1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
|
<!-- doc/src/sgml/textsearch.sgml -->
<chapter id="textsearch">
<title>Full Text Search</title>
<indexterm zone="textsearch">
<primary>full text search</primary>
</indexterm>
<indexterm zone="textsearch">
<primary>text search</primary>
</indexterm>
<sect1 id="textsearch-intro">
<title>Introduction</title>
<para>
Full Text Searching (or just <firstterm>text search</firstterm>) provides
the capability to identify natural-language <firstterm>documents</firstterm> that
satisfy a <firstterm>query</firstterm>, and optionally to sort them by
relevance to the query. The most common type of search
is to find all documents containing given <firstterm>query terms</firstterm>
and return them in order of their <firstterm>similarity</firstterm> to the
query. Notions of <varname>query</varname> and
<varname>similarity</varname> are very flexible and depend on the specific
application. The simplest search considers <varname>query</varname> as a
set of words and <varname>similarity</varname> as the frequency of query
words in the document.
</para>
<para>
Textual search operators have existed in databases for years.
<productname>PostgreSQL</productname> has
<literal>~</literal>, <literal>~*</literal>, <literal>LIKE</literal>, and
<literal>ILIKE</literal> operators for textual data types, but they lack
many essential properties required by modern information systems:
</para>
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
There is no linguistic support, even for English. Regular expressions
are not sufficient because they cannot easily handle derived words, e.g.,
<literal>satisfies</literal> and <literal>satisfy</literal>. You might
miss documents that contain <literal>satisfies</literal>, although you
probably would like to find them when searching for
<literal>satisfy</literal>. It is possible to use <literal>OR</literal>
to search for multiple derived forms, but this is tedious and error-prone
(some words can have several thousand derivatives).
</para>
</listitem>
<listitem>
<para>
They provide no ordering (ranking) of search results, which makes them
ineffective when thousands of matching documents are found.
</para>
</listitem>
<listitem>
<para>
They tend to be slow because there is no index support, so they must
process all documents for every search.
</para>
</listitem>
</itemizedlist>
<para>
Full text indexing allows documents to be <emphasis>preprocessed</emphasis>
and an index saved for later rapid searching. Preprocessing includes:
</para>
<itemizedlist mark="none">
<listitem>
<para>
<emphasis>Parsing documents into <firstterm>tokens</firstterm></emphasis>. It is
useful to identify various classes of tokens, e.g., numbers, words,
complex words, email addresses, so that they can be processed
differently. In principle token classes depend on the specific
application, but for most purposes it is adequate to use a predefined
set of classes.
<productname>PostgreSQL</productname> uses a <firstterm>parser</firstterm> to
perform this step. A standard parser is provided, and custom parsers
can be created for specific needs.
</para>
</listitem>
<listitem>
<para>
<emphasis>Converting tokens into <firstterm>lexemes</firstterm></emphasis>.
A lexeme is a string, just like a token, but it has been
<firstterm>normalized</firstterm> so that different forms of the same word
are made alike. For example, normalization almost always includes
folding upper-case letters to lower-case, and often involves removal
of suffixes (such as <literal>s</literal> or <literal>es</literal> in English).
This allows searches to find variant forms of the
same word, without tediously entering all the possible variants.
Also, this step typically eliminates <firstterm>stop words</firstterm>, which
are words that are so common that they are useless for searching.
(In short, then, tokens are raw fragments of the document text, while
lexemes are words that are believed useful for indexing and searching.)
<productname>PostgreSQL</productname> uses <firstterm>dictionaries</firstterm> to
perform this step. Various standard dictionaries are provided, and
custom ones can be created for specific needs.
</para>
</listitem>
<listitem>
<para>
<emphasis>Storing preprocessed documents optimized for
searching</emphasis>. For example, each document can be represented
as a sorted array of normalized lexemes. Along with the lexemes it is
often desirable to store positional information to use for
<firstterm>proximity ranking</firstterm>, so that a document that
contains a more <quote>dense</quote> region of query words is
assigned a higher rank than one with scattered query words.
</para>
</listitem>
</itemizedlist>
<para>
Dictionaries allow fine-grained control over how tokens are normalized.
With appropriate dictionaries, you can:
</para>
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
Define stop words that should not be indexed.
</para>
</listitem>
<listitem>
<para>
Map synonyms to a single word using <application>Ispell</application>.
</para>
</listitem>
<listitem>
<para>
Map phrases to a single word using a thesaurus.
</para>
</listitem>
<listitem>
<para>
Map different variations of a word to a canonical form using
an <application>Ispell</application> dictionary.
</para>
</listitem>
<listitem>
<para>
Map different variations of a word to a canonical form using
<application>Snowball</application> stemmer rules.
</para>
</listitem>
</itemizedlist>
<para>
A data type <type>tsvector</type> is provided for storing preprocessed
documents, along with a type <type>tsquery</type> for representing processed
queries (<xref linkend="datatype-textsearch"/>). There are many
functions and operators available for these data types
(<xref linkend="functions-textsearch"/>), the most important of which is
the match operator <literal>@@</literal>, which we introduce in
<xref linkend="textsearch-matching"/>. Full text searches can be accelerated
using indexes (<xref linkend="textsearch-indexes"/>).
</para>
<sect2 id="textsearch-document">
<title>What Is a Document?</title>
<indexterm zone="textsearch-document">
<primary>document</primary>
<secondary>text search</secondary>
</indexterm>
<para>
A <firstterm>document</firstterm> is the unit of searching in a full text search
system; for example, a magazine article or email message. The text search
engine must be able to parse documents and store associations of lexemes
(key words) with their parent document. Later, these associations are
used to search for documents that contain query words.
</para>
<para>
For searches within <productname>PostgreSQL</productname>,
a document is normally a textual field within a row of a database table,
or possibly a combination (concatenation) of such fields, perhaps stored
in several tables or obtained dynamically. In other words, a document can
be constructed from different parts for indexing and it might not be
stored anywhere as a whole. For example:
<programlisting>
SELECT title || ' ' || author || ' ' || abstract || ' ' || body AS document
FROM messages
WHERE mid = 12;
SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS document
FROM messages m, docs d
WHERE m.mid = d.did AND m.mid = 12;
</programlisting>
</para>
<note>
<para>
Actually, in these example queries, <function>coalesce</function>
should be used to prevent a single <literal>NULL</literal> attribute from
causing a <literal>NULL</literal> result for the whole document.
</para>
</note>
<para>
Another possibility is to store the documents as simple text files in the
file system. In this case, the database can be used to store the full text
index and to execute searches, and some unique identifier can be used to
retrieve the document from the file system. However, retrieving files
from outside the database requires superuser permissions or special
function support, so this is usually less convenient than keeping all
the data inside <productname>PostgreSQL</productname>. Also, keeping
everything inside the database allows easy access
to document metadata to assist in indexing and display.
</para>
<para>
For text search purposes, each document must be reduced to the
preprocessed <type>tsvector</type> format. Searching and ranking
are performed entirely on the <type>tsvector</type> representation
of a document — the original text need only be retrieved
when the document has been selected for display to a user.
We therefore often speak of the <type>tsvector</type> as being the
document, but of course it is only a compact representation of
the full document.
</para>
</sect2>
<sect2 id="textsearch-matching">
<title>Basic Text Matching</title>
<para>
Full text searching in <productname>PostgreSQL</productname> is based on
the match operator <literal>@@</literal>, which returns
<literal>true</literal> if a <type>tsvector</type>
(document) matches a <type>tsquery</type> (query).
It doesn't matter which data type is written first:
<programlisting>
SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat & rat'::tsquery;
?column?
----------
t
SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
?column?
----------
f
</programlisting>
</para>
<para>
As the above example suggests, a <type>tsquery</type> is not just raw
text, any more than a <type>tsvector</type> is. A <type>tsquery</type>
contains search terms, which must be already-normalized lexemes, and
may combine multiple terms using AND, OR, NOT, and FOLLOWED BY operators.
(For syntax details see <xref linkend="datatype-tsquery"/>.) There are
functions <function>to_tsquery</function>, <function>plainto_tsquery</function>,
and <function>phraseto_tsquery</function>
that are helpful in converting user-written text into a proper
<type>tsquery</type>, primarily by normalizing words appearing in
the text. Similarly, <function>to_tsvector</function> is used to parse and
normalize a document string. So in practice a text search match would
look more like this:
<programlisting>
SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat & rat');
?column?
----------
t
</programlisting>
Observe that this match would not succeed if written as
<programlisting>
SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat & rat');
?column?
----------
f
</programlisting>
since here no normalization of the word <literal>rats</literal> will occur.
The elements of a <type>tsvector</type> are lexemes, which are assumed
already normalized, so <literal>rats</literal> does not match <literal>rat</literal>.
</para>
<para>
The <literal>@@</literal> operator also
supports <type>text</type> input, allowing explicit conversion of a text
string to <type>tsvector</type> or <type>tsquery</type> to be skipped
in simple cases. The variants available are:
<programlisting>
tsvector @@ tsquery
tsquery @@ tsvector
text @@ tsquery
text @@ text
</programlisting>
</para>
<para>
The first two of these we saw already.
The form <type>text</type> <literal>@@</literal> <type>tsquery</type>
is equivalent to <literal>to_tsvector(x) @@ y</literal>.
The form <type>text</type> <literal>@@</literal> <type>text</type>
is equivalent to <literal>to_tsvector(x) @@ plainto_tsquery(y)</literal>.
</para>
<para>
Within a <type>tsquery</type>, the <literal>&</literal> (AND) operator
specifies that both its arguments must appear in the document to have a
match. Similarly, the <literal>|</literal> (OR) operator specifies that
at least one of its arguments must appear, while the <literal>!</literal> (NOT)
operator specifies that its argument must <emphasis>not</emphasis> appear in
order to have a match.
For example, the query <literal>fat & ! rat</literal> matches documents that
contain <literal>fat</literal> but not <literal>rat</literal>.
</para>
<para>
Searching for phrases is possible with the help of
the <literal><-></literal> (FOLLOWED BY) <type>tsquery</type> operator, which
matches only if its arguments have matches that are adjacent and in the
given order. For example:
<programlisting>
SELECT to_tsvector('fatal error') @@ to_tsquery('fatal <-> error');
?column?
----------
t
SELECT to_tsvector('error is not fatal') @@ to_tsquery('fatal <-> error');
?column?
----------
f
</programlisting>
There is a more general version of the FOLLOWED BY operator having the
form <literal><<replaceable>N</replaceable>></literal>,
where <replaceable>N</replaceable> is an integer standing for the difference between
the positions of the matching lexemes. <literal><1></literal> is
the same as <literal><-></literal>, while <literal><2></literal>
allows exactly one other lexeme to appear between the matches, and so
on. The <literal>phraseto_tsquery</literal> function makes use of this
operator to construct a <literal>tsquery</literal> that can match a multi-word
phrase when some of the words are stop words. For example:
<programlisting>
SELECT phraseto_tsquery('cats ate rats');
phraseto_tsquery
-------------------------------
'cat' <-> 'ate' <-> 'rat'
SELECT phraseto_tsquery('the cats ate the rats');
phraseto_tsquery
-------------------------------
'cat' <-> 'ate' <2> 'rat'
</programlisting>
</para>
<para>
A special case that's sometimes useful is that <literal><0></literal>
can be used to require that two patterns match the same word.
</para>
<para>
Parentheses can be used to control nesting of the <type>tsquery</type>
operators. Without parentheses, <literal>|</literal> binds least tightly,
then <literal>&</literal>, then <literal><-></literal>,
and <literal>!</literal> most tightly.
</para>
<para>
It's worth noticing that the AND/OR/NOT operators mean something subtly
different when they are within the arguments of a FOLLOWED BY operator
than when they are not, because within FOLLOWED BY the exact position of
the match is significant. For example, normally <literal>!x</literal> matches
only documents that do not contain <literal>x</literal> anywhere.
But <literal>!x <-> y</literal> matches <literal>y</literal> if it is not
immediately after an <literal>x</literal>; an occurrence of <literal>x</literal>
elsewhere in the document does not prevent a match. Another example is
that <literal>x & y</literal> normally only requires that <literal>x</literal>
and <literal>y</literal> both appear somewhere in the document, but
<literal>(x & y) <-> z</literal> requires <literal>x</literal>
and <literal>y</literal> to match at the same place, immediately before
a <literal>z</literal>. Thus this query behaves differently from
<literal>x <-> z & y <-> z</literal>, which will match a
document containing two separate sequences <literal>x z</literal> and
<literal>y z</literal>. (This specific query is useless as written,
since <literal>x</literal> and <literal>y</literal> could not match at the same place;
but with more complex situations such as prefix-match patterns, a query
of this form could be useful.)
</para>
</sect2>
<sect2 id="textsearch-intro-configurations">
<title>Configurations</title>
<para>
The above are all simple text search examples. As mentioned before, full
text search functionality includes the ability to do many more things:
skip indexing certain words (stop words), process synonyms, and use
sophisticated parsing, e.g., parse based on more than just white space.
This functionality is controlled by <firstterm>text search
configurations</firstterm>. <productname>PostgreSQL</productname> comes with predefined
configurations for many languages, and you can easily create your own
configurations. (<application>psql</application>'s <command>\dF</command> command
shows all available configurations.)
</para>
<para>
During installation an appropriate configuration is selected and
<xref linkend="guc-default-text-search-config"/> is set accordingly
in <filename>postgresql.conf</filename>. If you are using the same text search
configuration for the entire cluster you can use the value in
<filename>postgresql.conf</filename>. To use different configurations
throughout the cluster but the same configuration within any one database,
use <command>ALTER DATABASE ... SET</command>. Otherwise, you can set
<varname>default_text_search_config</varname> in each session.
</para>
<para>
Each text search function that depends on a configuration has an optional
<type>regconfig</type> argument, so that the configuration to use can be
specified explicitly. <varname>default_text_search_config</varname>
is used only when this argument is omitted.
</para>
<para>
To make it easier to build custom text search configurations, a
configuration is built up from simpler database objects.
<productname>PostgreSQL</productname>'s text search facility provides
four types of configuration-related database objects:
</para>
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
<firstterm>Text search parsers</firstterm> break documents into tokens
and classify each token (for example, as words or numbers).
</para>
</listitem>
<listitem>
<para>
<firstterm>Text search dictionaries</firstterm> convert tokens to normalized
form and reject stop words.
</para>
</listitem>
<listitem>
<para>
<firstterm>Text search templates</firstterm> provide the functions underlying
dictionaries. (A dictionary simply specifies a template and a set
of parameters for the template.)
</para>
</listitem>
<listitem>
<para>
<firstterm>Text search configurations</firstterm> select a parser and a set
of dictionaries to use to normalize the tokens produced by the parser.
</para>
</listitem>
</itemizedlist>
<para>
Text search parsers and templates are built from low-level C functions;
therefore it requires C programming ability to develop new ones, and
superuser privileges to install one into a database. (There are examples
of add-on parsers and templates in the <filename>contrib/</filename> area of the
<productname>PostgreSQL</productname> distribution.) Since dictionaries and
configurations just parameterize and connect together some underlying
parsers and templates, no special privilege is needed to create a new
dictionary or configuration. Examples of creating custom dictionaries and
configurations appear later in this chapter.
</para>
</sect2>
</sect1>
<sect1 id="textsearch-tables">
<title>Tables and Indexes</title>
<para>
The examples in the previous section illustrated full text matching using
simple constant strings. This section shows how to search table data,
optionally using indexes.
</para>
<sect2 id="textsearch-tables-search">
<title>Searching a Table</title>
<para>
It is possible to do a full text search without an index. A simple query
to print the <structname>title</structname> of each row that contains the word
<literal>friend</literal> in its <structfield>body</structfield> field is:
<programlisting>
SELECT title
FROM pgweb
WHERE to_tsvector('english', body) @@ to_tsquery('english', 'friend');
</programlisting>
This will also find related words such as <literal>friends</literal>
and <literal>friendly</literal>, since all these are reduced to the same
normalized lexeme.
</para>
<para>
The query above specifies that the <literal>english</literal> configuration
is to be used to parse and normalize the strings. Alternatively we
could omit the configuration parameters:
<programlisting>
SELECT title
FROM pgweb
WHERE to_tsvector(body) @@ to_tsquery('friend');
</programlisting>
This query will use the configuration set by <xref
linkend="guc-default-text-search-config"/>.
</para>
<para>
A more complex example is to
select the ten most recent documents that contain <literal>create</literal> and
<literal>table</literal> in the <structname>title</structname> or <structname>body</structname>:
<programlisting>
SELECT title
FROM pgweb
WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;
</programlisting>
For clarity we omitted the <function>coalesce</function> function calls
which would be needed to find rows that contain <literal>NULL</literal>
in one of the two fields.
</para>
<para>
Although these queries will work without an index, most applications
will find this approach too slow, except perhaps for occasional ad-hoc
searches. Practical use of text searching usually requires creating
an index.
</para>
</sect2>
<sect2 id="textsearch-tables-index">
<title>Creating Indexes</title>
<para>
We can create a <acronym>GIN</acronym> index (<xref
linkend="textsearch-indexes"/>) to speed up text searches:
<programlisting>
CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', body));
</programlisting>
Notice that the 2-argument version of <function>to_tsvector</function> is
used. Only text search functions that specify a configuration name can
be used in expression indexes (<xref linkend="indexes-expressional"/>).
This is because the index contents must be unaffected by <xref
linkend="guc-default-text-search-config"/>. If they were affected, the
index contents might be inconsistent because different entries could
contain <type>tsvector</type>s that were created with different text search
configurations, and there would be no way to guess which was which. It
would be impossible to dump and restore such an index correctly.
</para>
<para>
Because the two-argument version of <function>to_tsvector</function> was
used in the index above, only a query reference that uses the 2-argument
version of <function>to_tsvector</function> with the same configuration
name will use that index. That is, <literal>WHERE
to_tsvector('english', body) @@ 'a & b'</literal> can use the index,
but <literal>WHERE to_tsvector(body) @@ 'a & b'</literal> cannot.
This ensures that an index will be used only with the same configuration
used to create the index entries.
</para>
<para>
It is possible to set up more complex expression indexes wherein the
configuration name is specified by another column, e.g.:
<programlisting>
CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector(config_name, body));
</programlisting>
where <literal>config_name</literal> is a column in the <literal>pgweb</literal>
table. This allows mixed configurations in the same index while
recording which configuration was used for each index entry. This
would be useful, for example, if the document collection contained
documents in different languages. Again,
queries that are meant to use the index must be phrased to match, e.g.,
<literal>WHERE to_tsvector(config_name, body) @@ 'a & b'</literal>.
</para>
<para>
Indexes can even concatenate columns:
<programlisting>
CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));
</programlisting>
</para>
<para>
Another approach is to create a separate <type>tsvector</type> column
to hold the output of <function>to_tsvector</function>. To keep this
column automatically up to date with its source data, use a stored
generated column. This example is a
concatenation of <literal>title</literal> and <literal>body</literal>,
using <function>coalesce</function> to ensure that one field will still be
indexed when the other is <literal>NULL</literal>:
<programlisting>
ALTER TABLE pgweb
ADD COLUMN textsearchable_index_col tsvector
GENERATED ALWAYS AS (to_tsvector('english', coalesce(title, '') || ' ' || coalesce(body, ''))) STORED;
</programlisting>
Then we create a <acronym>GIN</acronym> index to speed up the search:
<programlisting>
CREATE INDEX textsearch_idx ON pgweb USING GIN (textsearchable_index_col);
</programlisting>
Now we are ready to perform a fast full text search:
<programlisting>
SELECT title
FROM pgweb
WHERE textsearchable_index_col @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;
</programlisting>
</para>
<para>
One advantage of the separate-column approach over an expression index
is that it is not necessary to explicitly specify the text search
configuration in queries in order to make use of the index. As shown
in the example above, the query can depend on
<varname>default_text_search_config</varname>. Another advantage is that
searches will be faster, since it will not be necessary to redo the
<function>to_tsvector</function> calls to verify index matches. (This is more
important when using a GiST index than a GIN index; see <xref
linkend="textsearch-indexes"/>.) The expression-index approach is
simpler to set up, however, and it requires less disk space since the
<type>tsvector</type> representation is not stored explicitly.
</para>
</sect2>
</sect1>
<sect1 id="textsearch-controls">
<title>Controlling Text Search</title>
<para>
To implement full text searching there must be a function to create a
<type>tsvector</type> from a document and a <type>tsquery</type> from a
user query. Also, we need to return results in a useful order, so we need
a function that compares documents with respect to their relevance to
the query. It's also important to be able to display the results nicely.
<productname>PostgreSQL</productname> provides support for all of these
functions.
</para>
<sect2 id="textsearch-parsing-documents">
<title>Parsing Documents</title>
<para>
<productname>PostgreSQL</productname> provides the
function <function>to_tsvector</function> for converting a document to
the <type>tsvector</type> data type.
</para>
<indexterm>
<primary>to_tsvector</primary>
</indexterm>
<synopsis>
to_tsvector(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">document</replaceable> <type>text</type>) returns <type>tsvector</type>
</synopsis>
<para>
<function>to_tsvector</function> parses a textual document into tokens,
reduces the tokens to lexemes, and returns a <type>tsvector</type> which
lists the lexemes together with their positions in the document.
The document is processed according to the specified or default
text search configuration.
Here is a simple example:
<screen>
SELECT to_tsvector('english', 'a fat cat sat on a mat - it ate a fat rats');
to_tsvector
-----------------------------------------------------
'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4
</screen>
</para>
<para>
In the example above we see that the resulting <type>tsvector</type> does not
contain the words <literal>a</literal>, <literal>on</literal>, or
<literal>it</literal>, the word <literal>rats</literal> became
<literal>rat</literal>, and the punctuation sign <literal>-</literal> was
ignored.
</para>
<para>
The <function>to_tsvector</function> function internally calls a parser
which breaks the document text into tokens and assigns a type to
each token. For each token, a list of
dictionaries (<xref linkend="textsearch-dictionaries"/>) is consulted,
where the list can vary depending on the token type. The first dictionary
that <firstterm>recognizes</firstterm> the token emits one or more normalized
<firstterm>lexemes</firstterm> to represent the token. For example,
<literal>rats</literal> became <literal>rat</literal> because one of the
dictionaries recognized that the word <literal>rats</literal> is a plural
form of <literal>rat</literal>. Some words are recognized as
<firstterm>stop words</firstterm> (<xref linkend="textsearch-stopwords"/>), which
causes them to be ignored since they occur too frequently to be useful in
searching. In our example these are
<literal>a</literal>, <literal>on</literal>, and <literal>it</literal>.
If no dictionary in the list recognizes the token then it is also ignored.
In this example that happened to the punctuation sign <literal>-</literal>
because there are in fact no dictionaries assigned for its token type
(<literal>Space symbols</literal>), meaning space tokens will never be
indexed. The choices of parser, dictionaries and which types of tokens to
index are determined by the selected text search configuration (<xref
linkend="textsearch-configuration"/>). It is possible to have
many different configurations in the same database, and predefined
configurations are available for various languages. In our example
we used the default configuration <literal>english</literal> for the
English language.
</para>
<para>
The function <function>setweight</function> can be used to label the
entries of a <type>tsvector</type> with a given <firstterm>weight</firstterm>,
where a weight is one of the letters <literal>A</literal>, <literal>B</literal>,
<literal>C</literal>, or <literal>D</literal>.
This is typically used to mark entries coming from
different parts of a document, such as title versus body. Later, this
information can be used for ranking of search results.
</para>
<para>
Because <function>to_tsvector</function>(<literal>NULL</literal>) will
return <literal>NULL</literal>, it is recommended to use
<function>coalesce</function> whenever a field might be null.
Here is the recommended method for creating
a <type>tsvector</type> from a structured document:
<programlisting>
UPDATE tt SET ti =
setweight(to_tsvector(coalesce(title,'')), 'A') ||
setweight(to_tsvector(coalesce(keyword,'')), 'B') ||
setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
setweight(to_tsvector(coalesce(body,'')), 'D');
</programlisting>
Here we have used <function>setweight</function> to label the source
of each lexeme in the finished <type>tsvector</type>, and then merged
the labeled <type>tsvector</type> values using the <type>tsvector</type>
concatenation operator <literal>||</literal>. (<xref
linkend="textsearch-manipulate-tsvector"/> gives details about these
operations.)
</para>
</sect2>
<sect2 id="textsearch-parsing-queries">
<title>Parsing Queries</title>
<para>
<productname>PostgreSQL</productname> provides the
functions <function>to_tsquery</function>,
<function>plainto_tsquery</function>,
<function>phraseto_tsquery</function> and
<function>websearch_to_tsquery</function>
for converting a query to the <type>tsquery</type> data type.
<function>to_tsquery</function> offers access to more features
than either <function>plainto_tsquery</function> or
<function>phraseto_tsquery</function>, but it is less forgiving about its
input. <function>websearch_to_tsquery</function> is a simplified version
of <function>to_tsquery</function> with an alternative syntax, similar
to the one used by web search engines.
</para>
<indexterm>
<primary>to_tsquery</primary>
</indexterm>
<synopsis>
to_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
</synopsis>
<para>
<function>to_tsquery</function> creates a <type>tsquery</type> value from
<replaceable>querytext</replaceable>, which must consist of single tokens
separated by the <type>tsquery</type> operators <literal>&</literal> (AND),
<literal>|</literal> (OR), <literal>!</literal> (NOT), and
<literal><-></literal> (FOLLOWED BY), possibly grouped
using parentheses. In other words, the input to
<function>to_tsquery</function> must already follow the general rules for
<type>tsquery</type> input, as described in <xref
linkend="datatype-tsquery"/>. The difference is that while basic
<type>tsquery</type> input takes the tokens at face value,
<function>to_tsquery</function> normalizes each token into a lexeme using
the specified or default configuration, and discards any tokens that are
stop words according to the configuration. For example:
<screen>
SELECT to_tsquery('english', 'The & Fat & Rats');
to_tsquery
---------------
'fat' & 'rat'
</screen>
As in basic <type>tsquery</type> input, weight(s) can be attached to each
lexeme to restrict it to match only <type>tsvector</type> lexemes of those
weight(s). For example:
<screen>
SELECT to_tsquery('english', 'Fat | Rats:AB');
to_tsquery
------------------
'fat' | 'rat':AB
</screen>
Also, <literal>*</literal> can be attached to a lexeme to specify prefix matching:
<screen>
SELECT to_tsquery('supern:*A & star:A*B');
to_tsquery
--------------------------
'supern':*A & 'star':*AB
</screen>
Such a lexeme will match any word in a <type>tsvector</type> that begins
with the given string.
</para>
<para>
<function>to_tsquery</function> can also accept single-quoted
phrases. This is primarily useful when the configuration includes a
thesaurus dictionary that may trigger on such phrases.
In the example below, a thesaurus contains the rule <literal>supernovae
stars : sn</literal>:
<screen>
SELECT to_tsquery('''supernovae stars'' & !crab');
to_tsquery
---------------
'sn' & !'crab'
</screen>
Without quotes, <function>to_tsquery</function> will generate a syntax
error for tokens that are not separated by an AND, OR, or FOLLOWED BY
operator.
</para>
<indexterm>
<primary>plainto_tsquery</primary>
</indexterm>
<synopsis>
plainto_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
</synopsis>
<para>
<function>plainto_tsquery</function> transforms the unformatted text
<replaceable>querytext</replaceable> to a <type>tsquery</type> value.
The text is parsed and normalized much as for <function>to_tsvector</function>,
then the <literal>&</literal> (AND) <type>tsquery</type> operator is
inserted between surviving words.
</para>
<para>
Example:
<screen>
SELECT plainto_tsquery('english', 'The Fat Rats');
plainto_tsquery
-----------------
'fat' & 'rat'
</screen>
Note that <function>plainto_tsquery</function> will not
recognize <type>tsquery</type> operators, weight labels,
or prefix-match labels in its input:
<screen>
SELECT plainto_tsquery('english', 'The Fat & Rats:C');
plainto_tsquery
---------------------
'fat' & 'rat' & 'c'
</screen>
Here, all the input punctuation was discarded.
</para>
<indexterm>
<primary>phraseto_tsquery</primary>
</indexterm>
<synopsis>
phraseto_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
</synopsis>
<para>
<function>phraseto_tsquery</function> behaves much like
<function>plainto_tsquery</function>, except that it inserts
the <literal><-></literal> (FOLLOWED BY) operator between
surviving words instead of the <literal>&</literal> (AND) operator.
Also, stop words are not simply discarded, but are accounted for by
inserting <literal><<replaceable>N</replaceable>></literal> operators rather
than <literal><-></literal> operators. This function is useful
when searching for exact lexeme sequences, since the FOLLOWED BY
operators check lexeme order not just the presence of all the lexemes.
</para>
<para>
Example:
<screen>
SELECT phraseto_tsquery('english', 'The Fat Rats');
phraseto_tsquery
------------------
'fat' <-> 'rat'
</screen>
Like <function>plainto_tsquery</function>, the
<function>phraseto_tsquery</function> function will not
recognize <type>tsquery</type> operators, weight labels,
or prefix-match labels in its input:
<screen>
SELECT phraseto_tsquery('english', 'The Fat & Rats:C');
phraseto_tsquery
-----------------------------
'fat' <-> 'rat' <-> 'c'
</screen>
</para>
<synopsis>
websearch_to_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
</synopsis>
<para>
<function>websearch_to_tsquery</function> creates a <type>tsquery</type>
value from <replaceable>querytext</replaceable> using an alternative
syntax in which simple unformatted text is a valid query.
Unlike <function>plainto_tsquery</function>
and <function>phraseto_tsquery</function>, it also recognizes certain
operators. Moreover, this function will never raise syntax errors,
which makes it possible to use raw user-supplied input for search.
The following syntax is supported:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
<literal>unquoted text</literal>: text not inside quote marks will be
converted to terms separated by <literal>&</literal> operators, as
if processed by <function>plainto_tsquery</function>.
</para>
</listitem>
<listitem>
<para>
<literal>"quoted text"</literal>: text inside quote marks will be
converted to terms separated by <literal><-></literal>
operators, as if processed by <function>phraseto_tsquery</function>.
</para>
</listitem>
<listitem>
<para>
<literal>OR</literal>: the word <quote>or</quote> will be converted to
the <literal>|</literal> operator.
</para>
</listitem>
<listitem>
<para>
<literal>-</literal>: a dash will be converted to
the <literal>!</literal> operator.
</para>
</listitem>
</itemizedlist>
Other punctuation is ignored. So
like <function>plainto_tsquery</function>
and <function>phraseto_tsquery</function>,
the <function>websearch_to_tsquery</function> function will not
recognize <type>tsquery</type> operators, weight labels, or prefix-match
labels in its input.
</para>
<para>
Examples:
<screen>
SELECT websearch_to_tsquery('english', 'The fat rats');
websearch_to_tsquery
----------------------
'fat' & 'rat'
(1 row)
SELECT websearch_to_tsquery('english', '"supernovae stars" -crab');
websearch_to_tsquery
----------------------------------
'supernova' <-> 'star' & !'crab'
(1 row)
SELECT websearch_to_tsquery('english', '"sad cat" or "fat rat"');
websearch_to_tsquery
-----------------------------------
'sad' <-> 'cat' | 'fat' <-> 'rat'
(1 row)
SELECT websearch_to_tsquery('english', 'signal -"segmentation fault"');
websearch_to_tsquery
---------------------------------------
'signal' & !( 'segment' <-> 'fault' )
(1 row)
SELECT websearch_to_tsquery('english', '""" )( dummy \\ query <->');
websearch_to_tsquery
----------------------
'dummi' & 'queri'
(1 row)
</screen>
</para>
</sect2>
<sect2 id="textsearch-ranking">
<title>Ranking Search Results</title>
<para>
Ranking attempts to measure how relevant documents are to a particular
query, so that when there are many matches the most relevant ones can be
shown first. <productname>PostgreSQL</productname> provides two
predefined ranking functions, which take into account lexical, proximity,
and structural information; that is, they consider how often the query
terms appear in the document, how close together the terms are in the
document, and how important is the part of the document where they occur.
However, the concept of relevancy is vague and very application-specific.
Different applications might require additional information for ranking,
e.g., document modification time. The built-in ranking functions are only
examples. You can write your own ranking functions and/or combine their
results with additional factors to fit your specific needs.
</para>
<para>
The two ranking functions currently available are:
<variablelist>
<varlistentry>
<term>
<indexterm>
<primary>ts_rank</primary>
</indexterm>
<literal>ts_rank(<optional> <replaceable class="parameter">weights</replaceable> <type>float4[]</type>, </optional> <replaceable class="parameter">vector</replaceable> <type>tsvector</type>, <replaceable class="parameter">query</replaceable> <type>tsquery</type> <optional>, <replaceable class="parameter">normalization</replaceable> <type>integer</type> </optional>) returns <type>float4</type></literal>
</term>
<listitem>
<para>
Ranks vectors based on the frequency of their matching lexemes.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<indexterm>
<primary>ts_rank_cd</primary>
</indexterm>
<literal>ts_rank_cd(<optional> <replaceable class="parameter">weights</replaceable> <type>float4[]</type>, </optional> <replaceable class="parameter">vector</replaceable> <type>tsvector</type>, <replaceable class="parameter">query</replaceable> <type>tsquery</type> <optional>, <replaceable class="parameter">normalization</replaceable> <type>integer</type> </optional>) returns <type>float4</type></literal>
</term>
<listitem>
<para>
This function computes the <firstterm>cover density</firstterm>
ranking for the given document vector and query, as described in
Clarke, Cormack, and Tudhope's "Relevance Ranking for One to Three
Term Queries" in the journal "Information Processing and Management",
1999. Cover density is similar to <function>ts_rank</function> ranking
except that the proximity of matching lexemes to each other is
taken into consideration.
</para>
<para>
This function requires lexeme positional information to perform
its calculation. Therefore, it ignores any <quote>stripped</quote>
lexemes in the <type>tsvector</type>. If there are no unstripped
lexemes in the input, the result will be zero. (See <xref
linkend="textsearch-manipulate-tsvector"/> for more information
about the <function>strip</function> function and positional information
in <type>tsvector</type>s.)
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
<para>
For both these functions,
the optional <replaceable class="parameter">weights</replaceable>
argument offers the ability to weigh word instances more or less
heavily depending on how they are labeled. The weight arrays specify
how heavily to weigh each category of word, in the order:
<synopsis>
{D-weight, C-weight, B-weight, A-weight}
</synopsis>
If no <replaceable class="parameter">weights</replaceable> are provided,
then these defaults are used:
<programlisting>
{0.1, 0.2, 0.4, 1.0}
</programlisting>
Typically weights are used to mark words from special areas of the
document, like the title or an initial abstract, so they can be
treated with more or less importance than words in the document body.
</para>
<para>
Since a longer document has a greater chance of containing a query term
it is reasonable to take into account document size, e.g., a hundred-word
document with five instances of a search word is probably more relevant
than a thousand-word document with five instances. Both ranking functions
take an integer <replaceable>normalization</replaceable> option that
specifies whether and how a document's length should impact its rank.
The integer option controls several behaviors, so it is a bit mask:
you can specify one or more behaviors using
<literal>|</literal> (for example, <literal>2|4</literal>).
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
0 (the default) ignores the document length
</para>
</listitem>
<listitem>
<para>
1 divides the rank by 1 + the logarithm of the document length
</para>
</listitem>
<listitem>
<para>
2 divides the rank by the document length
</para>
</listitem>
<listitem>
<para>
4 divides the rank by the mean harmonic distance between extents
(this is implemented only by <function>ts_rank_cd</function>)
</para>
</listitem>
<listitem>
<para>
8 divides the rank by the number of unique words in document
</para>
</listitem>
<listitem>
<para>
16 divides the rank by 1 + the logarithm of the number
of unique words in document
</para>
</listitem>
<listitem>
<para>
32 divides the rank by itself + 1
</para>
</listitem>
</itemizedlist>
If more than one flag bit is specified, the transformations are
applied in the order listed.
</para>
<para>
It is important to note that the ranking functions do not use any global
information, so it is impossible to produce a fair normalization to 1% or
100% as sometimes desired. Normalization option 32
(<literal>rank/(rank+1)</literal>) can be applied to scale all ranks
into the range zero to one, but of course this is just a cosmetic change;
it will not affect the ordering of the search results.
</para>
<para>
Here is an example that selects only the ten highest-ranked matches:
<screen>
SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
title | rank
-----------------------------------------------+----------
Neutrinos in the Sun | 3.1
The Sudbury Neutrino Detector | 2.4
A MACHO View of Galactic Dark Matter | 2.01317
Hot Gas and Dark Matter | 1.91171
The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
Rafting for Solar Neutrinos | 1.9
NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
Hot Gas and Dark Matter | 1.6123
Ice Fishing for Cosmic Neutrinos | 1.6
Weak Lensing Distorts the Universe | 0.818218
</screen>
This is the same example using normalized ranking:
<screen>
SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */ ) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
title | rank
-----------------------------------------------+-------------------
Neutrinos in the Sun | 0.756097569485493
The Sudbury Neutrino Detector | 0.705882361190954
A MACHO View of Galactic Dark Matter | 0.668123210574724
Hot Gas and Dark Matter | 0.65655958650282
The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
Rafting for Solar Neutrinos | 0.655172410958162
NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
Hot Gas and Dark Matter | 0.617195790024749
Ice Fishing for Cosmic Neutrinos | 0.615384618911517
Weak Lensing Distorts the Universe | 0.450010798361481
</screen>
</para>
<para>
Ranking can be expensive since it requires consulting the
<type>tsvector</type> of each matching document, which can be I/O bound and
therefore slow. Unfortunately, it is almost impossible to avoid since
practical queries often result in large numbers of matches.
</para>
</sect2>
<sect2 id="textsearch-headline">
<title>Highlighting Results</title>
<para>
To present search results it is ideal to show a part of each document and
how it is related to the query. Usually, search engines show fragments of
the document with marked search terms. <productname>PostgreSQL</productname>
provides a function <function>ts_headline</function> that
implements this functionality.
</para>
<indexterm>
<primary>ts_headline</primary>
</indexterm>
<synopsis>
ts_headline(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">document</replaceable> <type>text</type>, <replaceable class="parameter">query</replaceable> <type>tsquery</type> <optional>, <replaceable class="parameter">options</replaceable> <type>text</type> </optional>) returns <type>text</type>
</synopsis>
<para>
<function>ts_headline</function> accepts a document along
with a query, and returns an excerpt from
the document in which terms from the query are highlighted. The
configuration to be used to parse the document can be specified by
<replaceable>config</replaceable>; if <replaceable>config</replaceable>
is omitted, the
<varname>default_text_search_config</varname> configuration is used.
</para>
<para>
If an <replaceable>options</replaceable> string is specified it must
consist of a comma-separated list of one or more
<replaceable>option</replaceable><literal>=</literal><replaceable>value</replaceable> pairs.
The available options are:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
<literal>MaxWords</literal>, <literal>MinWords</literal> (integers):
these numbers determine the longest and shortest headlines to output.
The default values are 35 and 15.
</para>
</listitem>
<listitem>
<para>
<literal>ShortWord</literal> (integer): words of this length or less
will be dropped at the start and end of a headline, unless they are
query terms. The default value of three eliminates common English
articles.
</para>
</listitem>
<listitem>
<para>
<literal>HighlightAll</literal> (boolean): if
<literal>true</literal> the whole document will be used as the
headline, ignoring the preceding three parameters. The default
is <literal>false</literal>.
</para>
</listitem>
<listitem>
<para>
<literal>MaxFragments</literal> (integer): maximum number of text
fragments to display. The default value of zero selects a
non-fragment-based headline generation method. A value greater
than zero selects fragment-based headline generation (see below).
</para>
</listitem>
<listitem>
<para>
<literal>StartSel</literal>, <literal>StopSel</literal> (strings):
the strings with which to delimit query words appearing in the
document, to distinguish them from other excerpted words. The
default values are <quote><literal><b></literal></quote> and
<quote><literal></b></literal></quote>, which can be suitable
for HTML output.
</para>
</listitem>
<listitem>
<para>
<literal>FragmentDelimiter</literal> (string): When more than one
fragment is displayed, the fragments will be separated by this string.
The default is <quote><literal> ... </literal></quote>.
</para>
</listitem>
</itemizedlist>
These option names are recognized case-insensitively.
You must double-quote string values if they contain spaces or commas.
</para>
<para>
In non-fragment-based headline
generation, <function>ts_headline</function> locates matches for the
given <replaceable class="parameter">query</replaceable> and chooses a
single one to display, preferring matches that have more query words
within the allowed headline length.
In fragment-based headline generation, <function>ts_headline</function>
locates the query matches and splits each match
into <quote>fragments</quote> of no more than <literal>MaxWords</literal>
words each, preferring fragments with more query words, and when
possible <quote>stretching</quote> fragments to include surrounding
words. The fragment-based mode is thus more useful when the query
matches span large sections of the document, or when it's desirable to
display multiple matches.
In either mode, if no query matches can be identified, then a single
fragment of the first <literal>MinWords</literal> words in the document
will be displayed.
</para>
<para>
For example:
<screen>
SELECT ts_headline('english',
'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
to_tsquery('english', 'query & similarity'));
ts_headline
------------------------------------------------------------
containing given <b>query</b> terms +
and return them in order of their <b>similarity</b> to the+
<b>query</b>.
SELECT ts_headline('english',
'Search terms may occur
many times in a document,
requiring ranking of the search matches to decide which
occurrences to display in the result.',
to_tsquery('english', 'search & term'),
'MaxFragments=10, MaxWords=7, MinWords=3, StartSel=<<, StopSel=>>');
ts_headline
------------------------------------------------------------
<<Search>> <<terms>> may occur +
many times ... ranking of the <<search>> matches to decide
</screen>
</para>
<para>
<function>ts_headline</function> uses the original document, not a
<type>tsvector</type> summary, so it can be slow and should be used with
care.
</para>
</sect2>
</sect1>
<sect1 id="textsearch-features">
<title>Additional Features</title>
<para>
This section describes additional functions and operators that are
useful in connection with text search.
</para>
<sect2 id="textsearch-manipulate-tsvector">
<title>Manipulating Documents</title>
<para>
<xref linkend="textsearch-parsing-documents"/> showed how raw textual
documents can be converted into <type>tsvector</type> values.
<productname>PostgreSQL</productname> also provides functions and
operators that can be used to manipulate documents that are already
in <type>tsvector</type> form.
</para>
<variablelist>
<varlistentry>
<term>
<indexterm>
<primary>tsvector concatenation</primary>
</indexterm>
<literal><type>tsvector</type> || <type>tsvector</type></literal>
</term>
<listitem>
<para>
The <type>tsvector</type> concatenation operator
returns a vector which combines the lexemes and positional information
of the two vectors given as arguments. Positions and weight labels
are retained during the concatenation.
Positions appearing in the right-hand vector are offset by the largest
position mentioned in the left-hand vector, so that the result is
nearly equivalent to the result of performing <function>to_tsvector</function>
on the concatenation of the two original document strings. (The
equivalence is not exact, because any stop-words removed from the
end of the left-hand argument will not affect the result, whereas
they would have affected the positions of the lexemes in the
right-hand argument if textual concatenation were used.)
</para>
<para>
One advantage of using concatenation in the vector form, rather than
concatenating text before applying <function>to_tsvector</function>, is that
you can use different configurations to parse different sections
of the document. Also, because the <function>setweight</function> function
marks all lexemes of the given vector the same way, it is necessary
to parse the text and do <function>setweight</function> before concatenating
if you want to label different parts of the document with different
weights.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<indexterm>
<primary>setweight</primary>
</indexterm>
<literal>setweight(<replaceable class="parameter">vector</replaceable> <type>tsvector</type>, <replaceable class="parameter">weight</replaceable> <type>"char"</type>) returns <type>tsvector</type></literal>
</term>
<listitem>
<para>
<function>setweight</function> returns a copy of the input vector in which every
position has been labeled with the given <replaceable>weight</replaceable>, either
<literal>A</literal>, <literal>B</literal>, <literal>C</literal>, or
<literal>D</literal>. (<literal>D</literal> is the default for new
vectors and as such is not displayed on output.) These labels are
retained when vectors are concatenated, allowing words from different
parts of a document to be weighted differently by ranking functions.
</para>
<para>
Note that weight labels apply to <emphasis>positions</emphasis>, not
<emphasis>lexemes</emphasis>. If the input vector has been stripped of
positions then <function>setweight</function> does nothing.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<indexterm>
<primary>length(tsvector)</primary>
</indexterm>
<literal>length(<replaceable class="parameter">vector</replaceable> <type>tsvector</type>) returns <type>integer</type></literal>
</term>
<listitem>
<para>
Returns the number of lexemes stored in the vector.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<indexterm>
<primary>strip</primary>
</indexterm>
<literal>strip(<replaceable class="parameter">vector</replaceable> <type>tsvector</type>) returns <type>tsvector</type></literal>
</term>
<listitem>
<para>
Returns a vector that lists the same lexemes as the given vector, but
lacks any position or weight information. The result is usually much
smaller than an unstripped vector, but it is also less useful.
Relevance ranking does not work as well on stripped vectors as
unstripped ones. Also,
the <literal><-></literal> (FOLLOWED BY) <type>tsquery</type> operator
will never match stripped input, since it cannot determine the
distance between lexeme occurrences.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>
A full list of <type>tsvector</type>-related functions is available
in <xref linkend="textsearch-functions-table"/>.
</para>
</sect2>
<sect2 id="textsearch-manipulate-tsquery">
<title>Manipulating Queries</title>
<para>
<xref linkend="textsearch-parsing-queries"/> showed how raw textual
queries can be converted into <type>tsquery</type> values.
<productname>PostgreSQL</productname> also provides functions and
operators that can be used to manipulate queries that are already
in <type>tsquery</type> form.
</para>
<variablelist>
<varlistentry>
<term>
<literal><type>tsquery</type> && <type>tsquery</type></literal>
</term>
<listitem>
<para>
Returns the AND-combination of the two given queries.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<literal><type>tsquery</type> || <type>tsquery</type></literal>
</term>
<listitem>
<para>
Returns the OR-combination of the two given queries.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<literal>!! <type>tsquery</type></literal>
</term>
<listitem>
<para>
Returns the negation (NOT) of the given query.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<literal><type>tsquery</type> <-> <type>tsquery</type></literal>
</term>
<listitem>
<para>
Returns a query that searches for a match to the first given query
immediately followed by a match to the second given query, using
the <literal><-></literal> (FOLLOWED BY)
<type>tsquery</type> operator. For example:
<screen>
SELECT to_tsquery('fat') <-> to_tsquery('cat | rat');
?column?
----------------------------
'fat' <-> ( 'cat' | 'rat' )
</screen>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<indexterm>
<primary>tsquery_phrase</primary>
</indexterm>
<literal>tsquery_phrase(<replaceable class="parameter">query1</replaceable> <type>tsquery</type>, <replaceable class="parameter">query2</replaceable> <type>tsquery</type> [, <replaceable class="parameter">distance</replaceable> <type>integer</type> ]) returns <type>tsquery</type></literal>
</term>
<listitem>
<para>
Returns a query that searches for a match to the first given query
followed by a match to the second given query at a distance of exactly
<replaceable>distance</replaceable> lexemes, using
the <literal><<replaceable>N</replaceable>></literal>
<type>tsquery</type> operator. For example:
<screen>
SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10);
tsquery_phrase
------------------
'fat' <10> 'cat'
</screen>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<indexterm>
<primary>numnode</primary>
</indexterm>
<literal>numnode(<replaceable class="parameter">query</replaceable> <type>tsquery</type>) returns <type>integer</type></literal>
</term>
<listitem>
<para>
Returns the number of nodes (lexemes plus operators) in a
<type>tsquery</type>. This function is useful
to determine if the <replaceable>query</replaceable> is meaningful
(returns > 0), or contains only stop words (returns 0).
Examples:
<screen>
SELECT numnode(plainto_tsquery('the any'));
NOTICE: query contains only stopword(s) or doesn't contain lexeme(s), ignored
numnode
---------
0
SELECT numnode('foo & bar'::tsquery);
numnode
---------
3
</screen>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<indexterm>
<primary>querytree</primary>
</indexterm>
<literal>querytree(<replaceable class="parameter">query</replaceable> <type>tsquery</type>) returns <type>text</type></literal>
</term>
<listitem>
<para>
Returns the portion of a <type>tsquery</type> that can be used for
searching an index. This function is useful for detecting
unindexable queries, for example those containing only stop words
or only negated terms. For example:
<screen>
SELECT querytree(to_tsquery('defined'));
querytree
-----------
'defin'
SELECT querytree(to_tsquery('!defined'));
querytree
-----------
T
</screen>
</para>
</listitem>
</varlistentry>
</variablelist>
<sect3 id="textsearch-query-rewriting">
<title>Query Rewriting</title>
<indexterm zone="textsearch-query-rewriting">
<primary>ts_rewrite</primary>
</indexterm>
<para>
The <function>ts_rewrite</function> family of functions search a
given <type>tsquery</type> for occurrences of a target
subquery, and replace each occurrence with a
substitute subquery. In essence this operation is a
<type>tsquery</type>-specific version of substring replacement.
A target and substitute combination can be
thought of as a <firstterm>query rewrite rule</firstterm>. A collection
of such rewrite rules can be a powerful search aid.
For example, you can expand the search using synonyms
(e.g., <literal>new york</literal>, <literal>big apple</literal>, <literal>nyc</literal>,
<literal>gotham</literal>) or narrow the search to direct the user to some hot
topic. There is some overlap in functionality between this feature
and thesaurus dictionaries (<xref linkend="textsearch-thesaurus"/>).
However, you can modify a set of rewrite rules on-the-fly without
reindexing, whereas updating a thesaurus requires reindexing to be
effective.
</para>
<variablelist>
<varlistentry>
<term>
<literal>ts_rewrite (<replaceable class="parameter">query</replaceable> <type>tsquery</type>, <replaceable class="parameter">target</replaceable> <type>tsquery</type>, <replaceable class="parameter">substitute</replaceable> <type>tsquery</type>) returns <type>tsquery</type></literal>
</term>
<listitem>
<para>
This form of <function>ts_rewrite</function> simply applies a single
rewrite rule: <replaceable class="parameter">target</replaceable>
is replaced by <replaceable class="parameter">substitute</replaceable>
wherever it appears in <replaceable
class="parameter">query</replaceable>. For example:
<screen>
SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'c'::tsquery);
ts_rewrite
------------
'b' & 'c'
</screen>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<literal>ts_rewrite (<replaceable class="parameter">query</replaceable> <type>tsquery</type>, <replaceable class="parameter">select</replaceable> <type>text</type>) returns <type>tsquery</type></literal>
</term>
<listitem>
<para>
This form of <function>ts_rewrite</function> accepts a starting
<replaceable>query</replaceable> and an SQL <replaceable>select</replaceable> command, which
is given as a text string. The <replaceable>select</replaceable> must yield two
columns of <type>tsquery</type> type. For each row of the
<replaceable>select</replaceable> result, occurrences of the first column value
(the target) are replaced by the second column value (the substitute)
within the current <replaceable>query</replaceable> value. For example:
<screen>
CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
INSERT INTO aliases VALUES('a', 'c');
SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases');
ts_rewrite
------------
'b' & 'c'
</screen>
</para>
<para>
Note that when multiple rewrite rules are applied in this way,
the order of application can be important; so in practice you will
want the source query to <literal>ORDER BY</literal> some ordering key.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>
Let's consider a real-life astronomical example. We'll expand query
<literal>supernovae</literal> using table-driven rewriting rules:
<screen>
CREATE TABLE aliases (t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES(to_tsquery('supernovae'), to_tsquery('supernovae|sn'));
SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
ts_rewrite
---------------------------------
'crab' & ( 'supernova' | 'sn' )
</screen>
We can change the rewriting rules just by updating the table:
<screen>
UPDATE aliases
SET s = to_tsquery('supernovae|sn & !nebulae')
WHERE t = to_tsquery('supernovae');
SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
ts_rewrite
---------------------------------------------
'crab' & ( 'supernova' | 'sn' & !'nebula' )
</screen>
</para>
<para>
Rewriting can be slow when there are many rewriting rules, since it
checks every rule for a possible match. To filter out obvious non-candidate
rules we can use the containment operators for the <type>tsquery</type>
type. In the example below, we select only those rules which might match
the original query:
<screen>
SELECT ts_rewrite('a & b'::tsquery,
'SELECT t,s FROM aliases WHERE ''a & b''::tsquery @> t');
ts_rewrite
------------
'b' & 'c'
</screen>
</para>
</sect3>
</sect2>
<sect2 id="textsearch-update-triggers">
<title>Triggers for Automatic Updates</title>
<indexterm>
<primary>trigger</primary>
<secondary>for updating a derived tsvector column</secondary>
</indexterm>
<note>
<para>
The method described in this section has been obsoleted by the use of
stored generated columns, as described in <xref
linkend="textsearch-tables-index"/>.
</para>
</note>
<para>
When using a separate column to store the <type>tsvector</type> representation
of your documents, it is necessary to create a trigger to update the
<type>tsvector</type> column when the document content columns change.
Two built-in trigger functions are available for this, or you can write
your own.
</para>
<synopsis>
tsvector_update_trigger(<replaceable class="parameter">tsvector_column_name</replaceable>,&zwsp; <replaceable class="parameter">config_name</replaceable>, <replaceable class="parameter">text_column_name</replaceable> <optional>, ... </optional>)
tsvector_update_trigger_column(<replaceable class="parameter">tsvector_column_name</replaceable>,&zwsp; <replaceable class="parameter">config_column_name</replaceable>, <replaceable class="parameter">text_column_name</replaceable> <optional>, ... </optional>)
</synopsis>
<para>
These trigger functions automatically compute a <type>tsvector</type>
column from one or more textual columns, under the control of
parameters specified in the <command>CREATE TRIGGER</command> command.
An example of their use is:
<screen>
CREATE TABLE messages (
title text,
body text,
tsv tsvector
);
CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE FUNCTION
tsvector_update_trigger(tsv, 'pg_catalog.english', title, body);
INSERT INTO messages VALUES('title here', 'the body text is here');
SELECT * FROM messages;
title | body | tsv
------------+-----------------------+----------------------------
title here | the body text is here | 'bodi':4 'text':5 'titl':1
SELECT title, body FROM messages WHERE tsv @@ to_tsquery('title & body');
title | body
------------+-----------------------
title here | the body text is here
</screen>
Having created this trigger, any change in <structfield>title</structfield> or
<structfield>body</structfield> will automatically be reflected into
<structfield>tsv</structfield>, without the application having to worry about it.
</para>
<para>
The first trigger argument must be the name of the <type>tsvector</type>
column to be updated. The second argument specifies the text search
configuration to be used to perform the conversion. For
<function>tsvector_update_trigger</function>, the configuration name is simply
given as the second trigger argument. It must be schema-qualified as
shown above, so that the trigger behavior will not change with changes
in <varname>search_path</varname>. For
<function>tsvector_update_trigger_column</function>, the second trigger argument
is the name of another table column, which must be of type
<type>regconfig</type>. This allows a per-row selection of configuration
to be made. The remaining argument(s) are the names of textual columns
(of type <type>text</type>, <type>varchar</type>, or <type>char</type>). These
will be included in the document in the order given. NULL values will
be skipped (but the other columns will still be indexed).
</para>
<para>
A limitation of these built-in triggers is that they treat all the
input columns alike. To process columns differently — for
example, to weight title differently from body — it is necessary
to write a custom trigger. Here is an example using
<application>PL/pgSQL</application> as the trigger language:
<programlisting>
CREATE FUNCTION messages_trigger() RETURNS trigger AS $$
begin
new.tsv :=
setweight(to_tsvector('pg_catalog.english', coalesce(new.title,'')), 'A') ||
setweight(to_tsvector('pg_catalog.english', coalesce(new.body,'')), 'D');
return new;
end
$$ LANGUAGE plpgsql;
CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE FUNCTION messages_trigger();
</programlisting>
</para>
<para>
Keep in mind that it is important to specify the configuration name
explicitly when creating <type>tsvector</type> values inside triggers,
so that the column's contents will not be affected by changes to
<varname>default_text_search_config</varname>. Failure to do this is likely to
lead to problems such as search results changing after a dump and restore.
</para>
</sect2>
<sect2 id="textsearch-statistics">
<title>Gathering Document Statistics</title>
<indexterm>
<primary>ts_stat</primary>
</indexterm>
<para>
The function <function>ts_stat</function> is useful for checking your
configuration and for finding stop-word candidates.
</para>
<synopsis>
ts_stat(<replaceable class="parameter">sqlquery</replaceable> <type>text</type>, <optional> <replaceable class="parameter">weights</replaceable> <type>text</type>, </optional>
OUT <replaceable class="parameter">word</replaceable> <type>text</type>, OUT <replaceable class="parameter">ndoc</replaceable> <type>integer</type>,
OUT <replaceable class="parameter">nentry</replaceable> <type>integer</type>) returns <type>setof record</type>
</synopsis>
<para>
<replaceable>sqlquery</replaceable> is a text value containing an SQL
query which must return a single <type>tsvector</type> column.
<function>ts_stat</function> executes the query and returns statistics about
each distinct lexeme (word) contained in the <type>tsvector</type>
data. The columns returned are
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
<replaceable>word</replaceable> <type>text</type> — the value of a lexeme
</para>
</listitem>
<listitem>
<para>
<replaceable>ndoc</replaceable> <type>integer</type> — number of documents
(<type>tsvector</type>s) the word occurred in
</para>
</listitem>
<listitem>
<para>
<replaceable>nentry</replaceable> <type>integer</type> — total number of
occurrences of the word
</para>
</listitem>
</itemizedlist>
If <replaceable>weights</replaceable> is supplied, only occurrences
having one of those weights are counted.
</para>
<para>
For example, to find the ten most frequent words in a document collection:
<programlisting>
SELECT * FROM ts_stat('SELECT vector FROM apod')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;
</programlisting>
The same, but counting only word occurrences with weight <literal>A</literal>
or <literal>B</literal>:
<programlisting>
SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;
</programlisting>
</para>
</sect2>
</sect1>
<sect1 id="textsearch-parsers">
<title>Parsers</title>
<para>
Text search parsers are responsible for splitting raw document text
into <firstterm>tokens</firstterm> and identifying each token's type, where
the set of possible types is defined by the parser itself.
Note that a parser does not modify the text at all — it simply
identifies plausible word boundaries. Because of this limited scope,
there is less need for application-specific custom parsers than there is
for custom dictionaries. At present <productname>PostgreSQL</productname>
provides just one built-in parser, which has been found to be useful for a
wide range of applications.
</para>
<para>
The built-in parser is named <literal>pg_catalog.default</literal>.
It recognizes 23 token types, shown in <xref linkend="textsearch-default-parser"/>.
</para>
<table id="textsearch-default-parser">
<title>Default Parser's Token Types</title>
<tgroup cols="3">
<colspec colname="col1" colwidth="2*"/>
<colspec colname="col2" colwidth="2*"/>
<colspec colname="col3" colwidth="3*"/>
<thead>
<row>
<entry>Alias</entry>
<entry>Description</entry>
<entry>Example</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>asciiword</literal></entry>
<entry>Word, all ASCII letters</entry>
<entry><literal>elephant</literal></entry>
</row>
<row>
<entry><literal>word</literal></entry>
<entry>Word, all letters</entry>
<entry><literal>mañana</literal></entry>
</row>
<row>
<entry><literal>numword</literal></entry>
<entry>Word, letters and digits</entry>
<entry><literal>beta1</literal></entry>
</row>
<row>
<entry><literal>asciihword</literal></entry>
<entry>Hyphenated word, all ASCII</entry>
<entry><literal>up-to-date</literal></entry>
</row>
<row>
<entry><literal>hword</literal></entry>
<entry>Hyphenated word, all letters</entry>
<entry><literal>lógico-matemática</literal></entry>
</row>
<row>
<entry><literal>numhword</literal></entry>
<entry>Hyphenated word, letters and digits</entry>
<entry><literal>postgresql-beta1</literal></entry>
</row>
<row>
<entry><literal>hword_asciipart</literal></entry>
<entry>Hyphenated word part, all ASCII</entry>
<entry><literal>postgresql</literal> in the context <literal>postgresql-beta1</literal></entry>
</row>
<row>
<entry><literal>hword_part</literal></entry>
<entry>Hyphenated word part, all letters</entry>
<entry><literal>lógico</literal> or <literal>matemática</literal>
in the context <literal>lógico-matemática</literal></entry>
</row>
<row>
<entry><literal>hword_numpart</literal></entry>
<entry>Hyphenated word part, letters and digits</entry>
<entry><literal>beta1</literal> in the context
<literal>postgresql-beta1</literal></entry>
</row>
<row>
<entry><literal>email</literal></entry>
<entry>Email address</entry>
<entry><literal>foo@example.com</literal></entry>
</row>
<row>
<entry><literal>protocol</literal></entry>
<entry>Protocol head</entry>
<entry><literal>http://</literal></entry>
</row>
<row>
<entry><literal>url</literal></entry>
<entry>URL</entry>
<entry><literal>example.com/stuff/index.html</literal></entry>
</row>
<row>
<entry><literal>host</literal></entry>
<entry>Host</entry>
<entry><literal>example.com</literal></entry>
</row>
<row>
<entry><literal>url_path</literal></entry>
<entry>URL path</entry>
<entry><literal>/stuff/index.html</literal>, in the context of a URL</entry>
</row>
<row>
<entry><literal>file</literal></entry>
<entry>File or path name</entry>
<entry><literal>/usr/local/foo.txt</literal>, if not within a URL</entry>
</row>
<row>
<entry><literal>sfloat</literal></entry>
<entry>Scientific notation</entry>
<entry><literal>-1.234e56</literal></entry>
</row>
<row>
<entry><literal>float</literal></entry>
<entry>Decimal notation</entry>
<entry><literal>-1.234</literal></entry>
</row>
<row>
<entry><literal>int</literal></entry>
<entry>Signed integer</entry>
<entry><literal>-1234</literal></entry>
</row>
<row>
<entry><literal>uint</literal></entry>
<entry>Unsigned integer</entry>
<entry><literal>1234</literal></entry>
</row>
<row>
<entry><literal>version</literal></entry>
<entry>Version number</entry>
<entry><literal>8.3.0</literal></entry>
</row>
<row>
<entry><literal>tag</literal></entry>
<entry>XML tag</entry>
<entry><literal><a href="dictionaries.html"></literal></entry>
</row>
<row>
<entry><literal>entity</literal></entry>
<entry>XML entity</entry>
<entry><literal>&amp;</literal></entry>
</row>
<row>
<entry><literal>blank</literal></entry>
<entry>Space symbols</entry>
<entry>(any whitespace or punctuation not otherwise recognized)</entry>
</row>
</tbody>
</tgroup>
</table>
<note>
<para>
The parser's notion of a <quote>letter</quote> is determined by the database's
locale setting, specifically <varname>lc_ctype</varname>. Words containing
only the basic ASCII letters are reported as a separate token type,
since it is sometimes useful to distinguish them. In most European
languages, token types <literal>word</literal> and <literal>asciiword</literal>
should be treated alike.
</para>
<para>
<literal>email</literal> does not support all valid email characters as
defined by <ulink url="https://tools.ietf.org/html/rfc5322">RFC 5322</ulink>.
Specifically, the only non-alphanumeric characters supported for
email user names are period, dash, and underscore.
</para>
</note>
<para>
It is possible for the parser to produce overlapping tokens from the same
piece of text. As an example, a hyphenated word will be reported both
as the entire word and as each component:
<screen>
SELECT alias, description, token FROM ts_debug('foo-bar-beta1');
alias | description | token
-----------------+------------------------------------------+---------------
numhword | Hyphenated word, letters and digits | foo-bar-beta1
hword_asciipart | Hyphenated word part, all ASCII | foo
blank | Space symbols | -
hword_asciipart | Hyphenated word part, all ASCII | bar
blank | Space symbols | -
hword_numpart | Hyphenated word part, letters and digits | beta1
</screen>
This behavior is desirable since it allows searches to work for both
the whole compound word and for components. Here is another
instructive example:
<screen>
SELECT alias, description, token FROM ts_debug('http://example.com/stuff/index.html');
alias | description | token
----------+---------------+------------------------------
protocol | Protocol head | http://
url | URL | example.com/stuff/index.html
host | Host | example.com
url_path | URL path | /stuff/index.html
</screen>
</para>
</sect1>
<sect1 id="textsearch-dictionaries">
<title>Dictionaries</title>
<para>
Dictionaries are used to eliminate words that should not be considered in a
search (<firstterm>stop words</firstterm>), and to <firstterm>normalize</firstterm> words so
that different derived forms of the same word will match. A successfully
normalized word is called a <firstterm>lexeme</firstterm>. Aside from
improving search quality, normalization and removal of stop words reduce the
size of the <type>tsvector</type> representation of a document, thereby
improving performance. Normalization does not always have linguistic meaning
and usually depends on application semantics.
</para>
<para>
Some examples of normalization:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
Linguistic — Ispell dictionaries try to reduce input words to a
normalized form; stemmer dictionaries remove word endings
</para>
</listitem>
<listitem>
<para>
<acronym>URL</acronym> locations can be canonicalized to make
equivalent URLs match:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
http://www.pgsql.ru/db/mw/index.html
</para>
</listitem>
<listitem>
<para>
http://www.pgsql.ru/db/mw/
</para>
</listitem>
<listitem>
<para>
http://www.pgsql.ru/db/../db/mw/index.html
</para>
</listitem>
</itemizedlist>
</para>
</listitem>
<listitem>
<para>
Color names can be replaced by their hexadecimal values, e.g.,
<literal>red, green, blue, magenta -> FF0000, 00FF00, 0000FF, FF00FF</literal>
</para>
</listitem>
<listitem>
<para>
If indexing numbers, we can
remove some fractional digits to reduce the range of possible
numbers, so for example <emphasis>3.14</emphasis>159265359,
<emphasis>3.14</emphasis>15926, <emphasis>3.14</emphasis> will be the same
after normalization if only two digits are kept after the decimal point.
</para>
</listitem>
</itemizedlist>
</para>
<para>
A dictionary is a program that accepts a token as
input and returns:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
an array of lexemes if the input token is known to the dictionary
(notice that one token can produce more than one lexeme)
</para>
</listitem>
<listitem>
<para>
a single lexeme with the <literal>TSL_FILTER</literal> flag set, to replace
the original token with a new token to be passed to subsequent
dictionaries (a dictionary that does this is called a
<firstterm>filtering dictionary</firstterm>)
</para>
</listitem>
<listitem>
<para>
an empty array if the dictionary knows the token, but it is a stop word
</para>
</listitem>
<listitem>
<para>
<literal>NULL</literal> if the dictionary does not recognize the input token
</para>
</listitem>
</itemizedlist>
</para>
<para>
<productname>PostgreSQL</productname> provides predefined dictionaries for
many languages. There are also several predefined templates that can be
used to create new dictionaries with custom parameters. Each predefined
dictionary template is described below. If no existing
template is suitable, it is possible to create new ones; see the
<filename>contrib/</filename> area of the <productname>PostgreSQL</productname> distribution
for examples.
</para>
<para>
A text search configuration binds a parser together with a set of
dictionaries to process the parser's output tokens. For each token
type that the parser can return, a separate list of dictionaries is
specified by the configuration. When a token of that type is found
by the parser, each dictionary in the list is consulted in turn,
until some dictionary recognizes it as a known word. If it is identified
as a stop word, or if no dictionary recognizes the token, it will be
discarded and not indexed or searched for.
Normally, the first dictionary that returns a non-<literal>NULL</literal>
output determines the result, and any remaining dictionaries are not
consulted; but a filtering dictionary can replace the given word
with a modified word, which is then passed to subsequent dictionaries.
</para>
<para>
The general rule for configuring a list of dictionaries
is to place first the most narrow, most specific dictionary, then the more
general dictionaries, finishing with a very general dictionary, like
a <application>Snowball</application> stemmer or <literal>simple</literal>, which
recognizes everything. For example, for an astronomy-specific search
(<literal>astro_en</literal> configuration) one could bind token type
<type>asciiword</type> (ASCII word) to a synonym dictionary of astronomical
terms, a general English dictionary and a <application>Snowball</application> English
stemmer:
<programlisting>
ALTER TEXT SEARCH CONFIGURATION astro_en
ADD MAPPING FOR asciiword WITH astrosyn, english_ispell, english_stem;
</programlisting>
</para>
<para>
A filtering dictionary can be placed anywhere in the list, except at the
end where it'd be useless. Filtering dictionaries are useful to partially
normalize words to simplify the task of later dictionaries. For example,
a filtering dictionary could be used to remove accents from accented
letters, as is done by the <xref linkend="unaccent"/> module.
</para>
<sect2 id="textsearch-stopwords">
<title>Stop Words</title>
<para>
Stop words are words that are very common, appear in almost every
document, and have no discrimination value. Therefore, they can be ignored
in the context of full text searching. For example, every English text
contains words like <literal>a</literal> and <literal>the</literal>, so it is
useless to store them in an index. However, stop words do affect the
positions in <type>tsvector</type>, which in turn affect ranking:
<screen>
SELECT to_tsvector('english', 'in the list of stop words');
to_tsvector
----------------------------
'list':3 'stop':5 'word':6
</screen>
The missing positions 1,2,4 are because of stop words. Ranks
calculated for documents with and without stop words are quite different:
<screen>
SELECT ts_rank_cd (to_tsvector('english', 'in the list of stop words'), to_tsquery('list & stop'));
ts_rank_cd
------------
0.05
SELECT ts_rank_cd (to_tsvector('english', 'list stop words'), to_tsquery('list & stop'));
ts_rank_cd
------------
0.1
</screen>
</para>
<para>
It is up to the specific dictionary how it treats stop words. For example,
<literal>ispell</literal> dictionaries first normalize words and then
look at the list of stop words, while <literal>Snowball</literal> stemmers
first check the list of stop words. The reason for the different
behavior is an attempt to decrease noise.
</para>
</sect2>
<sect2 id="textsearch-simple-dictionary">
<title>Simple Dictionary</title>
<para>
The <literal>simple</literal> dictionary template operates by converting the
input token to lower case and checking it against a file of stop words.
If it is found in the file then an empty array is returned, causing
the token to be discarded. If not, the lower-cased form of the word
is returned as the normalized lexeme. Alternatively, the dictionary
can be configured to report non-stop-words as unrecognized, allowing
them to be passed on to the next dictionary in the list.
</para>
<para>
Here is an example of a dictionary definition using the <literal>simple</literal>
template:
<programlisting>
CREATE TEXT SEARCH DICTIONARY public.simple_dict (
TEMPLATE = pg_catalog.simple,
STOPWORDS = english
);
</programlisting>
Here, <literal>english</literal> is the base name of a file of stop words.
The file's full name will be
<filename>$SHAREDIR/tsearch_data/english.stop</filename>,
where <literal>$SHAREDIR</literal> means the
<productname>PostgreSQL</productname> installation's shared-data directory,
often <filename>/usr/local/share/postgresql</filename> (use <command>pg_config
--sharedir</command> to determine it if you're not sure).
The file format is simply a list
of words, one per line. Blank lines and trailing spaces are ignored,
and upper case is folded to lower case, but no other processing is done
on the file contents.
</para>
<para>
Now we can test our dictionary:
<screen>
SELECT ts_lexize('public.simple_dict', 'YeS');
ts_lexize
-----------
{yes}
SELECT ts_lexize('public.simple_dict', 'The');
ts_lexize
-----------
{}
</screen>
</para>
<para>
We can also choose to return <literal>NULL</literal>, instead of the lower-cased
word, if it is not found in the stop words file. This behavior is
selected by setting the dictionary's <literal>Accept</literal> parameter to
<literal>false</literal>. Continuing the example:
<screen>
ALTER TEXT SEARCH DICTIONARY public.simple_dict ( Accept = false );
SELECT ts_lexize('public.simple_dict', 'YeS');
ts_lexize
-----------
SELECT ts_lexize('public.simple_dict', 'The');
ts_lexize
-----------
{}
</screen>
</para>
<para>
With the default setting of <literal>Accept</literal> = <literal>true</literal>,
it is only useful to place a <literal>simple</literal> dictionary at the end
of a list of dictionaries, since it will never pass on any token to
a following dictionary. Conversely, <literal>Accept</literal> = <literal>false</literal>
is only useful when there is at least one following dictionary.
</para>
<caution>
<para>
Most types of dictionaries rely on configuration files, such as files of
stop words. These files <emphasis>must</emphasis> be stored in UTF-8 encoding.
They will be translated to the actual database encoding, if that is
different, when they are read into the server.
</para>
</caution>
<caution>
<para>
Normally, a database session will read a dictionary configuration file
only once, when it is first used within the session. If you modify a
configuration file and want to force existing sessions to pick up the
new contents, issue an <command>ALTER TEXT SEARCH DICTIONARY</command> command
on the dictionary. This can be a <quote>dummy</quote> update that doesn't
actually change any parameter values.
</para>
</caution>
</sect2>
<sect2 id="textsearch-synonym-dictionary">
<title>Synonym Dictionary</title>
<para>
This dictionary template is used to create dictionaries that replace a
word with a synonym. Phrases are not supported (use the thesaurus
template (<xref linkend="textsearch-thesaurus"/>) for that). A synonym
dictionary can be used to overcome linguistic problems, for example, to
prevent an English stemmer dictionary from reducing the word <quote>Paris</quote> to
<quote>pari</quote>. It is enough to have a <literal>Paris paris</literal> line in the
synonym dictionary and put it before the <literal>english_stem</literal>
dictionary. For example:
<screen>
SELECT * FROM ts_debug('english', 'Paris');
alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+----------------+--------------+---------
asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}
CREATE TEXT SEARCH DICTIONARY my_synonym (
TEMPLATE = synonym,
SYNONYMS = my_synonyms
);
ALTER TEXT SEARCH CONFIGURATION english
ALTER MAPPING FOR asciiword
WITH my_synonym, english_stem;
SELECT * FROM ts_debug('english', 'Paris');
alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+---------------------------+------------+---------
asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}
</screen>
</para>
<para>
The only parameter required by the <literal>synonym</literal> template is
<literal>SYNONYMS</literal>, which is the base name of its configuration file
— <literal>my_synonyms</literal> in the above example.
The file's full name will be
<filename>$SHAREDIR/tsearch_data/my_synonyms.syn</filename>
(where <literal>$SHAREDIR</literal> means the
<productname>PostgreSQL</productname> installation's shared-data directory).
The file format is just one line
per word to be substituted, with the word followed by its synonym,
separated by white space. Blank lines and trailing spaces are ignored.
</para>
<para>
The <literal>synonym</literal> template also has an optional parameter
<literal>CaseSensitive</literal>, which defaults to <literal>false</literal>. When
<literal>CaseSensitive</literal> is <literal>false</literal>, words in the synonym file
are folded to lower case, as are input tokens. When it is
<literal>true</literal>, words and tokens are not folded to lower case,
but are compared as-is.
</para>
<para>
An asterisk (<literal>*</literal>) can be placed at the end of a synonym
in the configuration file. This indicates that the synonym is a prefix.
The asterisk is ignored when the entry is used in
<function>to_tsvector()</function>, but when it is used in
<function>to_tsquery()</function>, the result will be a query item with
the prefix match marker (see
<xref linkend="textsearch-parsing-queries"/>).
For example, suppose we have these entries in
<filename>$SHAREDIR/tsearch_data/synonym_sample.syn</filename>:
<programlisting>
postgres pgsql
postgresql pgsql
postgre pgsql
gogle googl
indices index*
</programlisting>
Then we will get these results:
<screen>
mydb=# CREATE TEXT SEARCH DICTIONARY syn (template=synonym, synonyms='synonym_sample');
mydb=# SELECT ts_lexize('syn', 'indices');
ts_lexize
-----------
{index}
(1 row)
mydb=# CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
mydb=# ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH syn;
mydb=# SELECT to_tsvector('tst', 'indices');
to_tsvector
-------------
'index':1
(1 row)
mydb=# SELECT to_tsquery('tst', 'indices');
to_tsquery
------------
'index':*
(1 row)
mydb=# SELECT 'indexes are very useful'::tsvector;
tsvector
---------------------------------
'are' 'indexes' 'useful' 'very'
(1 row)
mydb=# SELECT 'indexes are very useful'::tsvector @@ to_tsquery('tst', 'indices');
?column?
----------
t
(1 row)
</screen>
</para>
</sect2>
<sect2 id="textsearch-thesaurus">
<title>Thesaurus Dictionary</title>
<para>
A thesaurus dictionary (sometimes abbreviated as <acronym>TZ</acronym>) is
a collection of words that includes information about the relationships
of words and phrases, i.e., broader terms (<acronym>BT</acronym>), narrower
terms (<acronym>NT</acronym>), preferred terms, non-preferred terms, related
terms, etc.
</para>
<para>
Basically a thesaurus dictionary replaces all non-preferred terms by one
preferred term and, optionally, preserves the original terms for indexing
as well. <productname>PostgreSQL</productname>'s current implementation of the
thesaurus dictionary is an extension of the synonym dictionary with added
<firstterm>phrase</firstterm> support. A thesaurus dictionary requires
a configuration file of the following format:
<programlisting>
# this is a comment
sample word(s) : indexed word(s)
more sample word(s) : more indexed word(s)
...
</programlisting>
where the colon (<symbol>:</symbol>) symbol acts as a delimiter between a
phrase and its replacement.
</para>
<para>
A thesaurus dictionary uses a <firstterm>subdictionary</firstterm> (which
is specified in the dictionary's configuration) to normalize the input
text before checking for phrase matches. It is only possible to select one
subdictionary. An error is reported if the subdictionary fails to
recognize a word. In that case, you should remove the use of the word or
teach the subdictionary about it. You can place an asterisk
(<symbol>*</symbol>) at the beginning of an indexed word to skip applying
the subdictionary to it, but all sample words <emphasis>must</emphasis> be known
to the subdictionary.
</para>
<para>
The thesaurus dictionary chooses the longest match if there are multiple
phrases matching the input, and ties are broken by using the last
definition.
</para>
<para>
Specific stop words recognized by the subdictionary cannot be
specified; instead use <literal>?</literal> to mark the location where any
stop word can appear. For example, assuming that <literal>a</literal> and
<literal>the</literal> are stop words according to the subdictionary:
<programlisting>
? one ? two : swsw
</programlisting>
matches <literal>a one the two</literal> and <literal>the one a two</literal>;
both would be replaced by <literal>swsw</literal>.
</para>
<para>
Since a thesaurus dictionary has the capability to recognize phrases it
must remember its state and interact with the parser. A thesaurus dictionary
uses these assignments to check if it should handle the next word or stop
accumulation. The thesaurus dictionary must be configured
carefully. For example, if the thesaurus dictionary is assigned to handle
only the <literal>asciiword</literal> token, then a thesaurus dictionary
definition like <literal>one 7</literal> will not work since token type
<literal>uint</literal> is not assigned to the thesaurus dictionary.
</para>
<caution>
<para>
Thesauruses are used during indexing so any change in the thesaurus
dictionary's parameters <emphasis>requires</emphasis> reindexing.
For most other dictionary types, small changes such as adding or
removing stopwords does not force reindexing.
</para>
</caution>
<sect3 id="textsearch-thesaurus-config">
<title>Thesaurus Configuration</title>
<para>
To define a new thesaurus dictionary, use the <literal>thesaurus</literal>
template. For example:
<programlisting>
CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
TEMPLATE = thesaurus,
DictFile = mythesaurus,
Dictionary = pg_catalog.english_stem
);
</programlisting>
Here:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
<literal>thesaurus_simple</literal> is the new dictionary's name
</para>
</listitem>
<listitem>
<para>
<literal>mythesaurus</literal> is the base name of the thesaurus
configuration file.
(Its full name will be <filename>$SHAREDIR/tsearch_data/mythesaurus.ths</filename>,
where <literal>$SHAREDIR</literal> means the installation shared-data
directory.)
</para>
</listitem>
<listitem>
<para>
<literal>pg_catalog.english_stem</literal> is the subdictionary (here,
a Snowball English stemmer) to use for thesaurus normalization.
Notice that the subdictionary will have its own
configuration (for example, stop words), which is not shown here.
</para>
</listitem>
</itemizedlist>
Now it is possible to bind the thesaurus dictionary <literal>thesaurus_simple</literal>
to the desired token types in a configuration, for example:
<programlisting>
ALTER TEXT SEARCH CONFIGURATION russian
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
WITH thesaurus_simple;
</programlisting>
</para>
</sect3>
<sect3 id="textsearch-thesaurus-examples">
<title>Thesaurus Example</title>
<para>
Consider a simple astronomical thesaurus <literal>thesaurus_astro</literal>,
which contains some astronomical word combinations:
<programlisting>
supernovae stars : sn
crab nebulae : crab
</programlisting>
Below we create a dictionary and bind some token types to
an astronomical thesaurus and English stemmer:
<programlisting>
CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
TEMPLATE = thesaurus,
DictFile = thesaurus_astro,
Dictionary = english_stem
);
ALTER TEXT SEARCH CONFIGURATION russian
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
WITH thesaurus_astro, english_stem;
</programlisting>
Now we can see how it works.
<function>ts_lexize</function> is not very useful for testing a thesaurus,
because it treats its input as a single token. Instead we can use
<function>plainto_tsquery</function> and <function>to_tsvector</function>
which will break their input strings into multiple tokens:
<screen>
SELECT plainto_tsquery('supernova star');
plainto_tsquery
-----------------
'sn'
SELECT to_tsvector('supernova star');
to_tsvector
-------------
'sn':1
</screen>
In principle, one can use <function>to_tsquery</function> if you quote
the argument:
<screen>
SELECT to_tsquery('''supernova star''');
to_tsquery
------------
'sn'
</screen>
Notice that <literal>supernova star</literal> matches <literal>supernovae
stars</literal> in <literal>thesaurus_astro</literal> because we specified
the <literal>english_stem</literal> stemmer in the thesaurus definition.
The stemmer removed the <literal>e</literal> and <literal>s</literal>.
</para>
<para>
To index the original phrase as well as the substitute, just include it
in the right-hand part of the definition:
<screen>
supernovae stars : sn supernovae stars
SELECT plainto_tsquery('supernova star');
plainto_tsquery
-----------------------------
'sn' & 'supernova' & 'star'
</screen>
</para>
</sect3>
</sect2>
<sect2 id="textsearch-ispell-dictionary">
<title><application>Ispell</application> Dictionary</title>
<para>
The <application>Ispell</application> dictionary template supports
<firstterm>morphological dictionaries</firstterm>, which can normalize many
different linguistic forms of a word into the same lexeme. For example,
an English <application>Ispell</application> dictionary can match all declensions and
conjugations of the search term <literal>bank</literal>, e.g.,
<literal>banking</literal>, <literal>banked</literal>, <literal>banks</literal>,
<literal>banks'</literal>, and <literal>bank's</literal>.
</para>
<para>
The standard <productname>PostgreSQL</productname> distribution does
not include any <application>Ispell</application> configuration files.
Dictionaries for a large number of languages are available from <ulink
url="https://www.cs.hmc.edu/~geoff/ispell.html">Ispell</ulink>.
Also, some more modern dictionary file formats are supported — <ulink
url="https://en.wikipedia.org/wiki/MySpell">MySpell</ulink> (OO < 2.0.1)
and <ulink url="https://sourceforge.net/projects/hunspell/">Hunspell</ulink>
(OO >= 2.0.2). A large list of dictionaries is available on the <ulink
url="https://wiki.openoffice.org/wiki/Dictionaries">OpenOffice
Wiki</ulink>.
</para>
<para>
To create an <application>Ispell</application> dictionary perform these steps:
</para>
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
download dictionary configuration files. <productname>OpenOffice</productname>
extension files have the <filename>.oxt</filename> extension. It is necessary
to extract <filename>.aff</filename> and <filename>.dic</filename> files, change
extensions to <filename>.affix</filename> and <filename>.dict</filename>. For some
dictionary files it is also needed to convert characters to the UTF-8
encoding with commands (for example, for a Norwegian language dictionary):
<programlisting>
iconv -f ISO_8859-1 -t UTF-8 -o nn_no.affix nn_NO.aff
iconv -f ISO_8859-1 -t UTF-8 -o nn_no.dict nn_NO.dic
</programlisting>
</para>
</listitem>
<listitem>
<para>
copy files to the <filename>$SHAREDIR/tsearch_data</filename> directory
</para>
</listitem>
<listitem>
<para>
load files into PostgreSQL with the following command:
<programlisting>
CREATE TEXT SEARCH DICTIONARY english_hunspell (
TEMPLATE = ispell,
DictFile = en_us,
AffFile = en_us,
Stopwords = english);
</programlisting>
</para>
</listitem>
</itemizedlist>
<para>
Here, <literal>DictFile</literal>, <literal>AffFile</literal>, and <literal>StopWords</literal>
specify the base names of the dictionary, affixes, and stop-words files.
The stop-words file has the same format explained above for the
<literal>simple</literal> dictionary type. The format of the other files is
not specified here but is available from the above-mentioned web sites.
</para>
<para>
Ispell dictionaries usually recognize a limited set of words, so they
should be followed by another broader dictionary; for
example, a Snowball dictionary, which recognizes everything.
</para>
<para>
The <filename>.affix</filename> file of <application>Ispell</application> has the following
structure:
<programlisting>
prefixes
flag *A:
. > RE # As in enter > reenter
suffixes
flag T:
E > ST # As in late > latest
[^AEIOU]Y > -Y,IEST # As in dirty > dirtiest
[AEIOU]Y > EST # As in gray > grayest
[^EY] > EST # As in small > smallest
</programlisting>
</para>
<para>
And the <filename>.dict</filename> file has the following structure:
<programlisting>
lapse/ADGRS
lard/DGRS
large/PRTY
lark/MRS
</programlisting>
</para>
<para>
Format of the <filename>.dict</filename> file is:
<programlisting>
basic_form/affix_class_name
</programlisting>
</para>
<para>
In the <filename>.affix</filename> file every affix flag is described in the
following format:
<programlisting>
condition > [-stripping_letters,] adding_affix
</programlisting>
</para>
<para>
Here, condition has a format similar to the format of regular expressions.
It can use groupings <literal>[...]</literal> and <literal>[^...]</literal>.
For example, <literal>[AEIOU]Y</literal> means that the last letter of the word
is <literal>"y"</literal> and the penultimate letter is <literal>"a"</literal>,
<literal>"e"</literal>, <literal>"i"</literal>, <literal>"o"</literal> or <literal>"u"</literal>.
<literal>[^EY]</literal> means that the last letter is neither <literal>"e"</literal>
nor <literal>"y"</literal>.
</para>
<para>
Ispell dictionaries support splitting compound words;
a useful feature.
Notice that the affix file should specify a special flag using the
<literal>compoundwords controlled</literal> statement that marks dictionary
words that can participate in compound formation:
<programlisting>
compoundwords controlled z
</programlisting>
Here are some examples for the Norwegian language:
<programlisting>
SELECT ts_lexize('norwegian_ispell', 'overbuljongterningpakkmesterassistent');
{over,buljong,terning,pakk,mester,assistent}
SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
{sjokoladefabrikk,sjokolade,fabrikk}
</programlisting>
</para>
<para>
<application>MySpell</application> format is a subset of <application>Hunspell</application>.
The <filename>.affix</filename> file of <application>Hunspell</application> has the following
structure:
<programlisting>
PFX A Y 1
PFX A 0 re .
SFX T N 4
SFX T 0 st e
SFX T y iest [^aeiou]y
SFX T 0 est [aeiou]y
SFX T 0 est [^ey]
</programlisting>
</para>
<para>
The first line of an affix class is the header. Fields of an affix rules are
listed after the header:
</para>
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
parameter name (PFX or SFX)
</para>
</listitem>
<listitem>
<para>
flag (name of the affix class)
</para>
</listitem>
<listitem>
<para>
stripping characters from beginning (at prefix) or end (at suffix) of the
word
</para>
</listitem>
<listitem>
<para>
adding affix
</para>
</listitem>
<listitem>
<para>
condition that has a format similar to the format of regular expressions.
</para>
</listitem>
</itemizedlist>
<para>
The <filename>.dict</filename> file looks like the <filename>.dict</filename> file of
<application>Ispell</application>:
<programlisting>
larder/M
lardy/RT
large/RSPMYT
largehearted
</programlisting>
</para>
<note>
<para>
<application>MySpell</application> does not support compound words.
<application>Hunspell</application> has sophisticated support for compound words. At
present, <productname>PostgreSQL</productname> implements only the basic
compound word operations of Hunspell.
</para>
</note>
</sect2>
<sect2 id="textsearch-snowball-dictionary">
<title><application>Snowball</application> Dictionary</title>
<para>
The <application>Snowball</application> dictionary template is based on a project
by Martin Porter, inventor of the popular Porter's stemming algorithm
for the English language. Snowball now provides stemming algorithms for
many languages (see the <ulink url="https://snowballstem.org/">Snowball
site</ulink> for more information). Each algorithm understands how to
reduce common variant forms of words to a base, or stem, spelling within
its language. A Snowball dictionary requires a <literal>language</literal>
parameter to identify which stemmer to use, and optionally can specify a
<literal>stopword</literal> file name that gives a list of words to eliminate.
(<productname>PostgreSQL</productname>'s standard stopword lists are also
provided by the Snowball project.)
For example, there is a built-in definition equivalent to
<programlisting>
CREATE TEXT SEARCH DICTIONARY english_stem (
TEMPLATE = snowball,
Language = english,
StopWords = english
);
</programlisting>
The stopword file format is the same as already explained.
</para>
<para>
A <application>Snowball</application> dictionary recognizes everything, whether
or not it is able to simplify the word, so it should be placed
at the end of the dictionary list. It is useless to have it
before any other dictionary because a token will never pass through it to
the next dictionary.
</para>
</sect2>
</sect1>
<sect1 id="textsearch-configuration">
<title>Configuration Example</title>
<para>
A text search configuration specifies all options necessary to transform a
document into a <type>tsvector</type>: the parser to use to break text
into tokens, and the dictionaries to use to transform each token into a
lexeme. Every call of
<function>to_tsvector</function> or <function>to_tsquery</function>
needs a text search configuration to perform its processing.
The configuration parameter
<xref linkend="guc-default-text-search-config"/>
specifies the name of the default configuration, which is the
one used by text search functions if an explicit configuration
parameter is omitted.
It can be set in <filename>postgresql.conf</filename>, or set for an
individual session using the <command>SET</command> command.
</para>
<para>
Several predefined text search configurations are available, and
you can create custom configurations easily. To facilitate management
of text search objects, a set of <acronym>SQL</acronym> commands
is available, and there are several <application>psql</application> commands that display information
about text search objects (<xref linkend="textsearch-psql"/>).
</para>
<para>
As an example we will create a configuration
<literal>pg</literal>, starting by duplicating the built-in
<literal>english</literal> configuration:
<programlisting>
CREATE TEXT SEARCH CONFIGURATION public.pg ( COPY = pg_catalog.english );
</programlisting>
</para>
<para>
We will use a PostgreSQL-specific synonym list
and store it in <filename>$SHAREDIR/tsearch_data/pg_dict.syn</filename>.
The file contents look like:
<programlisting>
postgres pg
pgsql pg
postgresql pg
</programlisting>
We define the synonym dictionary like this:
<programlisting>
CREATE TEXT SEARCH DICTIONARY pg_dict (
TEMPLATE = synonym,
SYNONYMS = pg_dict
);
</programlisting>
Next we register the <productname>Ispell</productname> dictionary
<literal>english_ispell</literal>, which has its own configuration files:
<programlisting>
CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english
);
</programlisting>
Now we can set up the mappings for words in configuration
<literal>pg</literal>:
<programlisting>
ALTER TEXT SEARCH CONFIGURATION pg
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
word, hword, hword_part
WITH pg_dict, english_ispell, english_stem;
</programlisting>
We choose not to index or search some token types that the built-in
configuration does handle:
<programlisting>
ALTER TEXT SEARCH CONFIGURATION pg
DROP MAPPING FOR email, url, url_path, sfloat, float;
</programlisting>
</para>
<para>
Now we can test our configuration:
<programlisting>
SELECT * FROM ts_debug('public.pg', '
PostgreSQL, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next
version of our software.
');
</programlisting>
</para>
<para>
The next step is to set the session to use the new configuration, which was
created in the <literal>public</literal> schema:
<screen>
=> \dF
List of text search configurations
Schema | Name | Description
---------+------+-------------
public | pg |
SET default_text_search_config = 'public.pg';
SET
SHOW default_text_search_config;
default_text_search_config
----------------------------
public.pg
</screen>
</para>
</sect1>
<sect1 id="textsearch-debugging">
<title>Testing and Debugging Text Search</title>
<para>
The behavior of a custom text search configuration can easily become
confusing. The functions described
in this section are useful for testing text search objects. You can
test a complete configuration, or test parsers and dictionaries separately.
</para>
<sect2 id="textsearch-configuration-testing">
<title>Configuration Testing</title>
<para>
The function <function>ts_debug</function> allows easy testing of a
text search configuration.
</para>
<indexterm>
<primary>ts_debug</primary>
</indexterm>
<synopsis>
ts_debug(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">document</replaceable> <type>text</type>,
OUT <replaceable class="parameter">alias</replaceable> <type>text</type>,
OUT <replaceable class="parameter">description</replaceable> <type>text</type>,
OUT <replaceable class="parameter">token</replaceable> <type>text</type>,
OUT <replaceable class="parameter">dictionaries</replaceable> <type>regdictionary[]</type>,
OUT <replaceable class="parameter">dictionary</replaceable> <type>regdictionary</type>,
OUT <replaceable class="parameter">lexemes</replaceable> <type>text[]</type>)
returns setof record
</synopsis>
<para>
<function>ts_debug</function> displays information about every token of
<replaceable class="parameter">document</replaceable> as produced by the
parser and processed by the configured dictionaries. It uses the
configuration specified by <replaceable
class="parameter">config</replaceable>,
or <varname>default_text_search_config</varname> if that argument is
omitted.
</para>
<para>
<function>ts_debug</function> returns one row for each token identified in the text
by the parser. The columns returned are
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
<replaceable>alias</replaceable> <type>text</type> — short name of the token type
</para>
</listitem>
<listitem>
<para>
<replaceable>description</replaceable> <type>text</type> — description of the
token type
</para>
</listitem>
<listitem>
<para>
<replaceable>token</replaceable> <type>text</type> — text of the token
</para>
</listitem>
<listitem>
<para>
<replaceable>dictionaries</replaceable> <type>regdictionary[]</type> — the
dictionaries selected by the configuration for this token type
</para>
</listitem>
<listitem>
<para>
<replaceable>dictionary</replaceable> <type>regdictionary</type> — the dictionary
that recognized the token, or <literal>NULL</literal> if none did
</para>
</listitem>
<listitem>
<para>
<replaceable>lexemes</replaceable> <type>text[]</type> — the lexeme(s) produced
by the dictionary that recognized the token, or <literal>NULL</literal> if
none did; an empty array (<literal>{}</literal>) means it was recognized as a
stop word
</para>
</listitem>
</itemizedlist>
</para>
<para>
Here is a simple example:
<screen>
SELECT * FROM ts_debug('english', 'a fat cat sat on a mat - it ate a fat rats');
alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+----------------+--------------+---------
asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | cat | {english_stem} | english_stem | {cat}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | sat | {english_stem} | english_stem | {sat}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | on | {english_stem} | english_stem | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | mat | {english_stem} | english_stem | {mat}
blank | Space symbols | | {} | |
blank | Space symbols | - | {} | |
asciiword | Word, all ASCII | it | {english_stem} | english_stem | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | ate | {english_stem} | english_stem | {ate}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | rats | {english_stem} | english_stem | {rat}
</screen>
</para>
<para>
For a more extensive demonstration, we
first create a <literal>public.english</literal> configuration and
Ispell dictionary for the English language:
</para>
<programlisting>
CREATE TEXT SEARCH CONFIGURATION public.english ( COPY = pg_catalog.english );
CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english
);
ALTER TEXT SEARCH CONFIGURATION public.english
ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;
</programlisting>
<screen>
SELECT * FROM ts_debug('public.english', 'The Brightest supernovaes');
alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------------+-------------------------------+----------------+-------------
asciiword | Word, all ASCII | The | {english_ispell,english_stem} | english_ispell | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | Brightest | {english_ispell,english_stem} | english_ispell | {bright}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem} | english_stem | {supernova}
</screen>
<para>
In this example, the word <literal>Brightest</literal> was recognized by the
parser as an <literal>ASCII word</literal> (alias <literal>asciiword</literal>).
For this token type the dictionary list is
<literal>english_ispell</literal> and
<literal>english_stem</literal>. The word was recognized by
<literal>english_ispell</literal>, which reduced it to the noun
<literal>bright</literal>. The word <literal>supernovaes</literal> is
unknown to the <literal>english_ispell</literal> dictionary so it
was passed to the next dictionary, and, fortunately, was recognized (in
fact, <literal>english_stem</literal> is a Snowball dictionary which
recognizes everything; that is why it was placed at the end of the
dictionary list).
</para>
<para>
The word <literal>The</literal> was recognized by the
<literal>english_ispell</literal> dictionary as a stop word (<xref
linkend="textsearch-stopwords"/>) and will not be indexed.
The spaces are discarded too, since the configuration provides no
dictionaries at all for them.
</para>
<para>
You can reduce the width of the output by explicitly specifying which columns
you want to see:
<screen>
SELECT alias, token, dictionary, lexemes
FROM ts_debug('public.english', 'The Brightest supernovaes');
alias | token | dictionary | lexemes
-----------+-------------+----------------+-------------
asciiword | The | english_ispell | {}
blank | | |
asciiword | Brightest | english_ispell | {bright}
blank | | |
asciiword | supernovaes | english_stem | {supernova}
</screen>
</para>
</sect2>
<sect2 id="textsearch-parser-testing">
<title>Parser Testing</title>
<para>
The following functions allow direct testing of a text search parser.
</para>
<indexterm>
<primary>ts_parse</primary>
</indexterm>
<synopsis>
ts_parse(<replaceable class="parameter">parser_name</replaceable> <type>text</type>, <replaceable class="parameter">document</replaceable> <type>text</type>,
OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>, OUT <replaceable class="parameter">token</replaceable> <type>text</type>) returns <type>setof record</type>
ts_parse(<replaceable class="parameter">parser_oid</replaceable> <type>oid</type>, <replaceable class="parameter">document</replaceable> <type>text</type>,
OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>, OUT <replaceable class="parameter">token</replaceable> <type>text</type>) returns <type>setof record</type>
</synopsis>
<para>
<function>ts_parse</function> parses the given <replaceable>document</replaceable>
and returns a series of records, one for each token produced by
parsing. Each record includes a <varname>tokid</varname> showing the
assigned token type and a <varname>token</varname> which is the text of the
token. For example:
<screen>
SELECT * FROM ts_parse('default', '123 - a number');
tokid | token
-------+--------
22 | 123
12 |
12 | -
1 | a
12 |
1 | number
</screen>
</para>
<indexterm>
<primary>ts_token_type</primary>
</indexterm>
<synopsis>
ts_token_type(<replaceable class="parameter">parser_name</replaceable> <type>text</type>, OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>,
OUT <replaceable class="parameter">alias</replaceable> <type>text</type>, OUT <replaceable class="parameter">description</replaceable> <type>text</type>) returns <type>setof record</type>
ts_token_type(<replaceable class="parameter">parser_oid</replaceable> <type>oid</type>, OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>,
OUT <replaceable class="parameter">alias</replaceable> <type>text</type>, OUT <replaceable class="parameter">description</replaceable> <type>text</type>) returns <type>setof record</type>
</synopsis>
<para>
<function>ts_token_type</function> returns a table which describes each type of
token the specified parser can recognize. For each token type, the table
gives the integer <varname>tokid</varname> that the parser uses to label a
token of that type, the <varname>alias</varname> that names the token type
in configuration commands, and a short <varname>description</varname>. For
example:
<screen>
SELECT * FROM ts_token_type('default');
tokid | alias | description
-------+-----------------+------------------------------------------
1 | asciiword | Word, all ASCII
2 | word | Word, all letters
3 | numword | Word, letters and digits
4 | email | Email address
5 | url | URL
6 | host | Host
7 | sfloat | Scientific notation
8 | version | Version number
9 | hword_numpart | Hyphenated word part, letters and digits
10 | hword_part | Hyphenated word part, all letters
11 | hword_asciipart | Hyphenated word part, all ASCII
12 | blank | Space symbols
13 | tag | XML tag
14 | protocol | Protocol head
15 | numhword | Hyphenated word, letters and digits
16 | asciihword | Hyphenated word, all ASCII
17 | hword | Hyphenated word, all letters
18 | url_path | URL path
19 | file | File or path name
20 | float | Decimal notation
21 | int | Signed integer
22 | uint | Unsigned integer
23 | entity | XML entity
</screen>
</para>
</sect2>
<sect2 id="textsearch-dictionary-testing">
<title>Dictionary Testing</title>
<para>
The <function>ts_lexize</function> function facilitates dictionary testing.
</para>
<indexterm>
<primary>ts_lexize</primary>
</indexterm>
<synopsis>
ts_lexize(<replaceable class="parameter">dict</replaceable> <type>regdictionary</type>, <replaceable class="parameter">token</replaceable> <type>text</type>) returns <type>text[]</type>
</synopsis>
<para>
<function>ts_lexize</function> returns an array of lexemes if the input
<replaceable>token</replaceable> is known to the dictionary,
or an empty array if the token
is known to the dictionary but it is a stop word, or
<literal>NULL</literal> if it is an unknown word.
</para>
<para>
Examples:
<screen>
SELECT ts_lexize('english_stem', 'stars');
ts_lexize
-----------
{star}
SELECT ts_lexize('english_stem', 'a');
ts_lexize
-----------
{}
</screen>
</para>
<note>
<para>
The <function>ts_lexize</function> function expects a single
<emphasis>token</emphasis>, not text. Here is a case
where this can be confusing:
<screen>
SELECT ts_lexize('thesaurus_astro', 'supernovae stars') is null;
?column?
----------
t
</screen>
The thesaurus dictionary <literal>thesaurus_astro</literal> does know the
phrase <literal>supernovae stars</literal>, but <function>ts_lexize</function>
fails since it does not parse the input text but treats it as a single
token. Use <function>plainto_tsquery</function> or <function>to_tsvector</function> to
test thesaurus dictionaries, for example:
<screen>
SELECT plainto_tsquery('supernovae stars');
plainto_tsquery
-----------------
'sn'
</screen>
</para>
</note>
</sect2>
</sect1>
<sect1 id="textsearch-indexes">
<title>Preferred Index Types for Text Search</title>
<indexterm zone="textsearch-indexes">
<primary>text search</primary>
<secondary>indexes</secondary>
</indexterm>
<para>
There are two kinds of indexes that can be used to speed up full text
searches:
<link linkend="gin"><acronym>GIN</acronym></link> and
<link linkend="gist"><acronym>GiST</acronym></link>.
Note that indexes are not mandatory for full text searching, but in
cases where a column is searched on a regular basis, an index is
usually desirable.
</para>
<para>
To create such an index, do one of:
<variablelist>
<varlistentry>
<term>
<indexterm zone="textsearch-indexes">
<primary>index</primary>
<secondary>GIN</secondary>
<tertiary>text search</tertiary>
</indexterm>
<literal>CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable> USING GIN (<replaceable>column</replaceable>);</literal>
</term>
<listitem>
<para>
Creates a GIN (Generalized Inverted Index)-based index.
The <replaceable>column</replaceable> must be of <type>tsvector</type> type.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<indexterm zone="textsearch-indexes">
<primary>index</primary>
<secondary>GiST</secondary>
<tertiary>text search</tertiary>
</indexterm>
<literal>CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable> USING GIST (<replaceable>column</replaceable> [ { DEFAULT | tsvector_ops } (siglen = <replaceable>number</replaceable>) ] );</literal>
</term>
<listitem>
<para>
Creates a GiST (Generalized Search Tree)-based index.
The <replaceable>column</replaceable> can be of <type>tsvector</type> or
<type>tsquery</type> type.
Optional integer parameter <literal>siglen</literal> determines
signature length in bytes (see below for details).
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
<para>
GIN indexes are the preferred text search index type. As inverted
indexes, they contain an index entry for each word (lexeme), with a
compressed list of matching locations. Multi-word searches can find
the first match, then use the index to remove rows that are lacking
additional words. GIN indexes store only the words (lexemes) of
<type>tsvector</type> values, and not their weight labels. Thus a table
row recheck is needed when using a query that involves weights.
</para>
<para>
A GiST index is <firstterm>lossy</firstterm>, meaning that the index
might produce false matches, and it is necessary
to check the actual table row to eliminate such false matches.
(<productname>PostgreSQL</productname> does this automatically when needed.)
GiST indexes are lossy because each document is represented in the
index by a fixed-length signature. The signature length in bytes is determined
by the value of the optional integer parameter <literal>siglen</literal>.
The default signature length (when <literal>siglen</literal> is not specified) is
124 bytes, the maximum signature length is 2024 bytes. The signature is generated by hashing
each word into a single bit in an n-bit string, with all these bits OR-ed
together to produce an n-bit document signature. When two words hash to
the same bit position there will be a false match. If all words in
the query have matches (real or false) then the table row must be
retrieved to see if the match is correct. Longer signatures lead to a more
precise search (scanning a smaller fraction of the index and fewer heap
pages), at the cost of a larger index.
</para>
<para>
A GiST index can be covering, i.e., use the <literal>INCLUDE</literal>
clause. Included columns can have data types without any GiST operator
class. Included attributes will be stored uncompressed.
</para>
<para>
Lossiness causes performance degradation due to unnecessary fetches of table
records that turn out to be false matches. Since random access to table
records is slow, this limits the usefulness of GiST indexes. The
likelihood of false matches depends on several factors, in particular the
number of unique words, so using dictionaries to reduce this number is
recommended.
</para>
<para>
Note that <acronym>GIN</acronym> index build time can often be improved
by increasing <xref linkend="guc-maintenance-work-mem"/>, while
<acronym>GiST</acronym> index build time is not sensitive to that
parameter.
</para>
<para>
Partitioning of big collections and the proper use of GIN and GiST indexes
allows the implementation of very fast searches with online update.
Partitioning can be done at the database level using table inheritance,
or by distributing documents over
servers and collecting external search results, e.g., via <link
linkend="ddl-foreign-data">Foreign Data</link> access.
The latter is possible because ranking functions use
only local information.
</para>
</sect1>
<sect1 id="textsearch-psql">
<title><application>psql</application> Support</title>
<para>
Information about text search configuration objects can be obtained
in <application>psql</application> using a set of commands:
<synopsis>
\dF{d,p,t}<optional>+</optional> <optional>PATTERN</optional>
</synopsis>
An optional <literal>+</literal> produces more details.
</para>
<para>
The optional parameter <replaceable>PATTERN</replaceable> can be the name of
a text search object, optionally schema-qualified. If
<replaceable>PATTERN</replaceable> is omitted then information about all
visible objects will be displayed. <replaceable>PATTERN</replaceable> can be a
regular expression and can provide <emphasis>separate</emphasis> patterns
for the schema and object names. The following examples illustrate this:
<screen>
=> \dF *fulltext*
List of text search configurations
Schema | Name | Description
--------+--------------+-------------
public | fulltext_cfg |
</screen>
<screen>
=> \dF *.fulltext*
List of text search configurations
Schema | Name | Description
----------+----------------------------
fulltext | fulltext_cfg |
public | fulltext_cfg |
</screen>
The available commands are:
</para>
<variablelist>
<varlistentry>
<term><literal>\dF<optional>+</optional> <optional>PATTERN</optional></literal></term>
<listitem>
<para>
List text search configurations (add <literal>+</literal> for more detail).
<screen>
=> \dF russian
List of text search configurations
Schema | Name | Description
------------+---------+------------------------------------
pg_catalog | russian | configuration for russian language
=> \dF+ russian
Text search configuration "pg_catalog.russian"
Parser: "pg_catalog.default"
Token | Dictionaries
-----------------+--------------
asciihword | english_stem
asciiword | english_stem
email | simple
file | simple
float | simple
host | simple
hword | russian_stem
hword_asciipart | english_stem
hword_numpart | simple
hword_part | russian_stem
int | simple
numhword | simple
numword | simple
sfloat | simple
uint | simple
url | simple
url_path | simple
version | simple
word | russian_stem
</screen>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>\dFd<optional>+</optional> <optional>PATTERN</optional></literal></term>
<listitem>
<para>
List text search dictionaries (add <literal>+</literal> for more detail).
<screen>
=> \dFd
List of text search dictionaries
Schema | Name | Description
------------+-----------------+-----------------------------------------------------------
pg_catalog | arabic_stem | snowball stemmer for arabic language
pg_catalog | armenian_stem | snowball stemmer for armenian language
pg_catalog | basque_stem | snowball stemmer for basque language
pg_catalog | catalan_stem | snowball stemmer for catalan language
pg_catalog | danish_stem | snowball stemmer for danish language
pg_catalog | dutch_stem | snowball stemmer for dutch language
pg_catalog | english_stem | snowball stemmer for english language
pg_catalog | finnish_stem | snowball stemmer for finnish language
pg_catalog | french_stem | snowball stemmer for french language
pg_catalog | german_stem | snowball stemmer for german language
pg_catalog | greek_stem | snowball stemmer for greek language
pg_catalog | hindi_stem | snowball stemmer for hindi language
pg_catalog | hungarian_stem | snowball stemmer for hungarian language
pg_catalog | indonesian_stem | snowball stemmer for indonesian language
pg_catalog | irish_stem | snowball stemmer for irish language
pg_catalog | italian_stem | snowball stemmer for italian language
pg_catalog | lithuanian_stem | snowball stemmer for lithuanian language
pg_catalog | nepali_stem | snowball stemmer for nepali language
pg_catalog | norwegian_stem | snowball stemmer for norwegian language
pg_catalog | portuguese_stem | snowball stemmer for portuguese language
pg_catalog | romanian_stem | snowball stemmer for romanian language
pg_catalog | russian_stem | snowball stemmer for russian language
pg_catalog | serbian_stem | snowball stemmer for serbian language
pg_catalog | simple | simple dictionary: just lower case and check for stopword
pg_catalog | spanish_stem | snowball stemmer for spanish language
pg_catalog | swedish_stem | snowball stemmer for swedish language
pg_catalog | tamil_stem | snowball stemmer for tamil language
pg_catalog | turkish_stem | snowball stemmer for turkish language
pg_catalog | yiddish_stem | snowball stemmer for yiddish language
</screen>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>\dFp<optional>+</optional> <optional>PATTERN</optional></literal></term>
<listitem>
<para>
List text search parsers (add <literal>+</literal> for more detail).
<screen>
=> \dFp
List of text search parsers
Schema | Name | Description
------------+---------+---------------------
pg_catalog | default | default word parser
=> \dFp+
Text search parser "pg_catalog.default"
Method | Function | Description
-----------------+----------------+-------------
Start parse | prsd_start |
Get next token | prsd_nexttoken |
End parse | prsd_end |
Get headline | prsd_headline |
Get token types | prsd_lextype |
Token types for parser "pg_catalog.default"
Token name | Description
-----------------+------------------------------------------
asciihword | Hyphenated word, all ASCII
asciiword | Word, all ASCII
blank | Space symbols
email | Email address
entity | XML entity
file | File or path name
float | Decimal notation
host | Host
hword | Hyphenated word, all letters
hword_asciipart | Hyphenated word part, all ASCII
hword_numpart | Hyphenated word part, letters and digits
hword_part | Hyphenated word part, all letters
int | Signed integer
numhword | Hyphenated word, letters and digits
numword | Word, letters and digits
protocol | Protocol head
sfloat | Scientific notation
tag | XML tag
uint | Unsigned integer
url | URL
url_path | URL path
version | Version number
word | Word, all letters
(23 rows)
</screen>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>\dFt<optional>+</optional> <optional>PATTERN</optional></literal></term>
<listitem>
<para>
List text search templates (add <literal>+</literal> for more detail).
<screen>
=> \dFt
List of text search templates
Schema | Name | Description
------------+-----------+-----------------------------------------------------------
pg_catalog | ispell | ispell dictionary
pg_catalog | simple | simple dictionary: just lower case and check for stopword
pg_catalog | snowball | snowball stemmer
pg_catalog | synonym | synonym dictionary: replace word by its synonym
pg_catalog | thesaurus | thesaurus dictionary: phrase by phrase substitution
</screen>
</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="textsearch-limitations">
<title>Limitations</title>
<para>
The current limitations of <productname>PostgreSQL</productname>'s
text search features are:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>The length of each lexeme must be less than 2 kilobytes</para>
</listitem>
<listitem>
<para>The length of a <type>tsvector</type> (lexemes + positions) must be
less than 1 megabyte</para>
</listitem>
<listitem>
<!-- TODO: number of lexemes in what? This is unclear -->
<para>The number of lexemes must be less than
2<superscript>64</superscript></para>
</listitem>
<listitem>
<para>Position values in <type>tsvector</type> must be greater than 0 and
no more than 16,383</para>
</listitem>
<listitem>
<para>The match distance in a <literal><<replaceable>N</replaceable>></literal>
(FOLLOWED BY) <type>tsquery</type> operator cannot be more than
16,384</para>
</listitem>
<listitem>
<para>No more than 256 positions per lexeme</para>
</listitem>
<listitem>
<para>The number of nodes (lexemes + operators) in a <type>tsquery</type>
must be less than 32,768</para>
</listitem>
</itemizedlist>
</para>
<para>
For comparison, the <productname>PostgreSQL</productname> 8.1 documentation
contained 10,441 unique words, a total of 335,420 words, and the most
frequent word <quote>postgresql</quote> was mentioned 6,127 times in 655
documents.
</para>
<!-- TODO we need to put a date on these numbers? -->
<para>
Another example — the <productname>PostgreSQL</productname> mailing
list archives contained 910,989 unique words with 57,491,343 lexemes in
461,020 messages.
</para>
</sect1>
</chapter>
|