summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/textsearch.sgml
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--doc/src/sgml/textsearch.sgml4009
1 files changed, 4009 insertions, 0 deletions
diff --git a/doc/src/sgml/textsearch.sgml b/doc/src/sgml/textsearch.sgml
new file mode 100644
index 0000000..fbe049f
--- /dev/null
+++ b/doc/src/sgml/textsearch.sgml
@@ -0,0 +1,4009 @@
+<!-- doc/src/sgml/textsearch.sgml -->
+
+<chapter id="textsearch">
+ <title>Full Text Search</title>
+
+ <indexterm zone="textsearch">
+ <primary>full text search</primary>
+ </indexterm>
+
+ <indexterm zone="textsearch">
+ <primary>text search</primary>
+ </indexterm>
+
+ <sect1 id="textsearch-intro">
+ <title>Introduction</title>
+
+ <para>
+ Full Text Searching (or just <firstterm>text search</firstterm>) provides
+ the capability to identify natural-language <firstterm>documents</firstterm> that
+ satisfy a <firstterm>query</firstterm>, and optionally to sort them by
+ relevance to the query. The most common type of search
+ is to find all documents containing given <firstterm>query terms</firstterm>
+ and return them in order of their <firstterm>similarity</firstterm> to the
+ query. Notions of <varname>query</varname> and
+ <varname>similarity</varname> are very flexible and depend on the specific
+ application. The simplest search considers <varname>query</varname> as a
+ set of words and <varname>similarity</varname> as the frequency of query
+ words in the document.
+ </para>
+
+ <para>
+ Textual search operators have existed in databases for years.
+ <productname>PostgreSQL</productname> has
+ <literal>~</literal>, <literal>~*</literal>, <literal>LIKE</literal>, and
+ <literal>ILIKE</literal> operators for textual data types, but they lack
+ many essential properties required by modern information systems:
+ </para>
+
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ There is no linguistic support, even for English. Regular expressions
+ are not sufficient because they cannot easily handle derived words, e.g.,
+ <literal>satisfies</literal> and <literal>satisfy</literal>. You might
+ miss documents that contain <literal>satisfies</literal>, although you
+ probably would like to find them when searching for
+ <literal>satisfy</literal>. It is possible to use <literal>OR</literal>
+ to search for multiple derived forms, but this is tedious and error-prone
+ (some words can have several thousand derivatives).
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ They provide no ordering (ranking) of search results, which makes them
+ ineffective when thousands of matching documents are found.
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ They tend to be slow because there is no index support, so they must
+ process all documents for every search.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ <para>
+ Full text indexing allows documents to be <emphasis>preprocessed</emphasis>
+ and an index saved for later rapid searching. Preprocessing includes:
+ </para>
+
+ <itemizedlist mark="none">
+ <listitem>
+ <para>
+ <emphasis>Parsing documents into <firstterm>tokens</firstterm></emphasis>. It is
+ useful to identify various classes of tokens, e.g., numbers, words,
+ complex words, email addresses, so that they can be processed
+ differently. In principle token classes depend on the specific
+ application, but for most purposes it is adequate to use a predefined
+ set of classes.
+ <productname>PostgreSQL</productname> uses a <firstterm>parser</firstterm> to
+ perform this step. A standard parser is provided, and custom parsers
+ can be created for specific needs.
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ <emphasis>Converting tokens into <firstterm>lexemes</firstterm></emphasis>.
+ A lexeme is a string, just like a token, but it has been
+ <firstterm>normalized</firstterm> so that different forms of the same word
+ are made alike. For example, normalization almost always includes
+ folding upper-case letters to lower-case, and often involves removal
+ of suffixes (such as <literal>s</literal> or <literal>es</literal> in English).
+ This allows searches to find variant forms of the
+ same word, without tediously entering all the possible variants.
+ Also, this step typically eliminates <firstterm>stop words</firstterm>, which
+ are words that are so common that they are useless for searching.
+ (In short, then, tokens are raw fragments of the document text, while
+ lexemes are words that are believed useful for indexing and searching.)
+ <productname>PostgreSQL</productname> uses <firstterm>dictionaries</firstterm> to
+ perform this step. Various standard dictionaries are provided, and
+ custom ones can be created for specific needs.
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ <emphasis>Storing preprocessed documents optimized for
+ searching</emphasis>. For example, each document can be represented
+ as a sorted array of normalized lexemes. Along with the lexemes it is
+ often desirable to store positional information to use for
+ <firstterm>proximity ranking</firstterm>, so that a document that
+ contains a more <quote>dense</quote> region of query words is
+ assigned a higher rank than one with scattered query words.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ <para>
+ Dictionaries allow fine-grained control over how tokens are normalized.
+ With appropriate dictionaries, you can:
+ </para>
+
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ Define stop words that should not be indexed.
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ Map synonyms to a single word using <application>Ispell</application>.
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ Map phrases to a single word using a thesaurus.
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ Map different variations of a word to a canonical form using
+ an <application>Ispell</application> dictionary.
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ Map different variations of a word to a canonical form using
+ <application>Snowball</application> stemmer rules.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ <para>
+ A data type <type>tsvector</type> is provided for storing preprocessed
+ documents, along with a type <type>tsquery</type> for representing processed
+ queries (<xref linkend="datatype-textsearch"/>). There are many
+ functions and operators available for these data types
+ (<xref linkend="functions-textsearch"/>), the most important of which is
+ the match operator <literal>@@</literal>, which we introduce in
+ <xref linkend="textsearch-matching"/>. Full text searches can be accelerated
+ using indexes (<xref linkend="textsearch-indexes"/>).
+ </para>
+
+
+ <sect2 id="textsearch-document">
+ <title>What Is a Document?</title>
+
+ <indexterm zone="textsearch-document">
+ <primary>document</primary>
+ <secondary>text search</secondary>
+ </indexterm>
+
+ <para>
+ A <firstterm>document</firstterm> is the unit of searching in a full text search
+ system; for example, a magazine article or email message. The text search
+ engine must be able to parse documents and store associations of lexemes
+ (key words) with their parent document. Later, these associations are
+ used to search for documents that contain query words.
+ </para>
+
+ <para>
+ For searches within <productname>PostgreSQL</productname>,
+ a document is normally a textual field within a row of a database table,
+ or possibly a combination (concatenation) of such fields, perhaps stored
+ in several tables or obtained dynamically. In other words, a document can
+ be constructed from different parts for indexing and it might not be
+ stored anywhere as a whole. For example:
+
+<programlisting>
+SELECT title || ' ' || author || ' ' || abstract || ' ' || body AS document
+FROM messages
+WHERE mid = 12;
+
+SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS document
+FROM messages m, docs d
+WHERE m.mid = d.did AND m.mid = 12;
+</programlisting>
+ </para>
+
+ <note>
+ <para>
+ Actually, in these example queries, <function>coalesce</function>
+ should be used to prevent a single <literal>NULL</literal> attribute from
+ causing a <literal>NULL</literal> result for the whole document.
+ </para>
+ </note>
+
+ <para>
+ Another possibility is to store the documents as simple text files in the
+ file system. In this case, the database can be used to store the full text
+ index and to execute searches, and some unique identifier can be used to
+ retrieve the document from the file system. However, retrieving files
+ from outside the database requires superuser permissions or special
+ function support, so this is usually less convenient than keeping all
+ the data inside <productname>PostgreSQL</productname>. Also, keeping
+ everything inside the database allows easy access
+ to document metadata to assist in indexing and display.
+ </para>
+
+ <para>
+ For text search purposes, each document must be reduced to the
+ preprocessed <type>tsvector</type> format. Searching and ranking
+ are performed entirely on the <type>tsvector</type> representation
+ of a document &mdash; the original text need only be retrieved
+ when the document has been selected for display to a user.
+ We therefore often speak of the <type>tsvector</type> as being the
+ document, but of course it is only a compact representation of
+ the full document.
+ </para>
+ </sect2>
+
+ <sect2 id="textsearch-matching">
+ <title>Basic Text Matching</title>
+
+ <para>
+ Full text searching in <productname>PostgreSQL</productname> is based on
+ the match operator <literal>@@</literal>, which returns
+ <literal>true</literal> if a <type>tsvector</type>
+ (document) matches a <type>tsquery</type> (query).
+ It doesn't matter which data type is written first:
+
+<programlisting>
+SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat &amp; rat'::tsquery;
+ ?column?
+----------
+ t
+
+SELECT 'fat &amp; cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
+ ?column?
+----------
+ f
+</programlisting>
+ </para>
+
+ <para>
+ As the above example suggests, a <type>tsquery</type> is not just raw
+ text, any more than a <type>tsvector</type> is. A <type>tsquery</type>
+ contains search terms, which must be already-normalized lexemes, and
+ may combine multiple terms using AND, OR, NOT, and FOLLOWED BY operators.
+ (For syntax details see <xref linkend="datatype-tsquery"/>.) There are
+ functions <function>to_tsquery</function>, <function>plainto_tsquery</function>,
+ and <function>phraseto_tsquery</function>
+ that are helpful in converting user-written text into a proper
+ <type>tsquery</type>, primarily by normalizing words appearing in
+ the text. Similarly, <function>to_tsvector</function> is used to parse and
+ normalize a document string. So in practice a text search match would
+ look more like this:
+
+<programlisting>
+SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat &amp; rat');
+ ?column?
+----------
+ t
+</programlisting>
+
+ Observe that this match would not succeed if written as
+
+<programlisting>
+SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat &amp; rat');
+ ?column?
+----------
+ f
+</programlisting>
+
+ since here no normalization of the word <literal>rats</literal> will occur.
+ The elements of a <type>tsvector</type> are lexemes, which are assumed
+ already normalized, so <literal>rats</literal> does not match <literal>rat</literal>.
+ </para>
+
+ <para>
+ The <literal>@@</literal> operator also
+ supports <type>text</type> input, allowing explicit conversion of a text
+ string to <type>tsvector</type> or <type>tsquery</type> to be skipped
+ in simple cases. The variants available are:
+
+<programlisting>
+tsvector @@ tsquery
+tsquery @@ tsvector
+text @@ tsquery
+text @@ text
+</programlisting>
+ </para>
+
+ <para>
+ The first two of these we saw already.
+ The form <type>text</type> <literal>@@</literal> <type>tsquery</type>
+ is equivalent to <literal>to_tsvector(x) @@ y</literal>.
+ The form <type>text</type> <literal>@@</literal> <type>text</type>
+ is equivalent to <literal>to_tsvector(x) @@ plainto_tsquery(y)</literal>.
+ </para>
+
+ <para>
+ Within a <type>tsquery</type>, the <literal>&amp;</literal> (AND) operator
+ specifies that both its arguments must appear in the document to have a
+ match. Similarly, the <literal>|</literal> (OR) operator specifies that
+ at least one of its arguments must appear, while the <literal>!</literal> (NOT)
+ operator specifies that its argument must <emphasis>not</emphasis> appear in
+ order to have a match.
+ For example, the query <literal>fat &amp; ! rat</literal> matches documents that
+ contain <literal>fat</literal> but not <literal>rat</literal>.
+ </para>
+
+ <para>
+ Searching for phrases is possible with the help of
+ the <literal>&lt;-&gt;</literal> (FOLLOWED BY) <type>tsquery</type> operator, which
+ matches only if its arguments have matches that are adjacent and in the
+ given order. For example:
+
+<programlisting>
+SELECT to_tsvector('fatal error') @@ to_tsquery('fatal &lt;-&gt; error');
+ ?column?
+----------
+ t
+
+SELECT to_tsvector('error is not fatal') @@ to_tsquery('fatal &lt;-&gt; error');
+ ?column?
+----------
+ f
+</programlisting>
+
+ There is a more general version of the FOLLOWED BY operator having the
+ form <literal>&lt;<replaceable>N</replaceable>&gt;</literal>,
+ where <replaceable>N</replaceable> is an integer standing for the difference between
+ the positions of the matching lexemes. <literal>&lt;1&gt;</literal> is
+ the same as <literal>&lt;-&gt;</literal>, while <literal>&lt;2&gt;</literal>
+ allows exactly one other lexeme to appear between the matches, and so
+ on. The <literal>phraseto_tsquery</literal> function makes use of this
+ operator to construct a <literal>tsquery</literal> that can match a multi-word
+ phrase when some of the words are stop words. For example:
+
+<programlisting>
+SELECT phraseto_tsquery('cats ate rats');
+ phraseto_tsquery
+-------------------------------
+ 'cat' &lt;-&gt; 'ate' &lt;-&gt; 'rat'
+
+SELECT phraseto_tsquery('the cats ate the rats');
+ phraseto_tsquery
+-------------------------------
+ 'cat' &lt;-&gt; 'ate' &lt;2&gt; 'rat'
+</programlisting>
+ </para>
+
+ <para>
+ A special case that's sometimes useful is that <literal>&lt;0&gt;</literal>
+ can be used to require that two patterns match the same word.
+ </para>
+
+ <para>
+ Parentheses can be used to control nesting of the <type>tsquery</type>
+ operators. Without parentheses, <literal>|</literal> binds least tightly,
+ then <literal>&amp;</literal>, then <literal>&lt;-&gt;</literal>,
+ and <literal>!</literal> most tightly.
+ </para>
+
+ <para>
+ It's worth noticing that the AND/OR/NOT operators mean something subtly
+ different when they are within the arguments of a FOLLOWED BY operator
+ than when they are not, because within FOLLOWED BY the exact position of
+ the match is significant. For example, normally <literal>!x</literal> matches
+ only documents that do not contain <literal>x</literal> anywhere.
+ But <literal>!x &lt;-&gt; y</literal> matches <literal>y</literal> if it is not
+ immediately after an <literal>x</literal>; an occurrence of <literal>x</literal>
+ elsewhere in the document does not prevent a match. Another example is
+ that <literal>x &amp; y</literal> normally only requires that <literal>x</literal>
+ and <literal>y</literal> both appear somewhere in the document, but
+ <literal>(x &amp; y) &lt;-&gt; z</literal> requires <literal>x</literal>
+ and <literal>y</literal> to match at the same place, immediately before
+ a <literal>z</literal>. Thus this query behaves differently from
+ <literal>x &lt;-&gt; z &amp; y &lt;-&gt; z</literal>, which will match a
+ document containing two separate sequences <literal>x z</literal> and
+ <literal>y z</literal>. (This specific query is useless as written,
+ since <literal>x</literal> and <literal>y</literal> could not match at the same place;
+ but with more complex situations such as prefix-match patterns, a query
+ of this form could be useful.)
+ </para>
+ </sect2>
+
+ <sect2 id="textsearch-intro-configurations">
+ <title>Configurations</title>
+
+ <para>
+ The above are all simple text search examples. As mentioned before, full
+ text search functionality includes the ability to do many more things:
+ skip indexing certain words (stop words), process synonyms, and use
+ sophisticated parsing, e.g., parse based on more than just white space.
+ This functionality is controlled by <firstterm>text search
+ configurations</firstterm>. <productname>PostgreSQL</productname> comes with predefined
+ configurations for many languages, and you can easily create your own
+ configurations. (<application>psql</application>'s <command>\dF</command> command
+ shows all available configurations.)
+ </para>
+
+ <para>
+ During installation an appropriate configuration is selected and
+ <xref linkend="guc-default-text-search-config"/> is set accordingly
+ in <filename>postgresql.conf</filename>. If you are using the same text search
+ configuration for the entire cluster you can use the value in
+ <filename>postgresql.conf</filename>. To use different configurations
+ throughout the cluster but the same configuration within any one database,
+ use <command>ALTER DATABASE ... SET</command>. Otherwise, you can set
+ <varname>default_text_search_config</varname> in each session.
+ </para>
+
+ <para>
+ Each text search function that depends on a configuration has an optional
+ <type>regconfig</type> argument, so that the configuration to use can be
+ specified explicitly. <varname>default_text_search_config</varname>
+ is used only when this argument is omitted.
+ </para>
+
+ <para>
+ To make it easier to build custom text search configurations, a
+ configuration is built up from simpler database objects.
+ <productname>PostgreSQL</productname>'s text search facility provides
+ four types of configuration-related database objects:
+ </para>
+
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ <firstterm>Text search parsers</firstterm> break documents into tokens
+ and classify each token (for example, as words or numbers).
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ <firstterm>Text search dictionaries</firstterm> convert tokens to normalized
+ form and reject stop words.
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ <firstterm>Text search templates</firstterm> provide the functions underlying
+ dictionaries. (A dictionary simply specifies a template and a set
+ of parameters for the template.)
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ <firstterm>Text search configurations</firstterm> select a parser and a set
+ of dictionaries to use to normalize the tokens produced by the parser.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ <para>
+ Text search parsers and templates are built from low-level C functions;
+ therefore it requires C programming ability to develop new ones, and
+ superuser privileges to install one into a database. (There are examples
+ of add-on parsers and templates in the <filename>contrib/</filename> area of the
+ <productname>PostgreSQL</productname> distribution.) Since dictionaries and
+ configurations just parameterize and connect together some underlying
+ parsers and templates, no special privilege is needed to create a new
+ dictionary or configuration. Examples of creating custom dictionaries and
+ configurations appear later in this chapter.
+ </para>
+
+ </sect2>
+
+ </sect1>
+
+ <sect1 id="textsearch-tables">
+ <title>Tables and Indexes</title>
+
+ <para>
+ The examples in the previous section illustrated full text matching using
+ simple constant strings. This section shows how to search table data,
+ optionally using indexes.
+ </para>
+
+ <sect2 id="textsearch-tables-search">
+ <title>Searching a Table</title>
+
+ <para>
+ It is possible to do a full text search without an index. A simple query
+ to print the <structname>title</structname> of each row that contains the word
+ <literal>friend</literal> in its <structfield>body</structfield> field is:
+
+<programlisting>
+SELECT title
+FROM pgweb
+WHERE to_tsvector('english', body) @@ to_tsquery('english', 'friend');
+</programlisting>
+
+ This will also find related words such as <literal>friends</literal>
+ and <literal>friendly</literal>, since all these are reduced to the same
+ normalized lexeme.
+ </para>
+
+ <para>
+ The query above specifies that the <literal>english</literal> configuration
+ is to be used to parse and normalize the strings. Alternatively we
+ could omit the configuration parameters:
+
+<programlisting>
+SELECT title
+FROM pgweb
+WHERE to_tsvector(body) @@ to_tsquery('friend');
+</programlisting>
+
+ This query will use the configuration set by <xref
+ linkend="guc-default-text-search-config"/>.
+ </para>
+
+ <para>
+ A more complex example is to
+ select the ten most recent documents that contain <literal>create</literal> and
+ <literal>table</literal> in the <structname>title</structname> or <structname>body</structname>:
+
+<programlisting>
+SELECT title
+FROM pgweb
+WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('create &amp; table')
+ORDER BY last_mod_date DESC
+LIMIT 10;
+</programlisting>
+
+ For clarity we omitted the <function>coalesce</function> function calls
+ which would be needed to find rows that contain <literal>NULL</literal>
+ in one of the two fields.
+ </para>
+
+ <para>
+ Although these queries will work without an index, most applications
+ will find this approach too slow, except perhaps for occasional ad-hoc
+ searches. Practical use of text searching usually requires creating
+ an index.
+ </para>
+
+ </sect2>
+
+ <sect2 id="textsearch-tables-index">
+ <title>Creating Indexes</title>
+
+ <para>
+ We can create a <acronym>GIN</acronym> index (<xref
+ linkend="textsearch-indexes"/>) to speed up text searches:
+
+<programlisting>
+CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', body));
+</programlisting>
+
+ Notice that the 2-argument version of <function>to_tsvector</function> is
+ used. Only text search functions that specify a configuration name can
+ be used in expression indexes (<xref linkend="indexes-expressional"/>).
+ This is because the index contents must be unaffected by <xref
+ linkend="guc-default-text-search-config"/>. If they were affected, the
+ index contents might be inconsistent because different entries could
+ contain <type>tsvector</type>s that were created with different text search
+ configurations, and there would be no way to guess which was which. It
+ would be impossible to dump and restore such an index correctly.
+ </para>
+
+ <para>
+ Because the two-argument version of <function>to_tsvector</function> was
+ used in the index above, only a query reference that uses the 2-argument
+ version of <function>to_tsvector</function> with the same configuration
+ name will use that index. That is, <literal>WHERE
+ to_tsvector('english', body) @@ 'a &amp; b'</literal> can use the index,
+ but <literal>WHERE to_tsvector(body) @@ 'a &amp; b'</literal> cannot.
+ This ensures that an index will be used only with the same configuration
+ used to create the index entries.
+ </para>
+
+ <para>
+ It is possible to set up more complex expression indexes wherein the
+ configuration name is specified by another column, e.g.:
+
+<programlisting>
+CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector(config_name, body));
+</programlisting>
+
+ where <literal>config_name</literal> is a column in the <literal>pgweb</literal>
+ table. This allows mixed configurations in the same index while
+ recording which configuration was used for each index entry. This
+ would be useful, for example, if the document collection contained
+ documents in different languages. Again,
+ queries that are meant to use the index must be phrased to match, e.g.,
+ <literal>WHERE to_tsvector(config_name, body) @@ 'a &amp; b'</literal>.
+ </para>
+
+ <para>
+ Indexes can even concatenate columns:
+
+<programlisting>
+CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));
+</programlisting>
+ </para>
+
+ <para>
+ Another approach is to create a separate <type>tsvector</type> column
+ to hold the output of <function>to_tsvector</function>. To keep this
+ column automatically up to date with its source data, use a stored
+ generated column. This example is a
+ concatenation of <literal>title</literal> and <literal>body</literal>,
+ using <function>coalesce</function> to ensure that one field will still be
+ indexed when the other is <literal>NULL</literal>:
+
+<programlisting>
+ALTER TABLE pgweb
+ ADD COLUMN textsearchable_index_col tsvector
+ GENERATED ALWAYS AS (to_tsvector('english', coalesce(title, '') || ' ' || coalesce(body, ''))) STORED;
+</programlisting>
+
+ Then we create a <acronym>GIN</acronym> index to speed up the search:
+
+<programlisting>
+CREATE INDEX textsearch_idx ON pgweb USING GIN (textsearchable_index_col);
+</programlisting>
+
+ Now we are ready to perform a fast full text search:
+
+<programlisting>
+SELECT title
+FROM pgweb
+WHERE textsearchable_index_col @@ to_tsquery('create &amp; table')
+ORDER BY last_mod_date DESC
+LIMIT 10;
+</programlisting>
+ </para>
+
+ <para>
+ One advantage of the separate-column approach over an expression index
+ is that it is not necessary to explicitly specify the text search
+ configuration in queries in order to make use of the index. As shown
+ in the example above, the query can depend on
+ <varname>default_text_search_config</varname>. Another advantage is that
+ searches will be faster, since it will not be necessary to redo the
+ <function>to_tsvector</function> calls to verify index matches. (This is more
+ important when using a GiST index than a GIN index; see <xref
+ linkend="textsearch-indexes"/>.) The expression-index approach is
+ simpler to set up, however, and it requires less disk space since the
+ <type>tsvector</type> representation is not stored explicitly.
+ </para>
+
+ </sect2>
+
+ </sect1>
+
+ <sect1 id="textsearch-controls">
+ <title>Controlling Text Search</title>
+
+ <para>
+ To implement full text searching there must be a function to create a
+ <type>tsvector</type> from a document and a <type>tsquery</type> from a
+ user query. Also, we need to return results in a useful order, so we need
+ a function that compares documents with respect to their relevance to
+ the query. It's also important to be able to display the results nicely.
+ <productname>PostgreSQL</productname> provides support for all of these
+ functions.
+ </para>
+
+ <sect2 id="textsearch-parsing-documents">
+ <title>Parsing Documents</title>
+
+ <para>
+ <productname>PostgreSQL</productname> provides the
+ function <function>to_tsvector</function> for converting a document to
+ the <type>tsvector</type> data type.
+ </para>
+
+ <indexterm>
+ <primary>to_tsvector</primary>
+ </indexterm>
+
+<synopsis>
+to_tsvector(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">document</replaceable> <type>text</type>) returns <type>tsvector</type>
+</synopsis>
+
+ <para>
+ <function>to_tsvector</function> parses a textual document into tokens,
+ reduces the tokens to lexemes, and returns a <type>tsvector</type> which
+ lists the lexemes together with their positions in the document.
+ The document is processed according to the specified or default
+ text search configuration.
+ Here is a simple example:
+
+<screen>
+SELECT to_tsvector('english', 'a fat cat sat on a mat - it ate a fat rats');
+ to_tsvector
+-----------------------------------------------------
+ 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4
+</screen>
+ </para>
+
+ <para>
+ In the example above we see that the resulting <type>tsvector</type> does not
+ contain the words <literal>a</literal>, <literal>on</literal>, or
+ <literal>it</literal>, the word <literal>rats</literal> became
+ <literal>rat</literal>, and the punctuation sign <literal>-</literal> was
+ ignored.
+ </para>
+
+ <para>
+ The <function>to_tsvector</function> function internally calls a parser
+ which breaks the document text into tokens and assigns a type to
+ each token. For each token, a list of
+ dictionaries (<xref linkend="textsearch-dictionaries"/>) is consulted,
+ where the list can vary depending on the token type. The first dictionary
+ that <firstterm>recognizes</firstterm> the token emits one or more normalized
+ <firstterm>lexemes</firstterm> to represent the token. For example,
+ <literal>rats</literal> became <literal>rat</literal> because one of the
+ dictionaries recognized that the word <literal>rats</literal> is a plural
+ form of <literal>rat</literal>. Some words are recognized as
+ <firstterm>stop words</firstterm> (<xref linkend="textsearch-stopwords"/>), which
+ causes them to be ignored since they occur too frequently to be useful in
+ searching. In our example these are
+ <literal>a</literal>, <literal>on</literal>, and <literal>it</literal>.
+ If no dictionary in the list recognizes the token then it is also ignored.
+ In this example that happened to the punctuation sign <literal>-</literal>
+ because there are in fact no dictionaries assigned for its token type
+ (<literal>Space symbols</literal>), meaning space tokens will never be
+ indexed. The choices of parser, dictionaries and which types of tokens to
+ index are determined by the selected text search configuration (<xref
+ linkend="textsearch-configuration"/>). It is possible to have
+ many different configurations in the same database, and predefined
+ configurations are available for various languages. In our example
+ we used the default configuration <literal>english</literal> for the
+ English language.
+ </para>
+
+ <para>
+ The function <function>setweight</function> can be used to label the
+ entries of a <type>tsvector</type> with a given <firstterm>weight</firstterm>,
+ where a weight is one of the letters <literal>A</literal>, <literal>B</literal>,
+ <literal>C</literal>, or <literal>D</literal>.
+ This is typically used to mark entries coming from
+ different parts of a document, such as title versus body. Later, this
+ information can be used for ranking of search results.
+ </para>
+
+ <para>
+ Because <function>to_tsvector</function>(<literal>NULL</literal>) will
+ return <literal>NULL</literal>, it is recommended to use
+ <function>coalesce</function> whenever a field might be null.
+ Here is the recommended method for creating
+ a <type>tsvector</type> from a structured document:
+
+<programlisting>
+UPDATE tt SET ti =
+ setweight(to_tsvector(coalesce(title,'')), 'A') ||
+ setweight(to_tsvector(coalesce(keyword,'')), 'B') ||
+ setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
+ setweight(to_tsvector(coalesce(body,'')), 'D');
+</programlisting>
+
+ Here we have used <function>setweight</function> to label the source
+ of each lexeme in the finished <type>tsvector</type>, and then merged
+ the labeled <type>tsvector</type> values using the <type>tsvector</type>
+ concatenation operator <literal>||</literal>. (<xref
+ linkend="textsearch-manipulate-tsvector"/> gives details about these
+ operations.)
+ </para>
+
+ </sect2>
+
+ <sect2 id="textsearch-parsing-queries">
+ <title>Parsing Queries</title>
+
+ <para>
+ <productname>PostgreSQL</productname> provides the
+ functions <function>to_tsquery</function>,
+ <function>plainto_tsquery</function>,
+ <function>phraseto_tsquery</function> and
+ <function>websearch_to_tsquery</function>
+ for converting a query to the <type>tsquery</type> data type.
+ <function>to_tsquery</function> offers access to more features
+ than either <function>plainto_tsquery</function> or
+ <function>phraseto_tsquery</function>, but it is less forgiving about its
+ input. <function>websearch_to_tsquery</function> is a simplified version
+ of <function>to_tsquery</function> with an alternative syntax, similar
+ to the one used by web search engines.
+ </para>
+
+ <indexterm>
+ <primary>to_tsquery</primary>
+ </indexterm>
+
+<synopsis>
+to_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
+</synopsis>
+
+ <para>
+ <function>to_tsquery</function> creates a <type>tsquery</type> value from
+ <replaceable>querytext</replaceable>, which must consist of single tokens
+ separated by the <type>tsquery</type> operators <literal>&amp;</literal> (AND),
+ <literal>|</literal> (OR), <literal>!</literal> (NOT), and
+ <literal>&lt;-&gt;</literal> (FOLLOWED BY), possibly grouped
+ using parentheses. In other words, the input to
+ <function>to_tsquery</function> must already follow the general rules for
+ <type>tsquery</type> input, as described in <xref
+ linkend="datatype-tsquery"/>. The difference is that while basic
+ <type>tsquery</type> input takes the tokens at face value,
+ <function>to_tsquery</function> normalizes each token into a lexeme using
+ the specified or default configuration, and discards any tokens that are
+ stop words according to the configuration. For example:
+
+<screen>
+SELECT to_tsquery('english', 'The &amp; Fat &amp; Rats');
+ to_tsquery
+---------------
+ 'fat' &amp; 'rat'
+</screen>
+
+ As in basic <type>tsquery</type> input, weight(s) can be attached to each
+ lexeme to restrict it to match only <type>tsvector</type> lexemes of those
+ weight(s). For example:
+
+<screen>
+SELECT to_tsquery('english', 'Fat | Rats:AB');
+ to_tsquery
+------------------
+ 'fat' | 'rat':AB
+</screen>
+
+ Also, <literal>*</literal> can be attached to a lexeme to specify prefix matching:
+
+<screen>
+SELECT to_tsquery('supern:*A &amp; star:A*B');
+ to_tsquery
+--------------------------
+ 'supern':*A &amp; 'star':*AB
+</screen>
+
+ Such a lexeme will match any word in a <type>tsvector</type> that begins
+ with the given string.
+ </para>
+
+ <para>
+ <function>to_tsquery</function> can also accept single-quoted
+ phrases. This is primarily useful when the configuration includes a
+ thesaurus dictionary that may trigger on such phrases.
+ In the example below, a thesaurus contains the rule <literal>supernovae
+ stars : sn</literal>:
+
+<screen>
+SELECT to_tsquery('''supernovae stars'' &amp; !crab');
+ to_tsquery
+---------------
+ 'sn' &amp; !'crab'
+</screen>
+
+ Without quotes, <function>to_tsquery</function> will generate a syntax
+ error for tokens that are not separated by an AND, OR, or FOLLOWED BY
+ operator.
+ </para>
+
+ <indexterm>
+ <primary>plainto_tsquery</primary>
+ </indexterm>
+
+<synopsis>
+plainto_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
+</synopsis>
+
+ <para>
+ <function>plainto_tsquery</function> transforms the unformatted text
+ <replaceable>querytext</replaceable> to a <type>tsquery</type> value.
+ The text is parsed and normalized much as for <function>to_tsvector</function>,
+ then the <literal>&amp;</literal> (AND) <type>tsquery</type> operator is
+ inserted between surviving words.
+ </para>
+
+ <para>
+ Example:
+
+<screen>
+SELECT plainto_tsquery('english', 'The Fat Rats');
+ plainto_tsquery
+-----------------
+ 'fat' &amp; 'rat'
+</screen>
+
+ Note that <function>plainto_tsquery</function> will not
+ recognize <type>tsquery</type> operators, weight labels,
+ or prefix-match labels in its input:
+
+<screen>
+SELECT plainto_tsquery('english', 'The Fat &amp; Rats:C');
+ plainto_tsquery
+---------------------
+ 'fat' &amp; 'rat' &amp; 'c'
+</screen>
+
+ Here, all the input punctuation was discarded.
+ </para>
+
+ <indexterm>
+ <primary>phraseto_tsquery</primary>
+ </indexterm>
+
+<synopsis>
+phraseto_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
+</synopsis>
+
+ <para>
+ <function>phraseto_tsquery</function> behaves much like
+ <function>plainto_tsquery</function>, except that it inserts
+ the <literal>&lt;-&gt;</literal> (FOLLOWED BY) operator between
+ surviving words instead of the <literal>&amp;</literal> (AND) operator.
+ Also, stop words are not simply discarded, but are accounted for by
+ inserting <literal>&lt;<replaceable>N</replaceable>&gt;</literal> operators rather
+ than <literal>&lt;-&gt;</literal> operators. This function is useful
+ when searching for exact lexeme sequences, since the FOLLOWED BY
+ operators check lexeme order not just the presence of all the lexemes.
+ </para>
+
+ <para>
+ Example:
+
+<screen>
+SELECT phraseto_tsquery('english', 'The Fat Rats');
+ phraseto_tsquery
+------------------
+ 'fat' &lt;-&gt; 'rat'
+</screen>
+
+ Like <function>plainto_tsquery</function>, the
+ <function>phraseto_tsquery</function> function will not
+ recognize <type>tsquery</type> operators, weight labels,
+ or prefix-match labels in its input:
+
+<screen>
+SELECT phraseto_tsquery('english', 'The Fat &amp; Rats:C');
+ phraseto_tsquery
+-----------------------------
+ 'fat' &lt;-&gt; 'rat' &lt;-&gt; 'c'
+</screen>
+ </para>
+
+<synopsis>
+websearch_to_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
+</synopsis>
+
+ <para>
+ <function>websearch_to_tsquery</function> creates a <type>tsquery</type>
+ value from <replaceable>querytext</replaceable> using an alternative
+ syntax in which simple unformatted text is a valid query.
+ Unlike <function>plainto_tsquery</function>
+ and <function>phraseto_tsquery</function>, it also recognizes certain
+ operators. Moreover, this function will never raise syntax errors,
+ which makes it possible to use raw user-supplied input for search.
+ The following syntax is supported:
+
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ <literal>unquoted text</literal>: text not inside quote marks will be
+ converted to terms separated by <literal>&amp;</literal> operators, as
+ if processed by <function>plainto_tsquery</function>.
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>"quoted text"</literal>: text inside quote marks will be
+ converted to terms separated by <literal>&lt;-&gt;</literal>
+ operators, as if processed by <function>phraseto_tsquery</function>.
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>OR</literal>: the word <quote>or</quote> will be converted to
+ the <literal>|</literal> operator.
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>-</literal>: a dash will be converted to
+ the <literal>!</literal> operator.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ Other punctuation is ignored. So
+ like <function>plainto_tsquery</function>
+ and <function>phraseto_tsquery</function>,
+ the <function>websearch_to_tsquery</function> function will not
+ recognize <type>tsquery</type> operators, weight labels, or prefix-match
+ labels in its input.
+ </para>
+
+ <para>
+ Examples:
+<screen>
+SELECT websearch_to_tsquery('english', 'The fat rats');
+ websearch_to_tsquery
+----------------------
+ 'fat' &amp; 'rat'
+(1 row)
+
+SELECT websearch_to_tsquery('english', '"supernovae stars" -crab');
+ websearch_to_tsquery
+----------------------------------
+ 'supernova' &lt;-&gt; 'star' &amp; !'crab'
+(1 row)
+
+SELECT websearch_to_tsquery('english', '"sad cat" or "fat rat"');
+ websearch_to_tsquery
+-----------------------------------
+ 'sad' &lt;-&gt; 'cat' | 'fat' &lt;-&gt; 'rat'
+(1 row)
+
+SELECT websearch_to_tsquery('english', 'signal -"segmentation fault"');
+ websearch_to_tsquery
+---------------------------------------
+ 'signal' &amp; !( 'segment' &lt;-&gt; 'fault' )
+(1 row)
+
+SELECT websearch_to_tsquery('english', '""" )( dummy \\ query &lt;-&gt;');
+ websearch_to_tsquery
+----------------------
+ 'dummi' &amp; 'queri'
+(1 row)
+</screen>
+ </para>
+ </sect2>
+
+ <sect2 id="textsearch-ranking">
+ <title>Ranking Search Results</title>
+
+ <para>
+ Ranking attempts to measure how relevant documents are to a particular
+ query, so that when there are many matches the most relevant ones can be
+ shown first. <productname>PostgreSQL</productname> provides two
+ predefined ranking functions, which take into account lexical, proximity,
+ and structural information; that is, they consider how often the query
+ terms appear in the document, how close together the terms are in the
+ document, and how important is the part of the document where they occur.
+ However, the concept of relevancy is vague and very application-specific.
+ Different applications might require additional information for ranking,
+ e.g., document modification time. The built-in ranking functions are only
+ examples. You can write your own ranking functions and/or combine their
+ results with additional factors to fit your specific needs.
+ </para>
+
+ <para>
+ The two ranking functions currently available are:
+
+ <variablelist>
+
+ <varlistentry>
+
+ <term>
+ <indexterm>
+ <primary>ts_rank</primary>
+ </indexterm>
+
+ <literal>ts_rank(<optional> <replaceable class="parameter">weights</replaceable> <type>float4[]</type>, </optional> <replaceable class="parameter">vector</replaceable> <type>tsvector</type>, <replaceable class="parameter">query</replaceable> <type>tsquery</type> <optional>, <replaceable class="parameter">normalization</replaceable> <type>integer</type> </optional>) returns <type>float4</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ Ranks vectors based on the frequency of their matching lexemes.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <indexterm>
+ <primary>ts_rank_cd</primary>
+ </indexterm>
+
+ <literal>ts_rank_cd(<optional> <replaceable class="parameter">weights</replaceable> <type>float4[]</type>, </optional> <replaceable class="parameter">vector</replaceable> <type>tsvector</type>, <replaceable class="parameter">query</replaceable> <type>tsquery</type> <optional>, <replaceable class="parameter">normalization</replaceable> <type>integer</type> </optional>) returns <type>float4</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ This function computes the <firstterm>cover density</firstterm>
+ ranking for the given document vector and query, as described in
+ Clarke, Cormack, and Tudhope's "Relevance Ranking for One to Three
+ Term Queries" in the journal "Information Processing and Management",
+ 1999. Cover density is similar to <function>ts_rank</function> ranking
+ except that the proximity of matching lexemes to each other is
+ taken into consideration.
+ </para>
+
+ <para>
+ This function requires lexeme positional information to perform
+ its calculation. Therefore, it ignores any <quote>stripped</quote>
+ lexemes in the <type>tsvector</type>. If there are no unstripped
+ lexemes in the input, the result will be zero. (See <xref
+ linkend="textsearch-manipulate-tsvector"/> for more information
+ about the <function>strip</function> function and positional information
+ in <type>tsvector</type>s.)
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ </para>
+
+ <para>
+ For both these functions,
+ the optional <replaceable class="parameter">weights</replaceable>
+ argument offers the ability to weigh word instances more or less
+ heavily depending on how they are labeled. The weight arrays specify
+ how heavily to weigh each category of word, in the order:
+
+<synopsis>
+{D-weight, C-weight, B-weight, A-weight}
+</synopsis>
+
+ If no <replaceable class="parameter">weights</replaceable> are provided,
+ then these defaults are used:
+
+<programlisting>
+{0.1, 0.2, 0.4, 1.0}
+</programlisting>
+
+ Typically weights are used to mark words from special areas of the
+ document, like the title or an initial abstract, so they can be
+ treated with more or less importance than words in the document body.
+ </para>
+
+ <para>
+ Since a longer document has a greater chance of containing a query term
+ it is reasonable to take into account document size, e.g., a hundred-word
+ document with five instances of a search word is probably more relevant
+ than a thousand-word document with five instances. Both ranking functions
+ take an integer <replaceable>normalization</replaceable> option that
+ specifies whether and how a document's length should impact its rank.
+ The integer option controls several behaviors, so it is a bit mask:
+ you can specify one or more behaviors using
+ <literal>|</literal> (for example, <literal>2|4</literal>).
+
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ 0 (the default) ignores the document length
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ 1 divides the rank by 1 + the logarithm of the document length
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ 2 divides the rank by the document length
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ 4 divides the rank by the mean harmonic distance between extents
+ (this is implemented only by <function>ts_rank_cd</function>)
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ 8 divides the rank by the number of unique words in document
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ 16 divides the rank by 1 + the logarithm of the number
+ of unique words in document
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ 32 divides the rank by itself + 1
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ If more than one flag bit is specified, the transformations are
+ applied in the order listed.
+ </para>
+
+ <para>
+ It is important to note that the ranking functions do not use any global
+ information, so it is impossible to produce a fair normalization to 1% or
+ 100% as sometimes desired. Normalization option 32
+ (<literal>rank/(rank+1)</literal>) can be applied to scale all ranks
+ into the range zero to one, but of course this is just a cosmetic change;
+ it will not affect the ordering of the search results.
+ </para>
+
+ <para>
+ Here is an example that selects only the ten highest-ranked matches:
+
+<screen>
+SELECT title, ts_rank_cd(textsearch, query) AS rank
+FROM apod, to_tsquery('neutrino|(dark &amp; matter)') query
+WHERE query @@ textsearch
+ORDER BY rank DESC
+LIMIT 10;
+ title | rank
+-----------------------------------------------+----------
+ Neutrinos in the Sun | 3.1
+ The Sudbury Neutrino Detector | 2.4
+ A MACHO View of Galactic Dark Matter | 2.01317
+ Hot Gas and Dark Matter | 1.91171
+ The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
+ Rafting for Solar Neutrinos | 1.9
+ NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
+ Hot Gas and Dark Matter | 1.6123
+ Ice Fishing for Cosmic Neutrinos | 1.6
+ Weak Lensing Distorts the Universe | 0.818218
+</screen>
+
+ This is the same example using normalized ranking:
+
+<screen>
+SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */ ) AS rank
+FROM apod, to_tsquery('neutrino|(dark &amp; matter)') query
+WHERE query @@ textsearch
+ORDER BY rank DESC
+LIMIT 10;
+ title | rank
+-----------------------------------------------+-------------------
+ Neutrinos in the Sun | 0.756097569485493
+ The Sudbury Neutrino Detector | 0.705882361190954
+ A MACHO View of Galactic Dark Matter | 0.668123210574724
+ Hot Gas and Dark Matter | 0.65655958650282
+ The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
+ Rafting for Solar Neutrinos | 0.655172410958162
+ NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
+ Hot Gas and Dark Matter | 0.617195790024749
+ Ice Fishing for Cosmic Neutrinos | 0.615384618911517
+ Weak Lensing Distorts the Universe | 0.450010798361481
+</screen>
+ </para>
+
+ <para>
+ Ranking can be expensive since it requires consulting the
+ <type>tsvector</type> of each matching document, which can be I/O bound and
+ therefore slow. Unfortunately, it is almost impossible to avoid since
+ practical queries often result in large numbers of matches.
+ </para>
+
+ </sect2>
+
+ <sect2 id="textsearch-headline">
+ <title>Highlighting Results</title>
+
+ <para>
+ To present search results it is ideal to show a part of each document and
+ how it is related to the query. Usually, search engines show fragments of
+ the document with marked search terms. <productname>PostgreSQL</productname>
+ provides a function <function>ts_headline</function> that
+ implements this functionality.
+ </para>
+
+ <indexterm>
+ <primary>ts_headline</primary>
+ </indexterm>
+
+<synopsis>
+ts_headline(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">document</replaceable> <type>text</type>, <replaceable class="parameter">query</replaceable> <type>tsquery</type> <optional>, <replaceable class="parameter">options</replaceable> <type>text</type> </optional>) returns <type>text</type>
+</synopsis>
+
+ <para>
+ <function>ts_headline</function> accepts a document along
+ with a query, and returns an excerpt from
+ the document in which terms from the query are highlighted. The
+ configuration to be used to parse the document can be specified by
+ <replaceable>config</replaceable>; if <replaceable>config</replaceable>
+ is omitted, the
+ <varname>default_text_search_config</varname> configuration is used.
+ </para>
+
+ <para>
+ If an <replaceable>options</replaceable> string is specified it must
+ consist of a comma-separated list of one or more
+ <replaceable>option</replaceable><literal>=</literal><replaceable>value</replaceable> pairs.
+ The available options are:
+
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ <literal>MaxWords</literal>, <literal>MinWords</literal> (integers):
+ these numbers determine the longest and shortest headlines to output.
+ The default values are 35 and 15.
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>ShortWord</literal> (integer): words of this length or less
+ will be dropped at the start and end of a headline, unless they are
+ query terms. The default value of three eliminates common English
+ articles.
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>HighlightAll</literal> (boolean): if
+ <literal>true</literal> the whole document will be used as the
+ headline, ignoring the preceding three parameters. The default
+ is <literal>false</literal>.
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>MaxFragments</literal> (integer): maximum number of text
+ fragments to display. The default value of zero selects a
+ non-fragment-based headline generation method. A value greater
+ than zero selects fragment-based headline generation (see below).
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>StartSel</literal>, <literal>StopSel</literal> (strings):
+ the strings with which to delimit query words appearing in the
+ document, to distinguish them from other excerpted words. The
+ default values are <quote><literal>&lt;b&gt;</literal></quote> and
+ <quote><literal>&lt;/b&gt;</literal></quote>, which can be suitable
+ for HTML output.
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>FragmentDelimiter</literal> (string): When more than one
+ fragment is displayed, the fragments will be separated by this string.
+ The default is <quote><literal> ... </literal></quote>.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ These option names are recognized case-insensitively.
+ You must double-quote string values if they contain spaces or commas.
+ </para>
+
+ <para>
+ In non-fragment-based headline
+ generation, <function>ts_headline</function> locates matches for the
+ given <replaceable class="parameter">query</replaceable> and chooses a
+ single one to display, preferring matches that have more query words
+ within the allowed headline length.
+ In fragment-based headline generation, <function>ts_headline</function>
+ locates the query matches and splits each match
+ into <quote>fragments</quote> of no more than <literal>MaxWords</literal>
+ words each, preferring fragments with more query words, and when
+ possible <quote>stretching</quote> fragments to include surrounding
+ words. The fragment-based mode is thus more useful when the query
+ matches span large sections of the document, or when it's desirable to
+ display multiple matches.
+ In either mode, if no query matches can be identified, then a single
+ fragment of the first <literal>MinWords</literal> words in the document
+ will be displayed.
+ </para>
+
+ <para>
+ For example:
+
+<screen>
+SELECT ts_headline('english',
+ 'The most common type of search
+is to find all documents containing given query terms
+and return them in order of their similarity to the
+query.',
+ to_tsquery('english', 'query &amp; similarity'));
+ ts_headline
+------------------------------------------------------------
+ containing given &lt;b&gt;query&lt;/b&gt; terms +
+ and return them in order of their &lt;b&gt;similarity&lt;/b&gt; to the+
+ &lt;b&gt;query&lt;/b&gt;.
+
+SELECT ts_headline('english',
+ 'Search terms may occur
+many times in a document,
+requiring ranking of the search matches to decide which
+occurrences to display in the result.',
+ to_tsquery('english', 'search &amp; term'),
+ 'MaxFragments=10, MaxWords=7, MinWords=3, StartSel=&lt;&lt;, StopSel=&gt;&gt;');
+ ts_headline
+------------------------------------------------------------
+ &lt;&lt;Search&gt;&gt; &lt;&lt;terms&gt;&gt; may occur +
+ many times ... ranking of the &lt;&lt;search&gt;&gt; matches to decide
+</screen>
+ </para>
+
+ <para>
+ <function>ts_headline</function> uses the original document, not a
+ <type>tsvector</type> summary, so it can be slow and should be used with
+ care.
+ </para>
+
+ </sect2>
+
+ </sect1>
+
+ <sect1 id="textsearch-features">
+ <title>Additional Features</title>
+
+ <para>
+ This section describes additional functions and operators that are
+ useful in connection with text search.
+ </para>
+
+ <sect2 id="textsearch-manipulate-tsvector">
+ <title>Manipulating Documents</title>
+
+ <para>
+ <xref linkend="textsearch-parsing-documents"/> showed how raw textual
+ documents can be converted into <type>tsvector</type> values.
+ <productname>PostgreSQL</productname> also provides functions and
+ operators that can be used to manipulate documents that are already
+ in <type>tsvector</type> form.
+ </para>
+
+ <variablelist>
+
+ <varlistentry>
+
+ <term>
+ <indexterm>
+ <primary>tsvector concatenation</primary>
+ </indexterm>
+
+ <literal><type>tsvector</type> || <type>tsvector</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ The <type>tsvector</type> concatenation operator
+ returns a vector which combines the lexemes and positional information
+ of the two vectors given as arguments. Positions and weight labels
+ are retained during the concatenation.
+ Positions appearing in the right-hand vector are offset by the largest
+ position mentioned in the left-hand vector, so that the result is
+ nearly equivalent to the result of performing <function>to_tsvector</function>
+ on the concatenation of the two original document strings. (The
+ equivalence is not exact, because any stop-words removed from the
+ end of the left-hand argument will not affect the result, whereas
+ they would have affected the positions of the lexemes in the
+ right-hand argument if textual concatenation were used.)
+ </para>
+
+ <para>
+ One advantage of using concatenation in the vector form, rather than
+ concatenating text before applying <function>to_tsvector</function>, is that
+ you can use different configurations to parse different sections
+ of the document. Also, because the <function>setweight</function> function
+ marks all lexemes of the given vector the same way, it is necessary
+ to parse the text and do <function>setweight</function> before concatenating
+ if you want to label different parts of the document with different
+ weights.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <indexterm>
+ <primary>setweight</primary>
+ </indexterm>
+
+ <literal>setweight(<replaceable class="parameter">vector</replaceable> <type>tsvector</type>, <replaceable class="parameter">weight</replaceable> <type>"char"</type>) returns <type>tsvector</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ <function>setweight</function> returns a copy of the input vector in which every
+ position has been labeled with the given <replaceable>weight</replaceable>, either
+ <literal>A</literal>, <literal>B</literal>, <literal>C</literal>, or
+ <literal>D</literal>. (<literal>D</literal> is the default for new
+ vectors and as such is not displayed on output.) These labels are
+ retained when vectors are concatenated, allowing words from different
+ parts of a document to be weighted differently by ranking functions.
+ </para>
+
+ <para>
+ Note that weight labels apply to <emphasis>positions</emphasis>, not
+ <emphasis>lexemes</emphasis>. If the input vector has been stripped of
+ positions then <function>setweight</function> does nothing.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>
+ <indexterm>
+ <primary>length(tsvector)</primary>
+ </indexterm>
+
+ <literal>length(<replaceable class="parameter">vector</replaceable> <type>tsvector</type>) returns <type>integer</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ Returns the number of lexemes stored in the vector.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <indexterm>
+ <primary>strip</primary>
+ </indexterm>
+
+ <literal>strip(<replaceable class="parameter">vector</replaceable> <type>tsvector</type>) returns <type>tsvector</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ Returns a vector that lists the same lexemes as the given vector, but
+ lacks any position or weight information. The result is usually much
+ smaller than an unstripped vector, but it is also less useful.
+ Relevance ranking does not work as well on stripped vectors as
+ unstripped ones. Also,
+ the <literal>&lt;-&gt;</literal> (FOLLOWED BY) <type>tsquery</type> operator
+ will never match stripped input, since it cannot determine the
+ distance between lexeme occurrences.
+ </para>
+ </listitem>
+
+ </varlistentry>
+
+ </variablelist>
+
+ <para>
+ A full list of <type>tsvector</type>-related functions is available
+ in <xref linkend="textsearch-functions-table"/>.
+ </para>
+
+ </sect2>
+
+ <sect2 id="textsearch-manipulate-tsquery">
+ <title>Manipulating Queries</title>
+
+ <para>
+ <xref linkend="textsearch-parsing-queries"/> showed how raw textual
+ queries can be converted into <type>tsquery</type> values.
+ <productname>PostgreSQL</productname> also provides functions and
+ operators that can be used to manipulate queries that are already
+ in <type>tsquery</type> form.
+ </para>
+
+ <variablelist>
+
+ <varlistentry>
+
+ <term>
+ <literal><type>tsquery</type> &amp;&amp; <type>tsquery</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ Returns the AND-combination of the two given queries.
+ </para>
+ </listitem>
+
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <literal><type>tsquery</type> || <type>tsquery</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ Returns the OR-combination of the two given queries.
+ </para>
+ </listitem>
+
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <literal>!! <type>tsquery</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ Returns the negation (NOT) of the given query.
+ </para>
+ </listitem>
+
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <literal><type>tsquery</type> &lt;-&gt; <type>tsquery</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ Returns a query that searches for a match to the first given query
+ immediately followed by a match to the second given query, using
+ the <literal>&lt;-&gt;</literal> (FOLLOWED BY)
+ <type>tsquery</type> operator. For example:
+
+<screen>
+SELECT to_tsquery('fat') &lt;-&gt; to_tsquery('cat | rat');
+ ?column?
+----------------------------
+ 'fat' &lt;-&gt; ( 'cat' | 'rat' )
+</screen>
+ </para>
+ </listitem>
+
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <indexterm>
+ <primary>tsquery_phrase</primary>
+ </indexterm>
+
+ <literal>tsquery_phrase(<replaceable class="parameter">query1</replaceable> <type>tsquery</type>, <replaceable class="parameter">query2</replaceable> <type>tsquery</type> [, <replaceable class="parameter">distance</replaceable> <type>integer</type> ]) returns <type>tsquery</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ Returns a query that searches for a match to the first given query
+ followed by a match to the second given query at a distance of exactly
+ <replaceable>distance</replaceable> lexemes, using
+ the <literal>&lt;<replaceable>N</replaceable>&gt;</literal>
+ <type>tsquery</type> operator. For example:
+
+<screen>
+SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10);
+ tsquery_phrase
+------------------
+ 'fat' &lt;10&gt; 'cat'
+</screen>
+ </para>
+ </listitem>
+
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <indexterm>
+ <primary>numnode</primary>
+ </indexterm>
+
+ <literal>numnode(<replaceable class="parameter">query</replaceable> <type>tsquery</type>) returns <type>integer</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ Returns the number of nodes (lexemes plus operators) in a
+ <type>tsquery</type>. This function is useful
+ to determine if the <replaceable>query</replaceable> is meaningful
+ (returns &gt; 0), or contains only stop words (returns 0).
+ Examples:
+
+<screen>
+SELECT numnode(plainto_tsquery('the any'));
+NOTICE: query contains only stopword(s) or doesn't contain lexeme(s), ignored
+ numnode
+---------
+ 0
+
+SELECT numnode('foo &amp; bar'::tsquery);
+ numnode
+---------
+ 3
+</screen>
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <indexterm>
+ <primary>querytree</primary>
+ </indexterm>
+
+ <literal>querytree(<replaceable class="parameter">query</replaceable> <type>tsquery</type>) returns <type>text</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ Returns the portion of a <type>tsquery</type> that can be used for
+ searching an index. This function is useful for detecting
+ unindexable queries, for example those containing only stop words
+ or only negated terms. For example:
+
+<screen>
+SELECT querytree(to_tsquery('defined'));
+ querytree
+-----------
+ 'defin'
+
+SELECT querytree(to_tsquery('!defined'));
+ querytree
+-----------
+ T
+</screen>
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ <sect3 id="textsearch-query-rewriting">
+ <title>Query Rewriting</title>
+
+ <indexterm zone="textsearch-query-rewriting">
+ <primary>ts_rewrite</primary>
+ </indexterm>
+
+ <para>
+ The <function>ts_rewrite</function> family of functions search a
+ given <type>tsquery</type> for occurrences of a target
+ subquery, and replace each occurrence with a
+ substitute subquery. In essence this operation is a
+ <type>tsquery</type>-specific version of substring replacement.
+ A target and substitute combination can be
+ thought of as a <firstterm>query rewrite rule</firstterm>. A collection
+ of such rewrite rules can be a powerful search aid.
+ For example, you can expand the search using synonyms
+ (e.g., <literal>new york</literal>, <literal>big apple</literal>, <literal>nyc</literal>,
+ <literal>gotham</literal>) or narrow the search to direct the user to some hot
+ topic. There is some overlap in functionality between this feature
+ and thesaurus dictionaries (<xref linkend="textsearch-thesaurus"/>).
+ However, you can modify a set of rewrite rules on-the-fly without
+ reindexing, whereas updating a thesaurus requires reindexing to be
+ effective.
+ </para>
+
+ <variablelist>
+
+ <varlistentry>
+
+ <term>
+ <literal>ts_rewrite (<replaceable class="parameter">query</replaceable> <type>tsquery</type>, <replaceable class="parameter">target</replaceable> <type>tsquery</type>, <replaceable class="parameter">substitute</replaceable> <type>tsquery</type>) returns <type>tsquery</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ This form of <function>ts_rewrite</function> simply applies a single
+ rewrite rule: <replaceable class="parameter">target</replaceable>
+ is replaced by <replaceable class="parameter">substitute</replaceable>
+ wherever it appears in <replaceable
+ class="parameter">query</replaceable>. For example:
+
+<screen>
+SELECT ts_rewrite('a &amp; b'::tsquery, 'a'::tsquery, 'c'::tsquery);
+ ts_rewrite
+------------
+ 'b' &amp; 'c'
+</screen>
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <literal>ts_rewrite (<replaceable class="parameter">query</replaceable> <type>tsquery</type>, <replaceable class="parameter">select</replaceable> <type>text</type>) returns <type>tsquery</type></literal>
+ </term>
+
+ <listitem>
+ <para>
+ This form of <function>ts_rewrite</function> accepts a starting
+ <replaceable>query</replaceable> and an SQL <replaceable>select</replaceable> command, which
+ is given as a text string. The <replaceable>select</replaceable> must yield two
+ columns of <type>tsquery</type> type. For each row of the
+ <replaceable>select</replaceable> result, occurrences of the first column value
+ (the target) are replaced by the second column value (the substitute)
+ within the current <replaceable>query</replaceable> value. For example:
+
+<screen>
+CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
+INSERT INTO aliases VALUES('a', 'c');
+
+SELECT ts_rewrite('a &amp; b'::tsquery, 'SELECT t,s FROM aliases');
+ ts_rewrite
+------------
+ 'b' &amp; 'c'
+</screen>
+ </para>
+
+ <para>
+ Note that when multiple rewrite rules are applied in this way,
+ the order of application can be important; so in practice you will
+ want the source query to <literal>ORDER BY</literal> some ordering key.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ <para>
+ Let's consider a real-life astronomical example. We'll expand query
+ <literal>supernovae</literal> using table-driven rewriting rules:
+
+<screen>
+CREATE TABLE aliases (t tsquery primary key, s tsquery);
+INSERT INTO aliases VALUES(to_tsquery('supernovae'), to_tsquery('supernovae|sn'));
+
+SELECT ts_rewrite(to_tsquery('supernovae &amp; crab'), 'SELECT * FROM aliases');
+ ts_rewrite
+---------------------------------
+ 'crab' &amp; ( 'supernova' | 'sn' )
+</screen>
+
+ We can change the rewriting rules just by updating the table:
+
+<screen>
+UPDATE aliases
+SET s = to_tsquery('supernovae|sn &amp; !nebulae')
+WHERE t = to_tsquery('supernovae');
+
+SELECT ts_rewrite(to_tsquery('supernovae &amp; crab'), 'SELECT * FROM aliases');
+ ts_rewrite
+---------------------------------------------
+ 'crab' &amp; ( 'supernova' | 'sn' &amp; !'nebula' )
+</screen>
+ </para>
+
+ <para>
+ Rewriting can be slow when there are many rewriting rules, since it
+ checks every rule for a possible match. To filter out obvious non-candidate
+ rules we can use the containment operators for the <type>tsquery</type>
+ type. In the example below, we select only those rules which might match
+ the original query:
+
+<screen>
+SELECT ts_rewrite('a &amp; b'::tsquery,
+ 'SELECT t,s FROM aliases WHERE ''a &amp; b''::tsquery @&gt; t');
+ ts_rewrite
+------------
+ 'b' &amp; 'c'
+</screen>
+ </para>
+
+ </sect3>
+
+ </sect2>
+
+ <sect2 id="textsearch-update-triggers">
+ <title>Triggers for Automatic Updates</title>
+
+ <indexterm>
+ <primary>trigger</primary>
+ <secondary>for updating a derived tsvector column</secondary>
+ </indexterm>
+
+ <note>
+ <para>
+ The method described in this section has been obsoleted by the use of
+ stored generated columns, as described in <xref
+ linkend="textsearch-tables-index"/>.
+ </para>
+ </note>
+
+ <para>
+ When using a separate column to store the <type>tsvector</type> representation
+ of your documents, it is necessary to create a trigger to update the
+ <type>tsvector</type> column when the document content columns change.
+ Two built-in trigger functions are available for this, or you can write
+ your own.
+ </para>
+
+<synopsis>
+tsvector_update_trigger(<replaceable class="parameter">tsvector_column_name</replaceable>,&zwsp; <replaceable class="parameter">config_name</replaceable>, <replaceable class="parameter">text_column_name</replaceable> <optional>, ... </optional>)
+tsvector_update_trigger_column(<replaceable class="parameter">tsvector_column_name</replaceable>,&zwsp; <replaceable class="parameter">config_column_name</replaceable>, <replaceable class="parameter">text_column_name</replaceable> <optional>, ... </optional>)
+</synopsis>
+
+ <para>
+ These trigger functions automatically compute a <type>tsvector</type>
+ column from one or more textual columns, under the control of
+ parameters specified in the <command>CREATE TRIGGER</command> command.
+ An example of their use is:
+
+<screen>
+CREATE TABLE messages (
+ title text,
+ body text,
+ tsv tsvector
+);
+
+CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
+ON messages FOR EACH ROW EXECUTE FUNCTION
+tsvector_update_trigger(tsv, 'pg_catalog.english', title, body);
+
+INSERT INTO messages VALUES('title here', 'the body text is here');
+
+SELECT * FROM messages;
+ title | body | tsv
+------------+-----------------------+----------------------------
+ title here | the body text is here | 'bodi':4 'text':5 'titl':1
+
+SELECT title, body FROM messages WHERE tsv @@ to_tsquery('title &amp; body');
+ title | body
+------------+-----------------------
+ title here | the body text is here
+</screen>
+
+ Having created this trigger, any change in <structfield>title</structfield> or
+ <structfield>body</structfield> will automatically be reflected into
+ <structfield>tsv</structfield>, without the application having to worry about it.
+ </para>
+
+ <para>
+ The first trigger argument must be the name of the <type>tsvector</type>
+ column to be updated. The second argument specifies the text search
+ configuration to be used to perform the conversion. For
+ <function>tsvector_update_trigger</function>, the configuration name is simply
+ given as the second trigger argument. It must be schema-qualified as
+ shown above, so that the trigger behavior will not change with changes
+ in <varname>search_path</varname>. For
+ <function>tsvector_update_trigger_column</function>, the second trigger argument
+ is the name of another table column, which must be of type
+ <type>regconfig</type>. This allows a per-row selection of configuration
+ to be made. The remaining argument(s) are the names of textual columns
+ (of type <type>text</type>, <type>varchar</type>, or <type>char</type>). These
+ will be included in the document in the order given. NULL values will
+ be skipped (but the other columns will still be indexed).
+ </para>
+
+ <para>
+ A limitation of these built-in triggers is that they treat all the
+ input columns alike. To process columns differently &mdash; for
+ example, to weight title differently from body &mdash; it is necessary
+ to write a custom trigger. Here is an example using
+ <application>PL/pgSQL</application> as the trigger language:
+
+<programlisting>
+CREATE FUNCTION messages_trigger() RETURNS trigger AS $$
+begin
+ new.tsv :=
+ setweight(to_tsvector('pg_catalog.english', coalesce(new.title,'')), 'A') ||
+ setweight(to_tsvector('pg_catalog.english', coalesce(new.body,'')), 'D');
+ return new;
+end
+$$ LANGUAGE plpgsql;
+
+CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
+ ON messages FOR EACH ROW EXECUTE FUNCTION messages_trigger();
+</programlisting>
+ </para>
+
+ <para>
+ Keep in mind that it is important to specify the configuration name
+ explicitly when creating <type>tsvector</type> values inside triggers,
+ so that the column's contents will not be affected by changes to
+ <varname>default_text_search_config</varname>. Failure to do this is likely to
+ lead to problems such as search results changing after a dump and restore.
+ </para>
+
+ </sect2>
+
+ <sect2 id="textsearch-statistics">
+ <title>Gathering Document Statistics</title>
+
+ <indexterm>
+ <primary>ts_stat</primary>
+ </indexterm>
+
+ <para>
+ The function <function>ts_stat</function> is useful for checking your
+ configuration and for finding stop-word candidates.
+ </para>
+
+<synopsis>
+ts_stat(<replaceable class="parameter">sqlquery</replaceable> <type>text</type>, <optional> <replaceable class="parameter">weights</replaceable> <type>text</type>, </optional>
+ OUT <replaceable class="parameter">word</replaceable> <type>text</type>, OUT <replaceable class="parameter">ndoc</replaceable> <type>integer</type>,
+ OUT <replaceable class="parameter">nentry</replaceable> <type>integer</type>) returns <type>setof record</type>
+</synopsis>
+
+ <para>
+ <replaceable>sqlquery</replaceable> is a text value containing an SQL
+ query which must return a single <type>tsvector</type> column.
+ <function>ts_stat</function> executes the query and returns statistics about
+ each distinct lexeme (word) contained in the <type>tsvector</type>
+ data. The columns returned are
+
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ <replaceable>word</replaceable> <type>text</type> &mdash; the value of a lexeme
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <replaceable>ndoc</replaceable> <type>integer</type> &mdash; number of documents
+ (<type>tsvector</type>s) the word occurred in
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <replaceable>nentry</replaceable> <type>integer</type> &mdash; total number of
+ occurrences of the word
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ If <replaceable>weights</replaceable> is supplied, only occurrences
+ having one of those weights are counted.
+ </para>
+
+ <para>
+ For example, to find the ten most frequent words in a document collection:
+
+<programlisting>
+SELECT * FROM ts_stat('SELECT vector FROM apod')
+ORDER BY nentry DESC, ndoc DESC, word
+LIMIT 10;
+</programlisting>
+
+ The same, but counting only word occurrences with weight <literal>A</literal>
+ or <literal>B</literal>:
+
+<programlisting>
+SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab')
+ORDER BY nentry DESC, ndoc DESC, word
+LIMIT 10;
+</programlisting>
+ </para>
+
+ </sect2>
+
+ </sect1>
+
+ <sect1 id="textsearch-parsers">
+ <title>Parsers</title>
+
+ <para>
+ Text search parsers are responsible for splitting raw document text
+ into <firstterm>tokens</firstterm> and identifying each token's type, where
+ the set of possible types is defined by the parser itself.
+ Note that a parser does not modify the text at all &mdash; it simply
+ identifies plausible word boundaries. Because of this limited scope,
+ there is less need for application-specific custom parsers than there is
+ for custom dictionaries. At present <productname>PostgreSQL</productname>
+ provides just one built-in parser, which has been found to be useful for a
+ wide range of applications.
+ </para>
+
+ <para>
+ The built-in parser is named <literal>pg_catalog.default</literal>.
+ It recognizes 23 token types, shown in <xref linkend="textsearch-default-parser"/>.
+ </para>
+
+ <table id="textsearch-default-parser">
+ <title>Default Parser's Token Types</title>
+ <tgroup cols="3">
+ <colspec colname="col1" colwidth="2*"/>
+ <colspec colname="col2" colwidth="2*"/>
+ <colspec colname="col3" colwidth="3*"/>
+ <thead>
+ <row>
+ <entry>Alias</entry>
+ <entry>Description</entry>
+ <entry>Example</entry>
+ </row>
+ </thead>
+ <tbody>
+ <row>
+ <entry><literal>asciiword</literal></entry>
+ <entry>Word, all ASCII letters</entry>
+ <entry><literal>elephant</literal></entry>
+ </row>
+ <row>
+ <entry><literal>word</literal></entry>
+ <entry>Word, all letters</entry>
+ <entry><literal>ma&ntilde;ana</literal></entry>
+ </row>
+ <row>
+ <entry><literal>numword</literal></entry>
+ <entry>Word, letters and digits</entry>
+ <entry><literal>beta1</literal></entry>
+ </row>
+ <row>
+ <entry><literal>asciihword</literal></entry>
+ <entry>Hyphenated word, all ASCII</entry>
+ <entry><literal>up-to-date</literal></entry>
+ </row>
+ <row>
+ <entry><literal>hword</literal></entry>
+ <entry>Hyphenated word, all letters</entry>
+ <entry><literal>l&oacute;gico-matem&aacute;tica</literal></entry>
+ </row>
+ <row>
+ <entry><literal>numhword</literal></entry>
+ <entry>Hyphenated word, letters and digits</entry>
+ <entry><literal>postgresql-beta1</literal></entry>
+ </row>
+ <row>
+ <entry><literal>hword_asciipart</literal></entry>
+ <entry>Hyphenated word part, all ASCII</entry>
+ <entry><literal>postgresql</literal> in the context <literal>postgresql-beta1</literal></entry>
+ </row>
+ <row>
+ <entry><literal>hword_part</literal></entry>
+ <entry>Hyphenated word part, all letters</entry>
+ <entry><literal>l&oacute;gico</literal> or <literal>matem&aacute;tica</literal>
+ in the context <literal>l&oacute;gico-matem&aacute;tica</literal></entry>
+ </row>
+ <row>
+ <entry><literal>hword_numpart</literal></entry>
+ <entry>Hyphenated word part, letters and digits</entry>
+ <entry><literal>beta1</literal> in the context
+ <literal>postgresql-beta1</literal></entry>
+ </row>
+ <row>
+ <entry><literal>email</literal></entry>
+ <entry>Email address</entry>
+ <entry><literal>foo@example.com</literal></entry>
+ </row>
+ <row>
+ <entry><literal>protocol</literal></entry>
+ <entry>Protocol head</entry>
+ <entry><literal>http://</literal></entry>
+ </row>
+ <row>
+ <entry><literal>url</literal></entry>
+ <entry>URL</entry>
+ <entry><literal>example.com/stuff/index.html</literal></entry>
+ </row>
+ <row>
+ <entry><literal>host</literal></entry>
+ <entry>Host</entry>
+ <entry><literal>example.com</literal></entry>
+ </row>
+ <row>
+ <entry><literal>url_path</literal></entry>
+ <entry>URL path</entry>
+ <entry><literal>/stuff/index.html</literal>, in the context of a URL</entry>
+ </row>
+ <row>
+ <entry><literal>file</literal></entry>
+ <entry>File or path name</entry>
+ <entry><literal>/usr/local/foo.txt</literal>, if not within a URL</entry>
+ </row>
+ <row>
+ <entry><literal>sfloat</literal></entry>
+ <entry>Scientific notation</entry>
+ <entry><literal>-1.234e56</literal></entry>
+ </row>
+ <row>
+ <entry><literal>float</literal></entry>
+ <entry>Decimal notation</entry>
+ <entry><literal>-1.234</literal></entry>
+ </row>
+ <row>
+ <entry><literal>int</literal></entry>
+ <entry>Signed integer</entry>
+ <entry><literal>-1234</literal></entry>
+ </row>
+ <row>
+ <entry><literal>uint</literal></entry>
+ <entry>Unsigned integer</entry>
+ <entry><literal>1234</literal></entry>
+ </row>
+ <row>
+ <entry><literal>version</literal></entry>
+ <entry>Version number</entry>
+ <entry><literal>8.3.0</literal></entry>
+ </row>
+ <row>
+ <entry><literal>tag</literal></entry>
+ <entry>XML tag</entry>
+ <entry><literal>&lt;a href="dictionaries.html"&gt;</literal></entry>
+ </row>
+ <row>
+ <entry><literal>entity</literal></entry>
+ <entry>XML entity</entry>
+ <entry><literal>&amp;amp;</literal></entry>
+ </row>
+ <row>
+ <entry><literal>blank</literal></entry>
+ <entry>Space symbols</entry>
+ <entry>(any whitespace or punctuation not otherwise recognized)</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
+ <note>
+ <para>
+ The parser's notion of a <quote>letter</quote> is determined by the database's
+ locale setting, specifically <varname>lc_ctype</varname>. Words containing
+ only the basic ASCII letters are reported as a separate token type,
+ since it is sometimes useful to distinguish them. In most European
+ languages, token types <literal>word</literal> and <literal>asciiword</literal>
+ should be treated alike.
+ </para>
+
+ <para>
+ <literal>email</literal> does not support all valid email characters as
+ defined by <ulink url="https://tools.ietf.org/html/rfc5322">RFC 5322</ulink>.
+ Specifically, the only non-alphanumeric characters supported for
+ email user names are period, dash, and underscore.
+ </para>
+ </note>
+
+ <para>
+ It is possible for the parser to produce overlapping tokens from the same
+ piece of text. As an example, a hyphenated word will be reported both
+ as the entire word and as each component:
+
+<screen>
+SELECT alias, description, token FROM ts_debug('foo-bar-beta1');
+ alias | description | token
+-----------------+------------------------------------------+---------------
+ numhword | Hyphenated word, letters and digits | foo-bar-beta1
+ hword_asciipart | Hyphenated word part, all ASCII | foo
+ blank | Space symbols | -
+ hword_asciipart | Hyphenated word part, all ASCII | bar
+ blank | Space symbols | -
+ hword_numpart | Hyphenated word part, letters and digits | beta1
+</screen>
+
+ This behavior is desirable since it allows searches to work for both
+ the whole compound word and for components. Here is another
+ instructive example:
+
+<screen>
+SELECT alias, description, token FROM ts_debug('http://example.com/stuff/index.html');
+ alias | description | token
+----------+---------------+------------------------------
+ protocol | Protocol head | http://
+ url | URL | example.com/stuff/index.html
+ host | Host | example.com
+ url_path | URL path | /stuff/index.html
+</screen>
+ </para>
+
+ </sect1>
+
+ <sect1 id="textsearch-dictionaries">
+ <title>Dictionaries</title>
+
+ <para>
+ Dictionaries are used to eliminate words that should not be considered in a
+ search (<firstterm>stop words</firstterm>), and to <firstterm>normalize</firstterm> words so
+ that different derived forms of the same word will match. A successfully
+ normalized word is called a <firstterm>lexeme</firstterm>. Aside from
+ improving search quality, normalization and removal of stop words reduce the
+ size of the <type>tsvector</type> representation of a document, thereby
+ improving performance. Normalization does not always have linguistic meaning
+ and usually depends on application semantics.
+ </para>
+
+ <para>
+ Some examples of normalization:
+
+ <itemizedlist spacing="compact" mark="bullet">
+
+ <listitem>
+ <para>
+ Linguistic &mdash; Ispell dictionaries try to reduce input words to a
+ normalized form; stemmer dictionaries remove word endings
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <acronym>URL</acronym> locations can be canonicalized to make
+ equivalent URLs match:
+
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ http://www.pgsql.ru/db/mw/index.html
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ http://www.pgsql.ru/db/mw/
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ http://www.pgsql.ru/db/../db/mw/index.html
+ </para>
+ </listitem>
+ </itemizedlist>
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ Color names can be replaced by their hexadecimal values, e.g.,
+ <literal>red, green, blue, magenta -> FF0000, 00FF00, 0000FF, FF00FF</literal>
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ If indexing numbers, we can
+ remove some fractional digits to reduce the range of possible
+ numbers, so for example <emphasis>3.14</emphasis>159265359,
+ <emphasis>3.14</emphasis>15926, <emphasis>3.14</emphasis> will be the same
+ after normalization if only two digits are kept after the decimal point.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ </para>
+
+ <para>
+ A dictionary is a program that accepts a token as
+ input and returns:
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ an array of lexemes if the input token is known to the dictionary
+ (notice that one token can produce more than one lexeme)
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ a single lexeme with the <literal>TSL_FILTER</literal> flag set, to replace
+ the original token with a new token to be passed to subsequent
+ dictionaries (a dictionary that does this is called a
+ <firstterm>filtering dictionary</firstterm>)
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ an empty array if the dictionary knows the token, but it is a stop word
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>NULL</literal> if the dictionary does not recognize the input token
+ </para>
+ </listitem>
+ </itemizedlist>
+ </para>
+
+ <para>
+ <productname>PostgreSQL</productname> provides predefined dictionaries for
+ many languages. There are also several predefined templates that can be
+ used to create new dictionaries with custom parameters. Each predefined
+ dictionary template is described below. If no existing
+ template is suitable, it is possible to create new ones; see the
+ <filename>contrib/</filename> area of the <productname>PostgreSQL</productname> distribution
+ for examples.
+ </para>
+
+ <para>
+ A text search configuration binds a parser together with a set of
+ dictionaries to process the parser's output tokens. For each token
+ type that the parser can return, a separate list of dictionaries is
+ specified by the configuration. When a token of that type is found
+ by the parser, each dictionary in the list is consulted in turn,
+ until some dictionary recognizes it as a known word. If it is identified
+ as a stop word, or if no dictionary recognizes the token, it will be
+ discarded and not indexed or searched for.
+ Normally, the first dictionary that returns a non-<literal>NULL</literal>
+ output determines the result, and any remaining dictionaries are not
+ consulted; but a filtering dictionary can replace the given word
+ with a modified word, which is then passed to subsequent dictionaries.
+ </para>
+
+ <para>
+ The general rule for configuring a list of dictionaries
+ is to place first the most narrow, most specific dictionary, then the more
+ general dictionaries, finishing with a very general dictionary, like
+ a <application>Snowball</application> stemmer or <literal>simple</literal>, which
+ recognizes everything. For example, for an astronomy-specific search
+ (<literal>astro_en</literal> configuration) one could bind token type
+ <type>asciiword</type> (ASCII word) to a synonym dictionary of astronomical
+ terms, a general English dictionary and a <application>Snowball</application> English
+ stemmer:
+
+<programlisting>
+ALTER TEXT SEARCH CONFIGURATION astro_en
+ ADD MAPPING FOR asciiword WITH astrosyn, english_ispell, english_stem;
+</programlisting>
+ </para>
+
+ <para>
+ A filtering dictionary can be placed anywhere in the list, except at the
+ end where it'd be useless. Filtering dictionaries are useful to partially
+ normalize words to simplify the task of later dictionaries. For example,
+ a filtering dictionary could be used to remove accents from accented
+ letters, as is done by the <xref linkend="unaccent"/> module.
+ </para>
+
+ <sect2 id="textsearch-stopwords">
+ <title>Stop Words</title>
+
+ <para>
+ Stop words are words that are very common, appear in almost every
+ document, and have no discrimination value. Therefore, they can be ignored
+ in the context of full text searching. For example, every English text
+ contains words like <literal>a</literal> and <literal>the</literal>, so it is
+ useless to store them in an index. However, stop words do affect the
+ positions in <type>tsvector</type>, which in turn affect ranking:
+
+<screen>
+SELECT to_tsvector('english', 'in the list of stop words');
+ to_tsvector
+----------------------------
+ 'list':3 'stop':5 'word':6
+</screen>
+
+ The missing positions 1,2,4 are because of stop words. Ranks
+ calculated for documents with and without stop words are quite different:
+
+<screen>
+SELECT ts_rank_cd (to_tsvector('english', 'in the list of stop words'), to_tsquery('list &amp; stop'));
+ ts_rank_cd
+------------
+ 0.05
+
+SELECT ts_rank_cd (to_tsvector('english', 'list stop words'), to_tsquery('list &amp; stop'));
+ ts_rank_cd
+------------
+ 0.1
+</screen>
+
+ </para>
+
+ <para>
+ It is up to the specific dictionary how it treats stop words. For example,
+ <literal>ispell</literal> dictionaries first normalize words and then
+ look at the list of stop words, while <literal>Snowball</literal> stemmers
+ first check the list of stop words. The reason for the different
+ behavior is an attempt to decrease noise.
+ </para>
+
+ </sect2>
+
+ <sect2 id="textsearch-simple-dictionary">
+ <title>Simple Dictionary</title>
+
+ <para>
+ The <literal>simple</literal> dictionary template operates by converting the
+ input token to lower case and checking it against a file of stop words.
+ If it is found in the file then an empty array is returned, causing
+ the token to be discarded. If not, the lower-cased form of the word
+ is returned as the normalized lexeme. Alternatively, the dictionary
+ can be configured to report non-stop-words as unrecognized, allowing
+ them to be passed on to the next dictionary in the list.
+ </para>
+
+ <para>
+ Here is an example of a dictionary definition using the <literal>simple</literal>
+ template:
+
+<programlisting>
+CREATE TEXT SEARCH DICTIONARY public.simple_dict (
+ TEMPLATE = pg_catalog.simple,
+ STOPWORDS = english
+);
+</programlisting>
+
+ Here, <literal>english</literal> is the base name of a file of stop words.
+ The file's full name will be
+ <filename>$SHAREDIR/tsearch_data/english.stop</filename>,
+ where <literal>$SHAREDIR</literal> means the
+ <productname>PostgreSQL</productname> installation's shared-data directory,
+ often <filename>/usr/local/share/postgresql</filename> (use <command>pg_config
+ --sharedir</command> to determine it if you're not sure).
+ The file format is simply a list
+ of words, one per line. Blank lines and trailing spaces are ignored,
+ and upper case is folded to lower case, but no other processing is done
+ on the file contents.
+ </para>
+
+ <para>
+ Now we can test our dictionary:
+
+<screen>
+SELECT ts_lexize('public.simple_dict', 'YeS');
+ ts_lexize
+-----------
+ {yes}
+
+SELECT ts_lexize('public.simple_dict', 'The');
+ ts_lexize
+-----------
+ {}
+</screen>
+ </para>
+
+ <para>
+ We can also choose to return <literal>NULL</literal>, instead of the lower-cased
+ word, if it is not found in the stop words file. This behavior is
+ selected by setting the dictionary's <literal>Accept</literal> parameter to
+ <literal>false</literal>. Continuing the example:
+
+<screen>
+ALTER TEXT SEARCH DICTIONARY public.simple_dict ( Accept = false );
+
+SELECT ts_lexize('public.simple_dict', 'YeS');
+ ts_lexize
+-----------
+
+
+SELECT ts_lexize('public.simple_dict', 'The');
+ ts_lexize
+-----------
+ {}
+</screen>
+ </para>
+
+ <para>
+ With the default setting of <literal>Accept</literal> = <literal>true</literal>,
+ it is only useful to place a <literal>simple</literal> dictionary at the end
+ of a list of dictionaries, since it will never pass on any token to
+ a following dictionary. Conversely, <literal>Accept</literal> = <literal>false</literal>
+ is only useful when there is at least one following dictionary.
+ </para>
+
+ <caution>
+ <para>
+ Most types of dictionaries rely on configuration files, such as files of
+ stop words. These files <emphasis>must</emphasis> be stored in UTF-8 encoding.
+ They will be translated to the actual database encoding, if that is
+ different, when they are read into the server.
+ </para>
+ </caution>
+
+ <caution>
+ <para>
+ Normally, a database session will read a dictionary configuration file
+ only once, when it is first used within the session. If you modify a
+ configuration file and want to force existing sessions to pick up the
+ new contents, issue an <command>ALTER TEXT SEARCH DICTIONARY</command> command
+ on the dictionary. This can be a <quote>dummy</quote> update that doesn't
+ actually change any parameter values.
+ </para>
+ </caution>
+
+ </sect2>
+
+ <sect2 id="textsearch-synonym-dictionary">
+ <title>Synonym Dictionary</title>
+
+ <para>
+ This dictionary template is used to create dictionaries that replace a
+ word with a synonym. Phrases are not supported (use the thesaurus
+ template (<xref linkend="textsearch-thesaurus"/>) for that). A synonym
+ dictionary can be used to overcome linguistic problems, for example, to
+ prevent an English stemmer dictionary from reducing the word <quote>Paris</quote> to
+ <quote>pari</quote>. It is enough to have a <literal>Paris paris</literal> line in the
+ synonym dictionary and put it before the <literal>english_stem</literal>
+ dictionary. For example:
+
+<screen>
+SELECT * FROM ts_debug('english', 'Paris');
+ alias | description | token | dictionaries | dictionary | lexemes
+-----------+-----------------+-------+----------------+--------------+---------
+ asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}
+
+CREATE TEXT SEARCH DICTIONARY my_synonym (
+ TEMPLATE = synonym,
+ SYNONYMS = my_synonyms
+);
+
+ALTER TEXT SEARCH CONFIGURATION english
+ ALTER MAPPING FOR asciiword
+ WITH my_synonym, english_stem;
+
+SELECT * FROM ts_debug('english', 'Paris');
+ alias | description | token | dictionaries | dictionary | lexemes
+-----------+-----------------+-------+---------------------------+------------+---------
+ asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}
+</screen>
+ </para>
+
+ <para>
+ The only parameter required by the <literal>synonym</literal> template is
+ <literal>SYNONYMS</literal>, which is the base name of its configuration file
+ &mdash; <literal>my_synonyms</literal> in the above example.
+ The file's full name will be
+ <filename>$SHAREDIR/tsearch_data/my_synonyms.syn</filename>
+ (where <literal>$SHAREDIR</literal> means the
+ <productname>PostgreSQL</productname> installation's shared-data directory).
+ The file format is just one line
+ per word to be substituted, with the word followed by its synonym,
+ separated by white space. Blank lines and trailing spaces are ignored.
+ </para>
+
+ <para>
+ The <literal>synonym</literal> template also has an optional parameter
+ <literal>CaseSensitive</literal>, which defaults to <literal>false</literal>. When
+ <literal>CaseSensitive</literal> is <literal>false</literal>, words in the synonym file
+ are folded to lower case, as are input tokens. When it is
+ <literal>true</literal>, words and tokens are not folded to lower case,
+ but are compared as-is.
+ </para>
+
+ <para>
+ An asterisk (<literal>*</literal>) can be placed at the end of a synonym
+ in the configuration file. This indicates that the synonym is a prefix.
+ The asterisk is ignored when the entry is used in
+ <function>to_tsvector()</function>, but when it is used in
+ <function>to_tsquery()</function>, the result will be a query item with
+ the prefix match marker (see
+ <xref linkend="textsearch-parsing-queries"/>).
+ For example, suppose we have these entries in
+ <filename>$SHAREDIR/tsearch_data/synonym_sample.syn</filename>:
+<programlisting>
+postgres pgsql
+postgresql pgsql
+postgre pgsql
+gogle googl
+indices index*
+</programlisting>
+ Then we will get these results:
+<screen>
+mydb=# CREATE TEXT SEARCH DICTIONARY syn (template=synonym, synonyms='synonym_sample');
+mydb=# SELECT ts_lexize('syn', 'indices');
+ ts_lexize
+-----------
+ {index}
+(1 row)
+
+mydb=# CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
+mydb=# ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH syn;
+mydb=# SELECT to_tsvector('tst', 'indices');
+ to_tsvector
+-------------
+ 'index':1
+(1 row)
+
+mydb=# SELECT to_tsquery('tst', 'indices');
+ to_tsquery
+------------
+ 'index':*
+(1 row)
+
+mydb=# SELECT 'indexes are very useful'::tsvector;
+ tsvector
+---------------------------------
+ 'are' 'indexes' 'useful' 'very'
+(1 row)
+
+mydb=# SELECT 'indexes are very useful'::tsvector @@ to_tsquery('tst', 'indices');
+ ?column?
+----------
+ t
+(1 row)
+</screen>
+ </para>
+ </sect2>
+
+ <sect2 id="textsearch-thesaurus">
+ <title>Thesaurus Dictionary</title>
+
+ <para>
+ A thesaurus dictionary (sometimes abbreviated as <acronym>TZ</acronym>) is
+ a collection of words that includes information about the relationships
+ of words and phrases, i.e., broader terms (<acronym>BT</acronym>), narrower
+ terms (<acronym>NT</acronym>), preferred terms, non-preferred terms, related
+ terms, etc.
+ </para>
+
+ <para>
+ Basically a thesaurus dictionary replaces all non-preferred terms by one
+ preferred term and, optionally, preserves the original terms for indexing
+ as well. <productname>PostgreSQL</productname>'s current implementation of the
+ thesaurus dictionary is an extension of the synonym dictionary with added
+ <firstterm>phrase</firstterm> support. A thesaurus dictionary requires
+ a configuration file of the following format:
+
+<programlisting>
+# this is a comment
+sample word(s) : indexed word(s)
+more sample word(s) : more indexed word(s)
+...
+</programlisting>
+
+ where the colon (<symbol>:</symbol>) symbol acts as a delimiter between a
+ phrase and its replacement.
+ </para>
+
+ <para>
+ A thesaurus dictionary uses a <firstterm>subdictionary</firstterm> (which
+ is specified in the dictionary's configuration) to normalize the input
+ text before checking for phrase matches. It is only possible to select one
+ subdictionary. An error is reported if the subdictionary fails to
+ recognize a word. In that case, you should remove the use of the word or
+ teach the subdictionary about it. You can place an asterisk
+ (<symbol>*</symbol>) at the beginning of an indexed word to skip applying
+ the subdictionary to it, but all sample words <emphasis>must</emphasis> be known
+ to the subdictionary.
+ </para>
+
+ <para>
+ The thesaurus dictionary chooses the longest match if there are multiple
+ phrases matching the input, and ties are broken by using the last
+ definition.
+ </para>
+
+ <para>
+ Specific stop words recognized by the subdictionary cannot be
+ specified; instead use <literal>?</literal> to mark the location where any
+ stop word can appear. For example, assuming that <literal>a</literal> and
+ <literal>the</literal> are stop words according to the subdictionary:
+
+<programlisting>
+? one ? two : swsw
+</programlisting>
+
+ matches <literal>a one the two</literal> and <literal>the one a two</literal>;
+ both would be replaced by <literal>swsw</literal>.
+ </para>
+
+ <para>
+ Since a thesaurus dictionary has the capability to recognize phrases it
+ must remember its state and interact with the parser. A thesaurus dictionary
+ uses these assignments to check if it should handle the next word or stop
+ accumulation. The thesaurus dictionary must be configured
+ carefully. For example, if the thesaurus dictionary is assigned to handle
+ only the <literal>asciiword</literal> token, then a thesaurus dictionary
+ definition like <literal>one 7</literal> will not work since token type
+ <literal>uint</literal> is not assigned to the thesaurus dictionary.
+ </para>
+
+ <caution>
+ <para>
+ Thesauruses are used during indexing so any change in the thesaurus
+ dictionary's parameters <emphasis>requires</emphasis> reindexing.
+ For most other dictionary types, small changes such as adding or
+ removing stopwords does not force reindexing.
+ </para>
+ </caution>
+
+ <sect3 id="textsearch-thesaurus-config">
+ <title>Thesaurus Configuration</title>
+
+ <para>
+ To define a new thesaurus dictionary, use the <literal>thesaurus</literal>
+ template. For example:
+
+<programlisting>
+CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
+ TEMPLATE = thesaurus,
+ DictFile = mythesaurus,
+ Dictionary = pg_catalog.english_stem
+);
+</programlisting>
+
+ Here:
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ <literal>thesaurus_simple</literal> is the new dictionary's name
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>mythesaurus</literal> is the base name of the thesaurus
+ configuration file.
+ (Its full name will be <filename>$SHAREDIR/tsearch_data/mythesaurus.ths</filename>,
+ where <literal>$SHAREDIR</literal> means the installation shared-data
+ directory.)
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <literal>pg_catalog.english_stem</literal> is the subdictionary (here,
+ a Snowball English stemmer) to use for thesaurus normalization.
+ Notice that the subdictionary will have its own
+ configuration (for example, stop words), which is not shown here.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ Now it is possible to bind the thesaurus dictionary <literal>thesaurus_simple</literal>
+ to the desired token types in a configuration, for example:
+
+<programlisting>
+ALTER TEXT SEARCH CONFIGURATION russian
+ ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
+ WITH thesaurus_simple;
+</programlisting>
+ </para>
+
+ </sect3>
+
+ <sect3 id="textsearch-thesaurus-examples">
+ <title>Thesaurus Example</title>
+
+ <para>
+ Consider a simple astronomical thesaurus <literal>thesaurus_astro</literal>,
+ which contains some astronomical word combinations:
+
+<programlisting>
+supernovae stars : sn
+crab nebulae : crab
+</programlisting>
+
+ Below we create a dictionary and bind some token types to
+ an astronomical thesaurus and English stemmer:
+
+<programlisting>
+CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
+ TEMPLATE = thesaurus,
+ DictFile = thesaurus_astro,
+ Dictionary = english_stem
+);
+
+ALTER TEXT SEARCH CONFIGURATION russian
+ ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
+ WITH thesaurus_astro, english_stem;
+</programlisting>
+
+ Now we can see how it works.
+ <function>ts_lexize</function> is not very useful for testing a thesaurus,
+ because it treats its input as a single token. Instead we can use
+ <function>plainto_tsquery</function> and <function>to_tsvector</function>
+ which will break their input strings into multiple tokens:
+
+<screen>
+SELECT plainto_tsquery('supernova star');
+ plainto_tsquery
+-----------------
+ 'sn'
+
+SELECT to_tsvector('supernova star');
+ to_tsvector
+-------------
+ 'sn':1
+</screen>
+
+ In principle, one can use <function>to_tsquery</function> if you quote
+ the argument:
+
+<screen>
+SELECT to_tsquery('''supernova star''');
+ to_tsquery
+------------
+ 'sn'
+</screen>
+
+ Notice that <literal>supernova star</literal> matches <literal>supernovae
+ stars</literal> in <literal>thesaurus_astro</literal> because we specified
+ the <literal>english_stem</literal> stemmer in the thesaurus definition.
+ The stemmer removed the <literal>e</literal> and <literal>s</literal>.
+ </para>
+
+ <para>
+ To index the original phrase as well as the substitute, just include it
+ in the right-hand part of the definition:
+
+<screen>
+supernovae stars : sn supernovae stars
+
+SELECT plainto_tsquery('supernova star');
+ plainto_tsquery
+-----------------------------
+ 'sn' &amp; 'supernova' &amp; 'star'
+</screen>
+ </para>
+
+ </sect3>
+
+ </sect2>
+
+ <sect2 id="textsearch-ispell-dictionary">
+ <title><application>Ispell</application> Dictionary</title>
+
+ <para>
+ The <application>Ispell</application> dictionary template supports
+ <firstterm>morphological dictionaries</firstterm>, which can normalize many
+ different linguistic forms of a word into the same lexeme. For example,
+ an English <application>Ispell</application> dictionary can match all declensions and
+ conjugations of the search term <literal>bank</literal>, e.g.,
+ <literal>banking</literal>, <literal>banked</literal>, <literal>banks</literal>,
+ <literal>banks'</literal>, and <literal>bank's</literal>.
+ </para>
+
+ <para>
+ The standard <productname>PostgreSQL</productname> distribution does
+ not include any <application>Ispell</application> configuration files.
+ Dictionaries for a large number of languages are available from <ulink
+ url="https://www.cs.hmc.edu/~geoff/ispell.html">Ispell</ulink>.
+ Also, some more modern dictionary file formats are supported &mdash; <ulink
+ url="https://en.wikipedia.org/wiki/MySpell">MySpell</ulink> (OO &lt; 2.0.1)
+ and <ulink url="https://sourceforge.net/projects/hunspell/">Hunspell</ulink>
+ (OO &gt;= 2.0.2). A large list of dictionaries is available on the <ulink
+ url="https://wiki.openoffice.org/wiki/Dictionaries">OpenOffice
+ Wiki</ulink>.
+ </para>
+
+ <para>
+ To create an <application>Ispell</application> dictionary perform these steps:
+ </para>
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ download dictionary configuration files. <productname>OpenOffice</productname>
+ extension files have the <filename>.oxt</filename> extension. It is necessary
+ to extract <filename>.aff</filename> and <filename>.dic</filename> files, change
+ extensions to <filename>.affix</filename> and <filename>.dict</filename>. For some
+ dictionary files it is also needed to convert characters to the UTF-8
+ encoding with commands (for example, for a Norwegian language dictionary):
+<programlisting>
+iconv -f ISO_8859-1 -t UTF-8 -o nn_no.affix nn_NO.aff
+iconv -f ISO_8859-1 -t UTF-8 -o nn_no.dict nn_NO.dic
+</programlisting>
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ copy files to the <filename>$SHAREDIR/tsearch_data</filename> directory
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ load files into PostgreSQL with the following command:
+<programlisting>
+CREATE TEXT SEARCH DICTIONARY english_hunspell (
+ TEMPLATE = ispell,
+ DictFile = en_us,
+ AffFile = en_us,
+ Stopwords = english);
+</programlisting>
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ <para>
+ Here, <literal>DictFile</literal>, <literal>AffFile</literal>, and <literal>StopWords</literal>
+ specify the base names of the dictionary, affixes, and stop-words files.
+ The stop-words file has the same format explained above for the
+ <literal>simple</literal> dictionary type. The format of the other files is
+ not specified here but is available from the above-mentioned web sites.
+ </para>
+
+ <para>
+ Ispell dictionaries usually recognize a limited set of words, so they
+ should be followed by another broader dictionary; for
+ example, a Snowball dictionary, which recognizes everything.
+ </para>
+
+ <para>
+ The <filename>.affix</filename> file of <application>Ispell</application> has the following
+ structure:
+<programlisting>
+prefixes
+flag *A:
+ . > RE # As in enter > reenter
+suffixes
+flag T:
+ E > ST # As in late > latest
+ [^AEIOU]Y > -Y,IEST # As in dirty > dirtiest
+ [AEIOU]Y > EST # As in gray > grayest
+ [^EY] > EST # As in small > smallest
+</programlisting>
+ </para>
+ <para>
+ And the <filename>.dict</filename> file has the following structure:
+<programlisting>
+lapse/ADGRS
+lard/DGRS
+large/PRTY
+lark/MRS
+</programlisting>
+ </para>
+
+ <para>
+ Format of the <filename>.dict</filename> file is:
+<programlisting>
+basic_form/affix_class_name
+</programlisting>
+ </para>
+
+ <para>
+ In the <filename>.affix</filename> file every affix flag is described in the
+ following format:
+<programlisting>
+condition > [-stripping_letters,] adding_affix
+</programlisting>
+ </para>
+
+ <para>
+ Here, condition has a format similar to the format of regular expressions.
+ It can use groupings <literal>[...]</literal> and <literal>[^...]</literal>.
+ For example, <literal>[AEIOU]Y</literal> means that the last letter of the word
+ is <literal>"y"</literal> and the penultimate letter is <literal>"a"</literal>,
+ <literal>"e"</literal>, <literal>"i"</literal>, <literal>"o"</literal> or <literal>"u"</literal>.
+ <literal>[^EY]</literal> means that the last letter is neither <literal>"e"</literal>
+ nor <literal>"y"</literal>.
+ </para>
+
+ <para>
+ Ispell dictionaries support splitting compound words;
+ a useful feature.
+ Notice that the affix file should specify a special flag using the
+ <literal>compoundwords controlled</literal> statement that marks dictionary
+ words that can participate in compound formation:
+
+<programlisting>
+compoundwords controlled z
+</programlisting>
+
+ Here are some examples for the Norwegian language:
+
+<programlisting>
+SELECT ts_lexize('norwegian_ispell', 'overbuljongterningpakkmesterassistent');
+ {over,buljong,terning,pakk,mester,assistent}
+SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
+ {sjokoladefabrikk,sjokolade,fabrikk}
+</programlisting>
+ </para>
+
+ <para>
+ <application>MySpell</application> format is a subset of <application>Hunspell</application>.
+ The <filename>.affix</filename> file of <application>Hunspell</application> has the following
+ structure:
+<programlisting>
+PFX A Y 1
+PFX A 0 re .
+SFX T N 4
+SFX T 0 st e
+SFX T y iest [^aeiou]y
+SFX T 0 est [aeiou]y
+SFX T 0 est [^ey]
+</programlisting>
+ </para>
+
+ <para>
+ The first line of an affix class is the header. Fields of an affix rules are
+ listed after the header:
+ </para>
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ parameter name (PFX or SFX)
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ flag (name of the affix class)
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ stripping characters from beginning (at prefix) or end (at suffix) of the
+ word
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ adding affix
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ condition that has a format similar to the format of regular expressions.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ <para>
+ The <filename>.dict</filename> file looks like the <filename>.dict</filename> file of
+ <application>Ispell</application>:
+<programlisting>
+larder/M
+lardy/RT
+large/RSPMYT
+largehearted
+</programlisting>
+ </para>
+
+ <note>
+ <para>
+ <application>MySpell</application> does not support compound words.
+ <application>Hunspell</application> has sophisticated support for compound words. At
+ present, <productname>PostgreSQL</productname> implements only the basic
+ compound word operations of Hunspell.
+ </para>
+ </note>
+
+ </sect2>
+
+ <sect2 id="textsearch-snowball-dictionary">
+ <title><application>Snowball</application> Dictionary</title>
+
+ <para>
+ The <application>Snowball</application> dictionary template is based on a project
+ by Martin Porter, inventor of the popular Porter's stemming algorithm
+ for the English language. Snowball now provides stemming algorithms for
+ many languages (see the <ulink url="https://snowballstem.org/">Snowball
+ site</ulink> for more information). Each algorithm understands how to
+ reduce common variant forms of words to a base, or stem, spelling within
+ its language. A Snowball dictionary requires a <literal>language</literal>
+ parameter to identify which stemmer to use, and optionally can specify a
+ <literal>stopword</literal> file name that gives a list of words to eliminate.
+ (<productname>PostgreSQL</productname>'s standard stopword lists are also
+ provided by the Snowball project.)
+ For example, there is a built-in definition equivalent to
+
+<programlisting>
+CREATE TEXT SEARCH DICTIONARY english_stem (
+ TEMPLATE = snowball,
+ Language = english,
+ StopWords = english
+);
+</programlisting>
+
+ The stopword file format is the same as already explained.
+ </para>
+
+ <para>
+ A <application>Snowball</application> dictionary recognizes everything, whether
+ or not it is able to simplify the word, so it should be placed
+ at the end of the dictionary list. It is useless to have it
+ before any other dictionary because a token will never pass through it to
+ the next dictionary.
+ </para>
+
+ </sect2>
+
+ </sect1>
+
+ <sect1 id="textsearch-configuration">
+ <title>Configuration Example</title>
+
+ <para>
+ A text search configuration specifies all options necessary to transform a
+ document into a <type>tsvector</type>: the parser to use to break text
+ into tokens, and the dictionaries to use to transform each token into a
+ lexeme. Every call of
+ <function>to_tsvector</function> or <function>to_tsquery</function>
+ needs a text search configuration to perform its processing.
+ The configuration parameter
+ <xref linkend="guc-default-text-search-config"/>
+ specifies the name of the default configuration, which is the
+ one used by text search functions if an explicit configuration
+ parameter is omitted.
+ It can be set in <filename>postgresql.conf</filename>, or set for an
+ individual session using the <command>SET</command> command.
+ </para>
+
+ <para>
+ Several predefined text search configurations are available, and
+ you can create custom configurations easily. To facilitate management
+ of text search objects, a set of <acronym>SQL</acronym> commands
+ is available, and there are several <application>psql</application> commands that display information
+ about text search objects (<xref linkend="textsearch-psql"/>).
+ </para>
+
+ <para>
+ As an example we will create a configuration
+ <literal>pg</literal>, starting by duplicating the built-in
+ <literal>english</literal> configuration:
+
+<programlisting>
+CREATE TEXT SEARCH CONFIGURATION public.pg ( COPY = pg_catalog.english );
+</programlisting>
+ </para>
+
+ <para>
+ We will use a PostgreSQL-specific synonym list
+ and store it in <filename>$SHAREDIR/tsearch_data/pg_dict.syn</filename>.
+ The file contents look like:
+
+<programlisting>
+postgres pg
+pgsql pg
+postgresql pg
+</programlisting>
+
+ We define the synonym dictionary like this:
+
+<programlisting>
+CREATE TEXT SEARCH DICTIONARY pg_dict (
+ TEMPLATE = synonym,
+ SYNONYMS = pg_dict
+);
+</programlisting>
+
+ Next we register the <productname>Ispell</productname> dictionary
+ <literal>english_ispell</literal>, which has its own configuration files:
+
+<programlisting>
+CREATE TEXT SEARCH DICTIONARY english_ispell (
+ TEMPLATE = ispell,
+ DictFile = english,
+ AffFile = english,
+ StopWords = english
+);
+</programlisting>
+
+ Now we can set up the mappings for words in configuration
+ <literal>pg</literal>:
+
+<programlisting>
+ALTER TEXT SEARCH CONFIGURATION pg
+ ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
+ word, hword, hword_part
+ WITH pg_dict, english_ispell, english_stem;
+</programlisting>
+
+ We choose not to index or search some token types that the built-in
+ configuration does handle:
+
+<programlisting>
+ALTER TEXT SEARCH CONFIGURATION pg
+ DROP MAPPING FOR email, url, url_path, sfloat, float;
+</programlisting>
+ </para>
+
+ <para>
+ Now we can test our configuration:
+
+<programlisting>
+SELECT * FROM ts_debug('public.pg', '
+PostgreSQL, the highly scalable, SQL compliant, open source object-relational
+database management system, is now undergoing beta testing of the next
+version of our software.
+');
+</programlisting>
+ </para>
+
+ <para>
+ The next step is to set the session to use the new configuration, which was
+ created in the <literal>public</literal> schema:
+
+<screen>
+=&gt; \dF
+ List of text search configurations
+ Schema | Name | Description
+---------+------+-------------
+ public | pg |
+
+SET default_text_search_config = 'public.pg';
+SET
+
+SHOW default_text_search_config;
+ default_text_search_config
+----------------------------
+ public.pg
+</screen>
+ </para>
+
+ </sect1>
+
+ <sect1 id="textsearch-debugging">
+ <title>Testing and Debugging Text Search</title>
+
+ <para>
+ The behavior of a custom text search configuration can easily become
+ confusing. The functions described
+ in this section are useful for testing text search objects. You can
+ test a complete configuration, or test parsers and dictionaries separately.
+ </para>
+
+ <sect2 id="textsearch-configuration-testing">
+ <title>Configuration Testing</title>
+
+ <para>
+ The function <function>ts_debug</function> allows easy testing of a
+ text search configuration.
+ </para>
+
+ <indexterm>
+ <primary>ts_debug</primary>
+ </indexterm>
+
+<synopsis>
+ts_debug(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">document</replaceable> <type>text</type>,
+ OUT <replaceable class="parameter">alias</replaceable> <type>text</type>,
+ OUT <replaceable class="parameter">description</replaceable> <type>text</type>,
+ OUT <replaceable class="parameter">token</replaceable> <type>text</type>,
+ OUT <replaceable class="parameter">dictionaries</replaceable> <type>regdictionary[]</type>,
+ OUT <replaceable class="parameter">dictionary</replaceable> <type>regdictionary</type>,
+ OUT <replaceable class="parameter">lexemes</replaceable> <type>text[]</type>)
+ returns setof record
+</synopsis>
+
+ <para>
+ <function>ts_debug</function> displays information about every token of
+ <replaceable class="parameter">document</replaceable> as produced by the
+ parser and processed by the configured dictionaries. It uses the
+ configuration specified by <replaceable
+ class="parameter">config</replaceable>,
+ or <varname>default_text_search_config</varname> if that argument is
+ omitted.
+ </para>
+
+ <para>
+ <function>ts_debug</function> returns one row for each token identified in the text
+ by the parser. The columns returned are
+
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>
+ <replaceable>alias</replaceable> <type>text</type> &mdash; short name of the token type
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <replaceable>description</replaceable> <type>text</type> &mdash; description of the
+ token type
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <replaceable>token</replaceable> <type>text</type> &mdash; text of the token
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <replaceable>dictionaries</replaceable> <type>regdictionary[]</type> &mdash; the
+ dictionaries selected by the configuration for this token type
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <replaceable>dictionary</replaceable> <type>regdictionary</type> &mdash; the dictionary
+ that recognized the token, or <literal>NULL</literal> if none did
+ </para>
+ </listitem>
+ <listitem>
+ <para>
+ <replaceable>lexemes</replaceable> <type>text[]</type> &mdash; the lexeme(s) produced
+ by the dictionary that recognized the token, or <literal>NULL</literal> if
+ none did; an empty array (<literal>{}</literal>) means it was recognized as a
+ stop word
+ </para>
+ </listitem>
+ </itemizedlist>
+ </para>
+
+ <para>
+ Here is a simple example:
+
+<screen>
+SELECT * FROM ts_debug('english', 'a fat cat sat on a mat - it ate a fat rats');
+ alias | description | token | dictionaries | dictionary | lexemes
+-----------+-----------------+-------+----------------+--------------+---------
+ asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | cat | {english_stem} | english_stem | {cat}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | sat | {english_stem} | english_stem | {sat}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | on | {english_stem} | english_stem | {}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | mat | {english_stem} | english_stem | {mat}
+ blank | Space symbols | | {} | |
+ blank | Space symbols | - | {} | |
+ asciiword | Word, all ASCII | it | {english_stem} | english_stem | {}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | ate | {english_stem} | english_stem | {ate}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | rats | {english_stem} | english_stem | {rat}
+</screen>
+ </para>
+
+ <para>
+ For a more extensive demonstration, we
+ first create a <literal>public.english</literal> configuration and
+ Ispell dictionary for the English language:
+ </para>
+
+<programlisting>
+CREATE TEXT SEARCH CONFIGURATION public.english ( COPY = pg_catalog.english );
+
+CREATE TEXT SEARCH DICTIONARY english_ispell (
+ TEMPLATE = ispell,
+ DictFile = english,
+ AffFile = english,
+ StopWords = english
+);
+
+ALTER TEXT SEARCH CONFIGURATION public.english
+ ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;
+</programlisting>
+
+<screen>
+SELECT * FROM ts_debug('public.english', 'The Brightest supernovaes');
+ alias | description | token | dictionaries | dictionary | lexemes
+-----------+-----------------+-------------+-------------------------------+----------------+-------------
+ asciiword | Word, all ASCII | The | {english_ispell,english_stem} | english_ispell | {}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | Brightest | {english_ispell,english_stem} | english_ispell | {bright}
+ blank | Space symbols | | {} | |
+ asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem} | english_stem | {supernova}
+</screen>
+
+ <para>
+ In this example, the word <literal>Brightest</literal> was recognized by the
+ parser as an <literal>ASCII word</literal> (alias <literal>asciiword</literal>).
+ For this token type the dictionary list is
+ <literal>english_ispell</literal> and
+ <literal>english_stem</literal>. The word was recognized by
+ <literal>english_ispell</literal>, which reduced it to the noun
+ <literal>bright</literal>. The word <literal>supernovaes</literal> is
+ unknown to the <literal>english_ispell</literal> dictionary so it
+ was passed to the next dictionary, and, fortunately, was recognized (in
+ fact, <literal>english_stem</literal> is a Snowball dictionary which
+ recognizes everything; that is why it was placed at the end of the
+ dictionary list).
+ </para>
+
+ <para>
+ The word <literal>The</literal> was recognized by the
+ <literal>english_ispell</literal> dictionary as a stop word (<xref
+ linkend="textsearch-stopwords"/>) and will not be indexed.
+ The spaces are discarded too, since the configuration provides no
+ dictionaries at all for them.
+ </para>
+
+ <para>
+ You can reduce the width of the output by explicitly specifying which columns
+ you want to see:
+
+<screen>
+SELECT alias, token, dictionary, lexemes
+FROM ts_debug('public.english', 'The Brightest supernovaes');
+ alias | token | dictionary | lexemes
+-----------+-------------+----------------+-------------
+ asciiword | The | english_ispell | {}
+ blank | | |
+ asciiword | Brightest | english_ispell | {bright}
+ blank | | |
+ asciiword | supernovaes | english_stem | {supernova}
+</screen>
+ </para>
+
+ </sect2>
+
+ <sect2 id="textsearch-parser-testing">
+ <title>Parser Testing</title>
+
+ <para>
+ The following functions allow direct testing of a text search parser.
+ </para>
+
+ <indexterm>
+ <primary>ts_parse</primary>
+ </indexterm>
+
+<synopsis>
+ts_parse(<replaceable class="parameter">parser_name</replaceable> <type>text</type>, <replaceable class="parameter">document</replaceable> <type>text</type>,
+ OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>, OUT <replaceable class="parameter">token</replaceable> <type>text</type>) returns <type>setof record</type>
+ts_parse(<replaceable class="parameter">parser_oid</replaceable> <type>oid</type>, <replaceable class="parameter">document</replaceable> <type>text</type>,
+ OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>, OUT <replaceable class="parameter">token</replaceable> <type>text</type>) returns <type>setof record</type>
+</synopsis>
+
+ <para>
+ <function>ts_parse</function> parses the given <replaceable>document</replaceable>
+ and returns a series of records, one for each token produced by
+ parsing. Each record includes a <varname>tokid</varname> showing the
+ assigned token type and a <varname>token</varname> which is the text of the
+ token. For example:
+
+<screen>
+SELECT * FROM ts_parse('default', '123 - a number');
+ tokid | token
+-------+--------
+ 22 | 123
+ 12 |
+ 12 | -
+ 1 | a
+ 12 |
+ 1 | number
+</screen>
+ </para>
+
+ <indexterm>
+ <primary>ts_token_type</primary>
+ </indexterm>
+
+<synopsis>
+ts_token_type(<replaceable class="parameter">parser_name</replaceable> <type>text</type>, OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>,
+ OUT <replaceable class="parameter">alias</replaceable> <type>text</type>, OUT <replaceable class="parameter">description</replaceable> <type>text</type>) returns <type>setof record</type>
+ts_token_type(<replaceable class="parameter">parser_oid</replaceable> <type>oid</type>, OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>,
+ OUT <replaceable class="parameter">alias</replaceable> <type>text</type>, OUT <replaceable class="parameter">description</replaceable> <type>text</type>) returns <type>setof record</type>
+</synopsis>
+
+ <para>
+ <function>ts_token_type</function> returns a table which describes each type of
+ token the specified parser can recognize. For each token type, the table
+ gives the integer <varname>tokid</varname> that the parser uses to label a
+ token of that type, the <varname>alias</varname> that names the token type
+ in configuration commands, and a short <varname>description</varname>. For
+ example:
+
+<screen>
+SELECT * FROM ts_token_type('default');
+ tokid | alias | description
+-------+-----------------+------------------------------------------
+ 1 | asciiword | Word, all ASCII
+ 2 | word | Word, all letters
+ 3 | numword | Word, letters and digits
+ 4 | email | Email address
+ 5 | url | URL
+ 6 | host | Host
+ 7 | sfloat | Scientific notation
+ 8 | version | Version number
+ 9 | hword_numpart | Hyphenated word part, letters and digits
+ 10 | hword_part | Hyphenated word part, all letters
+ 11 | hword_asciipart | Hyphenated word part, all ASCII
+ 12 | blank | Space symbols
+ 13 | tag | XML tag
+ 14 | protocol | Protocol head
+ 15 | numhword | Hyphenated word, letters and digits
+ 16 | asciihword | Hyphenated word, all ASCII
+ 17 | hword | Hyphenated word, all letters
+ 18 | url_path | URL path
+ 19 | file | File or path name
+ 20 | float | Decimal notation
+ 21 | int | Signed integer
+ 22 | uint | Unsigned integer
+ 23 | entity | XML entity
+</screen>
+ </para>
+
+ </sect2>
+
+ <sect2 id="textsearch-dictionary-testing">
+ <title>Dictionary Testing</title>
+
+ <para>
+ The <function>ts_lexize</function> function facilitates dictionary testing.
+ </para>
+
+ <indexterm>
+ <primary>ts_lexize</primary>
+ </indexterm>
+
+<synopsis>
+ts_lexize(<replaceable class="parameter">dict</replaceable> <type>regdictionary</type>, <replaceable class="parameter">token</replaceable> <type>text</type>) returns <type>text[]</type>
+</synopsis>
+
+ <para>
+ <function>ts_lexize</function> returns an array of lexemes if the input
+ <replaceable>token</replaceable> is known to the dictionary,
+ or an empty array if the token
+ is known to the dictionary but it is a stop word, or
+ <literal>NULL</literal> if it is an unknown word.
+ </para>
+
+ <para>
+ Examples:
+
+<screen>
+SELECT ts_lexize('english_stem', 'stars');
+ ts_lexize
+-----------
+ {star}
+
+SELECT ts_lexize('english_stem', 'a');
+ ts_lexize
+-----------
+ {}
+</screen>
+ </para>
+
+ <note>
+ <para>
+ The <function>ts_lexize</function> function expects a single
+ <emphasis>token</emphasis>, not text. Here is a case
+ where this can be confusing:
+
+<screen>
+SELECT ts_lexize('thesaurus_astro', 'supernovae stars') is null;
+ ?column?
+----------
+ t
+</screen>
+
+ The thesaurus dictionary <literal>thesaurus_astro</literal> does know the
+ phrase <literal>supernovae stars</literal>, but <function>ts_lexize</function>
+ fails since it does not parse the input text but treats it as a single
+ token. Use <function>plainto_tsquery</function> or <function>to_tsvector</function> to
+ test thesaurus dictionaries, for example:
+
+<screen>
+SELECT plainto_tsquery('supernovae stars');
+ plainto_tsquery
+-----------------
+ 'sn'
+</screen>
+ </para>
+ </note>
+
+ </sect2>
+
+ </sect1>
+
+ <sect1 id="textsearch-indexes">
+ <title>Preferred Index Types for Text Search</title>
+
+ <indexterm zone="textsearch-indexes">
+ <primary>text search</primary>
+ <secondary>indexes</secondary>
+ </indexterm>
+
+ <para>
+ There are two kinds of indexes that can be used to speed up full text
+ searches:
+ <link linkend="gin"><acronym>GIN</acronym></link> and
+ <link linkend="gist"><acronym>GiST</acronym></link>.
+ Note that indexes are not mandatory for full text searching, but in
+ cases where a column is searched on a regular basis, an index is
+ usually desirable.
+ </para>
+
+ <para>
+ To create such an index, do one of:
+
+ <variablelist>
+
+ <varlistentry>
+
+ <term>
+ <indexterm zone="textsearch-indexes">
+ <primary>index</primary>
+ <secondary>GIN</secondary>
+ <tertiary>text search</tertiary>
+ </indexterm>
+
+ <literal>CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable> USING GIN (<replaceable>column</replaceable>);</literal>
+ </term>
+
+ <listitem>
+ <para>
+ Creates a GIN (Generalized Inverted Index)-based index.
+ The <replaceable>column</replaceable> must be of <type>tsvector</type> type.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+
+ <term>
+ <indexterm zone="textsearch-indexes">
+ <primary>index</primary>
+ <secondary>GiST</secondary>
+ <tertiary>text search</tertiary>
+ </indexterm>
+
+ <literal>CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable> USING GIST (<replaceable>column</replaceable> [ { DEFAULT | tsvector_ops } (siglen = <replaceable>number</replaceable>) ] );</literal>
+ </term>
+
+ <listitem>
+ <para>
+ Creates a GiST (Generalized Search Tree)-based index.
+ The <replaceable>column</replaceable> can be of <type>tsvector</type> or
+ <type>tsquery</type> type.
+ Optional integer parameter <literal>siglen</literal> determines
+ signature length in bytes (see below for details).
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+ </para>
+
+ <para>
+ GIN indexes are the preferred text search index type. As inverted
+ indexes, they contain an index entry for each word (lexeme), with a
+ compressed list of matching locations. Multi-word searches can find
+ the first match, then use the index to remove rows that are lacking
+ additional words. GIN indexes store only the words (lexemes) of
+ <type>tsvector</type> values, and not their weight labels. Thus a table
+ row recheck is needed when using a query that involves weights.
+ </para>
+
+ <para>
+ A GiST index is <firstterm>lossy</firstterm>, meaning that the index
+ might produce false matches, and it is necessary
+ to check the actual table row to eliminate such false matches.
+ (<productname>PostgreSQL</productname> does this automatically when needed.)
+ GiST indexes are lossy because each document is represented in the
+ index by a fixed-length signature. The signature length in bytes is determined
+ by the value of the optional integer parameter <literal>siglen</literal>.
+ The default signature length (when <literal>siglen</literal> is not specified) is
+ 124 bytes, the maximum signature length is 2024 bytes. The signature is generated by hashing
+ each word into a single bit in an n-bit string, with all these bits OR-ed
+ together to produce an n-bit document signature. When two words hash to
+ the same bit position there will be a false match. If all words in
+ the query have matches (real or false) then the table row must be
+ retrieved to see if the match is correct. Longer signatures lead to a more
+ precise search (scanning a smaller fraction of the index and fewer heap
+ pages), at the cost of a larger index.
+ </para>
+
+ <para>
+ A GiST index can be covering, i.e., use the <literal>INCLUDE</literal>
+ clause. Included columns can have data types without any GiST operator
+ class. Included attributes will be stored uncompressed.
+ </para>
+
+ <para>
+ Lossiness causes performance degradation due to unnecessary fetches of table
+ records that turn out to be false matches. Since random access to table
+ records is slow, this limits the usefulness of GiST indexes. The
+ likelihood of false matches depends on several factors, in particular the
+ number of unique words, so using dictionaries to reduce this number is
+ recommended.
+ </para>
+
+ <para>
+ Note that <acronym>GIN</acronym> index build time can often be improved
+ by increasing <xref linkend="guc-maintenance-work-mem"/>, while
+ <acronym>GiST</acronym> index build time is not sensitive to that
+ parameter.
+ </para>
+
+ <para>
+ Partitioning of big collections and the proper use of GIN and GiST indexes
+ allows the implementation of very fast searches with online update.
+ Partitioning can be done at the database level using table inheritance,
+ or by distributing documents over
+ servers and collecting external search results, e.g., via <link
+ linkend="ddl-foreign-data">Foreign Data</link> access.
+ The latter is possible because ranking functions use
+ only local information.
+ </para>
+
+ </sect1>
+
+ <sect1 id="textsearch-psql">
+ <title><application>psql</application> Support</title>
+
+ <para>
+ Information about text search configuration objects can be obtained
+ in <application>psql</application> using a set of commands:
+<synopsis>
+\dF{d,p,t}<optional>+</optional> <optional>PATTERN</optional>
+</synopsis>
+ An optional <literal>+</literal> produces more details.
+ </para>
+
+ <para>
+ The optional parameter <replaceable>PATTERN</replaceable> can be the name of
+ a text search object, optionally schema-qualified. If
+ <replaceable>PATTERN</replaceable> is omitted then information about all
+ visible objects will be displayed. <replaceable>PATTERN</replaceable> can be a
+ regular expression and can provide <emphasis>separate</emphasis> patterns
+ for the schema and object names. The following examples illustrate this:
+
+<screen>
+=&gt; \dF *fulltext*
+ List of text search configurations
+ Schema | Name | Description
+--------+--------------+-------------
+ public | fulltext_cfg |
+</screen>
+
+<screen>
+=&gt; \dF *.fulltext*
+ List of text search configurations
+ Schema | Name | Description
+----------+----------------------------
+ fulltext | fulltext_cfg |
+ public | fulltext_cfg |
+</screen>
+
+ The available commands are:
+ </para>
+
+ <variablelist>
+ <varlistentry>
+ <term><literal>\dF<optional>+</optional> <optional>PATTERN</optional></literal></term>
+ <listitem>
+ <para>
+ List text search configurations (add <literal>+</literal> for more detail).
+<screen>
+=&gt; \dF russian
+ List of text search configurations
+ Schema | Name | Description
+------------+---------+------------------------------------
+ pg_catalog | russian | configuration for russian language
+
+=&gt; \dF+ russian
+Text search configuration "pg_catalog.russian"
+Parser: "pg_catalog.default"
+ Token | Dictionaries
+-----------------+--------------
+ asciihword | english_stem
+ asciiword | english_stem
+ email | simple
+ file | simple
+ float | simple
+ host | simple
+ hword | russian_stem
+ hword_asciipart | english_stem
+ hword_numpart | simple
+ hword_part | russian_stem
+ int | simple
+ numhword | simple
+ numword | simple
+ sfloat | simple
+ uint | simple
+ url | simple
+ url_path | simple
+ version | simple
+ word | russian_stem
+</screen>
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term><literal>\dFd<optional>+</optional> <optional>PATTERN</optional></literal></term>
+ <listitem>
+ <para>
+ List text search dictionaries (add <literal>+</literal> for more detail).
+<screen>
+=&gt; \dFd
+ List of text search dictionaries
+ Schema | Name | Description
+------------+-----------------+-----------------------------------------------------------
+ pg_catalog | arabic_stem | snowball stemmer for arabic language
+ pg_catalog | armenian_stem | snowball stemmer for armenian language
+ pg_catalog | basque_stem | snowball stemmer for basque language
+ pg_catalog | catalan_stem | snowball stemmer for catalan language
+ pg_catalog | danish_stem | snowball stemmer for danish language
+ pg_catalog | dutch_stem | snowball stemmer for dutch language
+ pg_catalog | english_stem | snowball stemmer for english language
+ pg_catalog | finnish_stem | snowball stemmer for finnish language
+ pg_catalog | french_stem | snowball stemmer for french language
+ pg_catalog | german_stem | snowball stemmer for german language
+ pg_catalog | greek_stem | snowball stemmer for greek language
+ pg_catalog | hindi_stem | snowball stemmer for hindi language
+ pg_catalog | hungarian_stem | snowball stemmer for hungarian language
+ pg_catalog | indonesian_stem | snowball stemmer for indonesian language
+ pg_catalog | irish_stem | snowball stemmer for irish language
+ pg_catalog | italian_stem | snowball stemmer for italian language
+ pg_catalog | lithuanian_stem | snowball stemmer for lithuanian language
+ pg_catalog | nepali_stem | snowball stemmer for nepali language
+ pg_catalog | norwegian_stem | snowball stemmer for norwegian language
+ pg_catalog | portuguese_stem | snowball stemmer for portuguese language
+ pg_catalog | romanian_stem | snowball stemmer for romanian language
+ pg_catalog | russian_stem | snowball stemmer for russian language
+ pg_catalog | serbian_stem | snowball stemmer for serbian language
+ pg_catalog | simple | simple dictionary: just lower case and check for stopword
+ pg_catalog | spanish_stem | snowball stemmer for spanish language
+ pg_catalog | swedish_stem | snowball stemmer for swedish language
+ pg_catalog | tamil_stem | snowball stemmer for tamil language
+ pg_catalog | turkish_stem | snowball stemmer for turkish language
+ pg_catalog | yiddish_stem | snowball stemmer for yiddish language
+</screen>
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term><literal>\dFp<optional>+</optional> <optional>PATTERN</optional></literal></term>
+ <listitem>
+ <para>
+ List text search parsers (add <literal>+</literal> for more detail).
+<screen>
+=&gt; \dFp
+ List of text search parsers
+ Schema | Name | Description
+------------+---------+---------------------
+ pg_catalog | default | default word parser
+=&gt; \dFp+
+ Text search parser "pg_catalog.default"
+ Method | Function | Description
+-----------------+----------------+-------------
+ Start parse | prsd_start |
+ Get next token | prsd_nexttoken |
+ End parse | prsd_end |
+ Get headline | prsd_headline |
+ Get token types | prsd_lextype |
+
+ Token types for parser "pg_catalog.default"
+ Token name | Description
+-----------------+------------------------------------------
+ asciihword | Hyphenated word, all ASCII
+ asciiword | Word, all ASCII
+ blank | Space symbols
+ email | Email address
+ entity | XML entity
+ file | File or path name
+ float | Decimal notation
+ host | Host
+ hword | Hyphenated word, all letters
+ hword_asciipart | Hyphenated word part, all ASCII
+ hword_numpart | Hyphenated word part, letters and digits
+ hword_part | Hyphenated word part, all letters
+ int | Signed integer
+ numhword | Hyphenated word, letters and digits
+ numword | Word, letters and digits
+ protocol | Protocol head
+ sfloat | Scientific notation
+ tag | XML tag
+ uint | Unsigned integer
+ url | URL
+ url_path | URL path
+ version | Version number
+ word | Word, all letters
+(23 rows)
+</screen>
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term><literal>\dFt<optional>+</optional> <optional>PATTERN</optional></literal></term>
+ <listitem>
+ <para>
+ List text search templates (add <literal>+</literal> for more detail).
+<screen>
+=&gt; \dFt
+ List of text search templates
+ Schema | Name | Description
+------------+-----------+-----------------------------------------------------------
+ pg_catalog | ispell | ispell dictionary
+ pg_catalog | simple | simple dictionary: just lower case and check for stopword
+ pg_catalog | snowball | snowball stemmer
+ pg_catalog | synonym | synonym dictionary: replace word by its synonym
+ pg_catalog | thesaurus | thesaurus dictionary: phrase by phrase substitution
+</screen>
+ </para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+
+ </sect1>
+
+ <sect1 id="textsearch-limitations">
+ <title>Limitations</title>
+
+ <para>
+ The current limitations of <productname>PostgreSQL</productname>'s
+ text search features are:
+ <itemizedlist spacing="compact" mark="bullet">
+ <listitem>
+ <para>The length of each lexeme must be less than 2 kilobytes</para>
+ </listitem>
+ <listitem>
+ <para>The length of a <type>tsvector</type> (lexemes + positions) must be
+ less than 1 megabyte</para>
+ </listitem>
+ <listitem>
+ <!-- TODO: number of lexemes in what? This is unclear -->
+ <para>The number of lexemes must be less than
+ 2<superscript>64</superscript></para>
+ </listitem>
+ <listitem>
+ <para>Position values in <type>tsvector</type> must be greater than 0 and
+ no more than 16,383</para>
+ </listitem>
+ <listitem>
+ <para>The match distance in a <literal>&lt;<replaceable>N</replaceable>&gt;</literal>
+ (FOLLOWED BY) <type>tsquery</type> operator cannot be more than
+ 16,384</para>
+ </listitem>
+ <listitem>
+ <para>No more than 256 positions per lexeme</para>
+ </listitem>
+ <listitem>
+ <para>The number of nodes (lexemes + operators) in a <type>tsquery</type>
+ must be less than 32,768</para>
+ </listitem>
+ </itemizedlist>
+ </para>
+
+ <para>
+ For comparison, the <productname>PostgreSQL</productname> 8.1 documentation
+ contained 10,441 unique words, a total of 335,420 words, and the most
+ frequent word <quote>postgresql</quote> was mentioned 6,127 times in 655
+ documents.
+ </para>
+
+ <!-- TODO we need to put a date on these numbers? -->
+ <para>
+ Another example &mdash; the <productname>PostgreSQL</productname> mailing
+ list archives contained 910,989 unique words with 57,491,343 lexemes in
+ 461,020 messages.
+ </para>
+
+ </sect1>
+
+</chapter>