx);
+
+ dim = ARRNELEMS(idx);
+ if (dim > CUBE_MAX_DIM)
+ ereport(ERROR,
+ (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
+ errmsg("array is too long"),
+ errdetail("A cube cannot have more than %d dimensions.",
+ CUBE_MAX_DIM)));
+
+ size = IS_POINT(c) ? POINT_SIZE(dim) : CUBE_SIZE(dim);
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, dim);
+
+ if (IS_POINT(c))
+ SET_POINT_BIT(result);
+
+ for (i = 0; i < dim; i++)
+ {
+ if ((dx[i] <= 0) || (dx[i] > DIM(c)))
+ ereport(ERROR,
+ (errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
+ errmsg("Index out of bounds")));
+ result->x[i] = c->x[dx[i] - 1];
+ if (!IS_POINT(c))
+ result->x[i + dim] = c->x[dx[i] + DIM(c) - 1];
+ }
+
+ PG_FREE_IF_COPY(c, 0);
+ PG_RETURN_NDBOX_P(result);
+}
+
+Datum
+cube_out(PG_FUNCTION_ARGS)
+{
+ NDBOX *cube = PG_GETARG_NDBOX_P(0);
+ StringInfoData buf;
+ int dim = DIM(cube);
+ int i;
+
+ initStringInfo(&buf);
+
+ appendStringInfoChar(&buf, '(');
+ for (i = 0; i < dim; i++)
+ {
+ if (i > 0)
+ appendStringInfoString(&buf, ", ");
+ appendStringInfoString(&buf, float8out_internal(LL_COORD(cube, i)));
+ }
+ appendStringInfoChar(&buf, ')');
+
+ if (!cube_is_point_internal(cube))
+ {
+ appendStringInfoString(&buf, ",(");
+ for (i = 0; i < dim; i++)
+ {
+ if (i > 0)
+ appendStringInfoString(&buf, ", ");
+ appendStringInfoString(&buf, float8out_internal(UR_COORD(cube, i)));
+ }
+ appendStringInfoChar(&buf, ')');
+ }
+
+ PG_FREE_IF_COPY(cube, 0);
+ PG_RETURN_CSTRING(buf.data);
+}
+
+/*
+ * cube_send - a binary output handler for cube type
+ */
+Datum
+cube_send(PG_FUNCTION_ARGS)
+{
+ NDBOX *cube = PG_GETARG_NDBOX_P(0);
+ StringInfoData buf;
+ int32 i,
+ nitems = DIM(cube);
+
+ pq_begintypsend(&buf);
+ pq_sendint32(&buf, cube->header);
+ if (!IS_POINT(cube))
+ nitems += nitems;
+ /* for symmetry with cube_recv, we don't use LL_COORD/UR_COORD here */
+ for (i = 0; i < nitems; i++)
+ pq_sendfloat8(&buf, cube->x[i]);
+
+ PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
+}
+
+/*
+ * cube_recv - a binary input handler for cube type
+ */
+Datum
+cube_recv(PG_FUNCTION_ARGS)
+{
+ StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
+ int32 header;
+ int32 i,
+ nitems;
+ NDBOX *cube;
+
+ header = pq_getmsgint(buf, sizeof(int32));
+ nitems = (header & DIM_MASK);
+ if (nitems > CUBE_MAX_DIM)
+ ereport(ERROR,
+ (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
+ errmsg("cube dimension is too large"),
+ errdetail("A cube cannot have more than %d dimensions.",
+ CUBE_MAX_DIM)));
+ if ((header & POINT_BIT) == 0)
+ nitems += nitems;
+ cube = palloc(offsetof(NDBOX, x) + sizeof(double) * nitems);
+ SET_VARSIZE(cube, offsetof(NDBOX, x) + sizeof(double) * nitems);
+ cube->header = header;
+ for (i = 0; i < nitems; i++)
+ cube->x[i] = pq_getmsgfloat8(buf);
+
+ PG_RETURN_NDBOX_P(cube);
+}
+
+
+/*****************************************************************************
+ * GiST functions
+ *****************************************************************************/
+
+/*
+** The GiST Consistent method for boxes
+** Should return false if for all data items x below entry,
+** the predicate x op query == false, where op is the oper
+** corresponding to strategy in the pg_amop table.
+*/
+Datum
+g_cube_consistent(PG_FUNCTION_ARGS)
+{
+ GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
+ NDBOX *query = PG_GETARG_NDBOX_P(1);
+ StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
+
+ /* Oid subtype = PG_GETARG_OID(3); */
+ bool *recheck = (bool *) PG_GETARG_POINTER(4);
+ bool res;
+
+ /* All cases served by this function are exact */
+ *recheck = false;
+
+ /*
+ * if entry is not leaf, use g_cube_internal_consistent, else use
+ * g_cube_leaf_consistent
+ */
+ if (GIST_LEAF(entry))
+ res = g_cube_leaf_consistent(DatumGetNDBOXP(entry->key),
+ query, strategy);
+ else
+ res = g_cube_internal_consistent(DatumGetNDBOXP(entry->key),
+ query, strategy);
+
+ PG_FREE_IF_COPY(query, 1);
+ PG_RETURN_BOOL(res);
+}
+
+
+/*
+** The GiST Union method for boxes
+** returns the minimal bounding box that encloses all the entries in entryvec
+*/
+Datum
+g_cube_union(PG_FUNCTION_ARGS)
+{
+ GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
+ int *sizep = (int *) PG_GETARG_POINTER(1);
+ NDBOX *out = (NDBOX *) NULL;
+ NDBOX *tmp;
+ int i;
+
+ tmp = DatumGetNDBOXP(entryvec->vector[0].key);
+
+ /*
+ * sizep = sizeof(NDBOX); -- NDBOX has variable size
+ */
+ *sizep = VARSIZE(tmp);
+
+ for (i = 1; i < entryvec->n; i++)
+ {
+ out = g_cube_binary_union(tmp,
+ DatumGetNDBOXP(entryvec->vector[i].key),
+ sizep);
+ tmp = out;
+ }
+
+ PG_RETURN_POINTER(out);
+}
+
+/*
+** GiST Compress and Decompress methods for boxes
+** do not do anything.
+*/
+
+Datum
+g_cube_compress(PG_FUNCTION_ARGS)
+{
+ PG_RETURN_DATUM(PG_GETARG_DATUM(0));
+}
+
+Datum
+g_cube_decompress(PG_FUNCTION_ARGS)
+{
+ GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
+ NDBOX *key = DatumGetNDBOXP(entry->key);
+
+ if (key != DatumGetNDBOXP(entry->key))
+ {
+ GISTENTRY *retval = (GISTENTRY *) palloc(sizeof(GISTENTRY));
+
+ gistentryinit(*retval, PointerGetDatum(key),
+ entry->rel, entry->page,
+ entry->offset, false);
+ PG_RETURN_POINTER(retval);
+ }
+ PG_RETURN_POINTER(entry);
+}
+
+
+/*
+** The GiST Penalty method for boxes
+** As in the R-tree paper, we use change in area as our penalty metric
+*/
+Datum
+g_cube_penalty(PG_FUNCTION_ARGS)
+{
+ GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
+ GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
+ float *result = (float *) PG_GETARG_POINTER(2);
+ NDBOX *ud;
+ double tmp1,
+ tmp2;
+
+ ud = cube_union_v0(DatumGetNDBOXP(origentry->key),
+ DatumGetNDBOXP(newentry->key));
+ rt_cube_size(ud, &tmp1);
+ rt_cube_size(DatumGetNDBOXP(origentry->key), &tmp2);
+ *result = (float) (tmp1 - tmp2);
+
+ PG_RETURN_FLOAT8(*result);
+}
+
+
+
+/*
+** The GiST PickSplit method for boxes
+** We use Guttman's poly time split algorithm
+*/
+Datum
+g_cube_picksplit(PG_FUNCTION_ARGS)
+{
+ GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
+ GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
+ OffsetNumber i,
+ j;
+ NDBOX *datum_alpha,
+ *datum_beta;
+ NDBOX *datum_l,
+ *datum_r;
+ NDBOX *union_d,
+ *union_dl,
+ *union_dr;
+ NDBOX *inter_d;
+ bool firsttime;
+ double size_alpha,
+ size_beta,
+ size_union,
+ size_inter;
+ double size_waste,
+ waste;
+ double size_l,
+ size_r;
+ int nbytes;
+ OffsetNumber seed_1 = 1,
+ seed_2 = 2;
+ OffsetNumber *left,
+ *right;
+ OffsetNumber maxoff;
+
+ maxoff = entryvec->n - 2;
+ nbytes = (maxoff + 2) * sizeof(OffsetNumber);
+ v->spl_left = (OffsetNumber *) palloc(nbytes);
+ v->spl_right = (OffsetNumber *) palloc(nbytes);
+
+ firsttime = true;
+ waste = 0.0;
+
+ for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
+ {
+ datum_alpha = DatumGetNDBOXP(entryvec->vector[i].key);
+ for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
+ {
+ datum_beta = DatumGetNDBOXP(entryvec->vector[j].key);
+
+ /* compute the wasted space by unioning these guys */
+ /* size_waste = size_union - size_inter; */
+ union_d = cube_union_v0(datum_alpha, datum_beta);
+ rt_cube_size(union_d, &size_union);
+ inter_d = DatumGetNDBOXP(DirectFunctionCall2(cube_inter,
+ entryvec->vector[i].key,
+ entryvec->vector[j].key));
+ rt_cube_size(inter_d, &size_inter);
+ size_waste = size_union - size_inter;
+
+ /*
+ * are these a more promising split than what we've already seen?
+ */
+
+ if (size_waste > waste || firsttime)
+ {
+ waste = size_waste;
+ seed_1 = i;
+ seed_2 = j;
+ firsttime = false;
+ }
+ }
+ }
+
+ left = v->spl_left;
+ v->spl_nleft = 0;
+ right = v->spl_right;
+ v->spl_nright = 0;
+
+ datum_alpha = DatumGetNDBOXP(entryvec->vector[seed_1].key);
+ datum_l = cube_union_v0(datum_alpha, datum_alpha);
+ rt_cube_size(datum_l, &size_l);
+ datum_beta = DatumGetNDBOXP(entryvec->vector[seed_2].key);
+ datum_r = cube_union_v0(datum_beta, datum_beta);
+ rt_cube_size(datum_r, &size_r);
+
+ /*
+ * Now split up the regions between the two seeds. An important property
+ * of this split algorithm is that the split vector v has the indices of
+ * items to be split in order in its left and right vectors. We exploit
+ * this property by doing a merge in the code that actually splits the
+ * page.
+ *
+ * For efficiency, we also place the new index tuple in this loop. This is
+ * handled at the very end, when we have placed all the existing tuples
+ * and i == maxoff + 1.
+ */
+
+ maxoff = OffsetNumberNext(maxoff);
+ for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
+ {
+ /*
+ * If we've already decided where to place this item, just put it on
+ * the right list. Otherwise, we need to figure out which page needs
+ * the least enlargement in order to store the item.
+ */
+
+ if (i == seed_1)
+ {
+ *left++ = i;
+ v->spl_nleft++;
+ continue;
+ }
+ else if (i == seed_2)
+ {
+ *right++ = i;
+ v->spl_nright++;
+ continue;
+ }
+
+ /* okay, which page needs least enlargement? */
+ datum_alpha = DatumGetNDBOXP(entryvec->vector[i].key);
+ union_dl = cube_union_v0(datum_l, datum_alpha);
+ union_dr = cube_union_v0(datum_r, datum_alpha);
+ rt_cube_size(union_dl, &size_alpha);
+ rt_cube_size(union_dr, &size_beta);
+
+ /* pick which page to add it to */
+ if (size_alpha - size_l < size_beta - size_r)
+ {
+ datum_l = union_dl;
+ size_l = size_alpha;
+ *left++ = i;
+ v->spl_nleft++;
+ }
+ else
+ {
+ datum_r = union_dr;
+ size_r = size_beta;
+ *right++ = i;
+ v->spl_nright++;
+ }
+ }
+ *left = *right = FirstOffsetNumber; /* sentinel value */
+
+ v->spl_ldatum = PointerGetDatum(datum_l);
+ v->spl_rdatum = PointerGetDatum(datum_r);
+
+ PG_RETURN_POINTER(v);
+}
+
+/*
+** Equality method
+*/
+Datum
+g_cube_same(PG_FUNCTION_ARGS)
+{
+ NDBOX *b1 = PG_GETARG_NDBOX_P(0);
+ NDBOX *b2 = PG_GETARG_NDBOX_P(1);
+ bool *result = (bool *) PG_GETARG_POINTER(2);
+
+ if (cube_cmp_v0(b1, b2) == 0)
+ *result = true;
+ else
+ *result = false;
+
+ PG_RETURN_NDBOX_P(result);
+}
+
+/*
+** SUPPORT ROUTINES
+*/
+bool
+g_cube_leaf_consistent(NDBOX *key,
+ NDBOX *query,
+ StrategyNumber strategy)
+{
+ bool retval;
+
+ switch (strategy)
+ {
+ case RTOverlapStrategyNumber:
+ retval = cube_overlap_v0(key, query);
+ break;
+ case RTSameStrategyNumber:
+ retval = (cube_cmp_v0(key, query) == 0);
+ break;
+ case RTContainsStrategyNumber:
+ case RTOldContainsStrategyNumber:
+ retval = cube_contains_v0(key, query);
+ break;
+ case RTContainedByStrategyNumber:
+ case RTOldContainedByStrategyNumber:
+ retval = cube_contains_v0(query, key);
+ break;
+ default:
+ retval = false;
+ }
+ return retval;
+}
+
+bool
+g_cube_internal_consistent(NDBOX *key,
+ NDBOX *query,
+ StrategyNumber strategy)
+{
+ bool retval;
+
+ switch (strategy)
+ {
+ case RTOverlapStrategyNumber:
+ retval = (bool) cube_overlap_v0(key, query);
+ break;
+ case RTSameStrategyNumber:
+ case RTContainsStrategyNumber:
+ case RTOldContainsStrategyNumber:
+ retval = (bool) cube_contains_v0(key, query);
+ break;
+ case RTContainedByStrategyNumber:
+ case RTOldContainedByStrategyNumber:
+ retval = (bool) cube_overlap_v0(key, query);
+ break;
+ default:
+ retval = false;
+ }
+ return retval;
+}
+
+NDBOX *
+g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep)
+{
+ NDBOX *retval;
+
+ retval = cube_union_v0(r1, r2);
+ *sizep = VARSIZE(retval);
+
+ return retval;
+}
+
+
+/* cube_union_v0 */
+NDBOX *
+cube_union_v0(NDBOX *a, NDBOX *b)
+{
+ int i;
+ NDBOX *result;
+ int dim;
+ int size;
+
+ /* trivial case */
+ if (a == b)
+ return a;
+
+ /* swap the arguments if needed, so that 'a' is always larger than 'b' */
+ if (DIM(a) < DIM(b))
+ {
+ NDBOX *tmp = b;
+
+ b = a;
+ a = tmp;
+ }
+ dim = DIM(a);
+
+ size = CUBE_SIZE(dim);
+ result = palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, dim);
+
+ /* First compute the union of the dimensions present in both args */
+ for (i = 0; i < DIM(b); i++)
+ {
+ result->x[i] = Min(Min(LL_COORD(a, i), UR_COORD(a, i)),
+ Min(LL_COORD(b, i), UR_COORD(b, i)));
+ result->x[i + DIM(a)] = Max(Max(LL_COORD(a, i), UR_COORD(a, i)),
+ Max(LL_COORD(b, i), UR_COORD(b, i)));
+ }
+ /* continue on the higher dimensions only present in 'a' */
+ for (; i < DIM(a); i++)
+ {
+ result->x[i] = Min(0,
+ Min(LL_COORD(a, i), UR_COORD(a, i))
+ );
+ result->x[i + dim] = Max(0,
+ Max(LL_COORD(a, i), UR_COORD(a, i))
+ );
+ }
+
+ /*
+ * Check if the result was in fact a point, and set the flag in the datum
+ * accordingly. (we don't bother to repalloc it smaller)
+ */
+ if (cube_is_point_internal(result))
+ {
+ size = POINT_SIZE(dim);
+ SET_VARSIZE(result, size);
+ SET_POINT_BIT(result);
+ }
+
+ return result;
+}
+
+Datum
+cube_union(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0);
+ NDBOX *b = PG_GETARG_NDBOX_P(1);
+ NDBOX *res;
+
+ res = cube_union_v0(a, b);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_NDBOX_P(res);
+}
+
+/* cube_inter */
+Datum
+cube_inter(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0);
+ NDBOX *b = PG_GETARG_NDBOX_P(1);
+ NDBOX *result;
+ bool swapped = false;
+ int i;
+ int dim;
+ int size;
+
+ /* swap the arguments if needed, so that 'a' is always larger than 'b' */
+ if (DIM(a) < DIM(b))
+ {
+ NDBOX *tmp = b;
+
+ b = a;
+ a = tmp;
+ swapped = true;
+ }
+ dim = DIM(a);
+
+ size = CUBE_SIZE(dim);
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, dim);
+
+ /* First compute intersection of the dimensions present in both args */
+ for (i = 0; i < DIM(b); i++)
+ {
+ result->x[i] = Max(Min(LL_COORD(a, i), UR_COORD(a, i)),
+ Min(LL_COORD(b, i), UR_COORD(b, i)));
+ result->x[i + DIM(a)] = Min(Max(LL_COORD(a, i), UR_COORD(a, i)),
+ Max(LL_COORD(b, i), UR_COORD(b, i)));
+ }
+ /* continue on the higher dimensions only present in 'a' */
+ for (; i < DIM(a); i++)
+ {
+ result->x[i] = Max(0,
+ Min(LL_COORD(a, i), UR_COORD(a, i))
+ );
+ result->x[i + DIM(a)] = Min(0,
+ Max(LL_COORD(a, i), UR_COORD(a, i))
+ );
+ }
+
+ /*
+ * Check if the result was in fact a point, and set the flag in the datum
+ * accordingly. (we don't bother to repalloc it smaller)
+ */
+ if (cube_is_point_internal(result))
+ {
+ size = POINT_SIZE(dim);
+ result = repalloc(result, size);
+ SET_VARSIZE(result, size);
+ SET_POINT_BIT(result);
+ }
+
+ if (swapped)
+ {
+ PG_FREE_IF_COPY(b, 0);
+ PG_FREE_IF_COPY(a, 1);
+ }
+ else
+ {
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ }
+
+ /*
+ * Is it OK to return a non-null intersection for non-overlapping boxes?
+ */
+ PG_RETURN_NDBOX_P(result);
+}
+
+/* cube_size */
+Datum
+cube_size(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0);
+ double result;
+
+ rt_cube_size(a, &result);
+ PG_FREE_IF_COPY(a, 0);
+ PG_RETURN_FLOAT8(result);
+}
+
+void
+rt_cube_size(NDBOX *a, double *size)
+{
+ double result;
+ int i;
+
+ if (a == (NDBOX *) NULL)
+ {
+ /* special case for GiST */
+ result = 0.0;
+ }
+ else if (IS_POINT(a) || DIM(a) == 0)
+ {
+ /* necessarily has zero size */
+ result = 0.0;
+ }
+ else
+ {
+ result = 1.0;
+ for (i = 0; i < DIM(a); i++)
+ result *= Abs(UR_COORD(a, i) - LL_COORD(a, i));
+ }
+ *size = result;
+}
+
+/* make up a metric in which one box will be 'lower' than the other
+ -- this can be useful for sorting and to determine uniqueness */
+int32
+cube_cmp_v0(NDBOX *a, NDBOX *b)
+{
+ int i;
+ int dim;
+
+ dim = Min(DIM(a), DIM(b));
+
+ /* compare the common dimensions */
+ for (i = 0; i < dim; i++)
+ {
+ if (Min(LL_COORD(a, i), UR_COORD(a, i)) >
+ Min(LL_COORD(b, i), UR_COORD(b, i)))
+ return 1;
+ if (Min(LL_COORD(a, i), UR_COORD(a, i)) <
+ Min(LL_COORD(b, i), UR_COORD(b, i)))
+ return -1;
+ }
+ for (i = 0; i < dim; i++)
+ {
+ if (Max(LL_COORD(a, i), UR_COORD(a, i)) >
+ Max(LL_COORD(b, i), UR_COORD(b, i)))
+ return 1;
+ if (Max(LL_COORD(a, i), UR_COORD(a, i)) <
+ Max(LL_COORD(b, i), UR_COORD(b, i)))
+ return -1;
+ }
+
+ /* compare extra dimensions to zero */
+ if (DIM(a) > DIM(b))
+ {
+ for (i = dim; i < DIM(a); i++)
+ {
+ if (Min(LL_COORD(a, i), UR_COORD(a, i)) > 0)
+ return 1;
+ if (Min(LL_COORD(a, i), UR_COORD(a, i)) < 0)
+ return -1;
+ }
+ for (i = dim; i < DIM(a); i++)
+ {
+ if (Max(LL_COORD(a, i), UR_COORD(a, i)) > 0)
+ return 1;
+ if (Max(LL_COORD(a, i), UR_COORD(a, i)) < 0)
+ return -1;
+ }
+
+ /*
+ * if all common dimensions are equal, the cube with more dimensions
+ * wins
+ */
+ return 1;
+ }
+ if (DIM(a) < DIM(b))
+ {
+ for (i = dim; i < DIM(b); i++)
+ {
+ if (Min(LL_COORD(b, i), UR_COORD(b, i)) > 0)
+ return -1;
+ if (Min(LL_COORD(b, i), UR_COORD(b, i)) < 0)
+ return 1;
+ }
+ for (i = dim; i < DIM(b); i++)
+ {
+ if (Max(LL_COORD(b, i), UR_COORD(b, i)) > 0)
+ return -1;
+ if (Max(LL_COORD(b, i), UR_COORD(b, i)) < 0)
+ return 1;
+ }
+
+ /*
+ * if all common dimensions are equal, the cube with more dimensions
+ * wins
+ */
+ return -1;
+ }
+
+ /* They're really equal */
+ return 0;
+}
+
+Datum
+cube_cmp(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ int32 res;
+
+ res = cube_cmp_v0(a, b);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_INT32(res);
+}
+
+
+Datum
+cube_eq(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ int32 res;
+
+ res = cube_cmp_v0(a, b);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_BOOL(res == 0);
+}
+
+
+Datum
+cube_ne(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ int32 res;
+
+ res = cube_cmp_v0(a, b);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_BOOL(res != 0);
+}
+
+
+Datum
+cube_lt(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ int32 res;
+
+ res = cube_cmp_v0(a, b);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_BOOL(res < 0);
+}
+
+
+Datum
+cube_gt(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ int32 res;
+
+ res = cube_cmp_v0(a, b);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_BOOL(res > 0);
+}
+
+
+Datum
+cube_le(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ int32 res;
+
+ res = cube_cmp_v0(a, b);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_BOOL(res <= 0);
+}
+
+
+Datum
+cube_ge(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ int32 res;
+
+ res = cube_cmp_v0(a, b);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_BOOL(res >= 0);
+}
+
+
+/* Contains */
+/* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
+bool
+cube_contains_v0(NDBOX *a, NDBOX *b)
+{
+ int i;
+
+ if ((a == NULL) || (b == NULL))
+ return false;
+
+ if (DIM(a) < DIM(b))
+ {
+ /*
+ * the further comparisons will make sense if the excess dimensions of
+ * (b) were zeroes Since both UL and UR coordinates must be zero, we
+ * can check them all without worrying about which is which.
+ */
+ for (i = DIM(a); i < DIM(b); i++)
+ {
+ if (LL_COORD(b, i) != 0)
+ return false;
+ if (UR_COORD(b, i) != 0)
+ return false;
+ }
+ }
+
+ /* Can't care less about the excess dimensions of (a), if any */
+ for (i = 0; i < Min(DIM(a), DIM(b)); i++)
+ {
+ if (Min(LL_COORD(a, i), UR_COORD(a, i)) >
+ Min(LL_COORD(b, i), UR_COORD(b, i)))
+ return false;
+ if (Max(LL_COORD(a, i), UR_COORD(a, i)) <
+ Max(LL_COORD(b, i), UR_COORD(b, i)))
+ return false;
+ }
+
+ return true;
+}
+
+Datum
+cube_contains(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ bool res;
+
+ res = cube_contains_v0(a, b);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_BOOL(res);
+}
+
+/* Contained */
+/* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
+Datum
+cube_contained(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ bool res;
+
+ res = cube_contains_v0(b, a);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_BOOL(res);
+}
+
+/* Overlap */
+/* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
+bool
+cube_overlap_v0(NDBOX *a, NDBOX *b)
+{
+ int i;
+
+ if ((a == NULL) || (b == NULL))
+ return false;
+
+ /* swap the box pointers if needed */
+ if (DIM(a) < DIM(b))
+ {
+ NDBOX *tmp = b;
+
+ b = a;
+ a = tmp;
+ }
+
+ /* compare within the dimensions of (b) */
+ for (i = 0; i < DIM(b); i++)
+ {
+ if (Min(LL_COORD(a, i), UR_COORD(a, i)) > Max(LL_COORD(b, i), UR_COORD(b, i)))
+ return false;
+ if (Max(LL_COORD(a, i), UR_COORD(a, i)) < Min(LL_COORD(b, i), UR_COORD(b, i)))
+ return false;
+ }
+
+ /* compare to zero those dimensions in (a) absent in (b) */
+ for (i = DIM(b); i < DIM(a); i++)
+ {
+ if (Min(LL_COORD(a, i), UR_COORD(a, i)) > 0)
+ return false;
+ if (Max(LL_COORD(a, i), UR_COORD(a, i)) < 0)
+ return false;
+ }
+
+ return true;
+}
+
+
+Datum
+cube_overlap(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ bool res;
+
+ res = cube_overlap_v0(a, b);
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ PG_RETURN_BOOL(res);
+}
+
+
+/* Distance */
+/* The distance is computed as a per axis sum of the squared distances
+ between 1D projections of the boxes onto Cartesian axes. Assuming zero
+ distance between overlapping projections, this metric coincides with the
+ "common sense" geometric distance */
+Datum
+cube_distance(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ bool swapped = false;
+ double d,
+ distance;
+ int i;
+
+ /* swap the box pointers if needed */
+ if (DIM(a) < DIM(b))
+ {
+ NDBOX *tmp = b;
+
+ b = a;
+ a = tmp;
+ swapped = true;
+ }
+
+ distance = 0.0;
+ /* compute within the dimensions of (b) */
+ for (i = 0; i < DIM(b); i++)
+ {
+ d = distance_1D(LL_COORD(a, i), UR_COORD(a, i), LL_COORD(b, i), UR_COORD(b, i));
+ distance += d * d;
+ }
+
+ /* compute distance to zero for those dimensions in (a) absent in (b) */
+ for (i = DIM(b); i < DIM(a); i++)
+ {
+ d = distance_1D(LL_COORD(a, i), UR_COORD(a, i), 0.0, 0.0);
+ distance += d * d;
+ }
+
+ if (swapped)
+ {
+ PG_FREE_IF_COPY(b, 0);
+ PG_FREE_IF_COPY(a, 1);
+ }
+ else
+ {
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ }
+
+ PG_RETURN_FLOAT8(sqrt(distance));
+}
+
+Datum
+distance_taxicab(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ bool swapped = false;
+ double distance;
+ int i;
+
+ /* swap the box pointers if needed */
+ if (DIM(a) < DIM(b))
+ {
+ NDBOX *tmp = b;
+
+ b = a;
+ a = tmp;
+ swapped = true;
+ }
+
+ distance = 0.0;
+ /* compute within the dimensions of (b) */
+ for (i = 0; i < DIM(b); i++)
+ distance += fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i),
+ LL_COORD(b, i), UR_COORD(b, i)));
+
+ /* compute distance to zero for those dimensions in (a) absent in (b) */
+ for (i = DIM(b); i < DIM(a); i++)
+ distance += fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i),
+ 0.0, 0.0));
+
+ if (swapped)
+ {
+ PG_FREE_IF_COPY(b, 0);
+ PG_FREE_IF_COPY(a, 1);
+ }
+ else
+ {
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ }
+
+ PG_RETURN_FLOAT8(distance);
+}
+
+Datum
+distance_chebyshev(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0),
+ *b = PG_GETARG_NDBOX_P(1);
+ bool swapped = false;
+ double d,
+ distance;
+ int i;
+
+ /* swap the box pointers if needed */
+ if (DIM(a) < DIM(b))
+ {
+ NDBOX *tmp = b;
+
+ b = a;
+ a = tmp;
+ swapped = true;
+ }
+
+ distance = 0.0;
+ /* compute within the dimensions of (b) */
+ for (i = 0; i < DIM(b); i++)
+ {
+ d = fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i),
+ LL_COORD(b, i), UR_COORD(b, i)));
+ if (d > distance)
+ distance = d;
+ }
+
+ /* compute distance to zero for those dimensions in (a) absent in (b) */
+ for (i = DIM(b); i < DIM(a); i++)
+ {
+ d = fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i), 0.0, 0.0));
+ if (d > distance)
+ distance = d;
+ }
+
+ if (swapped)
+ {
+ PG_FREE_IF_COPY(b, 0);
+ PG_FREE_IF_COPY(a, 1);
+ }
+ else
+ {
+ PG_FREE_IF_COPY(a, 0);
+ PG_FREE_IF_COPY(b, 1);
+ }
+
+ PG_RETURN_FLOAT8(distance);
+}
+
+Datum
+g_cube_distance(PG_FUNCTION_ARGS)
+{
+ GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
+ StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
+ NDBOX *cube = DatumGetNDBOXP(entry->key);
+ double retval;
+
+ if (strategy == CubeKNNDistanceCoord)
+ {
+ /*
+ * Handle ordering by ~> operator. See comments of cube_coord_llur()
+ * for details
+ */
+ int coord = PG_GETARG_INT32(1);
+ bool isLeaf = GistPageIsLeaf(entry->page);
+ bool inverse = false;
+
+ /* 0 is the only unsupported coordinate value */
+ if (coord == 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
+ errmsg("zero cube index is not defined")));
+
+ /* Return inversed value for negative coordinate */
+ if (coord < 0)
+ {
+ coord = -coord;
+ inverse = true;
+ }
+
+ if (coord <= 2 * DIM(cube))
+ {
+ /* dimension index */
+ int index = (coord - 1) / 2;
+
+ /* whether this is upper bound (lower bound otherwise) */
+ bool upper = ((coord - 1) % 2 == 1);
+
+ if (IS_POINT(cube))
+ {
+ retval = cube->x[index];
+ }
+ else
+ {
+ if (isLeaf)
+ {
+ /* For leaf just return required upper/lower bound */
+ if (upper)
+ retval = Max(cube->x[index], cube->x[index + DIM(cube)]);
+ else
+ retval = Min(cube->x[index], cube->x[index + DIM(cube)]);
+ }
+ else
+ {
+ /*
+ * For non-leaf we should always return lower bound,
+ * because even upper bound of a child in the subtree can
+ * be as small as our lower bound. For inversed case we
+ * return upper bound because it becomes lower bound for
+ * inversed value.
+ */
+ if (!inverse)
+ retval = Min(cube->x[index], cube->x[index + DIM(cube)]);
+ else
+ retval = Max(cube->x[index], cube->x[index + DIM(cube)]);
+ }
+ }
+ }
+ else
+ {
+ retval = 0.0;
+ }
+
+ /* Inverse return value if needed */
+ if (inverse)
+ retval = -retval;
+ }
+ else
+ {
+ NDBOX *query = PG_GETARG_NDBOX_P(1);
+
+ switch (strategy)
+ {
+ case CubeKNNDistanceTaxicab:
+ retval = DatumGetFloat8(DirectFunctionCall2(distance_taxicab,
+ PointerGetDatum(cube), PointerGetDatum(query)));
+ break;
+ case CubeKNNDistanceEuclid:
+ retval = DatumGetFloat8(DirectFunctionCall2(cube_distance,
+ PointerGetDatum(cube), PointerGetDatum(query)));
+ break;
+ case CubeKNNDistanceChebyshev:
+ retval = DatumGetFloat8(DirectFunctionCall2(distance_chebyshev,
+ PointerGetDatum(cube), PointerGetDatum(query)));
+ break;
+ default:
+ elog(ERROR, "unrecognized cube strategy number: %d", strategy);
+ retval = 0; /* keep compiler quiet */
+ break;
+ }
+ }
+ PG_RETURN_FLOAT8(retval);
+}
+
+static double
+distance_1D(double a1, double a2, double b1, double b2)
+{
+ /* interval (a) is entirely on the left of (b) */
+ if ((a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2))
+ return (Min(b1, b2) - Max(a1, a2));
+
+ /* interval (a) is entirely on the right of (b) */
+ if ((a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2))
+ return (Min(a1, a2) - Max(b1, b2));
+
+ /* the rest are all sorts of intersections */
+ return 0.0;
+}
+
+/* Test if a box is also a point */
+Datum
+cube_is_point(PG_FUNCTION_ARGS)
+{
+ NDBOX *cube = PG_GETARG_NDBOX_P(0);
+ bool result;
+
+ result = cube_is_point_internal(cube);
+ PG_FREE_IF_COPY(cube, 0);
+ PG_RETURN_BOOL(result);
+}
+
+static bool
+cube_is_point_internal(NDBOX *cube)
+{
+ int i;
+
+ if (IS_POINT(cube))
+ return true;
+
+ /*
+ * Even if the point-flag is not set, all the lower-left coordinates might
+ * match the upper-right coordinates, so that the value is in fact a
+ * point. Such values don't arise with current code - the point flag is
+ * always set if appropriate - but they might be present on-disk in
+ * clusters upgraded from pre-9.4 versions.
+ */
+ for (i = 0; i < DIM(cube); i++)
+ {
+ if (LL_COORD(cube, i) != UR_COORD(cube, i))
+ return false;
+ }
+ return true;
+}
+
+/* Return dimensions in use in the data structure */
+Datum
+cube_dim(PG_FUNCTION_ARGS)
+{
+ NDBOX *c = PG_GETARG_NDBOX_P(0);
+ int dim = DIM(c);
+
+ PG_FREE_IF_COPY(c, 0);
+ PG_RETURN_INT32(dim);
+}
+
+/* Return a specific normalized LL coordinate */
+Datum
+cube_ll_coord(PG_FUNCTION_ARGS)
+{
+ NDBOX *c = PG_GETARG_NDBOX_P(0);
+ int n = PG_GETARG_INT32(1);
+ double result;
+
+ if (DIM(c) >= n && n > 0)
+ result = Min(LL_COORD(c, n - 1), UR_COORD(c, n - 1));
+ else
+ result = 0;
+
+ PG_FREE_IF_COPY(c, 0);
+ PG_RETURN_FLOAT8(result);
+}
+
+/* Return a specific normalized UR coordinate */
+Datum
+cube_ur_coord(PG_FUNCTION_ARGS)
+{
+ NDBOX *c = PG_GETARG_NDBOX_P(0);
+ int n = PG_GETARG_INT32(1);
+ double result;
+
+ if (DIM(c) >= n && n > 0)
+ result = Max(LL_COORD(c, n - 1), UR_COORD(c, n - 1));
+ else
+ result = 0;
+
+ PG_FREE_IF_COPY(c, 0);
+ PG_RETURN_FLOAT8(result);
+}
+
+/*
+ * Function returns cube coordinate.
+ * Numbers from 1 to DIM denotes first corner coordinates.
+ * Numbers from DIM+1 to 2*DIM denotes second corner coordinates.
+ */
+Datum
+cube_coord(PG_FUNCTION_ARGS)
+{
+ NDBOX *cube = PG_GETARG_NDBOX_P(0);
+ int coord = PG_GETARG_INT32(1);
+
+ if (coord <= 0 || coord > 2 * DIM(cube))
+ ereport(ERROR,
+ (errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
+ errmsg("cube index %d is out of bounds", coord)));
+
+ if (IS_POINT(cube))
+ PG_RETURN_FLOAT8(cube->x[(coord - 1) % DIM(cube)]);
+ else
+ PG_RETURN_FLOAT8(cube->x[coord - 1]);
+}
+
+
+/*----
+ * This function works like cube_coord(), but rearranges coordinates in the
+ * way suitable to support coordinate ordering using KNN-GiST. For historical
+ * reasons this extension allows us to create cubes in form ((2,1),(1,2)) and
+ * instead of normalizing such cube to ((1,1),(2,2)) it stores cube in original
+ * way. But in order to get cubes ordered by one of dimensions from the index
+ * without explicit sort step we need this representation-independent coordinate
+ * getter. Moreover, indexed dataset may contain cubes of different dimensions
+ * number. Accordingly, this coordinate getter should be able to return
+ * lower/upper bound for particular dimension independently on number of cube
+ * dimensions. Also, KNN-GiST supports only ascending sorting. In order to
+ * support descending sorting, this function returns inverse of value when
+ * negative coordinate is given.
+ *
+ * Long story short, this function uses following meaning of coordinates:
+ * # (2 * N - 1) -- lower bound of Nth dimension,
+ * # (2 * N) -- upper bound of Nth dimension,
+ * # - (2 * N - 1) -- negative of lower bound of Nth dimension,
+ * # - (2 * N) -- negative of upper bound of Nth dimension.
+ *
+ * When given coordinate exceeds number of cube dimensions, then 0 returned
+ * (reproducing logic of GiST indexing of variable-length cubes).
+ */
+Datum
+cube_coord_llur(PG_FUNCTION_ARGS)
+{
+ NDBOX *cube = PG_GETARG_NDBOX_P(0);
+ int coord = PG_GETARG_INT32(1);
+ bool inverse = false;
+ float8 result;
+
+ /* 0 is the only unsupported coordinate value */
+ if (coord == 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
+ errmsg("zero cube index is not defined")));
+
+ /* Return inversed value for negative coordinate */
+ if (coord < 0)
+ {
+ coord = -coord;
+ inverse = true;
+ }
+
+ if (coord <= 2 * DIM(cube))
+ {
+ /* dimension index */
+ int index = (coord - 1) / 2;
+
+ /* whether this is upper bound (lower bound otherwise) */
+ bool upper = ((coord - 1) % 2 == 1);
+
+ if (IS_POINT(cube))
+ {
+ result = cube->x[index];
+ }
+ else
+ {
+ if (upper)
+ result = Max(cube->x[index], cube->x[index + DIM(cube)]);
+ else
+ result = Min(cube->x[index], cube->x[index + DIM(cube)]);
+ }
+ }
+ else
+ {
+ /*
+ * Return zero if coordinate is out of bound. That reproduces logic
+ * of how cubes with low dimension number are expanded during GiST
+ * indexing.
+ */
+ result = 0.0;
+ }
+
+ /* Inverse value if needed */
+ if (inverse)
+ result = -result;
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/* Increase or decrease box size by a radius in at least n dimensions. */
+Datum
+cube_enlarge(PG_FUNCTION_ARGS)
+{
+ NDBOX *a = PG_GETARG_NDBOX_P(0);
+ double r = PG_GETARG_FLOAT8(1);
+ int32 n = PG_GETARG_INT32(2);
+ NDBOX *result;
+ int dim = 0;
+ int size;
+ int i,
+ j;
+
+ if (n > CUBE_MAX_DIM)
+ n = CUBE_MAX_DIM;
+ if (r > 0 && n > 0)
+ dim = n;
+ if (DIM(a) > dim)
+ dim = DIM(a);
+
+ size = CUBE_SIZE(dim);
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, dim);
+
+ for (i = 0, j = dim; i < DIM(a); i++, j++)
+ {
+ if (LL_COORD(a, i) >= UR_COORD(a, i))
+ {
+ result->x[i] = UR_COORD(a, i) - r;
+ result->x[j] = LL_COORD(a, i) + r;
+ }
+ else
+ {
+ result->x[i] = LL_COORD(a, i) - r;
+ result->x[j] = UR_COORD(a, i) + r;
+ }
+ if (result->x[i] > result->x[j])
+ {
+ result->x[i] = (result->x[i] + result->x[j]) / 2;
+ result->x[j] = result->x[i];
+ }
+ }
+ /* dim > a->dim only if r > 0 */
+ for (; i < dim; i++, j++)
+ {
+ result->x[i] = -r;
+ result->x[j] = r;
+ }
+
+ /*
+ * Check if the result was in fact a point, and set the flag in the datum
+ * accordingly. (we don't bother to repalloc it smaller)
+ */
+ if (cube_is_point_internal(result))
+ {
+ size = POINT_SIZE(dim);
+ SET_VARSIZE(result, size);
+ SET_POINT_BIT(result);
+ }
+
+ PG_FREE_IF_COPY(a, 0);
+ PG_RETURN_NDBOX_P(result);
+}
+
+/* Create a one dimensional box with identical upper and lower coordinates */
+Datum
+cube_f8(PG_FUNCTION_ARGS)
+{
+ double x = PG_GETARG_FLOAT8(0);
+ NDBOX *result;
+ int size;
+
+ size = POINT_SIZE(1);
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, 1);
+ SET_POINT_BIT(result);
+ result->x[0] = x;
+
+ PG_RETURN_NDBOX_P(result);
+}
+
+/* Create a one dimensional box */
+Datum
+cube_f8_f8(PG_FUNCTION_ARGS)
+{
+ double x0 = PG_GETARG_FLOAT8(0);
+ double x1 = PG_GETARG_FLOAT8(1);
+ NDBOX *result;
+ int size;
+
+ if (x0 == x1)
+ {
+ size = POINT_SIZE(1);
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, 1);
+ SET_POINT_BIT(result);
+ result->x[0] = x0;
+ }
+ else
+ {
+ size = CUBE_SIZE(1);
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, 1);
+ result->x[0] = x0;
+ result->x[1] = x1;
+ }
+
+ PG_RETURN_NDBOX_P(result);
+}
+
+/* Add a dimension to an existing cube with the same values for the new
+ coordinate */
+Datum
+cube_c_f8(PG_FUNCTION_ARGS)
+{
+ NDBOX *cube = PG_GETARG_NDBOX_P(0);
+ double x = PG_GETARG_FLOAT8(1);
+ NDBOX *result;
+ int size;
+ int i;
+
+ if (DIM(cube) + 1 > CUBE_MAX_DIM)
+ ereport(ERROR,
+ (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
+ errmsg("can't extend cube"),
+ errdetail("A cube cannot have more than %d dimensions.",
+ CUBE_MAX_DIM)));
+
+ if (IS_POINT(cube))
+ {
+ size = POINT_SIZE((DIM(cube) + 1));
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, DIM(cube) + 1);
+ SET_POINT_BIT(result);
+ for (i = 0; i < DIM(cube); i++)
+ result->x[i] = cube->x[i];
+ result->x[DIM(result) - 1] = x;
+ }
+ else
+ {
+ size = CUBE_SIZE((DIM(cube) + 1));
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, DIM(cube) + 1);
+ for (i = 0; i < DIM(cube); i++)
+ {
+ result->x[i] = cube->x[i];
+ result->x[DIM(result) + i] = cube->x[DIM(cube) + i];
+ }
+ result->x[DIM(result) - 1] = x;
+ result->x[2 * DIM(result) - 1] = x;
+ }
+
+ PG_FREE_IF_COPY(cube, 0);
+ PG_RETURN_NDBOX_P(result);
+}
+
+/* Add a dimension to an existing cube */
+Datum
+cube_c_f8_f8(PG_FUNCTION_ARGS)
+{
+ NDBOX *cube = PG_GETARG_NDBOX_P(0);
+ double x1 = PG_GETARG_FLOAT8(1);
+ double x2 = PG_GETARG_FLOAT8(2);
+ NDBOX *result;
+ int size;
+ int i;
+
+ if (DIM(cube) + 1 > CUBE_MAX_DIM)
+ ereport(ERROR,
+ (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
+ errmsg("can't extend cube"),
+ errdetail("A cube cannot have more than %d dimensions.",
+ CUBE_MAX_DIM)));
+
+ if (IS_POINT(cube) && (x1 == x2))
+ {
+ size = POINT_SIZE((DIM(cube) + 1));
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, DIM(cube) + 1);
+ SET_POINT_BIT(result);
+ for (i = 0; i < DIM(cube); i++)
+ result->x[i] = cube->x[i];
+ result->x[DIM(result) - 1] = x1;
+ }
+ else
+ {
+ size = CUBE_SIZE((DIM(cube) + 1));
+ result = (NDBOX *) palloc0(size);
+ SET_VARSIZE(result, size);
+ SET_DIM(result, DIM(cube) + 1);
+ for (i = 0; i < DIM(cube); i++)
+ {
+ result->x[i] = LL_COORD(cube, i);
+ result->x[DIM(result) + i] = UR_COORD(cube, i);
+ }
+ result->x[DIM(result) - 1] = x1;
+ result->x[2 * DIM(result) - 1] = x2;
+ }
+
+ PG_FREE_IF_COPY(cube, 0);
+ PG_RETURN_NDBOX_P(result);
+}